summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp606
1 files changed, 606 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp b/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
new file mode 100644
index 0000000..4288742
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp
@@ -0,0 +1,606 @@
+//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies expensive constants to hoist and coalesces them to
+// better prepare it for SelectionDAG-based code generation. This works around
+// the limitations of the basic-block-at-a-time approach.
+//
+// First it scans all instructions for integer constants and calculates its
+// cost. If the constant can be folded into the instruction (the cost is
+// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
+// consider it expensive and leave it alone. This is the default behavior and
+// the default implementation of getIntImmCost will always return TCC_Free.
+//
+// If the cost is more than TCC_BASIC, then the integer constant can't be folded
+// into the instruction and it might be beneficial to hoist the constant.
+// Similar constants are coalesced to reduce register pressure and
+// materialization code.
+//
+// When a constant is hoisted, it is also hidden behind a bitcast to force it to
+// be live-out of the basic block. Otherwise the constant would be just
+// duplicated and each basic block would have its own copy in the SelectionDAG.
+// The SelectionDAG recognizes such constants as opaque and doesn't perform
+// certain transformations on them, which would create a new expensive constant.
+//
+// This optimization is only applied to integer constants in instructions and
+// simple (this means not nested) constant cast expressions. For example:
+// %0 = load i64* inttoptr (i64 big_constant to i64*)
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <tuple>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "consthoist"
+
+STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
+STATISTIC(NumConstantsRebased, "Number of constants rebased");
+
+namespace {
+struct ConstantUser;
+struct RebasedConstantInfo;
+
+typedef SmallVector<ConstantUser, 8> ConstantUseListType;
+typedef SmallVector<RebasedConstantInfo, 4> RebasedConstantListType;
+
+/// \brief Keeps track of the user of a constant and the operand index where the
+/// constant is used.
+struct ConstantUser {
+ Instruction *Inst;
+ unsigned OpndIdx;
+
+ ConstantUser(Instruction *Inst, unsigned Idx) : Inst(Inst), OpndIdx(Idx) { }
+};
+
+/// \brief Keeps track of a constant candidate and its uses.
+struct ConstantCandidate {
+ ConstantUseListType Uses;
+ ConstantInt *ConstInt;
+ unsigned CumulativeCost;
+
+ ConstantCandidate(ConstantInt *ConstInt)
+ : ConstInt(ConstInt), CumulativeCost(0) { }
+
+ /// \brief Add the user to the use list and update the cost.
+ void addUser(Instruction *Inst, unsigned Idx, unsigned Cost) {
+ CumulativeCost += Cost;
+ Uses.push_back(ConstantUser(Inst, Idx));
+ }
+};
+
+/// \brief This represents a constant that has been rebased with respect to a
+/// base constant. The difference to the base constant is recorded in Offset.
+struct RebasedConstantInfo {
+ ConstantUseListType Uses;
+ Constant *Offset;
+
+ RebasedConstantInfo(ConstantUseListType &&Uses, Constant *Offset)
+ : Uses(std::move(Uses)), Offset(Offset) { }
+};
+
+/// \brief A base constant and all its rebased constants.
+struct ConstantInfo {
+ ConstantInt *BaseConstant;
+ RebasedConstantListType RebasedConstants;
+};
+
+/// \brief The constant hoisting pass.
+class ConstantHoisting : public FunctionPass {
+ typedef DenseMap<ConstantInt *, unsigned> ConstCandMapType;
+ typedef std::vector<ConstantCandidate> ConstCandVecType;
+
+ const TargetTransformInfo *TTI;
+ DominatorTree *DT;
+ BasicBlock *Entry;
+
+ /// Keeps track of constant candidates found in the function.
+ ConstCandVecType ConstCandVec;
+
+ /// Keep track of cast instructions we already cloned.
+ SmallDenseMap<Instruction *, Instruction *> ClonedCastMap;
+
+ /// These are the final constants we decided to hoist.
+ SmallVector<ConstantInfo, 8> ConstantVec;
+public:
+ static char ID; // Pass identification, replacement for typeid
+ ConstantHoisting() : FunctionPass(ID), TTI(nullptr), DT(nullptr),
+ Entry(nullptr) {
+ initializeConstantHoistingPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &Fn) override;
+
+ const char *getPassName() const override { return "Constant Hoisting"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ }
+
+private:
+ /// \brief Initialize the pass.
+ void setup(Function &Fn) {
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn);
+ Entry = &Fn.getEntryBlock();
+ }
+
+ /// \brief Cleanup.
+ void cleanup() {
+ ConstantVec.clear();
+ ClonedCastMap.clear();
+ ConstCandVec.clear();
+
+ TTI = nullptr;
+ DT = nullptr;
+ Entry = nullptr;
+ }
+
+ Instruction *findMatInsertPt(Instruction *Inst, unsigned Idx = ~0U) const;
+ Instruction *findConstantInsertionPoint(const ConstantInfo &ConstInfo) const;
+ void collectConstantCandidates(ConstCandMapType &ConstCandMap,
+ Instruction *Inst, unsigned Idx,
+ ConstantInt *ConstInt);
+ void collectConstantCandidates(ConstCandMapType &ConstCandMap,
+ Instruction *Inst);
+ void collectConstantCandidates(Function &Fn);
+ void findAndMakeBaseConstant(ConstCandVecType::iterator S,
+ ConstCandVecType::iterator E);
+ void findBaseConstants();
+ void emitBaseConstants(Instruction *Base, Constant *Offset,
+ const ConstantUser &ConstUser);
+ bool emitBaseConstants();
+ void deleteDeadCastInst() const;
+ bool optimizeConstants(Function &Fn);
+};
+}
+
+char ConstantHoisting::ID = 0;
+INITIALIZE_PASS_BEGIN(ConstantHoisting, "consthoist", "Constant Hoisting",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(ConstantHoisting, "consthoist", "Constant Hoisting",
+ false, false)
+
+FunctionPass *llvm::createConstantHoistingPass() {
+ return new ConstantHoisting();
+}
+
+/// \brief Perform the constant hoisting optimization for the given function.
+bool ConstantHoisting::runOnFunction(Function &Fn) {
+ if (skipOptnoneFunction(Fn))
+ return false;
+
+ DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
+ DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
+
+ setup(Fn);
+
+ bool MadeChange = optimizeConstants(Fn);
+
+ if (MadeChange) {
+ DEBUG(dbgs() << "********** Function after Constant Hoisting: "
+ << Fn.getName() << '\n');
+ DEBUG(dbgs() << Fn);
+ }
+ DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
+
+ cleanup();
+
+ return MadeChange;
+}
+
+
+/// \brief Find the constant materialization insertion point.
+Instruction *ConstantHoisting::findMatInsertPt(Instruction *Inst,
+ unsigned Idx) const {
+ // If the operand is a cast instruction, then we have to materialize the
+ // constant before the cast instruction.
+ if (Idx != ~0U) {
+ Value *Opnd = Inst->getOperand(Idx);
+ if (auto CastInst = dyn_cast<Instruction>(Opnd))
+ if (CastInst->isCast())
+ return CastInst;
+ }
+
+ // The simple and common case. This also includes constant expressions.
+ if (!isa<PHINode>(Inst) && !isa<LandingPadInst>(Inst))
+ return Inst;
+
+ // We can't insert directly before a phi node or landing pad. Insert before
+ // the terminator of the incoming or dominating block.
+ assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
+ if (Idx != ~0U && isa<PHINode>(Inst))
+ return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator();
+
+ BasicBlock *IDom = DT->getNode(Inst->getParent())->getIDom()->getBlock();
+ return IDom->getTerminator();
+}
+
+/// \brief Find an insertion point that dominates all uses.
+Instruction *ConstantHoisting::
+findConstantInsertionPoint(const ConstantInfo &ConstInfo) const {
+ assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
+ // Collect all basic blocks.
+ SmallPtrSet<BasicBlock *, 8> BBs;
+ for (auto const &RCI : ConstInfo.RebasedConstants)
+ for (auto const &U : RCI.Uses)
+ BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
+
+ if (BBs.count(Entry))
+ return &Entry->front();
+
+ while (BBs.size() >= 2) {
+ BasicBlock *BB, *BB1, *BB2;
+ BB1 = *BBs.begin();
+ BB2 = *std::next(BBs.begin());
+ BB = DT->findNearestCommonDominator(BB1, BB2);
+ if (BB == Entry)
+ return &Entry->front();
+ BBs.erase(BB1);
+ BBs.erase(BB2);
+ BBs.insert(BB);
+ }
+ assert((BBs.size() == 1) && "Expected only one element.");
+ Instruction &FirstInst = (*BBs.begin())->front();
+ return findMatInsertPt(&FirstInst);
+}
+
+
+/// \brief Record constant integer ConstInt for instruction Inst at operand
+/// index Idx.
+///
+/// The operand at index Idx is not necessarily the constant integer itself. It
+/// could also be a cast instruction or a constant expression that uses the
+// constant integer.
+void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
+ Instruction *Inst,
+ unsigned Idx,
+ ConstantInt *ConstInt) {
+ unsigned Cost;
+ // Ask the target about the cost of materializing the constant for the given
+ // instruction and operand index.
+ if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
+ Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx,
+ ConstInt->getValue(), ConstInt->getType());
+ else
+ Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(),
+ ConstInt->getType());
+
+ // Ignore cheap integer constants.
+ if (Cost > TargetTransformInfo::TCC_Basic) {
+ ConstCandMapType::iterator Itr;
+ bool Inserted;
+ std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(ConstInt, 0));
+ if (Inserted) {
+ ConstCandVec.push_back(ConstantCandidate(ConstInt));
+ Itr->second = ConstCandVec.size() - 1;
+ }
+ ConstCandVec[Itr->second].addUser(Inst, Idx, Cost);
+ DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx)))
+ dbgs() << "Collect constant " << *ConstInt << " from " << *Inst
+ << " with cost " << Cost << '\n';
+ else
+ dbgs() << "Collect constant " << *ConstInt << " indirectly from "
+ << *Inst << " via " << *Inst->getOperand(Idx) << " with cost "
+ << Cost << '\n';
+ );
+ }
+}
+
+/// \brief Scan the instruction for expensive integer constants and record them
+/// in the constant candidate vector.
+void ConstantHoisting::collectConstantCandidates(ConstCandMapType &ConstCandMap,
+ Instruction *Inst) {
+ // Skip all cast instructions. They are visited indirectly later on.
+ if (Inst->isCast())
+ return;
+
+ // Can't handle inline asm. Skip it.
+ if (auto Call = dyn_cast<CallInst>(Inst))
+ if (isa<InlineAsm>(Call->getCalledValue()))
+ return;
+
+ // Scan all operands.
+ for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
+ Value *Opnd = Inst->getOperand(Idx);
+
+ // Visit constant integers.
+ if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ continue;
+ }
+
+ // Visit cast instructions that have constant integers.
+ if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
+ // Only visit cast instructions, which have been skipped. All other
+ // instructions should have already been visited.
+ if (!CastInst->isCast())
+ continue;
+
+ if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
+ // Pretend the constant is directly used by the instruction and ignore
+ // the cast instruction.
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ continue;
+ }
+ }
+
+ // Visit constant expressions that have constant integers.
+ if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
+ // Only visit constant cast expressions.
+ if (!ConstExpr->isCast())
+ continue;
+
+ if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
+ // Pretend the constant is directly used by the instruction and ignore
+ // the constant expression.
+ collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
+ continue;
+ }
+ }
+ } // end of for all operands
+}
+
+/// \brief Collect all integer constants in the function that cannot be folded
+/// into an instruction itself.
+void ConstantHoisting::collectConstantCandidates(Function &Fn) {
+ ConstCandMapType ConstCandMap;
+ for (Function::iterator BB : Fn)
+ for (BasicBlock::iterator Inst : *BB)
+ collectConstantCandidates(ConstCandMap, Inst);
+}
+
+/// \brief Find the base constant within the given range and rebase all other
+/// constants with respect to the base constant.
+void ConstantHoisting::findAndMakeBaseConstant(ConstCandVecType::iterator S,
+ ConstCandVecType::iterator E) {
+ auto MaxCostItr = S;
+ unsigned NumUses = 0;
+ // Use the constant that has the maximum cost as base constant.
+ for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
+ NumUses += ConstCand->Uses.size();
+ if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
+ MaxCostItr = ConstCand;
+ }
+
+ // Don't hoist constants that have only one use.
+ if (NumUses <= 1)
+ return;
+
+ ConstantInfo ConstInfo;
+ ConstInfo.BaseConstant = MaxCostItr->ConstInt;
+ Type *Ty = ConstInfo.BaseConstant->getType();
+
+ // Rebase the constants with respect to the base constant.
+ for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
+ APInt Diff = ConstCand->ConstInt->getValue() -
+ ConstInfo.BaseConstant->getValue();
+ Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
+ ConstInfo.RebasedConstants.push_back(
+ RebasedConstantInfo(std::move(ConstCand->Uses), Offset));
+ }
+ ConstantVec.push_back(std::move(ConstInfo));
+}
+
+/// \brief Finds and combines constant candidates that can be easily
+/// rematerialized with an add from a common base constant.
+void ConstantHoisting::findBaseConstants() {
+ // Sort the constants by value and type. This invalidates the mapping!
+ std::sort(ConstCandVec.begin(), ConstCandVec.end(),
+ [](const ConstantCandidate &LHS, const ConstantCandidate &RHS) {
+ if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
+ return LHS.ConstInt->getType()->getBitWidth() <
+ RHS.ConstInt->getType()->getBitWidth();
+ return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
+ });
+
+ // Simple linear scan through the sorted constant candidate vector for viable
+ // merge candidates.
+ auto MinValItr = ConstCandVec.begin();
+ for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
+ CC != E; ++CC) {
+ if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
+ // Check if the constant is in range of an add with immediate.
+ APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
+ if ((Diff.getBitWidth() <= 64) &&
+ TTI->isLegalAddImmediate(Diff.getSExtValue()))
+ continue;
+ }
+ // We either have now a different constant type or the constant is not in
+ // range of an add with immediate anymore.
+ findAndMakeBaseConstant(MinValItr, CC);
+ // Start a new base constant search.
+ MinValItr = CC;
+ }
+ // Finalize the last base constant search.
+ findAndMakeBaseConstant(MinValItr, ConstCandVec.end());
+}
+
+/// \brief Updates the operand at Idx in instruction Inst with the result of
+/// instruction Mat. If the instruction is a PHI node then special
+/// handling for duplicate values form the same incomming basic block is
+/// required.
+/// \return The update will always succeed, but the return value indicated if
+/// Mat was used for the update or not.
+static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
+ if (auto PHI = dyn_cast<PHINode>(Inst)) {
+ // Check if any previous operand of the PHI node has the same incoming basic
+ // block. This is a very odd case that happens when the incoming basic block
+ // has a switch statement. In this case use the same value as the previous
+ // operand(s), otherwise we will fail verification due to different values.
+ // The values are actually the same, but the variable names are different
+ // and the verifier doesn't like that.
+ BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
+ for (unsigned i = 0; i < Idx; ++i) {
+ if (PHI->getIncomingBlock(i) == IncomingBB) {
+ Value *IncomingVal = PHI->getIncomingValue(i);
+ Inst->setOperand(Idx, IncomingVal);
+ return false;
+ }
+ }
+ }
+
+ Inst->setOperand(Idx, Mat);
+ return true;
+}
+
+/// \brief Emit materialization code for all rebased constants and update their
+/// users.
+void ConstantHoisting::emitBaseConstants(Instruction *Base, Constant *Offset,
+ const ConstantUser &ConstUser) {
+ Instruction *Mat = Base;
+ if (Offset) {
+ Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
+ ConstUser.OpndIdx);
+ Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
+ "const_mat", InsertionPt);
+
+ DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
+ << " + " << *Offset << ") in BB "
+ << Mat->getParent()->getName() << '\n' << *Mat << '\n');
+ Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
+ }
+ Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
+
+ // Visit constant integer.
+ if (isa<ConstantInt>(Opnd)) {
+ DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
+ Mat->eraseFromParent();
+ DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+
+ // Visit cast instruction.
+ if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
+ assert(CastInst->isCast() && "Expected an cast instruction!");
+ // Check if we already have visited this cast instruction before to avoid
+ // unnecessary cloning.
+ Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
+ if (!ClonedCastInst) {
+ ClonedCastInst = CastInst->clone();
+ ClonedCastInst->setOperand(0, Mat);
+ ClonedCastInst->insertAfter(CastInst);
+ // Use the same debug location as the original cast instruction.
+ ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
+ DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
+ << "To : " << *ClonedCastInst << '\n');
+ }
+
+ DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
+ DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+
+ // Visit constant expression.
+ if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
+ Instruction *ConstExprInst = ConstExpr->getAsInstruction();
+ ConstExprInst->setOperand(0, Mat);
+ ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst,
+ ConstUser.OpndIdx));
+
+ // Use the same debug location as the instruction we are about to update.
+ ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
+
+ DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
+ << "From : " << *ConstExpr << '\n');
+ DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
+ if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
+ ConstExprInst->eraseFromParent();
+ if (Offset)
+ Mat->eraseFromParent();
+ }
+ DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
+ return;
+ }
+}
+
+/// \brief Hoist and hide the base constant behind a bitcast and emit
+/// materialization code for derived constants.
+bool ConstantHoisting::emitBaseConstants() {
+ bool MadeChange = false;
+ for (auto const &ConstInfo : ConstantVec) {
+ // Hoist and hide the base constant behind a bitcast.
+ Instruction *IP = findConstantInsertionPoint(ConstInfo);
+ IntegerType *Ty = ConstInfo.BaseConstant->getType();
+ Instruction *Base =
+ new BitCastInst(ConstInfo.BaseConstant, Ty, "const", IP);
+ DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseConstant << ") to BB "
+ << IP->getParent()->getName() << '\n' << *Base << '\n');
+ NumConstantsHoisted++;
+
+ // Emit materialization code for all rebased constants.
+ for (auto const &RCI : ConstInfo.RebasedConstants) {
+ NumConstantsRebased++;
+ for (auto const &U : RCI.Uses)
+ emitBaseConstants(Base, RCI.Offset, U);
+ }
+
+ // Use the same debug location as the last user of the constant.
+ assert(!Base->use_empty() && "The use list is empty!?");
+ assert(isa<Instruction>(Base->user_back()) &&
+ "All uses should be instructions.");
+ Base->setDebugLoc(cast<Instruction>(Base->user_back())->getDebugLoc());
+
+ // Correct for base constant, which we counted above too.
+ NumConstantsRebased--;
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+/// \brief Check all cast instructions we made a copy of and remove them if they
+/// have no more users.
+void ConstantHoisting::deleteDeadCastInst() const {
+ for (auto const &I : ClonedCastMap)
+ if (I.first->use_empty())
+ I.first->eraseFromParent();
+}
+
+/// \brief Optimize expensive integer constants in the given function.
+bool ConstantHoisting::optimizeConstants(Function &Fn) {
+ // Collect all constant candidates.
+ collectConstantCandidates(Fn);
+
+ // There are no constant candidates to worry about.
+ if (ConstCandVec.empty())
+ return false;
+
+ // Combine constants that can be easily materialized with an add from a common
+ // base constant.
+ findBaseConstants();
+
+ // There are no constants to emit.
+ if (ConstantVec.empty())
+ return false;
+
+ // Finally hoist the base constant and emit materialization code for dependent
+ // constants.
+ bool MadeChange = emitBaseConstants();
+
+ // Cleanup dead instructions.
+ deleteDeadCastInst();
+
+ return MadeChange;
+}
OpenPOWER on IntegriCloud