diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp | 1104 |
1 files changed, 1104 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp new file mode 100644 index 0000000..9536939 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp @@ -0,0 +1,1104 @@ +//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass munges the code in the input function to better prepare it for +// SelectionDAG-based code generation. This works around limitations in it's +// basic-block-at-a-time approach. It should eventually be removed. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "codegenprepare" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Pass.h" +#include "llvm/Analysis/Dominators.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/ProfileInfo.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Transforms/Utils/AddrModeMatcher.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/PatternMatch.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/ValueHandle.h" +using namespace llvm; +using namespace llvm::PatternMatch; + +STATISTIC(NumBlocksElim, "Number of blocks eliminated"); +STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); +STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); +STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " + "sunken Cmps"); +STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " + "of sunken Casts"); +STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " + "computations were sunk"); +STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); +STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); + +static cl::opt<bool> +CriticalEdgeSplit("cgp-critical-edge-splitting", + cl::desc("Split critical edges during codegen prepare"), + cl::init(false), cl::Hidden); + +namespace { + class CodeGenPrepare : public FunctionPass { + /// TLI - Keep a pointer of a TargetLowering to consult for determining + /// transformation profitability. + const TargetLowering *TLI; + DominatorTree *DT; + ProfileInfo *PFI; + + /// CurInstIterator - As we scan instructions optimizing them, this is the + /// next instruction to optimize. Xforms that can invalidate this should + /// update it. + BasicBlock::iterator CurInstIterator; + + /// BackEdges - Keep a set of all the loop back edges. + /// + SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges; + + // Keeps track of non-local addresses that have been sunk into a block. This + // allows us to avoid inserting duplicate code for blocks with multiple + // load/stores of the same address. + DenseMap<Value*, Value*> SunkAddrs; + + public: + static char ID; // Pass identification, replacement for typeid + explicit CodeGenPrepare(const TargetLowering *tli = 0) + : FunctionPass(ID), TLI(tli) { + initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); + } + bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addPreserved<DominatorTree>(); + AU.addPreserved<ProfileInfo>(); + } + + virtual void releaseMemory() { + BackEdges.clear(); + } + + private: + bool EliminateMostlyEmptyBlocks(Function &F); + bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; + void EliminateMostlyEmptyBlock(BasicBlock *BB); + bool OptimizeBlock(BasicBlock &BB); + bool OptimizeInst(Instruction *I); + bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy); + bool OptimizeInlineAsmInst(CallInst *CS); + bool OptimizeCallInst(CallInst *CI); + bool MoveExtToFormExtLoad(Instruction *I); + bool OptimizeExtUses(Instruction *I); + void findLoopBackEdges(const Function &F); + }; +} + +char CodeGenPrepare::ID = 0; +INITIALIZE_PASS(CodeGenPrepare, "codegenprepare", + "Optimize for code generation", false, false) + +FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { + return new CodeGenPrepare(TLI); +} + +/// findLoopBackEdges - Do a DFS walk to find loop back edges. +/// +void CodeGenPrepare::findLoopBackEdges(const Function &F) { + SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; + FindFunctionBackedges(F, Edges); + + BackEdges.insert(Edges.begin(), Edges.end()); +} + + +bool CodeGenPrepare::runOnFunction(Function &F) { + bool EverMadeChange = false; + + DT = getAnalysisIfAvailable<DominatorTree>(); + PFI = getAnalysisIfAvailable<ProfileInfo>(); + // First pass, eliminate blocks that contain only PHI nodes and an + // unconditional branch. + EverMadeChange |= EliminateMostlyEmptyBlocks(F); + + // Now find loop back edges, but only if they are being used to decide which + // critical edges to split. + if (CriticalEdgeSplit) + findLoopBackEdges(F); + + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + MadeChange |= OptimizeBlock(*BB); + EverMadeChange |= MadeChange; + } + + SunkAddrs.clear(); + + return EverMadeChange; +} + +/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, +/// debug info directives, and an unconditional branch. Passes before isel +/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for +/// isel. Start by eliminating these blocks so we can split them the way we +/// want them. +bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { + bool MadeChange = false; + // Note that this intentionally skips the entry block. + for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { + BasicBlock *BB = I++; + + // If this block doesn't end with an uncond branch, ignore it. + BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isUnconditional()) + continue; + + // If the instruction before the branch (skipping debug info) isn't a phi + // node, then other stuff is happening here. + BasicBlock::iterator BBI = BI; + if (BBI != BB->begin()) { + --BBI; + while (isa<DbgInfoIntrinsic>(BBI)) { + if (BBI == BB->begin()) + break; + --BBI; + } + if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) + continue; + } + + // Do not break infinite loops. + BasicBlock *DestBB = BI->getSuccessor(0); + if (DestBB == BB) + continue; + + if (!CanMergeBlocks(BB, DestBB)) + continue; + + EliminateMostlyEmptyBlock(BB); + MadeChange = true; + } + return MadeChange; +} + +/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a +/// single uncond branch between them, and BB contains no other non-phi +/// instructions. +bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, + const BasicBlock *DestBB) const { + // We only want to eliminate blocks whose phi nodes are used by phi nodes in + // the successor. If there are more complex condition (e.g. preheaders), + // don't mess around with them. + BasicBlock::const_iterator BBI = BB->begin(); + while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { + for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end(); + UI != E; ++UI) { + const Instruction *User = cast<Instruction>(*UI); + if (User->getParent() != DestBB || !isa<PHINode>(User)) + return false; + // If User is inside DestBB block and it is a PHINode then check + // incoming value. If incoming value is not from BB then this is + // a complex condition (e.g. preheaders) we want to avoid here. + if (User->getParent() == DestBB) { + if (const PHINode *UPN = dyn_cast<PHINode>(User)) + for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { + Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); + if (Insn && Insn->getParent() == BB && + Insn->getParent() != UPN->getIncomingBlock(I)) + return false; + } + } + } + } + + // If BB and DestBB contain any common predecessors, then the phi nodes in BB + // and DestBB may have conflicting incoming values for the block. If so, we + // can't merge the block. + const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); + if (!DestBBPN) return true; // no conflict. + + // Collect the preds of BB. + SmallPtrSet<const BasicBlock*, 16> BBPreds; + if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + // It is faster to get preds from a PHI than with pred_iterator. + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + BBPreds.insert(BBPN->getIncomingBlock(i)); + } else { + BBPreds.insert(pred_begin(BB), pred_end(BB)); + } + + // Walk the preds of DestBB. + for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = DestBBPN->getIncomingBlock(i); + if (BBPreds.count(Pred)) { // Common predecessor? + BBI = DestBB->begin(); + while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { + const Value *V1 = PN->getIncomingValueForBlock(Pred); + const Value *V2 = PN->getIncomingValueForBlock(BB); + + // If V2 is a phi node in BB, look up what the mapped value will be. + if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) + if (V2PN->getParent() == BB) + V2 = V2PN->getIncomingValueForBlock(Pred); + + // If there is a conflict, bail out. + if (V1 != V2) return false; + } + } + } + + return true; +} + + +/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and +/// an unconditional branch in it. +void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { + BranchInst *BI = cast<BranchInst>(BB->getTerminator()); + BasicBlock *DestBB = BI->getSuccessor(0); + + DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); + + // If the destination block has a single pred, then this is a trivial edge, + // just collapse it. + if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { + if (SinglePred != DestBB) { + // Remember if SinglePred was the entry block of the function. If so, we + // will need to move BB back to the entry position. + bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); + MergeBasicBlockIntoOnlyPred(DestBB, this); + + if (isEntry && BB != &BB->getParent()->getEntryBlock()) + BB->moveBefore(&BB->getParent()->getEntryBlock()); + + DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); + return; + } + } + + // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB + // to handle the new incoming edges it is about to have. + PHINode *PN; + for (BasicBlock::iterator BBI = DestBB->begin(); + (PN = dyn_cast<PHINode>(BBI)); ++BBI) { + // Remove the incoming value for BB, and remember it. + Value *InVal = PN->removeIncomingValue(BB, false); + + // Two options: either the InVal is a phi node defined in BB or it is some + // value that dominates BB. + PHINode *InValPhi = dyn_cast<PHINode>(InVal); + if (InValPhi && InValPhi->getParent() == BB) { + // Add all of the input values of the input PHI as inputs of this phi. + for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) + PN->addIncoming(InValPhi->getIncomingValue(i), + InValPhi->getIncomingBlock(i)); + } else { + // Otherwise, add one instance of the dominating value for each edge that + // we will be adding. + if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); + } else { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + PN->addIncoming(InVal, *PI); + } + } + } + + // The PHIs are now updated, change everything that refers to BB to use + // DestBB and remove BB. + BB->replaceAllUsesWith(DestBB); + if (DT) { + BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); + BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); + BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); + DT->changeImmediateDominator(DestBB, NewIDom); + DT->eraseNode(BB); + } + if (PFI) { + PFI->replaceAllUses(BB, DestBB); + PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB)); + } + BB->eraseFromParent(); + ++NumBlocksElim; + + DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); +} + +/// FindReusablePredBB - Check all of the predecessors of the block DestPHI +/// lives in to see if there is a block that we can reuse as a critical edge +/// from TIBB. +static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) { + BasicBlock *Dest = DestPHI->getParent(); + + /// TIPHIValues - This array is lazily computed to determine the values of + /// PHIs in Dest that TI would provide. + SmallVector<Value*, 32> TIPHIValues; + + /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB. + unsigned TIBBEntryNo = 0; + + // Check to see if Dest has any blocks that can be used as a split edge for + // this terminator. + for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) { + BasicBlock *Pred = DestPHI->getIncomingBlock(pi); + // To be usable, the pred has to end with an uncond branch to the dest. + BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator()); + if (!PredBr || !PredBr->isUnconditional()) + continue; + // Must be empty other than the branch and debug info. + BasicBlock::iterator I = Pred->begin(); + while (isa<DbgInfoIntrinsic>(I)) + I++; + if (&*I != PredBr) + continue; + // Cannot be the entry block; its label does not get emitted. + if (Pred == &Dest->getParent()->getEntryBlock()) + continue; + + // Finally, since we know that Dest has phi nodes in it, we have to make + // sure that jumping to Pred will have the same effect as going to Dest in + // terms of PHI values. + PHINode *PN; + unsigned PHINo = 0; + unsigned PredEntryNo = pi; + + bool FoundMatch = true; + for (BasicBlock::iterator I = Dest->begin(); + (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) { + if (PHINo == TIPHIValues.size()) { + if (PN->getIncomingBlock(TIBBEntryNo) != TIBB) + TIBBEntryNo = PN->getBasicBlockIndex(TIBB); + TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo)); + } + + // If the PHI entry doesn't work, we can't use this pred. + if (PN->getIncomingBlock(PredEntryNo) != Pred) + PredEntryNo = PN->getBasicBlockIndex(Pred); + + if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) { + FoundMatch = false; + break; + } + } + + // If we found a workable predecessor, change TI to branch to Succ. + if (FoundMatch) + return Pred; + } + return 0; +} + + +/// SplitEdgeNicely - Split the critical edge from TI to its specified +/// successor if it will improve codegen. We only do this if the successor has +/// phi nodes (otherwise critical edges are ok). If there is already another +/// predecessor of the succ that is empty (and thus has no phi nodes), use it +/// instead of introducing a new block. +static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, + SmallSet<std::pair<const BasicBlock*, + const BasicBlock*>, 8> &BackEdges, + Pass *P) { + BasicBlock *TIBB = TI->getParent(); + BasicBlock *Dest = TI->getSuccessor(SuccNum); + assert(isa<PHINode>(Dest->begin()) && + "This should only be called if Dest has a PHI!"); + PHINode *DestPHI = cast<PHINode>(Dest->begin()); + + // Do not split edges to EH landing pads. + if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI)) + if (Invoke->getSuccessor(1) == Dest) + return; + + // As a hack, never split backedges of loops. Even though the copy for any + // PHIs inserted on the backedge would be dead for exits from the loop, we + // assume that the cost of *splitting* the backedge would be too high. + if (BackEdges.count(std::make_pair(TIBB, Dest))) + return; + + if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) { + ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>(); + if (PFI) + PFI->splitEdge(TIBB, Dest, ReuseBB); + Dest->removePredecessor(TIBB); + TI->setSuccessor(SuccNum, ReuseBB); + return; + } + + SplitCriticalEdge(TI, SuccNum, P, true); +} + + +/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop +/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), +/// sink it into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. +/// +/// Return true if any changes are made. +/// +static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ + // If this is a noop copy, + EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(CI->getType()); + + // This is an fp<->int conversion? + if (SrcVT.isInteger() != DstVT.isInteger()) + return false; + + // If this is an extension, it will be a zero or sign extension, which + // isn't a noop. + if (SrcVT.bitsLT(DstVT)) return false; + + // If these values will be promoted, find out what they will be promoted + // to. This helps us consider truncates on PPC as noop copies when they + // are. + if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) + SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); + if (TLI.getTypeAction(DstVT) == TargetLowering::Promote) + DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); + + // If, after promotion, these are the same types, this is a noop copy. + if (SrcVT != DstVT) + return false; + + BasicBlock *DefBB = CI->getParent(); + + /// InsertedCasts - Only insert a cast in each block once. + DenseMap<BasicBlock*, CastInst*> InsertedCasts; + + bool MadeChange = false; + for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this cast is used in. For PHI's this is the + // appropriate predecessor block. + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) { + UserBB = PN->getIncomingBlock(UI); + } + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // If this user is in the same block as the cast, don't change the cast. + if (UserBB == DefBB) continue; + + // If we have already inserted a cast into this block, use it. + CastInst *&InsertedCast = InsertedCasts[UserBB]; + + if (!InsertedCast) { + BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); + + InsertedCast = + CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", + InsertPt); + MadeChange = true; + } + + // Replace a use of the cast with a use of the new cast. + TheUse = InsertedCast; + ++NumCastUses; + } + + // If we removed all uses, nuke the cast. + if (CI->use_empty()) { + CI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce +/// the number of virtual registers that must be created and coalesced. This is +/// a clear win except on targets with multiple condition code registers +/// (PowerPC), where it might lose; some adjustment may be wanted there. +/// +/// Return true if any changes are made. +static bool OptimizeCmpExpression(CmpInst *CI) { + BasicBlock *DefBB = CI->getParent(); + + /// InsertedCmp - Only insert a cmp in each block once. + DenseMap<BasicBlock*, CmpInst*> InsertedCmps; + + bool MadeChange = false; + for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + // Figure out which BB this cmp is used in. + BasicBlock *UserBB = User->getParent(); + + // If this user is in the same block as the cmp, don't change the cmp. + if (UserBB == DefBB) continue; + + // If we have already inserted a cmp into this block, use it. + CmpInst *&InsertedCmp = InsertedCmps[UserBB]; + + if (!InsertedCmp) { + BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); + + InsertedCmp = + CmpInst::Create(CI->getOpcode(), + CI->getPredicate(), CI->getOperand(0), + CI->getOperand(1), "", InsertPt); + MadeChange = true; + } + + // Replace a use of the cmp with a use of the new cmp. + TheUse = InsertedCmp; + ++NumCmpUses; + } + + // If we removed all uses, nuke the cmp. + if (CI->use_empty()) + CI->eraseFromParent(); + + return MadeChange; +} + +namespace { +class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { +protected: + void replaceCall(Value *With) { + CI->replaceAllUsesWith(With); + CI->eraseFromParent(); + } + bool isFoldable(unsigned SizeCIOp, unsigned, bool) const { + if (ConstantInt *SizeCI = + dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) + return SizeCI->isAllOnesValue(); + return false; + } +}; +} // end anonymous namespace + +bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { + BasicBlock *BB = CI->getParent(); + + // Lower inline assembly if we can. + // If we found an inline asm expession, and if the target knows how to + // lower it to normal LLVM code, do so now. + if (TLI && isa<InlineAsm>(CI->getCalledValue())) { + if (TLI->ExpandInlineAsm(CI)) { + // Avoid invalidating the iterator. + CurInstIterator = BB->begin(); + // Avoid processing instructions out of order, which could cause + // reuse before a value is defined. + SunkAddrs.clear(); + return true; + } + // Sink address computing for memory operands into the block. + if (OptimizeInlineAsmInst(CI)) + return true; + } + + // Lower all uses of llvm.objectsize.* + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + if (II && II->getIntrinsicID() == Intrinsic::objectsize) { + bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); + const Type *ReturnTy = CI->getType(); + Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); + + // Substituting this can cause recursive simplifications, which can + // invalidate our iterator. Use a WeakVH to hold onto it in case this + // happens. + WeakVH IterHandle(CurInstIterator); + + ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0, DT); + + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + if (IterHandle != CurInstIterator) { + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + return true; + } + + // From here on out we're working with named functions. + if (CI->getCalledFunction() == 0) return false; + + // We'll need TargetData from here on out. + const TargetData *TD = TLI ? TLI->getTargetData() : 0; + if (!TD) return false; + + // Lower all default uses of _chk calls. This is very similar + // to what InstCombineCalls does, but here we are only lowering calls + // that have the default "don't know" as the objectsize. Anything else + // should be left alone. + CodeGenPrepareFortifiedLibCalls Simplifier; + return Simplifier.fold(CI, TD); +} + +//===----------------------------------------------------------------------===// +// Memory Optimization +//===----------------------------------------------------------------------===// + +/// IsNonLocalValue - Return true if the specified values are defined in a +/// different basic block than BB. +static bool IsNonLocalValue(Value *V, BasicBlock *BB) { + if (Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() != BB; + return false; +} + +/// OptimizeMemoryInst - Load and Store Instructions often have +/// addressing modes that can do significant amounts of computation. As such, +/// instruction selection will try to get the load or store to do as much +/// computation as possible for the program. The problem is that isel can only +/// see within a single block. As such, we sink as much legal addressing mode +/// stuff into the block as possible. +/// +/// This method is used to optimize both load/store and inline asms with memory +/// operands. +bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + const Type *AccessTy) { + Value *Repl = Addr; + + // Try to collapse single-value PHI nodes. This is necessary to undo + // unprofitable PRE transformations. + SmallVector<Value*, 8> worklist; + SmallPtrSet<Value*, 16> Visited; + worklist.push_back(Addr); + + // Use a worklist to iteratively look through PHI nodes, and ensure that + // the addressing mode obtained from the non-PHI roots of the graph + // are equivalent. + Value *Consensus = 0; + unsigned NumUses = 0; + SmallVector<Instruction*, 16> AddrModeInsts; + ExtAddrMode AddrMode; + while (!worklist.empty()) { + Value *V = worklist.back(); + worklist.pop_back(); + + // Break use-def graph loops. + if (Visited.count(V)) { + Consensus = 0; + break; + } + + Visited.insert(V); + + // For a PHI node, push all of its incoming values. + if (PHINode *P = dyn_cast<PHINode>(V)) { + for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) + worklist.push_back(P->getIncomingValue(i)); + continue; + } + + // For non-PHIs, determine the addressing mode being computed. + SmallVector<Instruction*, 16> NewAddrModeInsts; + ExtAddrMode NewAddrMode = + AddressingModeMatcher::Match(V, AccessTy,MemoryInst, + NewAddrModeInsts, *TLI); + + // Ensure that the obtained addressing mode is equivalent to that obtained + // for all other roots of the PHI traversal. Also, when choosing one + // such root as representative, select the one with the most uses in order + // to keep the cost modeling heuristics in AddressingModeMatcher applicable. + if (!Consensus || NewAddrMode == AddrMode) { + if (V->getNumUses() > NumUses) { + Consensus = V; + NumUses = V->getNumUses(); + AddrMode = NewAddrMode; + AddrModeInsts = NewAddrModeInsts; + } + continue; + } + + Consensus = 0; + break; + } + + // If the addressing mode couldn't be determined, or if multiple different + // ones were determined, bail out now. + if (!Consensus) return false; + + // Check to see if any of the instructions supersumed by this addr mode are + // non-local to I's BB. + bool AnyNonLocal = false; + for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { + if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { + AnyNonLocal = true; + break; + } + } + + // If all the instructions matched are already in this BB, don't do anything. + if (!AnyNonLocal) { + DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); + return false; + } + + // Insert this computation right after this user. Since our caller is + // scanning from the top of the BB to the bottom, reuse of the expr are + // guaranteed to happen later. + BasicBlock::iterator InsertPt = MemoryInst; + + // Now that we determined the addressing expression we want to use and know + // that we have to sink it into this block. Check to see if we have already + // done this for some other load/store instr in this block. If so, reuse the + // computation. + Value *&SunkAddr = SunkAddrs[Addr]; + if (SunkAddr) { + DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " + << *MemoryInst); + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt); + } else { + DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " + << *MemoryInst); + const Type *IntPtrTy = + TLI->getTargetData()->getIntPtrType(AccessTy->getContext()); + + Value *Result = 0; + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType()->isPointerTy()) + V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); + if (V->getType() != IntPtrTy) + V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true, + "sunkaddr", InsertPt); + Result = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else if (V->getType()->isPointerTy()) { + V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt); + } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth()) { + V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt); + } else { + V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt); + } + if (AddrMode.Scale != 1) + V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy, + AddrMode.Scale), + "sunkaddr", InsertPt); + if (Result) + Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); + else + Result = V; + } + + // Add in the BaseGV if present. + if (AddrMode.BaseGV) { + Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr", + InsertPt); + if (Result) + Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); + else + Result = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (Result) + Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt); + else + Result = V; + } + + if (Result == 0) + SunkAddr = Constant::getNullValue(Addr->getType()); + else + SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt); + } + + MemoryInst->replaceUsesOfWith(Repl, SunkAddr); + + if (Repl->use_empty()) { + RecursivelyDeleteTriviallyDeadInstructions(Repl); + // This address is now available for reassignment, so erase the table entry; + // we don't want to match some completely different instruction. + SunkAddrs[Addr] = 0; + } + ++NumMemoryInsts; + return true; +} + +/// OptimizeInlineAsmInst - If there are any memory operands, use +/// OptimizeMemoryInst to sink their address computing into the block when +/// possible / profitable. +bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { + bool MadeChange = false; + + TargetLowering::AsmOperandInfoVector + TargetConstraints = TLI->ParseConstraints(CS); + unsigned ArgNo = 0; + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + OpInfo.isIndirect) { + Value *OpVal = CS->getArgOperand(ArgNo++); + MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); + } else if (OpInfo.Type == InlineAsm::isInput) + ArgNo++; + } + + return MadeChange; +} + +/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same +/// basic block as the load, unless conditions are unfavorable. This allows +/// SelectionDAG to fold the extend into the load. +/// +bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { + // Look for a load being extended. + LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); + if (!LI) return false; + + // If they're already in the same block, there's nothing to do. + if (LI->getParent() == I->getParent()) + return false; + + // If the load has other users and the truncate is not free, this probably + // isn't worthwhile. + if (!LI->hasOneUse() && + TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || + !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && + !TLI->isTruncateFree(I->getType(), LI->getType())) + return false; + + // Check whether the target supports casts folded into loads. + unsigned LType; + if (isa<ZExtInst>(I)) + LType = ISD::ZEXTLOAD; + else { + assert(isa<SExtInst>(I) && "Unexpected ext type!"); + LType = ISD::SEXTLOAD; + } + if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) + return false; + + // Move the extend into the same block as the load, so that SelectionDAG + // can fold it. + I->removeFromParent(); + I->insertAfter(LI); + ++NumExtsMoved; + return true; +} + +bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { + BasicBlock *DefBB = I->getParent(); + + // If the result of a {s|z}ext and its source are both live out, rewrite all + // other uses of the source with result of extension. + Value *Src = I->getOperand(0); + if (Src->hasOneUse()) + return false; + + // Only do this xform if truncating is free. + if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) + return false; + + // Only safe to perform the optimization if the source is also defined in + // this block. + if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) + return false; + + bool DefIsLiveOut = false; + for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); + UI != E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + DefIsLiveOut = true; + break; + } + if (!DefIsLiveOut) + return false; + + // Make sure non of the uses are PHI nodes. + for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); + UI != E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + // Be conservative. We don't want this xform to end up introducing + // reloads just before load / store instructions. + if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User)) + return false; + } + + // InsertedTruncs - Only insert one trunc in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedTruncs; + + bool MadeChange = false; + for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); + UI != E; ++UI) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + + // Both src and def are live in this block. Rewrite the use. + Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; + + if (!InsertedTrunc) { + BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI(); + + InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); + } + + // Replace a use of the {s|z}ext source with a use of the result. + TheUse = InsertedTrunc; + ++NumExtUses; + MadeChange = true; + } + + return MadeChange; +} + +bool CodeGenPrepare::OptimizeInst(Instruction *I) { + if (PHINode *P = dyn_cast<PHINode>(I)) { + // It is possible for very late stage optimizations (such as SimplifyCFG) + // to introduce PHI nodes too late to be cleaned up. If we detect such a + // trivial PHI, go ahead and zap it here. + if (Value *V = SimplifyInstruction(P)) { + P->replaceAllUsesWith(V); + P->eraseFromParent(); + ++NumPHIsElim; + return true; + } + return false; + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) { + // If the source of the cast is a constant, then this should have + // already been constant folded. The only reason NOT to constant fold + // it is if something (e.g. LSR) was careful to place the constant + // evaluation in a block other than then one that uses it (e.g. to hoist + // the address of globals out of a loop). If this is the case, we don't + // want to forward-subst the cast. + if (isa<Constant>(CI->getOperand(0))) + return false; + + if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) + return true; + + if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { + bool MadeChange = MoveExtToFormExtLoad(I); + return MadeChange | OptimizeExtUses(I); + } + return false; + } + + if (CmpInst *CI = dyn_cast<CmpInst>(I)) + return OptimizeCmpExpression(CI); + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + if (TLI) + return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); + return false; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (TLI) + return OptimizeMemoryInst(I, SI->getOperand(1), + SI->getOperand(0)->getType()); + return false; + } + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { + if (GEPI->hasAllZeroIndices()) { + /// The GEP operand must be a pointer, so must its result -> BitCast + Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), + GEPI->getName(), GEPI); + GEPI->replaceAllUsesWith(NC); + GEPI->eraseFromParent(); + ++NumGEPsElim; + OptimizeInst(NC); + return true; + } + return false; + } + + if (CallInst *CI = dyn_cast<CallInst>(I)) + return OptimizeCallInst(CI); + + return false; +} + +// In this pass we look for GEP and cast instructions that are used +// across basic blocks and rewrite them to improve basic-block-at-a-time +// selection. +bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { + bool MadeChange = false; + + // Split all critical edges where the dest block has a PHI. + if (CriticalEdgeSplit) { + TerminatorInst *BBTI = BB.getTerminator(); + if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) { + for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) { + BasicBlock *SuccBB = BBTI->getSuccessor(i); + if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true)) + SplitEdgeNicely(BBTI, i, BackEdges, this); + } + } + } + + SunkAddrs.clear(); + + CurInstIterator = BB.begin(); + for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; ) + MadeChange |= OptimizeInst(CurInstIterator++); + + return MadeChange; +} |