summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp973
1 files changed, 973 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
new file mode 100644
index 0000000..93e9bfb
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/CodeGenPrepare.cpp
@@ -0,0 +1,973 @@
+//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass munges the code in the input function to better prepare it for
+// SelectionDAG-based code generation. This works around limitations in it's
+// basic-block-at-a-time approach. It should eventually be removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "codegenprepare"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/AddrModeMatcher.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/IRBuilder.h"
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+namespace {
+ class CodeGenPrepare : public FunctionPass {
+ /// TLI - Keep a pointer of a TargetLowering to consult for determining
+ /// transformation profitability.
+ const TargetLowering *TLI;
+ ProfileInfo *PFI;
+
+ /// BackEdges - Keep a set of all the loop back edges.
+ ///
+ SmallSet<std::pair<const BasicBlock*, const BasicBlock*>, 8> BackEdges;
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit CodeGenPrepare(const TargetLowering *tli = 0)
+ : FunctionPass(&ID), TLI(tli) {}
+ bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addPreserved<ProfileInfo>();
+ }
+
+ virtual void releaseMemory() {
+ BackEdges.clear();
+ }
+
+ private:
+ bool EliminateMostlyEmptyBlocks(Function &F);
+ bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
+ void EliminateMostlyEmptyBlock(BasicBlock *BB);
+ bool OptimizeBlock(BasicBlock &BB);
+ bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy,
+ DenseMap<Value*,Value*> &SunkAddrs);
+ bool OptimizeInlineAsmInst(Instruction *I, CallSite CS,
+ DenseMap<Value*,Value*> &SunkAddrs);
+ bool OptimizeCallInst(CallInst *CI);
+ bool MoveExtToFormExtLoad(Instruction *I);
+ bool OptimizeExtUses(Instruction *I);
+ void findLoopBackEdges(const Function &F);
+ };
+}
+
+char CodeGenPrepare::ID = 0;
+static RegisterPass<CodeGenPrepare> X("codegenprepare",
+ "Optimize for code generation");
+
+FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
+ return new CodeGenPrepare(TLI);
+}
+
+/// findLoopBackEdges - Do a DFS walk to find loop back edges.
+///
+void CodeGenPrepare::findLoopBackEdges(const Function &F) {
+ SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
+ FindFunctionBackedges(F, Edges);
+
+ BackEdges.insert(Edges.begin(), Edges.end());
+}
+
+
+bool CodeGenPrepare::runOnFunction(Function &F) {
+ bool EverMadeChange = false;
+
+ PFI = getAnalysisIfAvailable<ProfileInfo>();
+ // First pass, eliminate blocks that contain only PHI nodes and an
+ // unconditional branch.
+ EverMadeChange |= EliminateMostlyEmptyBlocks(F);
+
+ // Now find loop back edges.
+ findLoopBackEdges(F);
+
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ MadeChange |= OptimizeBlock(*BB);
+ EverMadeChange |= MadeChange;
+ }
+ return EverMadeChange;
+}
+
+/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
+/// debug info directives, and an unconditional branch. Passes before isel
+/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
+/// isel. Start by eliminating these blocks so we can split them the way we
+/// want them.
+bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
+ bool MadeChange = false;
+ // Note that this intentionally skips the entry block.
+ for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
+ BasicBlock *BB = I++;
+
+ // If this block doesn't end with an uncond branch, ignore it.
+ BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isUnconditional())
+ continue;
+
+ // If the instruction before the branch (skipping debug info) isn't a phi
+ // node, then other stuff is happening here.
+ BasicBlock::iterator BBI = BI;
+ if (BBI != BB->begin()) {
+ --BBI;
+ while (isa<DbgInfoIntrinsic>(BBI)) {
+ if (BBI == BB->begin())
+ break;
+ --BBI;
+ }
+ if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
+ continue;
+ }
+
+ // Do not break infinite loops.
+ BasicBlock *DestBB = BI->getSuccessor(0);
+ if (DestBB == BB)
+ continue;
+
+ if (!CanMergeBlocks(BB, DestBB))
+ continue;
+
+ EliminateMostlyEmptyBlock(BB);
+ MadeChange = true;
+ }
+ return MadeChange;
+}
+
+/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
+/// single uncond branch between them, and BB contains no other non-phi
+/// instructions.
+bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
+ const BasicBlock *DestBB) const {
+ // We only want to eliminate blocks whose phi nodes are used by phi nodes in
+ // the successor. If there are more complex condition (e.g. preheaders),
+ // don't mess around with them.
+ BasicBlock::const_iterator BBI = BB->begin();
+ while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+ for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ++UI) {
+ const Instruction *User = cast<Instruction>(*UI);
+ if (User->getParent() != DestBB || !isa<PHINode>(User))
+ return false;
+ // If User is inside DestBB block and it is a PHINode then check
+ // incoming value. If incoming value is not from BB then this is
+ // a complex condition (e.g. preheaders) we want to avoid here.
+ if (User->getParent() == DestBB) {
+ if (const PHINode *UPN = dyn_cast<PHINode>(User))
+ for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
+ Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
+ if (Insn && Insn->getParent() == BB &&
+ Insn->getParent() != UPN->getIncomingBlock(I))
+ return false;
+ }
+ }
+ }
+ }
+
+ // If BB and DestBB contain any common predecessors, then the phi nodes in BB
+ // and DestBB may have conflicting incoming values for the block. If so, we
+ // can't merge the block.
+ const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
+ if (!DestBBPN) return true; // no conflict.
+
+ // Collect the preds of BB.
+ SmallPtrSet<const BasicBlock*, 16> BBPreds;
+ if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+ // It is faster to get preds from a PHI than with pred_iterator.
+ for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+ BBPreds.insert(BBPN->getIncomingBlock(i));
+ } else {
+ BBPreds.insert(pred_begin(BB), pred_end(BB));
+ }
+
+ // Walk the preds of DestBB.
+ for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
+ BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
+ if (BBPreds.count(Pred)) { // Common predecessor?
+ BBI = DestBB->begin();
+ while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+ const Value *V1 = PN->getIncomingValueForBlock(Pred);
+ const Value *V2 = PN->getIncomingValueForBlock(BB);
+
+ // If V2 is a phi node in BB, look up what the mapped value will be.
+ if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
+ if (V2PN->getParent() == BB)
+ V2 = V2PN->getIncomingValueForBlock(Pred);
+
+ // If there is a conflict, bail out.
+ if (V1 != V2) return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
+/// an unconditional branch in it.
+void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
+ BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+ BasicBlock *DestBB = BI->getSuccessor(0);
+
+ DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
+
+ // If the destination block has a single pred, then this is a trivial edge,
+ // just collapse it.
+ if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
+ if (SinglePred != DestBB) {
+ // Remember if SinglePred was the entry block of the function. If so, we
+ // will need to move BB back to the entry position.
+ bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
+ MergeBasicBlockIntoOnlyPred(DestBB, this);
+
+ if (isEntry && BB != &BB->getParent()->getEntryBlock())
+ BB->moveBefore(&BB->getParent()->getEntryBlock());
+
+ DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
+ return;
+ }
+ }
+
+ // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
+ // to handle the new incoming edges it is about to have.
+ PHINode *PN;
+ for (BasicBlock::iterator BBI = DestBB->begin();
+ (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+ // Remove the incoming value for BB, and remember it.
+ Value *InVal = PN->removeIncomingValue(BB, false);
+
+ // Two options: either the InVal is a phi node defined in BB or it is some
+ // value that dominates BB.
+ PHINode *InValPhi = dyn_cast<PHINode>(InVal);
+ if (InValPhi && InValPhi->getParent() == BB) {
+ // Add all of the input values of the input PHI as inputs of this phi.
+ for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
+ PN->addIncoming(InValPhi->getIncomingValue(i),
+ InValPhi->getIncomingBlock(i));
+ } else {
+ // Otherwise, add one instance of the dominating value for each edge that
+ // we will be adding.
+ if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+ for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+ PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
+ } else {
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ PN->addIncoming(InVal, *PI);
+ }
+ }
+ }
+
+ // The PHIs are now updated, change everything that refers to BB to use
+ // DestBB and remove BB.
+ BB->replaceAllUsesWith(DestBB);
+ if (PFI) {
+ PFI->replaceAllUses(BB, DestBB);
+ PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
+ }
+ BB->eraseFromParent();
+
+ DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
+}
+
+/// FindReusablePredBB - Check all of the predecessors of the block DestPHI
+/// lives in to see if there is a block that we can reuse as a critical edge
+/// from TIBB.
+static BasicBlock *FindReusablePredBB(PHINode *DestPHI, BasicBlock *TIBB) {
+ BasicBlock *Dest = DestPHI->getParent();
+
+ /// TIPHIValues - This array is lazily computed to determine the values of
+ /// PHIs in Dest that TI would provide.
+ SmallVector<Value*, 32> TIPHIValues;
+
+ /// TIBBEntryNo - This is a cache to speed up pred queries for TIBB.
+ unsigned TIBBEntryNo = 0;
+
+ // Check to see if Dest has any blocks that can be used as a split edge for
+ // this terminator.
+ for (unsigned pi = 0, e = DestPHI->getNumIncomingValues(); pi != e; ++pi) {
+ BasicBlock *Pred = DestPHI->getIncomingBlock(pi);
+ // To be usable, the pred has to end with an uncond branch to the dest.
+ BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
+ if (!PredBr || !PredBr->isUnconditional())
+ continue;
+ // Must be empty other than the branch and debug info.
+ BasicBlock::iterator I = Pred->begin();
+ while (isa<DbgInfoIntrinsic>(I))
+ I++;
+ if (&*I != PredBr)
+ continue;
+ // Cannot be the entry block; its label does not get emitted.
+ if (Pred == &Dest->getParent()->getEntryBlock())
+ continue;
+
+ // Finally, since we know that Dest has phi nodes in it, we have to make
+ // sure that jumping to Pred will have the same effect as going to Dest in
+ // terms of PHI values.
+ PHINode *PN;
+ unsigned PHINo = 0;
+ unsigned PredEntryNo = pi;
+
+ bool FoundMatch = true;
+ for (BasicBlock::iterator I = Dest->begin();
+ (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
+ if (PHINo == TIPHIValues.size()) {
+ if (PN->getIncomingBlock(TIBBEntryNo) != TIBB)
+ TIBBEntryNo = PN->getBasicBlockIndex(TIBB);
+ TIPHIValues.push_back(PN->getIncomingValue(TIBBEntryNo));
+ }
+
+ // If the PHI entry doesn't work, we can't use this pred.
+ if (PN->getIncomingBlock(PredEntryNo) != Pred)
+ PredEntryNo = PN->getBasicBlockIndex(Pred);
+
+ if (TIPHIValues[PHINo] != PN->getIncomingValue(PredEntryNo)) {
+ FoundMatch = false;
+ break;
+ }
+ }
+
+ // If we found a workable predecessor, change TI to branch to Succ.
+ if (FoundMatch)
+ return Pred;
+ }
+ return 0;
+}
+
+
+/// SplitEdgeNicely - Split the critical edge from TI to its specified
+/// successor if it will improve codegen. We only do this if the successor has
+/// phi nodes (otherwise critical edges are ok). If there is already another
+/// predecessor of the succ that is empty (and thus has no phi nodes), use it
+/// instead of introducing a new block.
+static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum,
+ SmallSet<std::pair<const BasicBlock*,
+ const BasicBlock*>, 8> &BackEdges,
+ Pass *P) {
+ BasicBlock *TIBB = TI->getParent();
+ BasicBlock *Dest = TI->getSuccessor(SuccNum);
+ assert(isa<PHINode>(Dest->begin()) &&
+ "This should only be called if Dest has a PHI!");
+ PHINode *DestPHI = cast<PHINode>(Dest->begin());
+
+ // Do not split edges to EH landing pads.
+ if (InvokeInst *Invoke = dyn_cast<InvokeInst>(TI))
+ if (Invoke->getSuccessor(1) == Dest)
+ return;
+
+ // As a hack, never split backedges of loops. Even though the copy for any
+ // PHIs inserted on the backedge would be dead for exits from the loop, we
+ // assume that the cost of *splitting* the backedge would be too high.
+ if (BackEdges.count(std::make_pair(TIBB, Dest)))
+ return;
+
+ if (BasicBlock *ReuseBB = FindReusablePredBB(DestPHI, TIBB)) {
+ ProfileInfo *PFI = P->getAnalysisIfAvailable<ProfileInfo>();
+ if (PFI)
+ PFI->splitEdge(TIBB, Dest, ReuseBB);
+ Dest->removePredecessor(TIBB);
+ TI->setSuccessor(SuccNum, ReuseBB);
+ return;
+ }
+
+ SplitCriticalEdge(TI, SuccNum, P, true);
+}
+
+
+/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
+/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
+/// sink it into user blocks to reduce the number of virtual
+/// registers that must be created and coalesced.
+///
+/// Return true if any changes are made.
+///
+static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
+ // If this is a noop copy,
+ EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(CI->getType());
+
+ // This is an fp<->int conversion?
+ if (SrcVT.isInteger() != DstVT.isInteger())
+ return false;
+
+ // If this is an extension, it will be a zero or sign extension, which
+ // isn't a noop.
+ if (SrcVT.bitsLT(DstVT)) return false;
+
+ // If these values will be promoted, find out what they will be promoted
+ // to. This helps us consider truncates on PPC as noop copies when they
+ // are.
+ if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::Promote)
+ SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
+ if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::Promote)
+ DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
+
+ // If, after promotion, these are the same types, this is a noop copy.
+ if (SrcVT != DstVT)
+ return false;
+
+ BasicBlock *DefBB = CI->getParent();
+
+ /// InsertedCasts - Only insert a cast in each block once.
+ DenseMap<BasicBlock*, CastInst*> InsertedCasts;
+
+ bool MadeChange = false;
+ for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+ UI != E; ) {
+ Use &TheUse = UI.getUse();
+ Instruction *User = cast<Instruction>(*UI);
+
+ // Figure out which BB this cast is used in. For PHI's this is the
+ // appropriate predecessor block.
+ BasicBlock *UserBB = User->getParent();
+ if (PHINode *PN = dyn_cast<PHINode>(User)) {
+ UserBB = PN->getIncomingBlock(UI);
+ }
+
+ // Preincrement use iterator so we don't invalidate it.
+ ++UI;
+
+ // If this user is in the same block as the cast, don't change the cast.
+ if (UserBB == DefBB) continue;
+
+ // If we have already inserted a cast into this block, use it.
+ CastInst *&InsertedCast = InsertedCasts[UserBB];
+
+ if (!InsertedCast) {
+ BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
+
+ InsertedCast =
+ CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
+ InsertPt);
+ MadeChange = true;
+ }
+
+ // Replace a use of the cast with a use of the new cast.
+ TheUse = InsertedCast;
+ }
+
+ // If we removed all uses, nuke the cast.
+ if (CI->use_empty()) {
+ CI->eraseFromParent();
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
+/// the number of virtual registers that must be created and coalesced. This is
+/// a clear win except on targets with multiple condition code registers
+/// (PowerPC), where it might lose; some adjustment may be wanted there.
+///
+/// Return true if any changes are made.
+static bool OptimizeCmpExpression(CmpInst *CI) {
+ BasicBlock *DefBB = CI->getParent();
+
+ /// InsertedCmp - Only insert a cmp in each block once.
+ DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
+
+ bool MadeChange = false;
+ for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+ UI != E; ) {
+ Use &TheUse = UI.getUse();
+ Instruction *User = cast<Instruction>(*UI);
+
+ // Preincrement use iterator so we don't invalidate it.
+ ++UI;
+
+ // Don't bother for PHI nodes.
+ if (isa<PHINode>(User))
+ continue;
+
+ // Figure out which BB this cmp is used in.
+ BasicBlock *UserBB = User->getParent();
+
+ // If this user is in the same block as the cmp, don't change the cmp.
+ if (UserBB == DefBB) continue;
+
+ // If we have already inserted a cmp into this block, use it.
+ CmpInst *&InsertedCmp = InsertedCmps[UserBB];
+
+ if (!InsertedCmp) {
+ BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
+
+ InsertedCmp =
+ CmpInst::Create(CI->getOpcode(),
+ CI->getPredicate(), CI->getOperand(0),
+ CI->getOperand(1), "", InsertPt);
+ MadeChange = true;
+ }
+
+ // Replace a use of the cmp with a use of the new cmp.
+ TheUse = InsertedCmp;
+ }
+
+ // If we removed all uses, nuke the cmp.
+ if (CI->use_empty())
+ CI->eraseFromParent();
+
+ return MadeChange;
+}
+
+namespace {
+class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
+protected:
+ void replaceCall(Value *With) {
+ CI->replaceAllUsesWith(With);
+ CI->eraseFromParent();
+ }
+ bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
+ if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(SizeCIOp)))
+ return SizeCI->isAllOnesValue();
+ return false;
+ }
+};
+} // end anonymous namespace
+
+bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
+ // Lower all uses of llvm.objectsize.*
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
+ if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
+ bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
+ const Type *ReturnTy = CI->getType();
+ Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
+ CI->replaceAllUsesWith(RetVal);
+ CI->eraseFromParent();
+ return true;
+ }
+
+ // From here on out we're working with named functions.
+ if (CI->getCalledFunction() == 0) return false;
+
+ // We'll need TargetData from here on out.
+ const TargetData *TD = TLI ? TLI->getTargetData() : 0;
+ if (!TD) return false;
+
+ // Lower all default uses of _chk calls. This is very similar
+ // to what InstCombineCalls does, but here we are only lowering calls
+ // that have the default "don't know" as the objectsize. Anything else
+ // should be left alone.
+ CodeGenPrepareFortifiedLibCalls Simplifier;
+ return Simplifier.fold(CI, TD);
+}
+//===----------------------------------------------------------------------===//
+// Memory Optimization
+//===----------------------------------------------------------------------===//
+
+/// IsNonLocalValue - Return true if the specified values are defined in a
+/// different basic block than BB.
+static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ return I->getParent() != BB;
+ return false;
+}
+
+/// OptimizeMemoryInst - Load and Store Instructions often have
+/// addressing modes that can do significant amounts of computation. As such,
+/// instruction selection will try to get the load or store to do as much
+/// computation as possible for the program. The problem is that isel can only
+/// see within a single block. As such, we sink as much legal addressing mode
+/// stuff into the block as possible.
+///
+/// This method is used to optimize both load/store and inline asms with memory
+/// operands.
+bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
+ const Type *AccessTy,
+ DenseMap<Value*,Value*> &SunkAddrs) {
+ // Figure out what addressing mode will be built up for this operation.
+ SmallVector<Instruction*, 16> AddrModeInsts;
+ ExtAddrMode AddrMode = AddressingModeMatcher::Match(Addr, AccessTy,MemoryInst,
+ AddrModeInsts, *TLI);
+
+ // Check to see if any of the instructions supersumed by this addr mode are
+ // non-local to I's BB.
+ bool AnyNonLocal = false;
+ for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
+ if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
+ AnyNonLocal = true;
+ break;
+ }
+ }
+
+ // If all the instructions matched are already in this BB, don't do anything.
+ if (!AnyNonLocal) {
+ DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
+ return false;
+ }
+
+ // Insert this computation right after this user. Since our caller is
+ // scanning from the top of the BB to the bottom, reuse of the expr are
+ // guaranteed to happen later.
+ BasicBlock::iterator InsertPt = MemoryInst;
+
+ // Now that we determined the addressing expression we want to use and know
+ // that we have to sink it into this block. Check to see if we have already
+ // done this for some other load/store instr in this block. If so, reuse the
+ // computation.
+ Value *&SunkAddr = SunkAddrs[Addr];
+ if (SunkAddr) {
+ DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
+ << *MemoryInst);
+ if (SunkAddr->getType() != Addr->getType())
+ SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
+ } else {
+ DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
+ << *MemoryInst);
+ const Type *IntPtrTy =
+ TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
+
+ Value *Result = 0;
+
+ // Start with the base register. Do this first so that subsequent address
+ // matching finds it last, which will prevent it from trying to match it
+ // as the scaled value in case it happens to be a mul. That would be
+ // problematic if we've sunk a different mul for the scale, because then
+ // we'd end up sinking both muls.
+ if (AddrMode.BaseReg) {
+ Value *V = AddrMode.BaseReg;
+ if (V->getType()->isPointerTy())
+ V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
+ if (V->getType() != IntPtrTy)
+ V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
+ "sunkaddr", InsertPt);
+ Result = V;
+ }
+
+ // Add the scale value.
+ if (AddrMode.Scale) {
+ Value *V = AddrMode.ScaledReg;
+ if (V->getType() == IntPtrTy) {
+ // done.
+ } else if (V->getType()->isPointerTy()) {
+ V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
+ } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
+ cast<IntegerType>(V->getType())->getBitWidth()) {
+ V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
+ } else {
+ V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
+ }
+ if (AddrMode.Scale != 1)
+ V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
+ AddrMode.Scale),
+ "sunkaddr", InsertPt);
+ if (Result)
+ Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
+ else
+ Result = V;
+ }
+
+ // Add in the BaseGV if present.
+ if (AddrMode.BaseGV) {
+ Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
+ InsertPt);
+ if (Result)
+ Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
+ else
+ Result = V;
+ }
+
+ // Add in the Base Offset if present.
+ if (AddrMode.BaseOffs) {
+ Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
+ if (Result)
+ Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
+ else
+ Result = V;
+ }
+
+ if (Result == 0)
+ SunkAddr = Constant::getNullValue(Addr->getType());
+ else
+ SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
+ }
+
+ MemoryInst->replaceUsesOfWith(Addr, SunkAddr);
+
+ if (Addr->use_empty()) {
+ RecursivelyDeleteTriviallyDeadInstructions(Addr);
+ // This address is now available for reassignment, so erase the table entry;
+ // we don't want to match some completely different instruction.
+ SunkAddrs[Addr] = 0;
+ }
+ return true;
+}
+
+/// OptimizeInlineAsmInst - If there are any memory operands, use
+/// OptimizeMemoryInst to sink their address computing into the block when
+/// possible / profitable.
+bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction *I, CallSite CS,
+ DenseMap<Value*,Value*> &SunkAddrs) {
+ bool MadeChange = false;
+ InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
+
+ // Do a prepass over the constraints, canonicalizing them, and building up the
+ // ConstraintOperands list.
+ std::vector<InlineAsm::ConstraintInfo>
+ ConstraintInfos = IA->ParseConstraints();
+
+ /// ConstraintOperands - Information about all of the constraints.
+ std::vector<TargetLowering::AsmOperandInfo> ConstraintOperands;
+ unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
+ for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
+ ConstraintOperands.
+ push_back(TargetLowering::AsmOperandInfo(ConstraintInfos[i]));
+ TargetLowering::AsmOperandInfo &OpInfo = ConstraintOperands.back();
+
+ // Compute the value type for each operand.
+ switch (OpInfo.Type) {
+ case InlineAsm::isOutput:
+ if (OpInfo.isIndirect)
+ OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+ break;
+ case InlineAsm::isInput:
+ OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
+ break;
+ case InlineAsm::isClobber:
+ // Nothing to do.
+ break;
+ }
+
+ // Compute the constraint code and ConstraintType to use.
+ TLI->ComputeConstraintToUse(OpInfo, SDValue(),
+ OpInfo.ConstraintType == TargetLowering::C_Memory);
+
+ if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+ OpInfo.isIndirect) {
+ Value *OpVal = OpInfo.CallOperandVal;
+ MadeChange |= OptimizeMemoryInst(I, OpVal, OpVal->getType(), SunkAddrs);
+ }
+ }
+
+ return MadeChange;
+}
+
+/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
+/// basic block as the load, unless conditions are unfavorable. This allows
+/// SelectionDAG to fold the extend into the load.
+///
+bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
+ // Look for a load being extended.
+ LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
+ if (!LI) return false;
+
+ // If they're already in the same block, there's nothing to do.
+ if (LI->getParent() == I->getParent())
+ return false;
+
+ // If the load has other users and the truncate is not free, this probably
+ // isn't worthwhile.
+ if (!LI->hasOneUse() &&
+ TLI && !TLI->isTruncateFree(I->getType(), LI->getType()))
+ return false;
+
+ // Check whether the target supports casts folded into loads.
+ unsigned LType;
+ if (isa<ZExtInst>(I))
+ LType = ISD::ZEXTLOAD;
+ else {
+ assert(isa<SExtInst>(I) && "Unexpected ext type!");
+ LType = ISD::SEXTLOAD;
+ }
+ if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
+ return false;
+
+ // Move the extend into the same block as the load, so that SelectionDAG
+ // can fold it.
+ I->removeFromParent();
+ I->insertAfter(LI);
+ return true;
+}
+
+bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
+ BasicBlock *DefBB = I->getParent();
+
+ // If both result of the {s|z}xt and its source are live out, rewrite all
+ // other uses of the source with result of extension.
+ Value *Src = I->getOperand(0);
+ if (Src->hasOneUse())
+ return false;
+
+ // Only do this xform if truncating is free.
+ if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
+ return false;
+
+ // Only safe to perform the optimization if the source is also defined in
+ // this block.
+ if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
+ return false;
+
+ bool DefIsLiveOut = false;
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+
+ // Figure out which BB this ext is used in.
+ BasicBlock *UserBB = User->getParent();
+ if (UserBB == DefBB) continue;
+ DefIsLiveOut = true;
+ break;
+ }
+ if (!DefIsLiveOut)
+ return false;
+
+ // Make sure non of the uses are PHI nodes.
+ for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ BasicBlock *UserBB = User->getParent();
+ if (UserBB == DefBB) continue;
+ // Be conservative. We don't want this xform to end up introducing
+ // reloads just before load / store instructions.
+ if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
+ return false;
+ }
+
+ // InsertedTruncs - Only insert one trunc in each block once.
+ DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
+
+ bool MadeChange = false;
+ for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
+ UI != E; ++UI) {
+ Use &TheUse = UI.getUse();
+ Instruction *User = cast<Instruction>(*UI);
+
+ // Figure out which BB this ext is used in.
+ BasicBlock *UserBB = User->getParent();
+ if (UserBB == DefBB) continue;
+
+ // Both src and def are live in this block. Rewrite the use.
+ Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
+
+ if (!InsertedTrunc) {
+ BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
+
+ InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
+ }
+
+ // Replace a use of the {s|z}ext source with a use of the result.
+ TheUse = InsertedTrunc;
+
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+// In this pass we look for GEP and cast instructions that are used
+// across basic blocks and rewrite them to improve basic-block-at-a-time
+// selection.
+bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
+ bool MadeChange = false;
+
+ // Split all critical edges where the dest block has a PHI.
+ TerminatorInst *BBTI = BB.getTerminator();
+ if (BBTI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(BBTI)) {
+ for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i) {
+ BasicBlock *SuccBB = BBTI->getSuccessor(i);
+ if (isa<PHINode>(SuccBB->begin()) && isCriticalEdge(BBTI, i, true))
+ SplitEdgeNicely(BBTI, i, BackEdges, this);
+ }
+ }
+
+ // Keep track of non-local addresses that have been sunk into this block.
+ // This allows us to avoid inserting duplicate code for blocks with multiple
+ // load/stores of the same address.
+ DenseMap<Value*, Value*> SunkAddrs;
+
+ for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
+ Instruction *I = BBI++;
+
+ if (CastInst *CI = dyn_cast<CastInst>(I)) {
+ // If the source of the cast is a constant, then this should have
+ // already been constant folded. The only reason NOT to constant fold
+ // it is if something (e.g. LSR) was careful to place the constant
+ // evaluation in a block other than then one that uses it (e.g. to hoist
+ // the address of globals out of a loop). If this is the case, we don't
+ // want to forward-subst the cast.
+ if (isa<Constant>(CI->getOperand(0)))
+ continue;
+
+ bool Change = false;
+ if (TLI) {
+ Change = OptimizeNoopCopyExpression(CI, *TLI);
+ MadeChange |= Change;
+ }
+
+ if (!Change && (isa<ZExtInst>(I) || isa<SExtInst>(I))) {
+ MadeChange |= MoveExtToFormExtLoad(I);
+ MadeChange |= OptimizeExtUses(I);
+ }
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
+ MadeChange |= OptimizeCmpExpression(CI);
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (TLI)
+ MadeChange |= OptimizeMemoryInst(I, I->getOperand(0), LI->getType(),
+ SunkAddrs);
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (TLI)
+ MadeChange |= OptimizeMemoryInst(I, SI->getOperand(1),
+ SI->getOperand(0)->getType(),
+ SunkAddrs);
+ } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
+ if (GEPI->hasAllZeroIndices()) {
+ /// The GEP operand must be a pointer, so must its result -> BitCast
+ Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
+ GEPI->getName(), GEPI);
+ GEPI->replaceAllUsesWith(NC);
+ GEPI->eraseFromParent();
+ MadeChange = true;
+ BBI = NC;
+ }
+ } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ // If we found an inline asm expession, and if the target knows how to
+ // lower it to normal LLVM code, do so now.
+ if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
+ if (TLI->ExpandInlineAsm(CI)) {
+ BBI = BB.begin();
+ // Avoid processing instructions out of order, which could cause
+ // reuse before a value is defined.
+ SunkAddrs.clear();
+ } else
+ // Sink address computing for memory operands into the block.
+ MadeChange |= OptimizeInlineAsmInst(I, &(*CI), SunkAddrs);
+ } else {
+ // Other CallInst optimizations that don't need to muck with the
+ // enclosing iterator here.
+ MadeChange |= OptimizeCallInst(CI);
+ }
+ }
+ }
+
+ return MadeChange;
+}
OpenPOWER on IntegriCloud