summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp147
1 files changed, 147 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
new file mode 100644
index 0000000..54533f5
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp
@@ -0,0 +1,147 @@
+//===-- BasicBlockPlacement.cpp - Basic Block Code Layout optimization ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a very simple profile guided basic block placement
+// algorithm. The idea is to put frequently executed blocks together at the
+// start of the function, and hopefully increase the number of fall-through
+// conditional branches. If there is no profile information for a particular
+// function, this pass basically orders blocks in depth-first order
+//
+// The algorithm implemented here is basically "Algo1" from "Profile Guided Code
+// Positioning" by Pettis and Hansen, except that it uses basic block counts
+// instead of edge counts. This should be improved in many ways, but is very
+// simple for now.
+//
+// Basically we "place" the entry block, then loop over all successors in a DFO,
+// placing the most frequently executed successor until we run out of blocks. I
+// told you this was _extremely_ simplistic. :) This is also much slower than it
+// could be. When it becomes important, this pass will be rewritten to use a
+// better algorithm, and then we can worry about efficiency.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "block-placement"
+#include "llvm/Analysis/ProfileInfo.h"
+#include "llvm/Function.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Transforms/Scalar.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumMoved, "Number of basic blocks moved");
+
+namespace {
+ struct BlockPlacement : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ BlockPlacement() : FunctionPass(&ID) {}
+
+ virtual bool runOnFunction(Function &F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<ProfileInfo>();
+ //AU.addPreserved<ProfileInfo>(); // Does this work?
+ }
+ private:
+ /// PI - The profile information that is guiding us.
+ ///
+ ProfileInfo *PI;
+
+ /// NumMovedBlocks - Every time we move a block, increment this counter.
+ ///
+ unsigned NumMovedBlocks;
+
+ /// PlacedBlocks - Every time we place a block, remember it so we don't get
+ /// into infinite loops.
+ std::set<BasicBlock*> PlacedBlocks;
+
+ /// InsertPos - This an iterator to the next place we want to insert a
+ /// block.
+ Function::iterator InsertPos;
+
+ /// PlaceBlocks - Recursively place the specified blocks and any unplaced
+ /// successors.
+ void PlaceBlocks(BasicBlock *BB);
+ };
+}
+
+char BlockPlacement::ID = 0;
+static RegisterPass<BlockPlacement>
+X("block-placement", "Profile Guided Basic Block Placement");
+
+FunctionPass *llvm::createBlockPlacementPass() { return new BlockPlacement(); }
+
+bool BlockPlacement::runOnFunction(Function &F) {
+ PI = &getAnalysis<ProfileInfo>();
+
+ NumMovedBlocks = 0;
+ InsertPos = F.begin();
+
+ // Recursively place all blocks.
+ PlaceBlocks(F.begin());
+
+ PlacedBlocks.clear();
+ NumMoved += NumMovedBlocks;
+ return NumMovedBlocks != 0;
+}
+
+
+/// PlaceBlocks - Recursively place the specified blocks and any unplaced
+/// successors.
+void BlockPlacement::PlaceBlocks(BasicBlock *BB) {
+ assert(!PlacedBlocks.count(BB) && "Already placed this block!");
+ PlacedBlocks.insert(BB);
+
+ // Place the specified block.
+ if (&*InsertPos != BB) {
+ // Use splice to move the block into the right place. This avoids having to
+ // remove the block from the function then readd it, which causes a bunch of
+ // symbol table traffic that is entirely pointless.
+ Function::BasicBlockListType &Blocks = BB->getParent()->getBasicBlockList();
+ Blocks.splice(InsertPos, Blocks, BB);
+
+ ++NumMovedBlocks;
+ } else {
+ // This block is already in the right place, we don't have to do anything.
+ ++InsertPos;
+ }
+
+ // Keep placing successors until we run out of ones to place. Note that this
+ // loop is very inefficient (N^2) for blocks with many successors, like switch
+ // statements. FIXME!
+ while (1) {
+ // Okay, now place any unplaced successors.
+ succ_iterator SI = succ_begin(BB), E = succ_end(BB);
+
+ // Scan for the first unplaced successor.
+ for (; SI != E && PlacedBlocks.count(*SI); ++SI)
+ /*empty*/;
+ if (SI == E) return; // No more successors to place.
+
+ double MaxExecutionCount = PI->getExecutionCount(*SI);
+ BasicBlock *MaxSuccessor = *SI;
+
+ // Scan for more frequently executed successors
+ for (; SI != E; ++SI)
+ if (!PlacedBlocks.count(*SI)) {
+ double Count = PI->getExecutionCount(*SI);
+ if (Count > MaxExecutionCount ||
+ // Prefer to not disturb the code.
+ (Count == MaxExecutionCount && *SI == &*InsertPos)) {
+ MaxExecutionCount = Count;
+ MaxSuccessor = *SI;
+ }
+ }
+
+ // Now that we picked the maximally executed successor, place it.
+ PlaceBlocks(MaxSuccessor);
+ }
+}
OpenPOWER on IntegriCloud