summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp2251
1 files changed, 2251 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
new file mode 100644
index 0000000..dca3f1b
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/ObjCARC/ObjCARCOpts.cpp
@@ -0,0 +1,2251 @@
+//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file defines ObjC ARC optimizations. ARC stands for Automatic
+/// Reference Counting and is a system for managing reference counts for objects
+/// in Objective C.
+///
+/// The optimizations performed include elimination of redundant, partially
+/// redundant, and inconsequential reference count operations, elimination of
+/// redundant weak pointer operations, and numerous minor simplifications.
+///
+/// WARNING: This file knows about certain library functions. It recognizes them
+/// by name, and hardwires knowledge of their semantics.
+///
+/// WARNING: This file knows about how certain Objective-C library functions are
+/// used. Naive LLVM IR transformations which would otherwise be
+/// behavior-preserving may break these assumptions.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ObjCARC.h"
+#include "ARCRuntimeEntryPoints.h"
+#include "BlotMapVector.h"
+#include "DependencyAnalysis.h"
+#include "ObjCARCAliasAnalysis.h"
+#include "ProvenanceAnalysis.h"
+#include "PtrState.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+using namespace llvm::objcarc;
+
+#define DEBUG_TYPE "objc-arc-opts"
+
+/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
+/// @{
+
+/// \brief This is similar to GetRCIdentityRoot but it stops as soon
+/// as it finds a value with multiple uses.
+static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
+ if (Arg->hasOneUse()) {
+ if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
+ return FindSingleUseIdentifiedObject(BC->getOperand(0));
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
+ if (GEP->hasAllZeroIndices())
+ return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
+ if (IsForwarding(GetBasicARCInstKind(Arg)))
+ return FindSingleUseIdentifiedObject(
+ cast<CallInst>(Arg)->getArgOperand(0));
+ if (!IsObjCIdentifiedObject(Arg))
+ return nullptr;
+ return Arg;
+ }
+
+ // If we found an identifiable object but it has multiple uses, but they are
+ // trivial uses, we can still consider this to be a single-use value.
+ if (IsObjCIdentifiedObject(Arg)) {
+ for (const User *U : Arg->users())
+ if (!U->use_empty() || GetRCIdentityRoot(U) != Arg)
+ return nullptr;
+
+ return Arg;
+ }
+
+ return nullptr;
+}
+
+/// This is a wrapper around getUnderlyingObjCPtr along the lines of
+/// GetUnderlyingObjects except that it returns early when it sees the first
+/// alloca.
+static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V,
+ const DataLayout &DL) {
+ SmallPtrSet<const Value *, 4> Visited;
+ SmallVector<const Value *, 4> Worklist;
+ Worklist.push_back(V);
+ do {
+ const Value *P = Worklist.pop_back_val();
+ P = GetUnderlyingObjCPtr(P, DL);
+
+ if (isa<AllocaInst>(P))
+ return true;
+
+ if (!Visited.insert(P).second)
+ continue;
+
+ if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
+ for (Value *IncValue : PN->incoming_values())
+ Worklist.push_back(IncValue);
+ continue;
+ }
+ } while (!Worklist.empty());
+
+ return false;
+}
+
+
+/// @}
+///
+/// \defgroup ARCOpt ARC Optimization.
+/// @{
+
+// TODO: On code like this:
+//
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+// stuff_that_cannot_release()
+// objc_retain(%x)
+// stuff_that_cannot_release()
+// objc_autorelease(%x)
+//
+// The second retain and autorelease can be deleted.
+
+// TODO: It should be possible to delete
+// objc_autoreleasePoolPush and objc_autoreleasePoolPop
+// pairs if nothing is actually autoreleased between them. Also, autorelease
+// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
+// after inlining) can be turned into plain release calls.
+
+// TODO: Critical-edge splitting. If the optimial insertion point is
+// a critical edge, the current algorithm has to fail, because it doesn't
+// know how to split edges. It should be possible to make the optimizer
+// think in terms of edges, rather than blocks, and then split critical
+// edges on demand.
+
+// TODO: OptimizeSequences could generalized to be Interprocedural.
+
+// TODO: Recognize that a bunch of other objc runtime calls have
+// non-escaping arguments and non-releasing arguments, and may be
+// non-autoreleasing.
+
+// TODO: Sink autorelease calls as far as possible. Unfortunately we
+// usually can't sink them past other calls, which would be the main
+// case where it would be useful.
+
+// TODO: The pointer returned from objc_loadWeakRetained is retained.
+
+// TODO: Delete release+retain pairs (rare).
+
+STATISTIC(NumNoops, "Number of no-op objc calls eliminated");
+STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
+STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
+STATISTIC(NumRets, "Number of return value forwarding "
+ "retain+autoreleases eliminated");
+STATISTIC(NumRRs, "Number of retain+release paths eliminated");
+STATISTIC(NumPeeps, "Number of calls peephole-optimized");
+#ifndef NDEBUG
+STATISTIC(NumRetainsBeforeOpt,
+ "Number of retains before optimization");
+STATISTIC(NumReleasesBeforeOpt,
+ "Number of releases before optimization");
+STATISTIC(NumRetainsAfterOpt,
+ "Number of retains after optimization");
+STATISTIC(NumReleasesAfterOpt,
+ "Number of releases after optimization");
+#endif
+
+namespace {
+ /// \brief Per-BasicBlock state.
+ class BBState {
+ /// The number of unique control paths from the entry which can reach this
+ /// block.
+ unsigned TopDownPathCount;
+
+ /// The number of unique control paths to exits from this block.
+ unsigned BottomUpPathCount;
+
+ /// The top-down traversal uses this to record information known about a
+ /// pointer at the bottom of each block.
+ BlotMapVector<const Value *, TopDownPtrState> PerPtrTopDown;
+
+ /// The bottom-up traversal uses this to record information known about a
+ /// pointer at the top of each block.
+ BlotMapVector<const Value *, BottomUpPtrState> PerPtrBottomUp;
+
+ /// Effective predecessors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Preds;
+
+ /// Effective successors of the current block ignoring ignorable edges and
+ /// ignored backedges.
+ SmallVector<BasicBlock *, 2> Succs;
+
+ public:
+ static const unsigned OverflowOccurredValue;
+
+ BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
+
+ typedef decltype(PerPtrTopDown)::iterator top_down_ptr_iterator;
+ typedef decltype(PerPtrTopDown)::const_iterator const_top_down_ptr_iterator;
+
+ top_down_ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
+ top_down_ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
+ const_top_down_ptr_iterator top_down_ptr_begin() const {
+ return PerPtrTopDown.begin();
+ }
+ const_top_down_ptr_iterator top_down_ptr_end() const {
+ return PerPtrTopDown.end();
+ }
+ bool hasTopDownPtrs() const {
+ return !PerPtrTopDown.empty();
+ }
+
+ typedef decltype(PerPtrBottomUp)::iterator bottom_up_ptr_iterator;
+ typedef decltype(
+ PerPtrBottomUp)::const_iterator const_bottom_up_ptr_iterator;
+
+ bottom_up_ptr_iterator bottom_up_ptr_begin() {
+ return PerPtrBottomUp.begin();
+ }
+ bottom_up_ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
+ const_bottom_up_ptr_iterator bottom_up_ptr_begin() const {
+ return PerPtrBottomUp.begin();
+ }
+ const_bottom_up_ptr_iterator bottom_up_ptr_end() const {
+ return PerPtrBottomUp.end();
+ }
+ bool hasBottomUpPtrs() const {
+ return !PerPtrBottomUp.empty();
+ }
+
+ /// Mark this block as being an entry block, which has one path from the
+ /// entry by definition.
+ void SetAsEntry() { TopDownPathCount = 1; }
+
+ /// Mark this block as being an exit block, which has one path to an exit by
+ /// definition.
+ void SetAsExit() { BottomUpPathCount = 1; }
+
+ /// Attempt to find the PtrState object describing the top down state for
+ /// pointer Arg. Return a new initialized PtrState describing the top down
+ /// state for Arg if we do not find one.
+ TopDownPtrState &getPtrTopDownState(const Value *Arg) {
+ return PerPtrTopDown[Arg];
+ }
+
+ /// Attempt to find the PtrState object describing the bottom up state for
+ /// pointer Arg. Return a new initialized PtrState describing the bottom up
+ /// state for Arg if we do not find one.
+ BottomUpPtrState &getPtrBottomUpState(const Value *Arg) {
+ return PerPtrBottomUp[Arg];
+ }
+
+ /// Attempt to find the PtrState object describing the bottom up state for
+ /// pointer Arg.
+ bottom_up_ptr_iterator findPtrBottomUpState(const Value *Arg) {
+ return PerPtrBottomUp.find(Arg);
+ }
+
+ void clearBottomUpPointers() {
+ PerPtrBottomUp.clear();
+ }
+
+ void clearTopDownPointers() {
+ PerPtrTopDown.clear();
+ }
+
+ void InitFromPred(const BBState &Other);
+ void InitFromSucc(const BBState &Other);
+ void MergePred(const BBState &Other);
+ void MergeSucc(const BBState &Other);
+
+ /// Compute the number of possible unique paths from an entry to an exit
+ /// which pass through this block. This is only valid after both the
+ /// top-down and bottom-up traversals are complete.
+ ///
+ /// Returns true if overflow occurred. Returns false if overflow did not
+ /// occur.
+ bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
+ if (TopDownPathCount == OverflowOccurredValue ||
+ BottomUpPathCount == OverflowOccurredValue)
+ return true;
+ unsigned long long Product =
+ (unsigned long long)TopDownPathCount*BottomUpPathCount;
+ // Overflow occurred if any of the upper bits of Product are set or if all
+ // the lower bits of Product are all set.
+ return (Product >> 32) ||
+ ((PathCount = Product) == OverflowOccurredValue);
+ }
+
+ // Specialized CFG utilities.
+ typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
+ edge_iterator pred_begin() const { return Preds.begin(); }
+ edge_iterator pred_end() const { return Preds.end(); }
+ edge_iterator succ_begin() const { return Succs.begin(); }
+ edge_iterator succ_end() const { return Succs.end(); }
+
+ void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
+ void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
+
+ bool isExit() const { return Succs.empty(); }
+ };
+
+ const unsigned BBState::OverflowOccurredValue = 0xffffffff;
+}
+
+namespace llvm {
+raw_ostream &operator<<(raw_ostream &OS,
+ BBState &BBState) LLVM_ATTRIBUTE_UNUSED;
+}
+
+void BBState::InitFromPred(const BBState &Other) {
+ PerPtrTopDown = Other.PerPtrTopDown;
+ TopDownPathCount = Other.TopDownPathCount;
+}
+
+void BBState::InitFromSucc(const BBState &Other) {
+ PerPtrBottomUp = Other.PerPtrBottomUp;
+ BottomUpPathCount = Other.BottomUpPathCount;
+}
+
+/// The top-down traversal uses this to merge information about predecessors to
+/// form the initial state for a new block.
+void BBState::MergePred(const BBState &Other) {
+ if (TopDownPathCount == OverflowOccurredValue)
+ return;
+
+ // Other.TopDownPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ TopDownPathCount += Other.TopDownPathCount;
+
+ // In order to be consistent, we clear the top down pointers when by adding
+ // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
+ // has not occurred.
+ if (TopDownPathCount == OverflowOccurredValue) {
+ clearTopDownPointers();
+ return;
+ }
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (TopDownPathCount < Other.TopDownPathCount) {
+ TopDownPathCount = OverflowOccurredValue;
+ clearTopDownPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the same key,
+ // merge the entries. Otherwise, copy the entry and merge it with an empty
+ // entry.
+ for (auto MI = Other.top_down_ptr_begin(), ME = Other.top_down_ptr_end();
+ MI != ME; ++MI) {
+ auto Pair = PerPtrTopDown.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? TopDownPtrState() : MI->second,
+ /*TopDown=*/true);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry with the
+ // same key, force it to merge with an empty entry.
+ for (auto MI = top_down_ptr_begin(), ME = top_down_ptr_end(); MI != ME; ++MI)
+ if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
+ MI->second.Merge(TopDownPtrState(), /*TopDown=*/true);
+}
+
+/// The bottom-up traversal uses this to merge information about successors to
+/// form the initial state for a new block.
+void BBState::MergeSucc(const BBState &Other) {
+ if (BottomUpPathCount == OverflowOccurredValue)
+ return;
+
+ // Other.BottomUpPathCount can be 0, in which case it is either dead or a
+ // loop backedge. Loop backedges are special.
+ BottomUpPathCount += Other.BottomUpPathCount;
+
+ // In order to be consistent, we clear the top down pointers when by adding
+ // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
+ // has not occurred.
+ if (BottomUpPathCount == OverflowOccurredValue) {
+ clearBottomUpPointers();
+ return;
+ }
+
+ // Check for overflow. If we have overflow, fall back to conservative
+ // behavior.
+ if (BottomUpPathCount < Other.BottomUpPathCount) {
+ BottomUpPathCount = OverflowOccurredValue;
+ clearBottomUpPointers();
+ return;
+ }
+
+ // For each entry in the other set, if our set has an entry with the
+ // same key, merge the entries. Otherwise, copy the entry and merge
+ // it with an empty entry.
+ for (auto MI = Other.bottom_up_ptr_begin(), ME = Other.bottom_up_ptr_end();
+ MI != ME; ++MI) {
+ auto Pair = PerPtrBottomUp.insert(*MI);
+ Pair.first->second.Merge(Pair.second ? BottomUpPtrState() : MI->second,
+ /*TopDown=*/false);
+ }
+
+ // For each entry in our set, if the other set doesn't have an entry
+ // with the same key, force it to merge with an empty entry.
+ for (auto MI = bottom_up_ptr_begin(), ME = bottom_up_ptr_end(); MI != ME;
+ ++MI)
+ if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
+ MI->second.Merge(BottomUpPtrState(), /*TopDown=*/false);
+}
+
+raw_ostream &llvm::operator<<(raw_ostream &OS, BBState &BBInfo) {
+ // Dump the pointers we are tracking.
+ OS << " TopDown State:\n";
+ if (!BBInfo.hasTopDownPtrs()) {
+ DEBUG(llvm::dbgs() << " NONE!\n");
+ } else {
+ for (auto I = BBInfo.top_down_ptr_begin(), E = BBInfo.top_down_ptr_end();
+ I != E; ++I) {
+ const PtrState &P = I->second;
+ OS << " Ptr: " << *I->first
+ << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
+ << "\n ImpreciseRelease: "
+ << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
+ << " HasCFGHazards: "
+ << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
+ << " KnownPositive: "
+ << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
+ << " Seq: "
+ << P.GetSeq() << "\n";
+ }
+ }
+
+ OS << " BottomUp State:\n";
+ if (!BBInfo.hasBottomUpPtrs()) {
+ DEBUG(llvm::dbgs() << " NONE!\n");
+ } else {
+ for (auto I = BBInfo.bottom_up_ptr_begin(), E = BBInfo.bottom_up_ptr_end();
+ I != E; ++I) {
+ const PtrState &P = I->second;
+ OS << " Ptr: " << *I->first
+ << "\n KnownSafe: " << (P.IsKnownSafe()?"true":"false")
+ << "\n ImpreciseRelease: "
+ << (P.IsTrackingImpreciseReleases()?"true":"false") << "\n"
+ << " HasCFGHazards: "
+ << (P.IsCFGHazardAfflicted()?"true":"false") << "\n"
+ << " KnownPositive: "
+ << (P.HasKnownPositiveRefCount()?"true":"false") << "\n"
+ << " Seq: "
+ << P.GetSeq() << "\n";
+ }
+ }
+
+ return OS;
+}
+
+namespace {
+
+ /// \brief The main ARC optimization pass.
+ class ObjCARCOpt : public FunctionPass {
+ bool Changed;
+ ProvenanceAnalysis PA;
+
+ /// A cache of references to runtime entry point constants.
+ ARCRuntimeEntryPoints EP;
+
+ /// A cache of MDKinds that can be passed into other functions to propagate
+ /// MDKind identifiers.
+ ARCMDKindCache MDKindCache;
+
+ // This is used to track if a pointer is stored into an alloca.
+ DenseSet<const Value *> MultiOwnersSet;
+
+ /// A flag indicating whether this optimization pass should run.
+ bool Run;
+
+ /// Flags which determine whether each of the interesting runtine functions
+ /// is in fact used in the current function.
+ unsigned UsedInThisFunction;
+
+ bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
+ void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
+ ARCInstKind &Class);
+ void OptimizeIndividualCalls(Function &F);
+
+ void CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const;
+ bool VisitInstructionBottomUp(Instruction *Inst, BasicBlock *BB,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates);
+ bool VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains);
+ bool VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates);
+ bool VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases);
+ bool Visit(Function &F, DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases);
+
+ void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts, Module *M);
+
+ bool
+ PairUpRetainsAndReleases(DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases, Module *M,
+ SmallVectorImpl<Instruction *> &NewRetains,
+ SmallVectorImpl<Instruction *> &NewReleases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
+ Value *Arg, bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated);
+
+ bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases, Module *M);
+
+ void OptimizeWeakCalls(Function &F);
+
+ bool OptimizeSequences(Function &F);
+
+ void OptimizeReturns(Function &F);
+
+#ifndef NDEBUG
+ void GatherStatistics(Function &F, bool AfterOptimization = false);
+#endif
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+ void releaseMemory() override;
+
+ public:
+ static char ID;
+ ObjCARCOpt() : FunctionPass(ID) {
+ initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
+ }
+ };
+}
+
+char ObjCARCOpt::ID = 0;
+INITIALIZE_PASS_BEGIN(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
+INITIALIZE_PASS_END(ObjCARCOpt,
+ "objc-arc", "ObjC ARC optimization", false, false)
+
+Pass *llvm::createObjCARCOptPass() {
+ return new ObjCARCOpt();
+}
+
+void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<ObjCARCAliasAnalysis>();
+ AU.addRequired<AliasAnalysis>();
+ // ARC optimization doesn't currently split critical edges.
+ AU.setPreservesCFG();
+}
+
+/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
+/// not a return value. Or, if it can be paired with an
+/// objc_autoreleaseReturnValue, delete the pair and return true.
+bool
+ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
+ // Check for the argument being from an immediately preceding call or invoke.
+ const Value *Arg = GetArgRCIdentityRoot(RetainRV);
+ ImmutableCallSite CS(Arg);
+ if (const Instruction *Call = CS.getInstruction()) {
+ if (Call->getParent() == RetainRV->getParent()) {
+ BasicBlock::const_iterator I = Call;
+ ++I;
+ while (IsNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ BasicBlock *RetainRVParent = RetainRV->getParent();
+ if (II->getNormalDest() == RetainRVParent) {
+ BasicBlock::const_iterator I = RetainRVParent->begin();
+ while (IsNoopInstruction(I)) ++I;
+ if (&*I == RetainRV)
+ return false;
+ }
+ }
+ }
+
+ // Check for being preceded by an objc_autoreleaseReturnValue on the same
+ // pointer. In this case, we can delete the pair.
+ BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
+ if (I != Begin) {
+ do --I; while (I != Begin && IsNoopInstruction(I));
+ if (GetBasicARCInstKind(I) == ARCInstKind::AutoreleaseRV &&
+ GetArgRCIdentityRoot(I) == Arg) {
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
+ << "Erasing " << *RetainRV << "\n");
+
+ EraseInstruction(I);
+ EraseInstruction(RetainRV);
+ return true;
+ }
+ }
+
+ // Turn it to a plain objc_retain.
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
+ "objc_retain since the operand is not a return value.\n"
+ "Old = " << *RetainRV << "\n");
+
+ Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Retain);
+ cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
+
+ DEBUG(dbgs() << "New = " << *RetainRV << "\n");
+
+ return false;
+}
+
+/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
+/// used as a return value.
+void ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F,
+ Instruction *AutoreleaseRV,
+ ARCInstKind &Class) {
+ // Check for a return of the pointer value.
+ const Value *Ptr = GetArgRCIdentityRoot(AutoreleaseRV);
+ SmallVector<const Value *, 2> Users;
+ Users.push_back(Ptr);
+ do {
+ Ptr = Users.pop_back_val();
+ for (const User *U : Ptr->users()) {
+ if (isa<ReturnInst>(U) || GetBasicARCInstKind(U) == ARCInstKind::RetainRV)
+ return;
+ if (isa<BitCastInst>(U))
+ Users.push_back(U);
+ }
+ } while (!Users.empty());
+
+ Changed = true;
+ ++NumPeeps;
+
+ DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
+ "objc_autorelease since its operand is not used as a return "
+ "value.\n"
+ "Old = " << *AutoreleaseRV << "\n");
+
+ CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
+ Constant *NewDecl = EP.get(ARCRuntimeEntryPointKind::Autorelease);
+ AutoreleaseRVCI->setCalledFunction(NewDecl);
+ AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
+ Class = ARCInstKind::Autorelease;
+
+ DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
+
+}
+
+/// Visit each call, one at a time, and make simplifications without doing any
+/// additional analysis.
+void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
+ DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
+ // Reset all the flags in preparation for recomputing them.
+ UsedInThisFunction = 0;
+
+ // Visit all objc_* calls in F.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ ARCInstKind Class = GetBasicARCInstKind(Inst);
+
+ DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
+
+ switch (Class) {
+ default: break;
+
+ // Delete no-op casts. These function calls have special semantics, but
+ // the semantics are entirely implemented via lowering in the front-end,
+ // so by the time they reach the optimizer, they are just no-op calls
+ // which return their argument.
+ //
+ // There are gray areas here, as the ability to cast reference-counted
+ // pointers to raw void* and back allows code to break ARC assumptions,
+ // however these are currently considered to be unimportant.
+ case ARCInstKind::NoopCast:
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
+ EraseInstruction(Inst);
+ continue;
+
+ // If the pointer-to-weak-pointer is null, it's undefined behavior.
+ case ARCInstKind::StoreWeak:
+ case ARCInstKind::LoadWeak:
+ case ARCInstKind::LoadWeakRetained:
+ case ARCInstKind::InitWeak:
+ case ARCInstKind::DestroyWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (IsNullOrUndef(CI->getArgOperand(0))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
+ "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case ARCInstKind::CopyWeak:
+ case ARCInstKind::MoveWeak: {
+ CallInst *CI = cast<CallInst>(Inst);
+ if (IsNullOrUndef(CI->getArgOperand(0)) ||
+ IsNullOrUndef(CI->getArgOperand(1))) {
+ Changed = true;
+ Type *Ty = CI->getArgOperand(0)->getType();
+ new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
+ Constant::getNullValue(Ty),
+ CI);
+
+ llvm::Value *NewValue = UndefValue::get(CI->getType());
+ DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
+ "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
+
+ CI->replaceAllUsesWith(NewValue);
+ CI->eraseFromParent();
+ continue;
+ }
+ break;
+ }
+ case ARCInstKind::RetainRV:
+ if (OptimizeRetainRVCall(F, Inst))
+ continue;
+ break;
+ case ARCInstKind::AutoreleaseRV:
+ OptimizeAutoreleaseRVCall(F, Inst, Class);
+ break;
+ }
+
+ // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
+ if (IsAutorelease(Class) && Inst->use_empty()) {
+ CallInst *Call = cast<CallInst>(Inst);
+ const Value *Arg = Call->getArgOperand(0);
+ Arg = FindSingleUseIdentifiedObject(Arg);
+ if (Arg) {
+ Changed = true;
+ ++NumAutoreleases;
+
+ // Create the declaration lazily.
+ LLVMContext &C = Inst->getContext();
+
+ Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
+ CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
+ Call);
+ NewCall->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease),
+ MDNode::get(C, None));
+
+ DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
+ "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
+ << *NewCall << "\n");
+
+ EraseInstruction(Call);
+ Inst = NewCall;
+ Class = ARCInstKind::Release;
+ }
+ }
+
+ // For functions which can never be passed stack arguments, add
+ // a tail keyword.
+ if (IsAlwaysTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
+ "passed stack args: " << *Inst << "\n");
+ cast<CallInst>(Inst)->setTailCall();
+ }
+
+ // Ensure that functions that can never have a "tail" keyword due to the
+ // semantics of ARC truly do not do so.
+ if (IsNeverTail(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
+ "\n");
+ cast<CallInst>(Inst)->setTailCall(false);
+ }
+
+ // Set nounwind as needed.
+ if (IsNoThrow(Class)) {
+ Changed = true;
+ DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
+ << "\n");
+ cast<CallInst>(Inst)->setDoesNotThrow();
+ }
+
+ if (!IsNoopOnNull(Class)) {
+ UsedInThisFunction |= 1 << unsigned(Class);
+ continue;
+ }
+
+ const Value *Arg = GetArgRCIdentityRoot(Inst);
+
+ // ARC calls with null are no-ops. Delete them.
+ if (IsNullOrUndef(Arg)) {
+ Changed = true;
+ ++NumNoops;
+ DEBUG(dbgs() << "ARC calls with null are no-ops. Erasing: " << *Inst
+ << "\n");
+ EraseInstruction(Inst);
+ continue;
+ }
+
+ // Keep track of which of retain, release, autorelease, and retain_block
+ // are actually present in this function.
+ UsedInThisFunction |= 1 << unsigned(Class);
+
+ // If Arg is a PHI, and one or more incoming values to the
+ // PHI are null, and the call is control-equivalent to the PHI, and there
+ // are no relevant side effects between the PHI and the call, the call
+ // could be pushed up to just those paths with non-null incoming values.
+ // For now, don't bother splitting critical edges for this.
+ SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
+ Worklist.push_back(std::make_pair(Inst, Arg));
+ do {
+ std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
+ Inst = Pair.first;
+ Arg = Pair.second;
+
+ const PHINode *PN = dyn_cast<PHINode>(Arg);
+ if (!PN) continue;
+
+ // Determine if the PHI has any null operands, or any incoming
+ // critical edges.
+ bool HasNull = false;
+ bool HasCriticalEdges = false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ GetRCIdentityRoot(PN->getIncomingValue(i));
+ if (IsNullOrUndef(Incoming))
+ HasNull = true;
+ else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
+ .getNumSuccessors() != 1) {
+ HasCriticalEdges = true;
+ break;
+ }
+ }
+ // If we have null operands and no critical edges, optimize.
+ if (!HasCriticalEdges && HasNull) {
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+
+ // Check that there is nothing that cares about the reference
+ // count between the call and the phi.
+ switch (Class) {
+ case ARCInstKind::Retain:
+ case ARCInstKind::RetainBlock:
+ // These can always be moved up.
+ break;
+ case ARCInstKind::Release:
+ // These can't be moved across things that care about the retain
+ // count.
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case ARCInstKind::Autorelease:
+ // These can't be moved across autorelease pool scope boundaries.
+ FindDependencies(AutoreleasePoolBoundary, Arg,
+ Inst->getParent(), Inst,
+ DependingInstructions, Visited, PA);
+ break;
+ case ARCInstKind::RetainRV:
+ case ARCInstKind::AutoreleaseRV:
+ // Don't move these; the RV optimization depends on the autoreleaseRV
+ // being tail called, and the retainRV being immediately after a call
+ // (which might still happen if we get lucky with codegen layout, but
+ // it's not worth taking the chance).
+ continue;
+ default:
+ llvm_unreachable("Invalid dependence flavor");
+ }
+
+ if (DependingInstructions.size() == 1 &&
+ *DependingInstructions.begin() == PN) {
+ Changed = true;
+ ++NumPartialNoops;
+ // Clone the call into each predecessor that has a non-null value.
+ CallInst *CInst = cast<CallInst>(Inst);
+ Type *ParamTy = CInst->getArgOperand(0)->getType();
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *Incoming =
+ GetRCIdentityRoot(PN->getIncomingValue(i));
+ if (!IsNullOrUndef(Incoming)) {
+ CallInst *Clone = cast<CallInst>(CInst->clone());
+ Value *Op = PN->getIncomingValue(i);
+ Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
+ if (Op->getType() != ParamTy)
+ Op = new BitCastInst(Op, ParamTy, "", InsertPos);
+ Clone->setArgOperand(0, Op);
+ Clone->insertBefore(InsertPos);
+
+ DEBUG(dbgs() << "Cloning "
+ << *CInst << "\n"
+ "And inserting clone at " << *InsertPos << "\n");
+ Worklist.push_back(std::make_pair(Clone, Incoming));
+ }
+ }
+ // Erase the original call.
+ DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
+ EraseInstruction(CInst);
+ continue;
+ }
+ }
+ } while (!Worklist.empty());
+ }
+}
+
+/// If we have a top down pointer in the S_Use state, make sure that there are
+/// no CFG hazards by checking the states of various bottom up pointers.
+static void CheckForUseCFGHazard(const Sequence SuccSSeq,
+ const bool SuccSRRIKnownSafe,
+ TopDownPtrState &S,
+ bool &SomeSuccHasSame,
+ bool &AllSuccsHaveSame,
+ bool &NotAllSeqEqualButKnownSafe,
+ bool &ShouldContinue) {
+ switch (SuccSSeq) {
+ case S_CanRelease: {
+ if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
+ S.ClearSequenceProgress();
+ break;
+ }
+ S.SetCFGHazardAfflicted(true);
+ ShouldContinue = true;
+ break;
+ }
+ case S_Use:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ else
+ NotAllSeqEqualButKnownSafe = true;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ case S_None:
+ llvm_unreachable("This should have been handled earlier.");
+ }
+}
+
+/// If we have a Top Down pointer in the S_CanRelease state, make sure that
+/// there are no CFG hazards by checking the states of various bottom up
+/// pointers.
+static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
+ const bool SuccSRRIKnownSafe,
+ TopDownPtrState &S,
+ bool &SomeSuccHasSame,
+ bool &AllSuccsHaveSame,
+ bool &NotAllSeqEqualButKnownSafe) {
+ switch (SuccSSeq) {
+ case S_CanRelease:
+ SomeSuccHasSame = true;
+ break;
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ case S_Use:
+ if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
+ AllSuccsHaveSame = false;
+ else
+ NotAllSeqEqualButKnownSafe = true;
+ break;
+ case S_Retain:
+ llvm_unreachable("bottom-up pointer in retain state!");
+ case S_None:
+ llvm_unreachable("This should have been handled earlier.");
+ }
+}
+
+/// Check for critical edges, loop boundaries, irreducible control flow, or
+/// other CFG structures where moving code across the edge would result in it
+/// being executed more.
+void
+ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BBState &MyStates) const {
+ // If any top-down local-use or possible-dec has a succ which is earlier in
+ // the sequence, forget it.
+ for (auto I = MyStates.top_down_ptr_begin(), E = MyStates.top_down_ptr_end();
+ I != E; ++I) {
+ TopDownPtrState &S = I->second;
+ const Sequence Seq = I->second.GetSeq();
+
+ // We only care about S_Retain, S_CanRelease, and S_Use.
+ if (Seq == S_None)
+ continue;
+
+ // Make sure that if extra top down states are added in the future that this
+ // code is updated to handle it.
+ assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
+ "Unknown top down sequence state.");
+
+ const Value *Arg = I->first;
+ const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
+ bool SomeSuccHasSame = false;
+ bool AllSuccsHaveSame = true;
+ bool NotAllSeqEqualButKnownSafe = false;
+
+ succ_const_iterator SI(TI), SE(TI, false);
+
+ for (; SI != SE; ++SI) {
+ // If VisitBottomUp has pointer information for this successor, take
+ // what we know about it.
+ const DenseMap<const BasicBlock *, BBState>::iterator BBI =
+ BBStates.find(*SI);
+ assert(BBI != BBStates.end());
+ const BottomUpPtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
+ const Sequence SuccSSeq = SuccS.GetSeq();
+
+ // If bottom up, the pointer is in an S_None state, clear the sequence
+ // progress since the sequence in the bottom up state finished
+ // suggesting a mismatch in between retains/releases. This is true for
+ // all three cases that we are handling here: S_Retain, S_Use, and
+ // S_CanRelease.
+ if (SuccSSeq == S_None) {
+ S.ClearSequenceProgress();
+ continue;
+ }
+
+ // If we have S_Use or S_CanRelease, perform our check for cfg hazard
+ // checks.
+ const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
+
+ // *NOTE* We do not use Seq from above here since we are allowing for
+ // S.GetSeq() to change while we are visiting basic blocks.
+ switch(S.GetSeq()) {
+ case S_Use: {
+ bool ShouldContinue = false;
+ CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
+ AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
+ ShouldContinue);
+ if (ShouldContinue)
+ continue;
+ break;
+ }
+ case S_CanRelease: {
+ CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
+ SomeSuccHasSame, AllSuccsHaveSame,
+ NotAllSeqEqualButKnownSafe);
+ break;
+ }
+ case S_Retain:
+ case S_None:
+ case S_Stop:
+ case S_Release:
+ case S_MovableRelease:
+ break;
+ }
+ }
+
+ // If the state at the other end of any of the successor edges
+ // matches the current state, require all edges to match. This
+ // guards against loops in the middle of a sequence.
+ if (SomeSuccHasSame && !AllSuccsHaveSame) {
+ S.ClearSequenceProgress();
+ } else if (NotAllSeqEqualButKnownSafe) {
+ // If we would have cleared the state foregoing the fact that we are known
+ // safe, stop code motion. This is because whether or not it is safe to
+ // remove RR pairs via KnownSafe is an orthogonal concept to whether we
+ // are allowed to perform code motion.
+ S.SetCFGHazardAfflicted(true);
+ }
+ }
+}
+
+bool ObjCARCOpt::VisitInstructionBottomUp(
+ Instruction *Inst, BasicBlock *BB, BlotMapVector<Value *, RRInfo> &Retains,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ ARCInstKind Class = GetARCInstKind(Inst);
+ const Value *Arg = nullptr;
+
+ DEBUG(dbgs() << " Class: " << Class << "\n");
+
+ switch (Class) {
+ case ARCInstKind::Release: {
+ Arg = GetArgRCIdentityRoot(Inst);
+
+ BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
+ NestingDetected |= S.InitBottomUp(MDKindCache, Inst);
+ break;
+ }
+ case ARCInstKind::RetainBlock:
+ // In OptimizeIndividualCalls, we have strength reduced all optimizable
+ // objc_retainBlocks to objc_retains. Thus at this point any
+ // objc_retainBlocks that we see are not optimizable.
+ break;
+ case ARCInstKind::Retain:
+ case ARCInstKind::RetainRV: {
+ Arg = GetArgRCIdentityRoot(Inst);
+ BottomUpPtrState &S = MyStates.getPtrBottomUpState(Arg);
+ if (S.MatchWithRetain()) {
+ // Don't do retain+release tracking for ARCInstKind::RetainRV, because
+ // it's better to let it remain as the first instruction after a call.
+ if (Class != ARCInstKind::RetainRV) {
+ DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
+ Retains[Inst] = S.GetRRInfo();
+ }
+ S.ClearSequenceProgress();
+ }
+ // A retain moving bottom up can be a use.
+ break;
+ }
+ case ARCInstKind::AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearBottomUpPointers();
+ return NestingDetected;
+ case ARCInstKind::AutoreleasepoolPush:
+ case ARCInstKind::None:
+ // These are irrelevant.
+ return NestingDetected;
+ case ARCInstKind::User:
+ // If we have a store into an alloca of a pointer we are tracking, the
+ // pointer has multiple owners implying that we must be more conservative.
+ //
+ // This comes up in the context of a pointer being ``KnownSafe''. In the
+ // presence of a block being initialized, the frontend will emit the
+ // objc_retain on the original pointer and the release on the pointer loaded
+ // from the alloca. The optimizer will through the provenance analysis
+ // realize that the two are related, but since we only require KnownSafe in
+ // one direction, will match the inner retain on the original pointer with
+ // the guard release on the original pointer. This is fixed by ensuring that
+ // in the presence of allocas we only unconditionally remove pointers if
+ // both our retain and our release are KnownSafe.
+ if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
+ const DataLayout &DL = BB->getModule()->getDataLayout();
+ if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand(), DL)) {
+ auto I = MyStates.findPtrBottomUpState(
+ GetRCIdentityRoot(SI->getValueOperand()));
+ if (I != MyStates.bottom_up_ptr_end())
+ MultiOwnersSet.insert(I->first);
+ }
+ }
+ break;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (auto MI = MyStates.bottom_up_ptr_begin(),
+ ME = MyStates.bottom_up_ptr_end();
+ MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ BottomUpPtrState &S = MI->second;
+
+ if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
+ continue;
+
+ S.HandlePotentialUse(BB, Inst, Ptr, PA, Class);
+ }
+
+ return NestingDetected;
+}
+
+bool ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains) {
+
+ DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
+
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each successor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator SI(MyStates.succ_begin()),
+ SE(MyStates.succ_end());
+ if (SI != SE) {
+ const BasicBlock *Succ = *SI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.InitFromSucc(I->second);
+ ++SI;
+ for (; SI != SE; ++SI) {
+ Succ = *SI;
+ I = BBStates.find(Succ);
+ assert(I != BBStates.end());
+ MyStates.MergeSucc(I->second);
+ }
+ }
+
+ DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
+ << "Performing Dataflow:\n");
+
+ // Visit all the instructions, bottom-up.
+ for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
+ Instruction *Inst = std::prev(I);
+
+ // Invoke instructions are visited as part of their successors (below).
+ if (isa<InvokeInst>(Inst))
+ continue;
+
+ DEBUG(dbgs() << " Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
+ }
+
+ // If there's a predecessor with an invoke, visit the invoke as if it were
+ // part of this block, since we can't insert code after an invoke in its own
+ // block, and we don't want to split critical edges.
+ for (BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end()); PI != PE; ++PI) {
+ BasicBlock *Pred = *PI;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
+ NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
+ }
+
+ DEBUG(llvm::dbgs() << "\nFinal State:\n" << BBStates[BB] << "\n");
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
+ DenseMap<Value *, RRInfo> &Releases,
+ BBState &MyStates) {
+ bool NestingDetected = false;
+ ARCInstKind Class = GetARCInstKind(Inst);
+ const Value *Arg = nullptr;
+
+ DEBUG(llvm::dbgs() << " Class: " << Class << "\n");
+
+ switch (Class) {
+ case ARCInstKind::RetainBlock:
+ // In OptimizeIndividualCalls, we have strength reduced all optimizable
+ // objc_retainBlocks to objc_retains. Thus at this point any
+ // objc_retainBlocks that we see are not optimizable. We need to break since
+ // a retain can be a potential use.
+ break;
+ case ARCInstKind::Retain:
+ case ARCInstKind::RetainRV: {
+ Arg = GetArgRCIdentityRoot(Inst);
+ TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
+ NestingDetected |= S.InitTopDown(Class, Inst);
+ // A retain can be a potential use; procede to the generic checking
+ // code below.
+ break;
+ }
+ case ARCInstKind::Release: {
+ Arg = GetArgRCIdentityRoot(Inst);
+ TopDownPtrState &S = MyStates.getPtrTopDownState(Arg);
+ // Try to form a tentative pair in between this release instruction and the
+ // top down pointers that we are tracking.
+ if (S.MatchWithRelease(MDKindCache, Inst)) {
+ // If we succeed, copy S's RRInfo into the Release -> {Retain Set
+ // Map}. Then we clear S.
+ DEBUG(llvm::dbgs() << " Matching with: " << *Inst << "\n");
+ Releases[Inst] = S.GetRRInfo();
+ S.ClearSequenceProgress();
+ }
+ break;
+ }
+ case ARCInstKind::AutoreleasepoolPop:
+ // Conservatively, clear MyStates for all known pointers.
+ MyStates.clearTopDownPointers();
+ return false;
+ case ARCInstKind::AutoreleasepoolPush:
+ case ARCInstKind::None:
+ // These can not be uses of
+ return false;
+ default:
+ break;
+ }
+
+ // Consider any other possible effects of this instruction on each
+ // pointer being tracked.
+ for (auto MI = MyStates.top_down_ptr_begin(),
+ ME = MyStates.top_down_ptr_end();
+ MI != ME; ++MI) {
+ const Value *Ptr = MI->first;
+ if (Ptr == Arg)
+ continue; // Handled above.
+ TopDownPtrState &S = MI->second;
+ if (S.HandlePotentialAlterRefCount(Inst, Ptr, PA, Class))
+ continue;
+
+ S.HandlePotentialUse(Inst, Ptr, PA, Class);
+ }
+
+ return NestingDetected;
+}
+
+bool
+ObjCARCOpt::VisitTopDown(BasicBlock *BB,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ DenseMap<Value *, RRInfo> &Releases) {
+ DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
+ bool NestingDetected = false;
+ BBState &MyStates = BBStates[BB];
+
+ // Merge the states from each predecessor to compute the initial state
+ // for the current block.
+ BBState::edge_iterator PI(MyStates.pred_begin()),
+ PE(MyStates.pred_end());
+ if (PI != PE) {
+ const BasicBlock *Pred = *PI;
+ DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.InitFromPred(I->second);
+ ++PI;
+ for (; PI != PE; ++PI) {
+ Pred = *PI;
+ I = BBStates.find(Pred);
+ assert(I != BBStates.end());
+ MyStates.MergePred(I->second);
+ }
+ }
+
+ DEBUG(llvm::dbgs() << "Before:\n" << BBStates[BB] << "\n"
+ << "Performing Dataflow:\n");
+
+ // Visit all the instructions, top-down.
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ Instruction *Inst = I;
+
+ DEBUG(dbgs() << " Visiting " << *Inst << "\n");
+
+ NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
+ }
+
+ DEBUG(llvm::dbgs() << "\nState Before Checking for CFG Hazards:\n"
+ << BBStates[BB] << "\n\n");
+ CheckForCFGHazards(BB, BBStates, MyStates);
+ DEBUG(llvm::dbgs() << "Final State:\n" << BBStates[BB] << "\n");
+ return NestingDetected;
+}
+
+static void
+ComputePostOrders(Function &F,
+ SmallVectorImpl<BasicBlock *> &PostOrder,
+ SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
+ unsigned NoObjCARCExceptionsMDKind,
+ DenseMap<const BasicBlock *, BBState> &BBStates) {
+ /// The visited set, for doing DFS walks.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+
+ // Do DFS, computing the PostOrder.
+ SmallPtrSet<BasicBlock *, 16> OnStack;
+ SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
+
+ // Functions always have exactly one entry block, and we don't have
+ // any other block that we treat like an entry block.
+ BasicBlock *EntryBB = &F.getEntryBlock();
+ BBState &MyStates = BBStates[EntryBB];
+ MyStates.SetAsEntry();
+ TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
+ SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
+ Visited.insert(EntryBB);
+ OnStack.insert(EntryBB);
+ do {
+ dfs_next_succ:
+ BasicBlock *CurrBB = SuccStack.back().first;
+ TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
+ succ_iterator SE(TI, false);
+
+ while (SuccStack.back().second != SE) {
+ BasicBlock *SuccBB = *SuccStack.back().second++;
+ if (Visited.insert(SuccBB).second) {
+ TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
+ SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBState &SuccStates = BBStates[SuccBB];
+ SuccStates.addPred(CurrBB);
+ OnStack.insert(SuccBB);
+ goto dfs_next_succ;
+ }
+
+ if (!OnStack.count(SuccBB)) {
+ BBStates[CurrBB].addSucc(SuccBB);
+ BBStates[SuccBB].addPred(CurrBB);
+ }
+ }
+ OnStack.erase(CurrBB);
+ PostOrder.push_back(CurrBB);
+ SuccStack.pop_back();
+ } while (!SuccStack.empty());
+
+ Visited.clear();
+
+ // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
+ // Functions may have many exits, and there also blocks which we treat
+ // as exits due to ignored edges.
+ SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
+ for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+ BasicBlock *ExitBB = I;
+ BBState &MyStates = BBStates[ExitBB];
+ if (!MyStates.isExit())
+ continue;
+
+ MyStates.SetAsExit();
+
+ PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
+ Visited.insert(ExitBB);
+ while (!PredStack.empty()) {
+ reverse_dfs_next_succ:
+ BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
+ while (PredStack.back().second != PE) {
+ BasicBlock *BB = *PredStack.back().second++;
+ if (Visited.insert(BB).second) {
+ PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
+ goto reverse_dfs_next_succ;
+ }
+ }
+ ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
+ }
+ }
+}
+
+// Visit the function both top-down and bottom-up.
+bool ObjCARCOpt::Visit(Function &F,
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases) {
+
+ // Use reverse-postorder traversals, because we magically know that loops
+ // will be well behaved, i.e. they won't repeatedly call retain on a single
+ // pointer without doing a release. We can't use the ReversePostOrderTraversal
+ // class here because we want the reverse-CFG postorder to consider each
+ // function exit point, and we want to ignore selected cycle edges.
+ SmallVector<BasicBlock *, 16> PostOrder;
+ SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
+ ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
+ MDKindCache.get(ARCMDKindID::NoObjCARCExceptions),
+ BBStates);
+
+ // Use reverse-postorder on the reverse CFG for bottom-up.
+ bool BottomUpNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
+ I != E; ++I)
+ BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
+
+ // Use reverse-postorder for top-down.
+ bool TopDownNestingDetected = false;
+ for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
+ PostOrder.rbegin(), E = PostOrder.rend();
+ I != E; ++I)
+ TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
+
+ return TopDownNestingDetected && BottomUpNestingDetected;
+}
+
+/// Move the calls in RetainsToMove and ReleasesToMove.
+void ObjCARCOpt::MoveCalls(Value *Arg, RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases,
+ SmallVectorImpl<Instruction *> &DeadInsts,
+ Module *M) {
+ Type *ArgTy = Arg->getType();
+ Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
+
+ DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
+
+ // Insert the new retain and release calls.
+ for (Instruction *InsertPt : ReleasesToMove.ReverseInsertPts) {
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
+ CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
+ Call->setDoesNotThrow();
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
+ "At insertion point: " << *InsertPt << "\n");
+ }
+ for (Instruction *InsertPt : RetainsToMove.ReverseInsertPts) {
+ Value *MyArg = ArgTy == ParamTy ? Arg :
+ new BitCastInst(Arg, ParamTy, "", InsertPt);
+ Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Release);
+ CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
+ // Attach a clang.imprecise_release metadata tag, if appropriate.
+ if (MDNode *M = ReleasesToMove.ReleaseMetadata)
+ Call->setMetadata(MDKindCache.get(ARCMDKindID::ImpreciseRelease), M);
+ Call->setDoesNotThrow();
+ if (ReleasesToMove.IsTailCallRelease)
+ Call->setTailCall();
+
+ DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
+ "At insertion point: " << *InsertPt << "\n");
+ }
+
+ // Delete the original retain and release calls.
+ for (Instruction *OrigRetain : RetainsToMove.Calls) {
+ Retains.blot(OrigRetain);
+ DeadInsts.push_back(OrigRetain);
+ DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
+ }
+ for (Instruction *OrigRelease : ReleasesToMove.Calls) {
+ Releases.erase(OrigRelease);
+ DeadInsts.push_back(OrigRelease);
+ DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
+ }
+
+}
+
+bool ObjCARCOpt::PairUpRetainsAndReleases(
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases, Module *M,
+ SmallVectorImpl<Instruction *> &NewRetains,
+ SmallVectorImpl<Instruction *> &NewReleases,
+ SmallVectorImpl<Instruction *> &DeadInsts, RRInfo &RetainsToMove,
+ RRInfo &ReleasesToMove, Value *Arg, bool KnownSafe,
+ bool &AnyPairsCompletelyEliminated) {
+ // If a pair happens in a region where it is known that the reference count
+ // is already incremented, we can similarly ignore possible decrements unless
+ // we are dealing with a retainable object with multiple provenance sources.
+ bool KnownSafeTD = true, KnownSafeBU = true;
+ bool MultipleOwners = false;
+ bool CFGHazardAfflicted = false;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ // This is an iterative process so that we connect multiple releases
+ // to multiple retains if needed.
+ unsigned OldDelta = 0;
+ unsigned NewDelta = 0;
+ unsigned OldCount = 0;
+ unsigned NewCount = 0;
+ bool FirstRelease = true;
+ for (;;) {
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
+ Instruction *NewRetain = *NI;
+ auto It = Retains.find(NewRetain);
+ assert(It != Retains.end());
+ const RRInfo &NewRetainRRI = It->second;
+ KnownSafeTD &= NewRetainRRI.KnownSafe;
+ MultipleOwners =
+ MultipleOwners || MultiOwnersSet.count(GetArgRCIdentityRoot(NewRetain));
+ for (Instruction *NewRetainRelease : NewRetainRRI.Calls) {
+ auto Jt = Releases.find(NewRetainRelease);
+ if (Jt == Releases.end())
+ return false;
+ const RRInfo &NewRetainReleaseRRI = Jt->second;
+
+ // If the release does not have a reference to the retain as well,
+ // something happened which is unaccounted for. Do not do anything.
+ //
+ // This can happen if we catch an additive overflow during path count
+ // merging.
+ if (!NewRetainReleaseRRI.Calls.count(NewRetain))
+ return false;
+
+ if (ReleasesToMove.Calls.insert(NewRetainRelease).second) {
+
+ // If we overflow when we compute the path count, don't remove/move
+ // anything.
+ const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
+ unsigned PathCount = BBState::OverflowOccurredValue;
+ if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
+ return false;
+ assert(PathCount != BBState::OverflowOccurredValue &&
+ "PathCount at this point can not be "
+ "OverflowOccurredValue.");
+ OldDelta -= PathCount;
+
+ // Merge the ReleaseMetadata and IsTailCallRelease values.
+ if (FirstRelease) {
+ ReleasesToMove.ReleaseMetadata =
+ NewRetainReleaseRRI.ReleaseMetadata;
+ ReleasesToMove.IsTailCallRelease =
+ NewRetainReleaseRRI.IsTailCallRelease;
+ FirstRelease = false;
+ } else {
+ if (ReleasesToMove.ReleaseMetadata !=
+ NewRetainReleaseRRI.ReleaseMetadata)
+ ReleasesToMove.ReleaseMetadata = nullptr;
+ if (ReleasesToMove.IsTailCallRelease !=
+ NewRetainReleaseRRI.IsTailCallRelease)
+ ReleasesToMove.IsTailCallRelease = false;
+ }
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (Instruction *RIP : NewRetainReleaseRRI.ReverseInsertPts) {
+ if (ReleasesToMove.ReverseInsertPts.insert(RIP).second) {
+ // If we overflow when we compute the path count, don't
+ // remove/move anything.
+ const BBState &RIPBBState = BBStates[RIP->getParent()];
+ PathCount = BBState::OverflowOccurredValue;
+ if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
+ return false;
+ assert(PathCount != BBState::OverflowOccurredValue &&
+ "PathCount at this point can not be "
+ "OverflowOccurredValue.");
+ NewDelta -= PathCount;
+ }
+ }
+ NewReleases.push_back(NewRetainRelease);
+ }
+ }
+ }
+ NewRetains.clear();
+ if (NewReleases.empty()) break;
+
+ // Back the other way.
+ for (SmallVectorImpl<Instruction *>::const_iterator
+ NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
+ Instruction *NewRelease = *NI;
+ auto It = Releases.find(NewRelease);
+ assert(It != Releases.end());
+ const RRInfo &NewReleaseRRI = It->second;
+ KnownSafeBU &= NewReleaseRRI.KnownSafe;
+ CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
+ for (Instruction *NewReleaseRetain : NewReleaseRRI.Calls) {
+ auto Jt = Retains.find(NewReleaseRetain);
+ if (Jt == Retains.end())
+ return false;
+ const RRInfo &NewReleaseRetainRRI = Jt->second;
+
+ // If the retain does not have a reference to the release as well,
+ // something happened which is unaccounted for. Do not do anything.
+ //
+ // This can happen if we catch an additive overflow during path count
+ // merging.
+ if (!NewReleaseRetainRRI.Calls.count(NewRelease))
+ return false;
+
+ if (RetainsToMove.Calls.insert(NewReleaseRetain).second) {
+ // If we overflow when we compute the path count, don't remove/move
+ // anything.
+ const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
+ unsigned PathCount = BBState::OverflowOccurredValue;
+ if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
+ return false;
+ assert(PathCount != BBState::OverflowOccurredValue &&
+ "PathCount at this point can not be "
+ "OverflowOccurredValue.");
+ OldDelta += PathCount;
+ OldCount += PathCount;
+
+ // Collect the optimal insertion points.
+ if (!KnownSafe)
+ for (Instruction *RIP : NewReleaseRetainRRI.ReverseInsertPts) {
+ if (RetainsToMove.ReverseInsertPts.insert(RIP).second) {
+ // If we overflow when we compute the path count, don't
+ // remove/move anything.
+ const BBState &RIPBBState = BBStates[RIP->getParent()];
+
+ PathCount = BBState::OverflowOccurredValue;
+ if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
+ return false;
+ assert(PathCount != BBState::OverflowOccurredValue &&
+ "PathCount at this point can not be "
+ "OverflowOccurredValue.");
+ NewDelta += PathCount;
+ NewCount += PathCount;
+ }
+ }
+ NewRetains.push_back(NewReleaseRetain);
+ }
+ }
+ }
+ NewReleases.clear();
+ if (NewRetains.empty()) break;
+ }
+
+ // We can only remove pointers if we are known safe in both directions.
+ bool UnconditionallySafe = KnownSafeTD && KnownSafeBU;
+ if (UnconditionallySafe) {
+ RetainsToMove.ReverseInsertPts.clear();
+ ReleasesToMove.ReverseInsertPts.clear();
+ NewCount = 0;
+ } else {
+ // Determine whether the new insertion points we computed preserve the
+ // balance of retain and release calls through the program.
+ // TODO: If the fully aggressive solution isn't valid, try to find a
+ // less aggressive solution which is.
+ if (NewDelta != 0)
+ return false;
+
+ // At this point, we are not going to remove any RR pairs, but we still are
+ // able to move RR pairs. If one of our pointers is afflicted with
+ // CFGHazards, we cannot perform such code motion so exit early.
+ const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
+ ReleasesToMove.ReverseInsertPts.size();
+ if (CFGHazardAfflicted && WillPerformCodeMotion)
+ return false;
+ }
+
+ // Determine whether the original call points are balanced in the retain and
+ // release calls through the program. If not, conservatively don't touch
+ // them.
+ // TODO: It's theoretically possible to do code motion in this case, as
+ // long as the existing imbalances are maintained.
+ if (OldDelta != 0)
+ return false;
+
+ Changed = true;
+ assert(OldCount != 0 && "Unreachable code?");
+ NumRRs += OldCount - NewCount;
+ // Set to true if we completely removed any RR pairs.
+ AnyPairsCompletelyEliminated = NewCount == 0;
+
+ // We can move calls!
+ return true;
+}
+
+/// Identify pairings between the retains and releases, and delete and/or move
+/// them.
+bool ObjCARCOpt::PerformCodePlacement(
+ DenseMap<const BasicBlock *, BBState> &BBStates,
+ BlotMapVector<Value *, RRInfo> &Retains,
+ DenseMap<Value *, RRInfo> &Releases, Module *M) {
+ DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
+
+ bool AnyPairsCompletelyEliminated = false;
+ RRInfo RetainsToMove;
+ RRInfo ReleasesToMove;
+ SmallVector<Instruction *, 4> NewRetains;
+ SmallVector<Instruction *, 4> NewReleases;
+ SmallVector<Instruction *, 8> DeadInsts;
+
+ // Visit each retain.
+ for (BlotMapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
+ E = Retains.end();
+ I != E; ++I) {
+ Value *V = I->first;
+ if (!V) continue; // blotted
+
+ Instruction *Retain = cast<Instruction>(V);
+
+ DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
+
+ Value *Arg = GetArgRCIdentityRoot(Retain);
+
+ // If the object being released is in static or stack storage, we know it's
+ // not being managed by ObjC reference counting, so we can delete pairs
+ // regardless of what possible decrements or uses lie between them.
+ bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
+
+ // A constant pointer can't be pointing to an object on the heap. It may
+ // be reference-counted, but it won't be deleted.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
+ if (const GlobalVariable *GV =
+ dyn_cast<GlobalVariable>(
+ GetRCIdentityRoot(LI->getPointerOperand())))
+ if (GV->isConstant())
+ KnownSafe = true;
+
+ // Connect the dots between the top-down-collected RetainsToMove and
+ // bottom-up-collected ReleasesToMove to form sets of related calls.
+ NewRetains.push_back(Retain);
+ bool PerformMoveCalls = PairUpRetainsAndReleases(
+ BBStates, Retains, Releases, M, NewRetains, NewReleases, DeadInsts,
+ RetainsToMove, ReleasesToMove, Arg, KnownSafe,
+ AnyPairsCompletelyEliminated);
+
+ if (PerformMoveCalls) {
+ // Ok, everything checks out and we're all set. Let's move/delete some
+ // code!
+ MoveCalls(Arg, RetainsToMove, ReleasesToMove,
+ Retains, Releases, DeadInsts, M);
+ }
+
+ // Clean up state for next retain.
+ NewReleases.clear();
+ NewRetains.clear();
+ RetainsToMove.clear();
+ ReleasesToMove.clear();
+ }
+
+ // Now that we're done moving everything, we can delete the newly dead
+ // instructions, as we no longer need them as insert points.
+ while (!DeadInsts.empty())
+ EraseInstruction(DeadInsts.pop_back_val());
+
+ return AnyPairsCompletelyEliminated;
+}
+
+/// Weak pointer optimizations.
+void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
+ DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
+
+ // First, do memdep-style RLE and S2L optimizations. We can't use memdep
+ // itself because it uses AliasAnalysis and we need to do provenance
+ // queries instead.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+
+ DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
+
+ ARCInstKind Class = GetBasicARCInstKind(Inst);
+ if (Class != ARCInstKind::LoadWeak &&
+ Class != ARCInstKind::LoadWeakRetained)
+ continue;
+
+ // Delete objc_loadWeak calls with no users.
+ if (Class == ARCInstKind::LoadWeak && Inst->use_empty()) {
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // TODO: For now, just look for an earlier available version of this value
+ // within the same block. Theoretically, we could do memdep-style non-local
+ // analysis too, but that would want caching. A better approach would be to
+ // use the technique that EarlyCSE uses.
+ inst_iterator Current = std::prev(I);
+ BasicBlock *CurrentBB = Current.getBasicBlockIterator();
+ for (BasicBlock::iterator B = CurrentBB->begin(),
+ J = Current.getInstructionIterator();
+ J != B; --J) {
+ Instruction *EarlierInst = &*std::prev(J);
+ ARCInstKind EarlierClass = GetARCInstKind(EarlierInst);
+ switch (EarlierClass) {
+ case ARCInstKind::LoadWeak:
+ case ARCInstKind::LoadWeakRetained: {
+ // If this is loading from the same pointer, replace this load's value
+ // with that one.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == ARCInstKind::LoadWeakRetained) {
+ Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
+ CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall);
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case ARCInstKind::StoreWeak:
+ case ARCInstKind::InitWeak: {
+ // If this is storing to the same pointer and has the same size etc.
+ // replace this load's value with the stored value.
+ CallInst *Call = cast<CallInst>(Inst);
+ CallInst *EarlierCall = cast<CallInst>(EarlierInst);
+ Value *Arg = Call->getArgOperand(0);
+ Value *EarlierArg = EarlierCall->getArgOperand(0);
+ switch (PA.getAA()->alias(Arg, EarlierArg)) {
+ case AliasAnalysis::MustAlias:
+ Changed = true;
+ // If the load has a builtin retain, insert a plain retain for it.
+ if (Class == ARCInstKind::LoadWeakRetained) {
+ Constant *Decl = EP.get(ARCRuntimeEntryPointKind::Retain);
+ CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
+ CI->setTailCall();
+ }
+ // Zap the fully redundant load.
+ Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
+ Call->eraseFromParent();
+ goto clobbered;
+ case AliasAnalysis::MayAlias:
+ case AliasAnalysis::PartialAlias:
+ goto clobbered;
+ case AliasAnalysis::NoAlias:
+ break;
+ }
+ break;
+ }
+ case ARCInstKind::MoveWeak:
+ case ARCInstKind::CopyWeak:
+ // TOOD: Grab the copied value.
+ goto clobbered;
+ case ARCInstKind::AutoreleasepoolPush:
+ case ARCInstKind::None:
+ case ARCInstKind::IntrinsicUser:
+ case ARCInstKind::User:
+ // Weak pointers are only modified through the weak entry points
+ // (and arbitrary calls, which could call the weak entry points).
+ break;
+ default:
+ // Anything else could modify the weak pointer.
+ goto clobbered;
+ }
+ }
+ clobbered:;
+ }
+
+ // Then, for each destroyWeak with an alloca operand, check to see if
+ // the alloca and all its users can be zapped.
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+ ARCInstKind Class = GetBasicARCInstKind(Inst);
+ if (Class != ARCInstKind::DestroyWeak)
+ continue;
+
+ CallInst *Call = cast<CallInst>(Inst);
+ Value *Arg = Call->getArgOperand(0);
+ if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
+ for (User *U : Alloca->users()) {
+ const Instruction *UserInst = cast<Instruction>(U);
+ switch (GetBasicARCInstKind(UserInst)) {
+ case ARCInstKind::InitWeak:
+ case ARCInstKind::StoreWeak:
+ case ARCInstKind::DestroyWeak:
+ continue;
+ default:
+ goto done;
+ }
+ }
+ Changed = true;
+ for (auto UI = Alloca->user_begin(), UE = Alloca->user_end(); UI != UE;) {
+ CallInst *UserInst = cast<CallInst>(*UI++);
+ switch (GetBasicARCInstKind(UserInst)) {
+ case ARCInstKind::InitWeak:
+ case ARCInstKind::StoreWeak:
+ // These functions return their second argument.
+ UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
+ break;
+ case ARCInstKind::DestroyWeak:
+ // No return value.
+ break;
+ default:
+ llvm_unreachable("alloca really is used!");
+ }
+ UserInst->eraseFromParent();
+ }
+ Alloca->eraseFromParent();
+ done:;
+ }
+ }
+}
+
+/// Identify program paths which execute sequences of retains and releases which
+/// can be eliminated.
+bool ObjCARCOpt::OptimizeSequences(Function &F) {
+ // Releases, Retains - These are used to store the results of the main flow
+ // analysis. These use Value* as the key instead of Instruction* so that the
+ // map stays valid when we get around to rewriting code and calls get
+ // replaced by arguments.
+ DenseMap<Value *, RRInfo> Releases;
+ BlotMapVector<Value *, RRInfo> Retains;
+
+ // This is used during the traversal of the function to track the
+ // states for each identified object at each block.
+ DenseMap<const BasicBlock *, BBState> BBStates;
+
+ // Analyze the CFG of the function, and all instructions.
+ bool NestingDetected = Visit(F, BBStates, Retains, Releases);
+
+ // Transform.
+ bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
+ Releases,
+ F.getParent());
+
+ // Cleanup.
+ MultiOwnersSet.clear();
+
+ return AnyPairsCompletelyEliminated && NestingDetected;
+}
+
+/// Check if there is a dependent call earlier that does not have anything in
+/// between the Retain and the call that can affect the reference count of their
+/// shared pointer argument. Note that Retain need not be in BB.
+static bool
+HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
+ DepInsts, Visited, PA);
+ if (DepInsts.size() != 1)
+ return false;
+
+ auto *Call = dyn_cast_or_null<CallInst>(*DepInsts.begin());
+
+ // Check that the pointer is the return value of the call.
+ if (!Call || Arg != Call)
+ return false;
+
+ // Check that the call is a regular call.
+ ARCInstKind Class = GetBasicARCInstKind(Call);
+ if (Class != ARCInstKind::CallOrUser && Class != ARCInstKind::Call)
+ return false;
+
+ return true;
+}
+
+/// Find a dependent retain that precedes the given autorelease for which there
+/// is nothing in between the two instructions that can affect the ref count of
+/// Arg.
+static CallInst *
+FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
+ Instruction *Autorelease,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &Visited,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(CanChangeRetainCount, Arg,
+ BB, Autorelease, DepInsts, Visited, PA);
+ if (DepInsts.size() != 1)
+ return nullptr;
+
+ auto *Retain = dyn_cast_or_null<CallInst>(*DepInsts.begin());
+
+ // Check that we found a retain with the same argument.
+ if (!Retain || !IsRetain(GetBasicARCInstKind(Retain)) ||
+ GetArgRCIdentityRoot(Retain) != Arg) {
+ return nullptr;
+ }
+
+ return Retain;
+}
+
+/// Look for an ``autorelease'' instruction dependent on Arg such that there are
+/// no instructions dependent on Arg that need a positive ref count in between
+/// the autorelease and the ret.
+static CallInst *
+FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
+ ReturnInst *Ret,
+ SmallPtrSetImpl<Instruction *> &DepInsts,
+ SmallPtrSetImpl<const BasicBlock *> &V,
+ ProvenanceAnalysis &PA) {
+ FindDependencies(NeedsPositiveRetainCount, Arg,
+ BB, Ret, DepInsts, V, PA);
+ if (DepInsts.size() != 1)
+ return nullptr;
+
+ auto *Autorelease = dyn_cast_or_null<CallInst>(*DepInsts.begin());
+ if (!Autorelease)
+ return nullptr;
+ ARCInstKind AutoreleaseClass = GetBasicARCInstKind(Autorelease);
+ if (!IsAutorelease(AutoreleaseClass))
+ return nullptr;
+ if (GetArgRCIdentityRoot(Autorelease) != Arg)
+ return nullptr;
+
+ return Autorelease;
+}
+
+/// Look for this pattern:
+/// \code
+/// %call = call i8* @something(...)
+/// %2 = call i8* @objc_retain(i8* %call)
+/// %3 = call i8* @objc_autorelease(i8* %2)
+/// ret i8* %3
+/// \endcode
+/// And delete the retain and autorelease.
+void ObjCARCOpt::OptimizeReturns(Function &F) {
+ if (!F.getReturnType()->isPointerTy())
+ return;
+
+ DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
+
+ SmallPtrSet<Instruction *, 4> DependingInstructions;
+ SmallPtrSet<const BasicBlock *, 4> Visited;
+ for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
+ BasicBlock *BB = FI;
+ ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
+
+ DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
+
+ if (!Ret)
+ continue;
+
+ const Value *Arg = GetRCIdentityRoot(Ret->getOperand(0));
+
+ // Look for an ``autorelease'' instruction that is a predecessor of Ret and
+ // dependent on Arg such that there are no instructions dependent on Arg
+ // that need a positive ref count in between the autorelease and Ret.
+ CallInst *Autorelease =
+ FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
+ DependingInstructions, Visited,
+ PA);
+ DependingInstructions.clear();
+ Visited.clear();
+
+ if (!Autorelease)
+ continue;
+
+ CallInst *Retain =
+ FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
+ DependingInstructions, Visited, PA);
+ DependingInstructions.clear();
+ Visited.clear();
+
+ if (!Retain)
+ continue;
+
+ // Check that there is nothing that can affect the reference count
+ // between the retain and the call. Note that Retain need not be in BB.
+ bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
+ DependingInstructions,
+ Visited, PA);
+ DependingInstructions.clear();
+ Visited.clear();
+
+ if (!HasSafePathToCall)
+ continue;
+
+ // If so, we can zap the retain and autorelease.
+ Changed = true;
+ ++NumRets;
+ DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
+ << *Autorelease << "\n");
+ EraseInstruction(Retain);
+ EraseInstruction(Autorelease);
+ }
+}
+
+#ifndef NDEBUG
+void
+ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
+ llvm::Statistic &NumRetains =
+ AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
+ llvm::Statistic &NumReleases =
+ AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
+
+ for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
+ Instruction *Inst = &*I++;
+ switch (GetBasicARCInstKind(Inst)) {
+ default:
+ break;
+ case ARCInstKind::Retain:
+ ++NumRetains;
+ break;
+ case ARCInstKind::Release:
+ ++NumReleases;
+ break;
+ }
+ }
+}
+#endif
+
+bool ObjCARCOpt::doInitialization(Module &M) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ Run = ModuleHasARC(M);
+ if (!Run)
+ return false;
+
+ // Intuitively, objc_retain and others are nocapture, however in practice
+ // they are not, because they return their argument value. And objc_release
+ // calls finalizers which can have arbitrary side effects.
+ MDKindCache.init(&M);
+
+ // Initialize our runtime entry point cache.
+ EP.init(&M);
+
+ return false;
+}
+
+bool ObjCARCOpt::runOnFunction(Function &F) {
+ if (!EnableARCOpts)
+ return false;
+
+ // If nothing in the Module uses ARC, don't do anything.
+ if (!Run)
+ return false;
+
+ Changed = false;
+
+ DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
+ "\n");
+
+ PA.setAA(&getAnalysis<AliasAnalysis>());
+
+#ifndef NDEBUG
+ if (AreStatisticsEnabled()) {
+ GatherStatistics(F, false);
+ }
+#endif
+
+ // This pass performs several distinct transformations. As a compile-time aid
+ // when compiling code that isn't ObjC, skip these if the relevant ObjC
+ // library functions aren't declared.
+
+ // Preliminary optimizations. This also computes UsedInThisFunction.
+ OptimizeIndividualCalls(F);
+
+ // Optimizations for weak pointers.
+ if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::LoadWeak)) |
+ (1 << unsigned(ARCInstKind::LoadWeakRetained)) |
+ (1 << unsigned(ARCInstKind::StoreWeak)) |
+ (1 << unsigned(ARCInstKind::InitWeak)) |
+ (1 << unsigned(ARCInstKind::CopyWeak)) |
+ (1 << unsigned(ARCInstKind::MoveWeak)) |
+ (1 << unsigned(ARCInstKind::DestroyWeak))))
+ OptimizeWeakCalls(F);
+
+ // Optimizations for retain+release pairs.
+ if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Retain)) |
+ (1 << unsigned(ARCInstKind::RetainRV)) |
+ (1 << unsigned(ARCInstKind::RetainBlock))))
+ if (UsedInThisFunction & (1 << unsigned(ARCInstKind::Release)))
+ // Run OptimizeSequences until it either stops making changes or
+ // no retain+release pair nesting is detected.
+ while (OptimizeSequences(F)) {}
+
+ // Optimizations if objc_autorelease is used.
+ if (UsedInThisFunction & ((1 << unsigned(ARCInstKind::Autorelease)) |
+ (1 << unsigned(ARCInstKind::AutoreleaseRV))))
+ OptimizeReturns(F);
+
+ // Gather statistics after optimization.
+#ifndef NDEBUG
+ if (AreStatisticsEnabled()) {
+ GatherStatistics(F, true);
+ }
+#endif
+
+ DEBUG(dbgs() << "\n");
+
+ return Changed;
+}
+
+void ObjCARCOpt::releaseMemory() {
+ PA.clear();
+}
+
+/// @}
+///
OpenPOWER on IntegriCloud