summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp2163
1 files changed, 2163 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
new file mode 100644
index 0000000..a9df5e5
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -0,0 +1,2163 @@
+//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+// Details of the algorithm:
+// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include "llvm/Transforms/Utils/PromoteMemToReg.h"
+#include <algorithm>
+#include <string>
+#include <system_error>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asan"
+
+static const uint64_t kDefaultShadowScale = 3;
+static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
+static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
+static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
+static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G.
+static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
+static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
+static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
+static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
+static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
+static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
+static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
+static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
+
+static const size_t kMinStackMallocSize = 1 << 6; // 64B
+static const size_t kMaxStackMallocSize = 1 << 16; // 64K
+static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
+static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
+
+static const char *const kAsanModuleCtorName = "asan.module_ctor";
+static const char *const kAsanModuleDtorName = "asan.module_dtor";
+static const uint64_t kAsanCtorAndDtorPriority = 1;
+static const char *const kAsanReportErrorTemplate = "__asan_report_";
+static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
+static const char *const kAsanUnregisterGlobalsName =
+ "__asan_unregister_globals";
+static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
+static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
+static const char *const kAsanInitName = "__asan_init";
+static const char *const kAsanVersionCheckName =
+ "__asan_version_mismatch_check_v6";
+static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
+static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
+static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
+static const int kMaxAsanStackMallocSizeClass = 10;
+static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
+static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
+static const char *const kAsanGenPrefix = "__asan_gen_";
+static const char *const kSanCovGenPrefix = "__sancov_gen_";
+static const char *const kAsanPoisonStackMemoryName =
+ "__asan_poison_stack_memory";
+static const char *const kAsanUnpoisonStackMemoryName =
+ "__asan_unpoison_stack_memory";
+
+static const char *const kAsanOptionDetectUAR =
+ "__asan_option_detect_stack_use_after_return";
+
+static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
+static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
+
+// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
+static const size_t kNumberOfAccessSizes = 5;
+
+static const unsigned kAllocaRzSize = 32;
+
+// Command-line flags.
+static cl::opt<bool> ClEnableKasan(
+ "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
+ cl::Hidden, cl::init(false));
+static cl::opt<bool> ClRecover(
+ "asan-recover",
+ cl::desc("Enable recovery mode (continue-after-error)."),
+ cl::Hidden, cl::init(false));
+
+// This flag may need to be replaced with -f[no-]asan-reads.
+static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
+ cl::desc("instrument read instructions"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInstrumentWrites(
+ "asan-instrument-writes", cl::desc("instrument write instructions"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInstrumentAtomics(
+ "asan-instrument-atomics",
+ cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
+ cl::init(true));
+static cl::opt<bool> ClAlwaysSlowPath(
+ "asan-always-slow-path",
+ cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
+ cl::init(false));
+// This flag limits the number of instructions to be instrumented
+// in any given BB. Normally, this should be set to unlimited (INT_MAX),
+// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
+// set it to 10000.
+static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
+ "asan-max-ins-per-bb", cl::init(10000),
+ cl::desc("maximal number of instructions to instrument in any given BB"),
+ cl::Hidden);
+// This flag may need to be replaced with -f[no]asan-stack.
+static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
+ cl::desc("Check return-after-free"),
+ cl::Hidden, cl::init(true));
+// This flag may need to be replaced with -f[no]asan-globals.
+static cl::opt<bool> ClGlobals("asan-globals",
+ cl::desc("Handle global objects"), cl::Hidden,
+ cl::init(true));
+static cl::opt<bool> ClInitializers("asan-initialization-order",
+ cl::desc("Handle C++ initializer order"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInvalidPointerPairs(
+ "asan-detect-invalid-pointer-pair",
+ cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
+ cl::init(false));
+static cl::opt<unsigned> ClRealignStack(
+ "asan-realign-stack",
+ cl::desc("Realign stack to the value of this flag (power of two)"),
+ cl::Hidden, cl::init(32));
+static cl::opt<int> ClInstrumentationWithCallsThreshold(
+ "asan-instrumentation-with-call-threshold",
+ cl::desc(
+ "If the function being instrumented contains more than "
+ "this number of memory accesses, use callbacks instead of "
+ "inline checks (-1 means never use callbacks)."),
+ cl::Hidden, cl::init(7000));
+static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
+ "asan-memory-access-callback-prefix",
+ cl::desc("Prefix for memory access callbacks"), cl::Hidden,
+ cl::init("__asan_"));
+static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
+ cl::desc("instrument dynamic allocas"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClSkipPromotableAllocas(
+ "asan-skip-promotable-allocas",
+ cl::desc("Do not instrument promotable allocas"), cl::Hidden,
+ cl::init(true));
+
+// These flags allow to change the shadow mapping.
+// The shadow mapping looks like
+// Shadow = (Mem >> scale) + (1 << offset_log)
+static cl::opt<int> ClMappingScale("asan-mapping-scale",
+ cl::desc("scale of asan shadow mapping"),
+ cl::Hidden, cl::init(0));
+
+// Optimization flags. Not user visible, used mostly for testing
+// and benchmarking the tool.
+static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClOptSameTemp(
+ "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClOptGlobals("asan-opt-globals",
+ cl::desc("Don't instrument scalar globals"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClOptStack(
+ "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
+ cl::Hidden, cl::init(false));
+
+static cl::opt<bool> ClCheckLifetime(
+ "asan-check-lifetime",
+ cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> ClDynamicAllocaStack(
+ "asan-stack-dynamic-alloca",
+ cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
+ cl::init(true));
+
+static cl::opt<uint32_t> ClForceExperiment(
+ "asan-force-experiment",
+ cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
+ cl::init(0));
+
+// Debug flags.
+static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
+ cl::init(0));
+static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
+ cl::Hidden, cl::init(0));
+static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
+ cl::desc("Debug func"));
+static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
+ cl::Hidden, cl::init(-1));
+static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
+ cl::Hidden, cl::init(-1));
+
+STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
+STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
+STATISTIC(NumOptimizedAccessesToGlobalVar,
+ "Number of optimized accesses to global vars");
+STATISTIC(NumOptimizedAccessesToStackVar,
+ "Number of optimized accesses to stack vars");
+
+namespace {
+/// Frontend-provided metadata for source location.
+struct LocationMetadata {
+ StringRef Filename;
+ int LineNo;
+ int ColumnNo;
+
+ LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
+
+ bool empty() const { return Filename.empty(); }
+
+ void parse(MDNode *MDN) {
+ assert(MDN->getNumOperands() == 3);
+ MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
+ Filename = DIFilename->getString();
+ LineNo =
+ mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
+ ColumnNo =
+ mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
+ }
+};
+
+/// Frontend-provided metadata for global variables.
+class GlobalsMetadata {
+ public:
+ struct Entry {
+ Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
+ LocationMetadata SourceLoc;
+ StringRef Name;
+ bool IsDynInit;
+ bool IsBlacklisted;
+ };
+
+ GlobalsMetadata() : inited_(false) {}
+
+ void reset() {
+ inited_ = false;
+ Entries.clear();
+ }
+
+ void init(Module &M) {
+ assert(!inited_);
+ inited_ = true;
+ NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
+ if (!Globals) return;
+ for (auto MDN : Globals->operands()) {
+ // Metadata node contains the global and the fields of "Entry".
+ assert(MDN->getNumOperands() == 5);
+ auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
+ // The optimizer may optimize away a global entirely.
+ if (!GV) continue;
+ // We can already have an entry for GV if it was merged with another
+ // global.
+ Entry &E = Entries[GV];
+ if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
+ E.SourceLoc.parse(Loc);
+ if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
+ E.Name = Name->getString();
+ ConstantInt *IsDynInit =
+ mdconst::extract<ConstantInt>(MDN->getOperand(3));
+ E.IsDynInit |= IsDynInit->isOne();
+ ConstantInt *IsBlacklisted =
+ mdconst::extract<ConstantInt>(MDN->getOperand(4));
+ E.IsBlacklisted |= IsBlacklisted->isOne();
+ }
+ }
+
+ /// Returns metadata entry for a given global.
+ Entry get(GlobalVariable *G) const {
+ auto Pos = Entries.find(G);
+ return (Pos != Entries.end()) ? Pos->second : Entry();
+ }
+
+ private:
+ bool inited_;
+ DenseMap<GlobalVariable *, Entry> Entries;
+};
+
+/// This struct defines the shadow mapping using the rule:
+/// shadow = (mem >> Scale) ADD-or-OR Offset.
+struct ShadowMapping {
+ int Scale;
+ uint64_t Offset;
+ bool OrShadowOffset;
+};
+
+static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
+ bool IsKasan) {
+ bool IsAndroid = TargetTriple.isAndroid();
+ bool IsIOS = TargetTriple.isiOS();
+ bool IsFreeBSD = TargetTriple.isOSFreeBSD();
+ bool IsLinux = TargetTriple.isOSLinux();
+ bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
+ TargetTriple.getArch() == llvm::Triple::ppc64le;
+ bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
+ bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
+ TargetTriple.getArch() == llvm::Triple::mipsel;
+ bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
+ TargetTriple.getArch() == llvm::Triple::mips64el;
+ bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
+ bool IsWindows = TargetTriple.isOSWindows();
+
+ ShadowMapping Mapping;
+
+ if (LongSize == 32) {
+ // Android is always PIE, which means that the beginning of the address
+ // space is always available.
+ if (IsAndroid)
+ Mapping.Offset = 0;
+ else if (IsMIPS32)
+ Mapping.Offset = kMIPS32_ShadowOffset32;
+ else if (IsFreeBSD)
+ Mapping.Offset = kFreeBSD_ShadowOffset32;
+ else if (IsIOS)
+ Mapping.Offset = kIOSShadowOffset32;
+ else if (IsWindows)
+ Mapping.Offset = kWindowsShadowOffset32;
+ else
+ Mapping.Offset = kDefaultShadowOffset32;
+ } else { // LongSize == 64
+ if (IsPPC64)
+ Mapping.Offset = kPPC64_ShadowOffset64;
+ else if (IsFreeBSD)
+ Mapping.Offset = kFreeBSD_ShadowOffset64;
+ else if (IsLinux && IsX86_64) {
+ if (IsKasan)
+ Mapping.Offset = kLinuxKasan_ShadowOffset64;
+ else
+ Mapping.Offset = kSmallX86_64ShadowOffset;
+ } else if (IsMIPS64)
+ Mapping.Offset = kMIPS64_ShadowOffset64;
+ else if (IsAArch64)
+ Mapping.Offset = kAArch64_ShadowOffset64;
+ else
+ Mapping.Offset = kDefaultShadowOffset64;
+ }
+
+ Mapping.Scale = kDefaultShadowScale;
+ if (ClMappingScale) {
+ Mapping.Scale = ClMappingScale;
+ }
+
+ // OR-ing shadow offset if more efficient (at least on x86) if the offset
+ // is a power of two, but on ppc64 we have to use add since the shadow
+ // offset is not necessary 1/8-th of the address space.
+ Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64
+ && !(Mapping.Offset & (Mapping.Offset - 1));
+
+ return Mapping;
+}
+
+static size_t RedzoneSizeForScale(int MappingScale) {
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ return std::max(32U, 1U << MappingScale);
+}
+
+/// AddressSanitizer: instrument the code in module to find memory bugs.
+struct AddressSanitizer : public FunctionPass {
+ explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false)
+ : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
+ Recover(Recover || ClRecover) {
+ initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
+ }
+ const char *getPassName() const override {
+ return "AddressSanitizerFunctionPass";
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ }
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes =
+ AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
+ return SizeInBytes;
+ }
+ /// Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(AllocaInst &AI);
+
+ // Check if we have dynamic alloca.
+ bool isDynamicAlloca(AllocaInst &AI) const {
+ return AI.isArrayAllocation() || !AI.isStaticAlloca();
+ }
+
+ /// If it is an interesting memory access, return the PointerOperand
+ /// and set IsWrite/Alignment. Otherwise return nullptr.
+ Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
+ uint64_t *TypeSize, unsigned *Alignment);
+ void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
+ bool UseCalls, const DataLayout &DL);
+ void instrumentPointerComparisonOrSubtraction(Instruction *I);
+ void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls, uint32_t Exp);
+ void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
+ uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls,
+ uint32_t Exp);
+ Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue, uint32_t TypeSize);
+ Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
+ bool IsWrite, size_t AccessSizeIndex,
+ Value *SizeArgument, uint32_t Exp);
+ void instrumentMemIntrinsic(MemIntrinsic *MI);
+ Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
+ bool runOnFunction(Function &F) override;
+ bool maybeInsertAsanInitAtFunctionEntry(Function &F);
+ void markEscapedLocalAllocas(Function &F);
+ bool doInitialization(Module &M) override;
+ bool doFinalization(Module &M) override;
+ static char ID; // Pass identification, replacement for typeid
+
+ DominatorTree &getDominatorTree() const { return *DT; }
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool LooksLikeCodeInBug11395(Instruction *I);
+ bool GlobalIsLinkerInitialized(GlobalVariable *G);
+ bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
+ uint64_t TypeSize) const;
+
+ /// Helper to cleanup per-function state.
+ struct FunctionStateRAII {
+ AddressSanitizer *Pass;
+ FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
+ assert(Pass->ProcessedAllocas.empty() &&
+ "last pass forgot to clear cache");
+ }
+ ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
+ };
+
+ LLVMContext *C;
+ Triple TargetTriple;
+ int LongSize;
+ bool CompileKernel;
+ bool Recover;
+ Type *IntptrTy;
+ ShadowMapping Mapping;
+ DominatorTree *DT;
+ Function *AsanCtorFunction = nullptr;
+ Function *AsanInitFunction = nullptr;
+ Function *AsanHandleNoReturnFunc;
+ Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
+ // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
+ Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
+ Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
+ // This array is indexed by AccessIsWrite and Experiment.
+ Function *AsanErrorCallbackSized[2][2];
+ Function *AsanMemoryAccessCallbackSized[2][2];
+ Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
+ InlineAsm *EmptyAsm;
+ GlobalsMetadata GlobalsMD;
+ DenseMap<AllocaInst *, bool> ProcessedAllocas;
+
+ friend struct FunctionStackPoisoner;
+};
+
+class AddressSanitizerModule : public ModulePass {
+ public:
+ explicit AddressSanitizerModule(bool CompileKernel = false,
+ bool Recover = false)
+ : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
+ Recover(Recover || ClRecover) {}
+ bool runOnModule(Module &M) override;
+ static char ID; // Pass identification, replacement for typeid
+ const char *getPassName() const override { return "AddressSanitizerModule"; }
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
+ void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
+ size_t MinRedzoneSizeForGlobal() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+
+ GlobalsMetadata GlobalsMD;
+ bool CompileKernel;
+ bool Recover;
+ Type *IntptrTy;
+ LLVMContext *C;
+ Triple TargetTriple;
+ ShadowMapping Mapping;
+ Function *AsanPoisonGlobals;
+ Function *AsanUnpoisonGlobals;
+ Function *AsanRegisterGlobals;
+ Function *AsanUnregisterGlobals;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+ ShadowMapping Mapping;
+
+ SmallVector<AllocaInst *, 16> AllocaVec;
+ SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
+ SmallVector<Instruction *, 8> RetVec;
+ unsigned StackAlignment;
+
+ Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
+ *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
+ Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
+ Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ AllocaInst *AI;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+
+ SmallVector<AllocaInst *, 1> DynamicAllocaVec;
+ SmallVector<IntrinsicInst *, 1> StackRestoreVec;
+ AllocaInst *DynamicAllocaLayout = nullptr;
+ IntrinsicInst *LocalEscapeCall = nullptr;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
+ AllocaForValueMapTy AllocaForValue;
+
+ bool HasNonEmptyInlineAsm = false;
+ bool HasReturnsTwiceCall = false;
+ std::unique_ptr<CallInst> EmptyInlineAsm;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F),
+ ASan(ASan),
+ DIB(*F.getParent(), /*AllowUnresolved*/ false),
+ C(ASan.C),
+ IntptrTy(ASan.IntptrTy),
+ IntptrPtrTy(PointerType::get(IntptrTy, 0)),
+ Mapping(ASan.Mapping),
+ StackAlignment(1 << Mapping.Scale),
+ EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+ // Collect alloca, ret, lifetime instructions etc.
+ for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
+
+ if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ poisonStack();
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Finds all Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void poisonStack();
+
+ void createDynamicAllocasInitStorage();
+
+ // ----------------------- Visitors.
+ /// \brief Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
+
+ void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
+ Value *SavedStack) {
+ IRBuilder<> IRB(InstBefore);
+ Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
+ // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
+ // need to adjust extracted SP to compute the address of the most recent
+ // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
+ // this purpose.
+ if (!isa<ReturnInst>(InstBefore)) {
+ Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
+ InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
+ {IntptrTy});
+
+ Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
+
+ DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
+ DynamicAreaOffset);
+ }
+
+ IRB.CreateCall(AsanAllocasUnpoisonFunc,
+ {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
+ }
+
+ // Unpoison dynamic allocas redzones.
+ void unpoisonDynamicAllocas() {
+ for (auto &Ret : RetVec)
+ unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
+
+ for (auto &StackRestoreInst : StackRestoreVec)
+ unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
+ StackRestoreInst->getOperand(0));
+ }
+
+ // Deploy and poison redzones around dynamic alloca call. To do this, we
+ // should replace this call with another one with changed parameters and
+ // replace all its uses with new address, so
+ // addr = alloca type, old_size, align
+ // is replaced by
+ // new_size = (old_size + additional_size) * sizeof(type)
+ // tmp = alloca i8, new_size, max(align, 32)
+ // addr = tmp + 32 (first 32 bytes are for the left redzone).
+ // Additional_size is added to make new memory allocation contain not only
+ // requested memory, but also left, partial and right redzones.
+ void handleDynamicAllocaCall(AllocaInst *AI);
+
+ /// \brief Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!ASan.isInterestingAlloca(AI)) {
+ if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
+ return;
+ }
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ if (ASan.isDynamicAlloca(AI))
+ DynamicAllocaVec.push_back(&AI);
+ else
+ AllocaVec.push_back(&AI);
+ }
+
+ /// \brief Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
+ if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
+ if (!ClCheckLifetime) return;
+ if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
+ if (!AI) return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
+ AllocaPoisonCallVec.push_back(APC);
+ }
+
+ void visitCallSite(CallSite CS) {
+ Instruction *I = CS.getInstruction();
+ if (CallInst *CI = dyn_cast<CallInst>(I)) {
+ HasNonEmptyInlineAsm |=
+ CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
+ HasReturnsTwiceCall |= CI->canReturnTwice();
+ }
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ bool doesDominateAllExits(const Instruction *I) const {
+ for (auto Ret : RetVec) {
+ if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
+ }
+ return true;
+ }
+
+ /// Finds alloca where the value comes from.
+ AllocaInst *findAllocaForValue(Value *V);
+ void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
+ Value *ShadowBase, bool DoPoison);
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
+
+ void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
+ int Size);
+ Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
+ bool Dynamic);
+ PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
+ Instruction *ThenTerm, Value *ValueIfFalse);
+};
+
+} // anonymous namespace
+
+char AddressSanitizer::ID = 0;
+INITIALIZE_PASS_BEGIN(
+ AddressSanitizer, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(
+ AddressSanitizer, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
+ false)
+FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
+ bool Recover) {
+ assert(!CompileKernel || Recover);
+ return new AddressSanitizer(CompileKernel, Recover);
+}
+
+char AddressSanitizerModule::ID = 0;
+INITIALIZE_PASS(
+ AddressSanitizerModule, "asan-module",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
+ "ModulePass",
+ false, false)
+ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
+ bool Recover) {
+ assert(!CompileKernel || Recover);
+ return new AddressSanitizerModule(CompileKernel, Recover);
+}
+
+static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
+ size_t Res = countTrailingZeros(TypeSize / 8);
+ assert(Res < kNumberOfAccessSizes);
+ return Res;
+}
+
+// \brief Create a constant for Str so that we can pass it to the run-time lib.
+static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
+ bool AllowMerging) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ // We use private linkage for module-local strings. If they can be merged
+ // with another one, we set the unnamed_addr attribute.
+ GlobalVariable *GV =
+ new GlobalVariable(M, StrConst->getType(), true,
+ GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
+ if (AllowMerging) GV->setUnnamedAddr(true);
+ GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
+ return GV;
+}
+
+/// \brief Create a global describing a source location.
+static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
+ LocationMetadata MD) {
+ Constant *LocData[] = {
+ createPrivateGlobalForString(M, MD.Filename, true),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
+ ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
+ };
+ auto LocStruct = ConstantStruct::getAnon(LocData);
+ auto GV = new GlobalVariable(M, LocStruct->getType(), true,
+ GlobalValue::PrivateLinkage, LocStruct,
+ kAsanGenPrefix);
+ GV->setUnnamedAddr(true);
+ return GV;
+}
+
+static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
+ return G->getName().find(kAsanGenPrefix) == 0 ||
+ G->getName().find(kSanCovGenPrefix) == 0;
+}
+
+Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
+ // Shadow >> scale
+ Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
+ if (Mapping.Offset == 0) return Shadow;
+ // (Shadow >> scale) | offset
+ if (Mapping.OrShadowOffset)
+ return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
+ else
+ return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
+}
+
+// Instrument memset/memmove/memcpy
+void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
+ IRBuilder<> IRB(MI);
+ if (isa<MemTransferInst>(MI)) {
+ IRB.CreateCall(
+ isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
+ {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
+ } else if (isa<MemSetInst>(MI)) {
+ IRB.CreateCall(
+ AsanMemset,
+ {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
+ IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
+ IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
+ }
+ MI->eraseFromParent();
+}
+
+/// Check if we want (and can) handle this alloca.
+bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
+ auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
+
+ if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
+ return PreviouslySeenAllocaInfo->getSecond();
+
+ bool IsInteresting =
+ (AI.getAllocatedType()->isSized() &&
+ // alloca() may be called with 0 size, ignore it.
+ getAllocaSizeInBytes(&AI) > 0 &&
+ // We are only interested in allocas not promotable to registers.
+ // Promotable allocas are common under -O0.
+ (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
+ // inalloca allocas are not treated as static, and we don't want
+ // dynamic alloca instrumentation for them as well.
+ !AI.isUsedWithInAlloca());
+
+ ProcessedAllocas[&AI] = IsInteresting;
+ return IsInteresting;
+}
+
+/// If I is an interesting memory access, return the PointerOperand
+/// and set IsWrite/Alignment. Otherwise return nullptr.
+Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
+ bool *IsWrite,
+ uint64_t *TypeSize,
+ unsigned *Alignment) {
+ // Skip memory accesses inserted by another instrumentation.
+ if (I->getMetadata("nosanitize")) return nullptr;
+
+ Value *PtrOperand = nullptr;
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!ClInstrumentReads) return nullptr;
+ *IsWrite = false;
+ *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
+ *Alignment = LI->getAlignment();
+ PtrOperand = LI->getPointerOperand();
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (!ClInstrumentWrites) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
+ *Alignment = SI->getAlignment();
+ PtrOperand = SI->getPointerOperand();
+ } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
+ if (!ClInstrumentAtomics) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
+ *Alignment = 0;
+ PtrOperand = RMW->getPointerOperand();
+ } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
+ if (!ClInstrumentAtomics) return nullptr;
+ *IsWrite = true;
+ *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
+ *Alignment = 0;
+ PtrOperand = XCHG->getPointerOperand();
+ }
+
+ // Treat memory accesses to promotable allocas as non-interesting since they
+ // will not cause memory violations. This greatly speeds up the instrumented
+ // executable at -O0.
+ if (ClSkipPromotableAllocas)
+ if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
+ return isInterestingAlloca(*AI) ? AI : nullptr;
+
+ return PtrOperand;
+}
+
+static bool isPointerOperand(Value *V) {
+ return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
+}
+
+// This is a rough heuristic; it may cause both false positives and
+// false negatives. The proper implementation requires cooperation with
+// the frontend.
+static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
+ if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
+ if (!Cmp->isRelational()) return false;
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
+ if (BO->getOpcode() != Instruction::Sub) return false;
+ } else {
+ return false;
+ }
+ return isPointerOperand(I->getOperand(0)) &&
+ isPointerOperand(I->getOperand(1));
+}
+
+bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
+ // If a global variable does not have dynamic initialization we don't
+ // have to instrument it. However, if a global does not have initializer
+ // at all, we assume it has dynamic initializer (in other TU).
+ return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
+}
+
+void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
+ Instruction *I) {
+ IRBuilder<> IRB(I);
+ Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
+ Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
+ for (int i = 0; i < 2; i++) {
+ if (Param[i]->getType()->isPointerTy())
+ Param[i] = IRB.CreatePointerCast(Param[i], IntptrTy);
+ }
+ IRB.CreateCall(F, Param);
+}
+
+void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
+ Instruction *I, bool UseCalls,
+ const DataLayout &DL) {
+ bool IsWrite = false;
+ unsigned Alignment = 0;
+ uint64_t TypeSize = 0;
+ Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
+ assert(Addr);
+
+ // Optimization experiments.
+ // The experiments can be used to evaluate potential optimizations that remove
+ // instrumentation (assess false negatives). Instead of completely removing
+ // some instrumentation, you set Exp to a non-zero value (mask of optimization
+ // experiments that want to remove instrumentation of this instruction).
+ // If Exp is non-zero, this pass will emit special calls into runtime
+ // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
+ // make runtime terminate the program in a special way (with a different
+ // exit status). Then you run the new compiler on a buggy corpus, collect
+ // the special terminations (ideally, you don't see them at all -- no false
+ // negatives) and make the decision on the optimization.
+ uint32_t Exp = ClForceExperiment;
+
+ if (ClOpt && ClOptGlobals) {
+ // If initialization order checking is disabled, a simple access to a
+ // dynamically initialized global is always valid.
+ GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
+ if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
+ isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
+ NumOptimizedAccessesToGlobalVar++;
+ return;
+ }
+ }
+
+ if (ClOpt && ClOptStack) {
+ // A direct inbounds access to a stack variable is always valid.
+ if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
+ isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
+ NumOptimizedAccessesToStackVar++;
+ return;
+ }
+ }
+
+ if (IsWrite)
+ NumInstrumentedWrites++;
+ else
+ NumInstrumentedReads++;
+
+ unsigned Granularity = 1 << Mapping.Scale;
+ // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
+ // if the data is properly aligned.
+ if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
+ TypeSize == 128) &&
+ (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
+ return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
+ Exp);
+ instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
+ UseCalls, Exp);
+}
+
+Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
+ Value *Addr, bool IsWrite,
+ size_t AccessSizeIndex,
+ Value *SizeArgument,
+ uint32_t Exp) {
+ IRBuilder<> IRB(InsertBefore);
+ Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
+ CallInst *Call = nullptr;
+ if (SizeArgument) {
+ if (Exp == 0)
+ Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
+ {Addr, SizeArgument});
+ else
+ Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
+ {Addr, SizeArgument, ExpVal});
+ } else {
+ if (Exp == 0)
+ Call =
+ IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
+ else
+ Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
+ {Addr, ExpVal});
+ }
+
+ // We don't do Call->setDoesNotReturn() because the BB already has
+ // UnreachableInst at the end.
+ // This EmptyAsm is required to avoid callback merge.
+ IRB.CreateCall(EmptyAsm, {});
+ return Call;
+}
+
+Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue,
+ uint32_t TypeSize) {
+ size_t Granularity = 1 << Mapping.Scale;
+ // Addr & (Granularity - 1)
+ Value *LastAccessedByte =
+ IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
+ // (Addr & (Granularity - 1)) + size - 1
+ if (TypeSize / 8 > 1)
+ LastAccessedByte = IRB.CreateAdd(
+ LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
+ // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
+ LastAccessedByte =
+ IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
+ // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
+ return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
+}
+
+void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
+ Instruction *InsertBefore, Value *Addr,
+ uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls,
+ uint32_t Exp) {
+ IRBuilder<> IRB(InsertBefore);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
+
+ if (UseCalls) {
+ if (Exp == 0)
+ IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
+ AddrLong);
+ else
+ IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
+ {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
+ return;
+ }
+
+ Type *ShadowTy =
+ IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
+ Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
+ Value *ShadowPtr = memToShadow(AddrLong, IRB);
+ Value *CmpVal = Constant::getNullValue(ShadowTy);
+ Value *ShadowValue =
+ IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
+
+ Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
+ size_t Granularity = 1 << Mapping.Scale;
+ TerminatorInst *CrashTerm = nullptr;
+
+ if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
+ // We use branch weights for the slow path check, to indicate that the slow
+ // path is rarely taken. This seems to be the case for SPEC benchmarks.
+ TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
+ Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
+ assert(cast<BranchInst>(CheckTerm)->isUnconditional());
+ BasicBlock *NextBB = CheckTerm->getSuccessor(0);
+ IRB.SetInsertPoint(CheckTerm);
+ Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
+ if (Recover) {
+ CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
+ } else {
+ BasicBlock *CrashBlock =
+ BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
+ CrashTerm = new UnreachableInst(*C, CrashBlock);
+ BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
+ ReplaceInstWithInst(CheckTerm, NewTerm);
+ }
+ } else {
+ CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
+ }
+
+ Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
+ AccessSizeIndex, SizeArgument, Exp);
+ Crash->setDebugLoc(OrigIns->getDebugLoc());
+}
+
+// Instrument unusual size or unusual alignment.
+// We can not do it with a single check, so we do 1-byte check for the first
+// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
+// to report the actual access size.
+void AddressSanitizer::instrumentUnusualSizeOrAlignment(
+ Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument, bool UseCalls, uint32_t Exp) {
+ IRBuilder<> IRB(I);
+ Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ if (UseCalls) {
+ if (Exp == 0)
+ IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
+ {AddrLong, Size});
+ else
+ IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
+ {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
+ } else {
+ Value *LastByte = IRB.CreateIntToPtr(
+ IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
+ Addr->getType());
+ instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
+ instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
+ }
+}
+
+void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
+ GlobalValue *ModuleName) {
+ // Set up the arguments to our poison/unpoison functions.
+ IRBuilder<> IRB(&GlobalInit.front(),
+ GlobalInit.front().getFirstInsertionPt());
+
+ // Add a call to poison all external globals before the given function starts.
+ Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
+ IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
+
+ // Add calls to unpoison all globals before each return instruction.
+ for (auto &BB : GlobalInit.getBasicBlockList())
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
+ CallInst::Create(AsanUnpoisonGlobals, "", RI);
+}
+
+void AddressSanitizerModule::createInitializerPoisonCalls(
+ Module &M, GlobalValue *ModuleName) {
+ GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
+
+ ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
+ for (Use &OP : CA->operands()) {
+ if (isa<ConstantAggregateZero>(OP)) continue;
+ ConstantStruct *CS = cast<ConstantStruct>(OP);
+
+ // Must have a function or null ptr.
+ if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
+ if (F->getName() == kAsanModuleCtorName) continue;
+ ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
+ // Don't instrument CTORs that will run before asan.module_ctor.
+ if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
+ poisonOneInitializer(*F, ModuleName);
+ }
+ }
+}
+
+bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
+ Type *Ty = cast<PointerType>(G->getType())->getElementType();
+ DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
+
+ if (GlobalsMD.get(G).IsBlacklisted) return false;
+ if (!Ty->isSized()) return false;
+ if (!G->hasInitializer()) return false;
+ if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
+ // Touch only those globals that will not be defined in other modules.
+ // Don't handle ODR linkage types and COMDATs since other modules may be built
+ // without ASan.
+ if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
+ G->getLinkage() != GlobalVariable::PrivateLinkage &&
+ G->getLinkage() != GlobalVariable::InternalLinkage)
+ return false;
+ if (G->hasComdat()) return false;
+ // Two problems with thread-locals:
+ // - The address of the main thread's copy can't be computed at link-time.
+ // - Need to poison all copies, not just the main thread's one.
+ if (G->isThreadLocal()) return false;
+ // For now, just ignore this Global if the alignment is large.
+ if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
+
+ if (G->hasSection()) {
+ StringRef Section(G->getSection());
+
+ // Globals from llvm.metadata aren't emitted, do not instrument them.
+ if (Section == "llvm.metadata") return false;
+ // Do not instrument globals from special LLVM sections.
+ if (Section.find("__llvm") != StringRef::npos) return false;
+
+ // Do not instrument function pointers to initialization and termination
+ // routines: dynamic linker will not properly handle redzones.
+ if (Section.startswith(".preinit_array") ||
+ Section.startswith(".init_array") ||
+ Section.startswith(".fini_array")) {
+ return false;
+ }
+
+ // Callbacks put into the CRT initializer/terminator sections
+ // should not be instrumented.
+ // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
+ // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
+ if (Section.startswith(".CRT")) {
+ DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
+ return false;
+ }
+
+ if (TargetTriple.isOSBinFormatMachO()) {
+ StringRef ParsedSegment, ParsedSection;
+ unsigned TAA = 0, StubSize = 0;
+ bool TAAParsed;
+ std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
+ Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
+ assert(ErrorCode.empty() && "Invalid section specifier.");
+
+ // Ignore the globals from the __OBJC section. The ObjC runtime assumes
+ // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
+ // them.
+ if (ParsedSegment == "__OBJC" ||
+ (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
+ DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
+ return false;
+ }
+ // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
+ // Constant CFString instances are compiled in the following way:
+ // -- the string buffer is emitted into
+ // __TEXT,__cstring,cstring_literals
+ // -- the constant NSConstantString structure referencing that buffer
+ // is placed into __DATA,__cfstring
+ // Therefore there's no point in placing redzones into __DATA,__cfstring.
+ // Moreover, it causes the linker to crash on OS X 10.7
+ if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
+ DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
+ return false;
+ }
+ // The linker merges the contents of cstring_literals and removes the
+ // trailing zeroes.
+ if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
+ DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+void AddressSanitizerModule::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
+ AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
+ AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, nullptr));
+ AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
+}
+
+// This function replaces all global variables with new variables that have
+// trailing redzones. It also creates a function that poisons
+// redzones and inserts this function into llvm.global_ctors.
+bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
+ GlobalsMD.init(M);
+
+ SmallVector<GlobalVariable *, 16> GlobalsToChange;
+
+ for (auto &G : M.globals()) {
+ if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
+ }
+
+ size_t n = GlobalsToChange.size();
+ if (n == 0) return false;
+
+ // A global is described by a structure
+ // size_t beg;
+ // size_t size;
+ // size_t size_with_redzone;
+ // const char *name;
+ // const char *module_name;
+ // size_t has_dynamic_init;
+ // void *source_location;
+ // We initialize an array of such structures and pass it to a run-time call.
+ StructType *GlobalStructTy =
+ StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
+ IntptrTy, IntptrTy, nullptr);
+ SmallVector<Constant *, 16> Initializers(n);
+
+ bool HasDynamicallyInitializedGlobals = false;
+
+ // We shouldn't merge same module names, as this string serves as unique
+ // module ID in runtime.
+ GlobalVariable *ModuleName = createPrivateGlobalForString(
+ M, M.getModuleIdentifier(), /*AllowMerging*/ false);
+
+ auto &DL = M.getDataLayout();
+ for (size_t i = 0; i < n; i++) {
+ static const uint64_t kMaxGlobalRedzone = 1 << 18;
+ GlobalVariable *G = GlobalsToChange[i];
+
+ auto MD = GlobalsMD.get(G);
+ // Create string holding the global name (use global name from metadata
+ // if it's available, otherwise just write the name of global variable).
+ GlobalVariable *Name = createPrivateGlobalForString(
+ M, MD.Name.empty() ? G->getName() : MD.Name,
+ /*AllowMerging*/ true);
+
+ PointerType *PtrTy = cast<PointerType>(G->getType());
+ Type *Ty = PtrTy->getElementType();
+ uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
+ uint64_t MinRZ = MinRedzoneSizeForGlobal();
+ // MinRZ <= RZ <= kMaxGlobalRedzone
+ // and trying to make RZ to be ~ 1/4 of SizeInBytes.
+ uint64_t RZ = std::max(
+ MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
+ uint64_t RightRedzoneSize = RZ;
+ // Round up to MinRZ
+ if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
+ assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
+ Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
+
+ StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
+ Constant *NewInitializer =
+ ConstantStruct::get(NewTy, G->getInitializer(),
+ Constant::getNullValue(RightRedZoneTy), nullptr);
+
+ // Create a new global variable with enough space for a redzone.
+ GlobalValue::LinkageTypes Linkage = G->getLinkage();
+ if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
+ Linkage = GlobalValue::InternalLinkage;
+ GlobalVariable *NewGlobal =
+ new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
+ "", G, G->getThreadLocalMode());
+ NewGlobal->copyAttributesFrom(G);
+ NewGlobal->setAlignment(MinRZ);
+
+ Value *Indices2[2];
+ Indices2[0] = IRB.getInt32(0);
+ Indices2[1] = IRB.getInt32(0);
+
+ G->replaceAllUsesWith(
+ ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
+ NewGlobal->takeName(G);
+ G->eraseFromParent();
+
+ Constant *SourceLoc;
+ if (!MD.SourceLoc.empty()) {
+ auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
+ SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
+ } else {
+ SourceLoc = ConstantInt::get(IntptrTy, 0);
+ }
+
+ Initializers[i] = ConstantStruct::get(
+ GlobalStructTy, ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
+ ConstantInt::get(IntptrTy, SizeInBytes),
+ ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
+ ConstantExpr::getPointerCast(Name, IntptrTy),
+ ConstantExpr::getPointerCast(ModuleName, IntptrTy),
+ ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, nullptr);
+
+ if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
+
+ DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
+ }
+
+ ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
+ GlobalVariable *AllGlobals = new GlobalVariable(
+ M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
+ ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
+
+ // Create calls for poisoning before initializers run and unpoisoning after.
+ if (HasDynamicallyInitializedGlobals)
+ createInitializerPoisonCalls(M, ModuleName);
+ IRB.CreateCall(AsanRegisterGlobals,
+ {IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, n)});
+
+ // We also need to unregister globals at the end, e.g. when a shared library
+ // gets closed.
+ Function *AsanDtorFunction =
+ Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
+ BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
+ IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
+ IRB_Dtor.CreateCall(AsanUnregisterGlobals,
+ {IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, n)});
+ appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
+
+ DEBUG(dbgs() << M);
+ return true;
+}
+
+bool AddressSanitizerModule::runOnModule(Module &M) {
+ C = &(M.getContext());
+ int LongSize = M.getDataLayout().getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
+ Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
+ initializeCallbacks(M);
+
+ bool Changed = false;
+
+ // TODO(glider): temporarily disabled globals instrumentation for KASan.
+ if (ClGlobals && !CompileKernel) {
+ Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
+ assert(CtorFunc);
+ IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
+ Changed |= InstrumentGlobals(IRB, M);
+ }
+
+ return Changed;
+}
+
+void AddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Create __asan_report* callbacks.
+ // IsWrite, TypeSize and Exp are encoded in the function name.
+ for (int Exp = 0; Exp < 2; Exp++) {
+ for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
+ const std::string TypeStr = AccessIsWrite ? "store" : "load";
+ const std::string ExpStr = Exp ? "exp_" : "";
+ const std::string SuffixStr = CompileKernel ? "N" : "_n";
+ const std::string EndingStr = Recover ? "_noabort" : "";
+ Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
+ AsanErrorCallbackSized[AccessIsWrite][Exp] =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
+ AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
+ for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
+ AccessSizeIndex++) {
+ const std::string Suffix = TypeStr + itostr(1 << AccessSizeIndex);
+ AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
+ IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
+ AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
+ IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
+ }
+ }
+ }
+
+ const std::string MemIntrinCallbackPrefix =
+ CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
+ AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
+ AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
+ AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
+ IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
+
+ AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
+
+ AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+ AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+ // We insert an empty inline asm after __asan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+}
+
+// virtual
+bool AddressSanitizer::doInitialization(Module &M) {
+ // Initialize the private fields. No one has accessed them before.
+
+ GlobalsMD.init(M);
+
+ C = &(M.getContext());
+ LongSize = M.getDataLayout().getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ TargetTriple = Triple(M.getTargetTriple());
+
+ if (!CompileKernel) {
+ std::tie(AsanCtorFunction, AsanInitFunction) =
+ createSanitizerCtorAndInitFunctions(
+ M, kAsanModuleCtorName, kAsanInitName,
+ /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
+ appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
+ }
+ Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
+ return true;
+}
+
+bool AddressSanitizer::doFinalization(Module &M) {
+ GlobalsMD.reset();
+ return false;
+}
+
+bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
+ // For each NSObject descendant having a +load method, this method is invoked
+ // by the ObjC runtime before any of the static constructors is called.
+ // Therefore we need to instrument such methods with a call to __asan_init
+ // at the beginning in order to initialize our runtime before any access to
+ // the shadow memory.
+ // We cannot just ignore these methods, because they may call other
+ // instrumented functions.
+ if (F.getName().find(" load]") != std::string::npos) {
+ IRBuilder<> IRB(&F.front(), F.front().begin());
+ IRB.CreateCall(AsanInitFunction, {});
+ return true;
+ }
+ return false;
+}
+
+void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
+ // Find the one possible call to llvm.localescape and pre-mark allocas passed
+ // to it as uninteresting. This assumes we haven't started processing allocas
+ // yet. This check is done up front because iterating the use list in
+ // isInterestingAlloca would be algorithmically slower.
+ assert(ProcessedAllocas.empty() && "must process localescape before allocas");
+
+ // Try to get the declaration of llvm.localescape. If it's not in the module,
+ // we can exit early.
+ if (!F.getParent()->getFunction("llvm.localescape")) return;
+
+ // Look for a call to llvm.localescape call in the entry block. It can't be in
+ // any other block.
+ for (Instruction &I : F.getEntryBlock()) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
+ if (II && II->getIntrinsicID() == Intrinsic::localescape) {
+ // We found a call. Mark all the allocas passed in as uninteresting.
+ for (Value *Arg : II->arg_operands()) {
+ AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
+ assert(AI && AI->isStaticAlloca() &&
+ "non-static alloca arg to localescape");
+ ProcessedAllocas[AI] = false;
+ }
+ break;
+ }
+ }
+}
+
+bool AddressSanitizer::runOnFunction(Function &F) {
+ if (&F == AsanCtorFunction) return false;
+ if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
+ DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
+ initializeCallbacks(*F.getParent());
+
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ // If needed, insert __asan_init before checking for SanitizeAddress attr.
+ maybeInsertAsanInitAtFunctionEntry(F);
+
+ if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
+
+ if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
+
+ FunctionStateRAII CleanupObj(this);
+
+ // We can't instrument allocas used with llvm.localescape. Only static allocas
+ // can be passed to that intrinsic.
+ markEscapedLocalAllocas(F);
+
+ // We want to instrument every address only once per basic block (unless there
+ // are calls between uses).
+ SmallSet<Value *, 16> TempsToInstrument;
+ SmallVector<Instruction *, 16> ToInstrument;
+ SmallVector<Instruction *, 8> NoReturnCalls;
+ SmallVector<BasicBlock *, 16> AllBlocks;
+ SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
+ int NumAllocas = 0;
+ bool IsWrite;
+ unsigned Alignment;
+ uint64_t TypeSize;
+
+ // Fill the set of memory operations to instrument.
+ for (auto &BB : F) {
+ AllBlocks.push_back(&BB);
+ TempsToInstrument.clear();
+ int NumInsnsPerBB = 0;
+ for (auto &Inst : BB) {
+ if (LooksLikeCodeInBug11395(&Inst)) return false;
+ if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
+ &Alignment)) {
+ if (ClOpt && ClOptSameTemp) {
+ if (!TempsToInstrument.insert(Addr).second)
+ continue; // We've seen this temp in the current BB.
+ }
+ } else if (ClInvalidPointerPairs &&
+ isInterestingPointerComparisonOrSubtraction(&Inst)) {
+ PointerComparisonsOrSubtracts.push_back(&Inst);
+ continue;
+ } else if (isa<MemIntrinsic>(Inst)) {
+ // ok, take it.
+ } else {
+ if (isa<AllocaInst>(Inst)) NumAllocas++;
+ CallSite CS(&Inst);
+ if (CS) {
+ // A call inside BB.
+ TempsToInstrument.clear();
+ if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
+ }
+ continue;
+ }
+ ToInstrument.push_back(&Inst);
+ NumInsnsPerBB++;
+ if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
+ }
+ }
+
+ bool UseCalls =
+ CompileKernel ||
+ (ClInstrumentationWithCallsThreshold >= 0 &&
+ ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
+ /*RoundToAlign=*/true);
+
+ // Instrument.
+ int NumInstrumented = 0;
+ for (auto Inst : ToInstrument) {
+ if (ClDebugMin < 0 || ClDebugMax < 0 ||
+ (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
+ if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
+ instrumentMop(ObjSizeVis, Inst, UseCalls,
+ F.getParent()->getDataLayout());
+ else
+ instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
+ }
+ NumInstrumented++;
+ }
+
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
+
+ // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
+ // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
+ for (auto CI : NoReturnCalls) {
+ IRBuilder<> IRB(CI);
+ IRB.CreateCall(AsanHandleNoReturnFunc, {});
+ }
+
+ for (auto Inst : PointerComparisonsOrSubtracts) {
+ instrumentPointerComparisonOrSubtraction(Inst);
+ NumInstrumented++;
+ }
+
+ bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
+
+ DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
+
+ return res;
+}
+
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
+ std::string Suffix = itostr(i);
+ AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
+ IntptrTy, nullptr));
+ AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+ }
+ AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, nullptr));
+ AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
+ M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, nullptr));
+ AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+ AsanAllocasUnpoisonFunc =
+ checkSanitizerInterfaceFunction(M.getOrInsertFunction(
+ kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
+}
+
+void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
+ IRBuilder<> &IRB, Value *ShadowBase,
+ bool DoPoison) {
+ size_t n = ShadowBytes.size();
+ size_t i = 0;
+ // We need to (un)poison n bytes of stack shadow. Poison as many as we can
+ // using 64-bit stores (if we are on 64-bit arch), then poison the rest
+ // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
+ for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
+ LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
+ for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
+ uint64_t Val = 0;
+ for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
+ if (F.getParent()->getDataLayout().isLittleEndian())
+ Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
+ else
+ Val = (Val << 8) | ShadowBytes[i + j];
+ }
+ if (!Val) continue;
+ Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
+ Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
+ Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
+ IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
+ }
+ }
+}
+
+// Fake stack allocator (asan_fake_stack.h) has 11 size classes
+// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
+static int StackMallocSizeClass(uint64_t LocalStackSize) {
+ assert(LocalStackSize <= kMaxStackMallocSize);
+ uint64_t MaxSize = kMinStackMallocSize;
+ for (int i = 0;; i++, MaxSize *= 2)
+ if (LocalStackSize <= MaxSize) return i;
+ llvm_unreachable("impossible LocalStackSize");
+}
+
+// Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
+// We can not use MemSet intrinsic because it may end up calling the actual
+// memset. Size is a multiple of 8.
+// Currently this generates 8-byte stores on x86_64; it may be better to
+// generate wider stores.
+void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
+ IRBuilder<> &IRB, Value *ShadowBase, int Size) {
+ assert(!(Size % 8));
+
+ // kAsanStackAfterReturnMagic is 0xf5.
+ const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
+
+ for (int i = 0; i < Size; i += 8) {
+ Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
+ IRB.CreateStore(
+ ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
+ IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
+ }
+}
+
+PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
+ Value *ValueIfTrue,
+ Instruction *ThenTerm,
+ Value *ValueIfFalse) {
+ PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
+ BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
+ PHI->addIncoming(ValueIfFalse, CondBlock);
+ BasicBlock *ThenBlock = ThenTerm->getParent();
+ PHI->addIncoming(ValueIfTrue, ThenBlock);
+ return PHI;
+}
+
+Value *FunctionStackPoisoner::createAllocaForLayout(
+ IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
+ AllocaInst *Alloca;
+ if (Dynamic) {
+ Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
+ ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
+ "MyAlloca");
+ } else {
+ Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
+ nullptr, "MyAlloca");
+ assert(Alloca->isStaticAlloca());
+ }
+ assert((ClRealignStack & (ClRealignStack - 1)) == 0);
+ size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
+ Alloca->setAlignment(FrameAlignment);
+ return IRB.CreatePointerCast(Alloca, IntptrTy);
+}
+
+void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
+ BasicBlock &FirstBB = *F.begin();
+ IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
+ DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
+ IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
+ DynamicAllocaLayout->setAlignment(32);
+}
+
+void FunctionStackPoisoner::poisonStack() {
+ assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
+
+ // Insert poison calls for lifetime intrinsics for alloca.
+ bool HavePoisonedAllocas = false;
+ for (const auto &APC : AllocaPoisonCallVec) {
+ assert(APC.InsBefore);
+ assert(APC.AI);
+ IRBuilder<> IRB(APC.InsBefore);
+ poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
+ HavePoisonedAllocas |= APC.DoPoison;
+ }
+
+ if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
+ // Handle dynamic allocas.
+ createDynamicAllocasInitStorage();
+ for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
+
+ unpoisonDynamicAllocas();
+ }
+
+ if (AllocaVec.empty()) return;
+
+ int StackMallocIdx = -1;
+ DebugLoc EntryDebugLocation;
+ if (auto SP = getDISubprogram(&F))
+ EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
+
+ Instruction *InsBefore = AllocaVec[0];
+ IRBuilder<> IRB(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+
+ // Make sure non-instrumented allocas stay in the entry block. Otherwise,
+ // debug info is broken, because only entry-block allocas are treated as
+ // regular stack slots.
+ auto InsBeforeB = InsBefore->getParent();
+ assert(InsBeforeB == &F.getEntryBlock());
+ for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
+ if (auto *AI = dyn_cast<AllocaInst>(I))
+ if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
+ AI->moveBefore(InsBefore);
+
+ // If we have a call to llvm.localescape, keep it in the entry block.
+ if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
+
+ SmallVector<ASanStackVariableDescription, 16> SVD;
+ SVD.reserve(AllocaVec.size());
+ for (AllocaInst *AI : AllocaVec) {
+ ASanStackVariableDescription D = {AI->getName().data(),
+ ASan.getAllocaSizeInBytes(AI),
+ AI->getAlignment(), AI, 0};
+ SVD.push_back(D);
+ }
+ // Minimal header size (left redzone) is 4 pointers,
+ // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
+ size_t MinHeaderSize = ASan.LongSize / 2;
+ ASanStackFrameLayout L;
+ ComputeASanStackFrameLayout(SVD, 1UL << Mapping.Scale, MinHeaderSize, &L);
+ DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
+ uint64_t LocalStackSize = L.FrameSize;
+ bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
+ LocalStackSize <= kMaxStackMallocSize;
+ bool DoDynamicAlloca = ClDynamicAllocaStack;
+ // Don't do dynamic alloca or stack malloc if:
+ // 1) There is inline asm: too often it makes assumptions on which registers
+ // are available.
+ // 2) There is a returns_twice call (typically setjmp), which is
+ // optimization-hostile, and doesn't play well with introduced indirect
+ // register-relative calculation of local variable addresses.
+ DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
+ DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
+
+ Value *StaticAlloca =
+ DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
+
+ Value *FakeStack;
+ Value *LocalStackBase;
+
+ if (DoStackMalloc) {
+ // void *FakeStack = __asan_option_detect_stack_use_after_return
+ // ? __asan_stack_malloc_N(LocalStackSize)
+ // : nullptr;
+ // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
+ Constant *OptionDetectUAR = F.getParent()->getOrInsertGlobal(
+ kAsanOptionDetectUAR, IRB.getInt32Ty());
+ Value *UARIsEnabled =
+ IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUAR),
+ Constant::getNullValue(IRB.getInt32Ty()));
+ Instruction *Term =
+ SplitBlockAndInsertIfThen(UARIsEnabled, InsBefore, false);
+ IRBuilder<> IRBIf(Term);
+ IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
+ StackMallocIdx = StackMallocSizeClass(LocalStackSize);
+ assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
+ Value *FakeStackValue =
+ IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
+ ConstantInt::get(IntptrTy, LocalStackSize));
+ IRB.SetInsertPoint(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ FakeStack = createPHI(IRB, UARIsEnabled, FakeStackValue, Term,
+ ConstantInt::get(IntptrTy, 0));
+
+ Value *NoFakeStack =
+ IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
+ Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
+ IRBIf.SetInsertPoint(Term);
+ IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
+ Value *AllocaValue =
+ DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
+ IRB.SetInsertPoint(InsBefore);
+ IRB.SetCurrentDebugLocation(EntryDebugLocation);
+ LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
+ } else {
+ // void *FakeStack = nullptr;
+ // void *LocalStackBase = alloca(LocalStackSize);
+ FakeStack = ConstantInt::get(IntptrTy, 0);
+ LocalStackBase =
+ DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
+ }
+
+ // Replace Alloca instructions with base+offset.
+ for (const auto &Desc : SVD) {
+ AllocaInst *AI = Desc.AI;
+ Value *NewAllocaPtr = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
+ AI->getType());
+ replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
+ AI->replaceAllUsesWith(NewAllocaPtr);
+ }
+
+ // The left-most redzone has enough space for at least 4 pointers.
+ // Write the Magic value to redzone[0].
+ Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
+ IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
+ BasePlus0);
+ // Write the frame description constant to redzone[1].
+ Value *BasePlus1 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase,
+ ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
+ IntptrPtrTy);
+ GlobalVariable *StackDescriptionGlobal =
+ createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
+ /*AllowMerging*/ true);
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
+ IRB.CreateStore(Description, BasePlus1);
+ // Write the PC to redzone[2].
+ Value *BasePlus2 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase,
+ ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
+ IntptrPtrTy);
+ IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
+
+ // Poison the stack redzones at the entry.
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
+
+ // (Un)poison the stack before all ret instructions.
+ for (auto Ret : RetVec) {
+ IRBuilder<> IRBRet(Ret);
+ // Mark the current frame as retired.
+ IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
+ BasePlus0);
+ if (DoStackMalloc) {
+ assert(StackMallocIdx >= 0);
+ // if FakeStack != 0 // LocalStackBase == FakeStack
+ // // In use-after-return mode, poison the whole stack frame.
+ // if StackMallocIdx <= 4
+ // // For small sizes inline the whole thing:
+ // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
+ // **SavedFlagPtr(FakeStack) = 0
+ // else
+ // __asan_stack_free_N(FakeStack, LocalStackSize)
+ // else
+ // <This is not a fake stack; unpoison the redzones>
+ Value *Cmp =
+ IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
+ TerminatorInst *ThenTerm, *ElseTerm;
+ SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
+
+ IRBuilder<> IRBPoison(ThenTerm);
+ if (StackMallocIdx <= 4) {
+ int ClassSize = kMinStackMallocSize << StackMallocIdx;
+ SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
+ ClassSize >> Mapping.Scale);
+ Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
+ FakeStack,
+ ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
+ Value *SavedFlagPtr = IRBPoison.CreateLoad(
+ IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
+ IRBPoison.CreateStore(
+ Constant::getNullValue(IRBPoison.getInt8Ty()),
+ IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
+ } else {
+ // For larger frames call __asan_stack_free_*.
+ IRBPoison.CreateCall(
+ AsanStackFreeFunc[StackMallocIdx],
+ {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
+ }
+
+ IRBuilder<> IRBElse(ElseTerm);
+ poisonRedZones(L.ShadowBytes, IRBElse, ShadowBase, false);
+ } else if (HavePoisonedAllocas) {
+ // If we poisoned some allocas in llvm.lifetime analysis,
+ // unpoison whole stack frame now.
+ poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
+ } else {
+ poisonRedZones(L.ShadowBytes, IRBRet, ShadowBase, false);
+ }
+ }
+
+ // We are done. Remove the old unused alloca instructions.
+ for (auto AI : AllocaVec) AI->eraseFromParent();
+}
+
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> &IRB, bool DoPoison) {
+ // For now just insert the call to ASan runtime.
+ Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
+ Value *SizeArg = ConstantInt::get(IntptrTy, Size);
+ IRB.CreateCall(
+ DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
+ {AddrArg, SizeArg});
+}
+
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+
+AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ // We're intested only in allocas we can handle.
+ return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
+ // See if we've already calculated (or started to calculate) alloca for a
+ // given value.
+ AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
+ if (I != AllocaForValue.end()) return I->second;
+ // Store 0 while we're calculating alloca for value V to avoid
+ // infinite recursion if the value references itself.
+ AllocaForValue[V] = nullptr;
+ AllocaInst *Res = nullptr;
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ Res = findAllocaForValue(CI->getOperand(0));
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (Value *IncValue : PN->incoming_values()) {
+ // Allow self-referencing phi-nodes.
+ if (IncValue == PN) continue;
+ AllocaInst *IncValueAI = findAllocaForValue(IncValue);
+ // AI for incoming values should exist and should all be equal.
+ if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
+ return nullptr;
+ Res = IncValueAI;
+ }
+ }
+ if (Res) AllocaForValue[V] = Res;
+ return Res;
+}
+
+void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
+ IRBuilder<> IRB(AI);
+
+ const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
+ const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
+
+ Value *Zero = Constant::getNullValue(IntptrTy);
+ Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
+ Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
+
+ // Since we need to extend alloca with additional memory to locate
+ // redzones, and OldSize is number of allocated blocks with
+ // ElementSize size, get allocated memory size in bytes by
+ // OldSize * ElementSize.
+ const unsigned ElementSize =
+ F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
+ Value *OldSize =
+ IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
+ ConstantInt::get(IntptrTy, ElementSize));
+
+ // PartialSize = OldSize % 32
+ Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
+
+ // Misalign = kAllocaRzSize - PartialSize;
+ Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
+
+ // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
+ Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
+ Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
+
+ // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
+ // Align is added to locate left redzone, PartialPadding for possible
+ // partial redzone and kAllocaRzSize for right redzone respectively.
+ Value *AdditionalChunkSize = IRB.CreateAdd(
+ ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
+
+ Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
+
+ // Insert new alloca with new NewSize and Align params.
+ AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
+ NewAlloca->setAlignment(Align);
+
+ // NewAddress = Address + Align
+ Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
+ ConstantInt::get(IntptrTy, Align));
+
+ // Insert __asan_alloca_poison call for new created alloca.
+ IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
+
+ // Store the last alloca's address to DynamicAllocaLayout. We'll need this
+ // for unpoisoning stuff.
+ IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
+
+ Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
+
+ // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
+ AI->replaceAllUsesWith(NewAddressPtr);
+
+ // We are done. Erase old alloca from parent.
+ AI->eraseFromParent();
+}
+
+// isSafeAccess returns true if Addr is always inbounds with respect to its
+// base object. For example, it is a field access or an array access with
+// constant inbounds index.
+bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
+ Value *Addr, uint64_t TypeSize) const {
+ SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
+ if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
+ uint64_t Size = SizeOffset.first.getZExtValue();
+ int64_t Offset = SizeOffset.second.getSExtValue();
+ // Three checks are required to ensure safety:
+ // . Offset >= 0 (since the offset is given from the base ptr)
+ // . Size >= Offset (unsigned)
+ // . Size - Offset >= NeededSize (unsigned)
+ return Offset >= 0 && Size >= uint64_t(Offset) &&
+ Size - uint64_t(Offset) >= TypeSize / 8;
+}
OpenPOWER on IntegriCloud