summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp1453
1 files changed, 1453 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
new file mode 100644
index 0000000..623c470
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
@@ -0,0 +1,1453 @@
+//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+// Details of the algorithm:
+// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "asan"
+
+#include "llvm/Transforms/Instrumentation.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/OwningPtr.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/DIBuilder.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/InstVisitor.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/system_error.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BlackList.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+#include <algorithm>
+#include <string>
+
+using namespace llvm;
+
+static const uint64_t kDefaultShadowScale = 3;
+static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
+static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
+static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G.
+static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
+
+static const size_t kMaxStackMallocSize = 1 << 16; // 64K
+static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
+static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
+
+static const char *kAsanModuleCtorName = "asan.module_ctor";
+static const char *kAsanModuleDtorName = "asan.module_dtor";
+static const int kAsanCtorAndCtorPriority = 1;
+static const char *kAsanReportErrorTemplate = "__asan_report_";
+static const char *kAsanReportLoadN = "__asan_report_load_n";
+static const char *kAsanReportStoreN = "__asan_report_store_n";
+static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
+static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
+static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
+static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
+static const char *kAsanInitName = "__asan_init_v3";
+static const char *kAsanHandleNoReturnName = "__asan_handle_no_return";
+static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
+static const char *kAsanMappingScaleName = "__asan_mapping_scale";
+static const char *kAsanStackMallocName = "__asan_stack_malloc";
+static const char *kAsanStackFreeName = "__asan_stack_free";
+static const char *kAsanGenPrefix = "__asan_gen_";
+static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory";
+static const char *kAsanUnpoisonStackMemoryName =
+ "__asan_unpoison_stack_memory";
+
+static const int kAsanStackLeftRedzoneMagic = 0xf1;
+static const int kAsanStackMidRedzoneMagic = 0xf2;
+static const int kAsanStackRightRedzoneMagic = 0xf3;
+static const int kAsanStackPartialRedzoneMagic = 0xf4;
+
+// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
+static const size_t kNumberOfAccessSizes = 5;
+
+// Command-line flags.
+
+// This flag may need to be replaced with -f[no-]asan-reads.
+static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
+ cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
+ cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
+ cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
+ cl::Hidden, cl::init(true));
+static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
+ cl::desc("use instrumentation with slow path for all accesses"),
+ cl::Hidden, cl::init(false));
+// This flag limits the number of instructions to be instrumented
+// in any given BB. Normally, this should be set to unlimited (INT_MAX),
+// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
+// set it to 10000.
+static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
+ cl::init(10000),
+ cl::desc("maximal number of instructions to instrument in any given BB"),
+ cl::Hidden);
+// This flag may need to be replaced with -f[no]asan-stack.
+static cl::opt<bool> ClStack("asan-stack",
+ cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
+// This flag may need to be replaced with -f[no]asan-use-after-return.
+static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
+ cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
+// This flag may need to be replaced with -f[no]asan-globals.
+static cl::opt<bool> ClGlobals("asan-globals",
+ cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClInitializers("asan-initialization-order",
+ cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
+static cl::opt<bool> ClMemIntrin("asan-memintrin",
+ cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClRealignStack("asan-realign-stack",
+ cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
+static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
+ cl::desc("File containing the list of objects to ignore "
+ "during instrumentation"), cl::Hidden);
+
+// These flags allow to change the shadow mapping.
+// The shadow mapping looks like
+// Shadow = (Mem >> scale) + (1 << offset_log)
+static cl::opt<int> ClMappingScale("asan-mapping-scale",
+ cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
+static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
+ cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
+static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
+ cl::desc("Use short immediate constant as the mapping offset for 64bit"),
+ cl::Hidden, cl::init(true));
+
+// Optimization flags. Not user visible, used mostly for testing
+// and benchmarking the tool.
+static cl::opt<bool> ClOpt("asan-opt",
+ cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
+static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
+ cl::desc("Instrument the same temp just once"), cl::Hidden,
+ cl::init(true));
+static cl::opt<bool> ClOptGlobals("asan-opt-globals",
+ cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
+
+static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
+ cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
+ cl::Hidden, cl::init(false));
+
+// Debug flags.
+static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
+ cl::init(0));
+static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
+ cl::Hidden, cl::init(0));
+static cl::opt<std::string> ClDebugFunc("asan-debug-func",
+ cl::Hidden, cl::desc("Debug func"));
+static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
+ cl::Hidden, cl::init(-1));
+static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
+ cl::Hidden, cl::init(-1));
+
+namespace {
+/// A set of dynamically initialized globals extracted from metadata.
+class SetOfDynamicallyInitializedGlobals {
+ public:
+ void Init(Module& M) {
+ // Clang generates metadata identifying all dynamically initialized globals.
+ NamedMDNode *DynamicGlobals =
+ M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
+ if (!DynamicGlobals)
+ return;
+ for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
+ MDNode *MDN = DynamicGlobals->getOperand(i);
+ assert(MDN->getNumOperands() == 1);
+ Value *VG = MDN->getOperand(0);
+ // The optimizer may optimize away a global entirely, in which case we
+ // cannot instrument access to it.
+ if (!VG)
+ continue;
+ DynInitGlobals.insert(cast<GlobalVariable>(VG));
+ }
+ }
+ bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
+ private:
+ SmallSet<GlobalValue*, 32> DynInitGlobals;
+};
+
+/// This struct defines the shadow mapping using the rule:
+/// shadow = (mem >> Scale) ADD-or-OR Offset.
+struct ShadowMapping {
+ int Scale;
+ uint64_t Offset;
+ bool OrShadowOffset;
+};
+
+static ShadowMapping getShadowMapping(const Module &M, int LongSize,
+ bool ZeroBaseShadow) {
+ llvm::Triple TargetTriple(M.getTargetTriple());
+ bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
+ bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
+ bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64;
+ bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
+
+ ShadowMapping Mapping;
+
+ // OR-ing shadow offset if more efficient (at least on x86),
+ // but on ppc64 we have to use add since the shadow offset is not neccesary
+ // 1/8-th of the address space.
+ Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
+
+ Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
+ (LongSize == 32 ? kDefaultShadowOffset32 :
+ IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
+ if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
+ assert(LongSize == 64);
+ Mapping.Offset = kDefaultShort64bitShadowOffset;
+ }
+ if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
+ // Zero offset log is the special case.
+ Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
+ }
+
+ Mapping.Scale = kDefaultShadowScale;
+ if (ClMappingScale) {
+ Mapping.Scale = ClMappingScale;
+ }
+
+ return Mapping;
+}
+
+static size_t RedzoneSizeForScale(int MappingScale) {
+ // Redzone used for stack and globals is at least 32 bytes.
+ // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
+ return std::max(32U, 1U << MappingScale);
+}
+
+/// AddressSanitizer: instrument the code in module to find memory bugs.
+struct AddressSanitizer : public FunctionPass {
+ AddressSanitizer(bool CheckInitOrder = true,
+ bool CheckUseAfterReturn = false,
+ bool CheckLifetime = false,
+ StringRef BlacklistFile = StringRef(),
+ bool ZeroBaseShadow = false)
+ : FunctionPass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
+ CheckLifetime(CheckLifetime || ClCheckLifetime),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile),
+ ZeroBaseShadow(ZeroBaseShadow) {}
+ virtual const char *getPassName() const {
+ return "AddressSanitizerFunctionPass";
+ }
+ void instrumentMop(Instruction *I);
+ void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize, bool IsWrite,
+ Value *SizeArgument);
+ Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue, uint32_t TypeSize);
+ Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
+ bool IsWrite, size_t AccessSizeIndex,
+ Value *SizeArgument);
+ bool instrumentMemIntrinsic(MemIntrinsic *MI);
+ void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
+ Value *Size,
+ Instruction *InsertBefore, bool IsWrite);
+ Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
+ bool runOnFunction(Function &F);
+ bool maybeInsertAsanInitAtFunctionEntry(Function &F);
+ void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
+ virtual bool doInitialization(Module &M);
+ static char ID; // Pass identification, replacement for typeid
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ bool LooksLikeCodeInBug11395(Instruction *I);
+ void FindDynamicInitializers(Module &M);
+
+ bool CheckInitOrder;
+ bool CheckUseAfterReturn;
+ bool CheckLifetime;
+ SmallString<64> BlacklistFile;
+ bool ZeroBaseShadow;
+
+ LLVMContext *C;
+ DataLayout *TD;
+ int LongSize;
+ Type *IntptrTy;
+ ShadowMapping Mapping;
+ Function *AsanCtorFunction;
+ Function *AsanInitFunction;
+ Function *AsanHandleNoReturnFunc;
+ OwningPtr<BlackList> BL;
+ // This array is indexed by AccessIsWrite and log2(AccessSize).
+ Function *AsanErrorCallback[2][kNumberOfAccessSizes];
+ // This array is indexed by AccessIsWrite.
+ Function *AsanErrorCallbackSized[2];
+ InlineAsm *EmptyAsm;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+
+ friend struct FunctionStackPoisoner;
+};
+
+class AddressSanitizerModule : public ModulePass {
+ public:
+ AddressSanitizerModule(bool CheckInitOrder = true,
+ StringRef BlacklistFile = StringRef(),
+ bool ZeroBaseShadow = false)
+ : ModulePass(ID),
+ CheckInitOrder(CheckInitOrder || ClInitializers),
+ BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
+ : BlacklistFile),
+ ZeroBaseShadow(ZeroBaseShadow) {}
+ bool runOnModule(Module &M);
+ static char ID; // Pass identification, replacement for typeid
+ virtual const char *getPassName() const {
+ return "AddressSanitizerModule";
+ }
+
+ private:
+ void initializeCallbacks(Module &M);
+
+ bool ShouldInstrumentGlobal(GlobalVariable *G);
+ void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
+ size_t RedzoneSize() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+
+ bool CheckInitOrder;
+ SmallString<64> BlacklistFile;
+ bool ZeroBaseShadow;
+
+ OwningPtr<BlackList> BL;
+ SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
+ Type *IntptrTy;
+ LLVMContext *C;
+ DataLayout *TD;
+ ShadowMapping Mapping;
+ Function *AsanPoisonGlobals;
+ Function *AsanUnpoisonGlobals;
+ Function *AsanRegisterGlobals;
+ Function *AsanUnregisterGlobals;
+};
+
+// Stack poisoning does not play well with exception handling.
+// When an exception is thrown, we essentially bypass the code
+// that unpoisones the stack. This is why the run-time library has
+// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
+// stack in the interceptor. This however does not work inside the
+// actual function which catches the exception. Most likely because the
+// compiler hoists the load of the shadow value somewhere too high.
+// This causes asan to report a non-existing bug on 453.povray.
+// It sounds like an LLVM bug.
+struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
+ Function &F;
+ AddressSanitizer &ASan;
+ DIBuilder DIB;
+ LLVMContext *C;
+ Type *IntptrTy;
+ Type *IntptrPtrTy;
+ ShadowMapping Mapping;
+
+ SmallVector<AllocaInst*, 16> AllocaVec;
+ SmallVector<Instruction*, 8> RetVec;
+ uint64_t TotalStackSize;
+ unsigned StackAlignment;
+
+ Function *AsanStackMallocFunc, *AsanStackFreeFunc;
+ Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
+
+ // Stores a place and arguments of poisoning/unpoisoning call for alloca.
+ struct AllocaPoisonCall {
+ IntrinsicInst *InsBefore;
+ uint64_t Size;
+ bool DoPoison;
+ };
+ SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
+
+ // Maps Value to an AllocaInst from which the Value is originated.
+ typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
+ AllocaForValueMapTy AllocaForValue;
+
+ FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
+ : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
+ IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
+ Mapping(ASan.Mapping),
+ TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
+
+ bool runOnFunction() {
+ if (!ClStack) return false;
+ // Collect alloca, ret, lifetime instructions etc.
+ for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
+ DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
+ BasicBlock *BB = *DI;
+ visit(*BB);
+ }
+ if (AllocaVec.empty()) return false;
+
+ initializeCallbacks(*F.getParent());
+
+ poisonStack();
+
+ if (ClDebugStack) {
+ DEBUG(dbgs() << F);
+ }
+ return true;
+ }
+
+ // Finds all static Alloca instructions and puts
+ // poisoned red zones around all of them.
+ // Then unpoison everything back before the function returns.
+ void poisonStack();
+
+ // ----------------------- Visitors.
+ /// \brief Collect all Ret instructions.
+ void visitReturnInst(ReturnInst &RI) {
+ RetVec.push_back(&RI);
+ }
+
+ /// \brief Collect Alloca instructions we want (and can) handle.
+ void visitAllocaInst(AllocaInst &AI) {
+ if (!isInterestingAlloca(AI)) return;
+
+ StackAlignment = std::max(StackAlignment, AI.getAlignment());
+ AllocaVec.push_back(&AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(&AI);
+ TotalStackSize += AlignedSize;
+ }
+
+ /// \brief Collect lifetime intrinsic calls to check for use-after-scope
+ /// errors.
+ void visitIntrinsicInst(IntrinsicInst &II) {
+ if (!ASan.CheckLifetime) return;
+ Intrinsic::ID ID = II.getIntrinsicID();
+ if (ID != Intrinsic::lifetime_start &&
+ ID != Intrinsic::lifetime_end)
+ return;
+ // Found lifetime intrinsic, add ASan instrumentation if necessary.
+ ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
+ // If size argument is undefined, don't do anything.
+ if (Size->isMinusOne()) return;
+ // Check that size doesn't saturate uint64_t and can
+ // be stored in IntptrTy.
+ const uint64_t SizeValue = Size->getValue().getLimitedValue();
+ if (SizeValue == ~0ULL ||
+ !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
+ return;
+ // Find alloca instruction that corresponds to llvm.lifetime argument.
+ AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
+ if (!AI) return;
+ bool DoPoison = (ID == Intrinsic::lifetime_end);
+ AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
+ AllocaPoisonCallVec.push_back(APC);
+ }
+
+ // ---------------------- Helpers.
+ void initializeCallbacks(Module &M);
+
+ // Check if we want (and can) handle this alloca.
+ bool isInterestingAlloca(AllocaInst &AI) {
+ return (!AI.isArrayAllocation() &&
+ AI.isStaticAlloca() &&
+ AI.getAllocatedType()->isSized());
+ }
+
+ size_t RedzoneSize() const {
+ return RedzoneSizeForScale(Mapping.Scale);
+ }
+ uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
+ Type *Ty = AI->getAllocatedType();
+ uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
+ return SizeInBytes;
+ }
+ uint64_t getAlignedSize(uint64_t SizeInBytes) {
+ size_t RZ = RedzoneSize();
+ return ((SizeInBytes + RZ - 1) / RZ) * RZ;
+ }
+ uint64_t getAlignedAllocaSize(AllocaInst *AI) {
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ return getAlignedSize(SizeInBytes);
+ }
+ /// Finds alloca where the value comes from.
+ AllocaInst *findAllocaForValue(Value *V);
+ void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
+ Value *ShadowBase, bool DoPoison);
+ void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
+};
+
+} // namespace
+
+char AddressSanitizer::ID = 0;
+INITIALIZE_PASS(AddressSanitizer, "asan",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
+ false, false)
+FunctionPass *llvm::createAddressSanitizerFunctionPass(
+ bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
+ StringRef BlacklistFile, bool ZeroBaseShadow) {
+ return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
+ CheckLifetime, BlacklistFile, ZeroBaseShadow);
+}
+
+char AddressSanitizerModule::ID = 0;
+INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
+ "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
+ "ModulePass", false, false)
+ModulePass *llvm::createAddressSanitizerModulePass(
+ bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
+ return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
+ ZeroBaseShadow);
+}
+
+static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
+ size_t Res = CountTrailingZeros_32(TypeSize / 8);
+ assert(Res < kNumberOfAccessSizes);
+ return Res;
+}
+
+// Create a constant for Str so that we can pass it to the run-time lib.
+static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
+ Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
+ GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
+ GlobalValue::PrivateLinkage, StrConst,
+ kAsanGenPrefix);
+ GV->setUnnamedAddr(true); // Ok to merge these.
+ GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
+ return GV;
+}
+
+static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
+ return G->getName().find(kAsanGenPrefix) == 0;
+}
+
+Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
+ // Shadow >> scale
+ Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
+ if (Mapping.Offset == 0)
+ return Shadow;
+ // (Shadow >> scale) | offset
+ if (Mapping.OrShadowOffset)
+ return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
+ else
+ return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
+}
+
+void AddressSanitizer::instrumentMemIntrinsicParam(
+ Instruction *OrigIns,
+ Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
+ IRBuilder<> IRB(InsertBefore);
+ if (Size->getType() != IntptrTy)
+ Size = IRB.CreateIntCast(Size, IntptrTy, false);
+ // Check the first byte.
+ instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
+ // Check the last byte.
+ IRB.SetInsertPoint(InsertBefore);
+ Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+ Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
+ instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
+}
+
+// Instrument memset/memmove/memcpy
+bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
+ Value *Dst = MI->getDest();
+ MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
+ Value *Src = MemTran ? MemTran->getSource() : 0;
+ Value *Length = MI->getLength();
+
+ Constant *ConstLength = dyn_cast<Constant>(Length);
+ Instruction *InsertBefore = MI;
+ if (ConstLength) {
+ if (ConstLength->isNullValue()) return false;
+ } else {
+ // The size is not a constant so it could be zero -- check at run-time.
+ IRBuilder<> IRB(InsertBefore);
+
+ Value *Cmp = IRB.CreateICmpNE(Length,
+ Constant::getNullValue(Length->getType()));
+ InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
+ }
+
+ instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
+ if (Src)
+ instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
+ return true;
+}
+
+// If I is an interesting memory access, return the PointerOperand
+// and set IsWrite. Otherwise return NULL.
+static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ if (!ClInstrumentReads) return NULL;
+ *IsWrite = false;
+ return LI->getPointerOperand();
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ if (!ClInstrumentWrites) return NULL;
+ *IsWrite = true;
+ return SI->getPointerOperand();
+ }
+ if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
+ if (!ClInstrumentAtomics) return NULL;
+ *IsWrite = true;
+ return RMW->getPointerOperand();
+ }
+ if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
+ if (!ClInstrumentAtomics) return NULL;
+ *IsWrite = true;
+ return XCHG->getPointerOperand();
+ }
+ return NULL;
+}
+
+void AddressSanitizer::instrumentMop(Instruction *I) {
+ bool IsWrite = false;
+ Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
+ assert(Addr);
+ if (ClOpt && ClOptGlobals) {
+ if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
+ // If initialization order checking is disabled, a simple access to a
+ // dynamically initialized global is always valid.
+ if (!CheckInitOrder)
+ return;
+ // If a global variable does not have dynamic initialization we don't
+ // have to instrument it. However, if a global does not have initailizer
+ // at all, we assume it has dynamic initializer (in other TU).
+ if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G))
+ return;
+ }
+ }
+
+ Type *OrigPtrTy = Addr->getType();
+ Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
+
+ assert(OrigTy->isSized());
+ uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
+
+ assert((TypeSize % 8) == 0);
+
+ // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
+ if (TypeSize == 8 || TypeSize == 16 ||
+ TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
+ return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
+ // Instrument unusual size (but still multiple of 8).
+ // We can not do it with a single check, so we do 1-byte check for the first
+ // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
+ // to report the actual access size.
+ IRBuilder<> IRB(I);
+ Value *LastByte = IRB.CreateIntToPtr(
+ IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
+ ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
+ OrigPtrTy);
+ Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
+ instrumentAddress(I, I, Addr, 8, IsWrite, Size);
+ instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
+}
+
+// Validate the result of Module::getOrInsertFunction called for an interface
+// function of AddressSanitizer. If the instrumented module defines a function
+// with the same name, their prototypes must match, otherwise
+// getOrInsertFunction returns a bitcast.
+static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
+ if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
+ FuncOrBitcast->dump();
+ report_fatal_error("trying to redefine an AddressSanitizer "
+ "interface function");
+}
+
+Instruction *AddressSanitizer::generateCrashCode(
+ Instruction *InsertBefore, Value *Addr,
+ bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
+ IRBuilder<> IRB(InsertBefore);
+ CallInst *Call = SizeArgument
+ ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
+ : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
+
+ // We don't do Call->setDoesNotReturn() because the BB already has
+ // UnreachableInst at the end.
+ // This EmptyAsm is required to avoid callback merge.
+ IRB.CreateCall(EmptyAsm);
+ return Call;
+}
+
+Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
+ Value *ShadowValue,
+ uint32_t TypeSize) {
+ size_t Granularity = 1 << Mapping.Scale;
+ // Addr & (Granularity - 1)
+ Value *LastAccessedByte = IRB.CreateAnd(
+ AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
+ // (Addr & (Granularity - 1)) + size - 1
+ if (TypeSize / 8 > 1)
+ LastAccessedByte = IRB.CreateAdd(
+ LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
+ // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
+ LastAccessedByte = IRB.CreateIntCast(
+ LastAccessedByte, ShadowValue->getType(), false);
+ // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
+ return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
+}
+
+void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
+ Instruction *InsertBefore,
+ Value *Addr, uint32_t TypeSize,
+ bool IsWrite, Value *SizeArgument) {
+ IRBuilder<> IRB(InsertBefore);
+ Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
+
+ Type *ShadowTy = IntegerType::get(
+ *C, std::max(8U, TypeSize >> Mapping.Scale));
+ Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
+ Value *ShadowPtr = memToShadow(AddrLong, IRB);
+ Value *CmpVal = Constant::getNullValue(ShadowTy);
+ Value *ShadowValue = IRB.CreateLoad(
+ IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
+
+ Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
+ size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
+ size_t Granularity = 1 << Mapping.Scale;
+ TerminatorInst *CrashTerm = 0;
+
+ if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
+ TerminatorInst *CheckTerm =
+ SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
+ assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
+ BasicBlock *NextBB = CheckTerm->getSuccessor(0);
+ IRB.SetInsertPoint(CheckTerm);
+ Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
+ BasicBlock *CrashBlock =
+ BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
+ CrashTerm = new UnreachableInst(*C, CrashBlock);
+ BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
+ ReplaceInstWithInst(CheckTerm, NewTerm);
+ } else {
+ CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
+ }
+
+ Instruction *Crash = generateCrashCode(
+ CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
+ Crash->setDebugLoc(OrigIns->getDebugLoc());
+}
+
+void AddressSanitizerModule::createInitializerPoisonCalls(
+ Module &M, GlobalValue *ModuleName) {
+ // We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
+ Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
+ // If that function is not present, this TU contains no globals, or they have
+ // all been optimized away
+ if (!GlobalInit)
+ return;
+
+ // Set up the arguments to our poison/unpoison functions.
+ IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
+
+ // Add a call to poison all external globals before the given function starts.
+ Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
+ IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
+
+ // Add calls to unpoison all globals before each return instruction.
+ for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
+ I != E; ++I) {
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
+ CallInst::Create(AsanUnpoisonGlobals, "", RI);
+ }
+ }
+}
+
+bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
+ Type *Ty = cast<PointerType>(G->getType())->getElementType();
+ DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
+
+ if (BL->isIn(*G)) return false;
+ if (!Ty->isSized()) return false;
+ if (!G->hasInitializer()) return false;
+ if (GlobalWasGeneratedByAsan(G)) return false; // Our own global.
+ // Touch only those globals that will not be defined in other modules.
+ // Don't handle ODR type linkages since other modules may be built w/o asan.
+ if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
+ G->getLinkage() != GlobalVariable::PrivateLinkage &&
+ G->getLinkage() != GlobalVariable::InternalLinkage)
+ return false;
+ // Two problems with thread-locals:
+ // - The address of the main thread's copy can't be computed at link-time.
+ // - Need to poison all copies, not just the main thread's one.
+ if (G->isThreadLocal())
+ return false;
+ // For now, just ignore this Alloca if the alignment is large.
+ if (G->getAlignment() > RedzoneSize()) return false;
+
+ // Ignore all the globals with the names starting with "\01L_OBJC_".
+ // Many of those are put into the .cstring section. The linker compresses
+ // that section by removing the spare \0s after the string terminator, so
+ // our redzones get broken.
+ if ((G->getName().find("\01L_OBJC_") == 0) ||
+ (G->getName().find("\01l_OBJC_") == 0)) {
+ DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
+ return false;
+ }
+
+ if (G->hasSection()) {
+ StringRef Section(G->getSection());
+ // Ignore the globals from the __OBJC section. The ObjC runtime assumes
+ // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
+ // them.
+ if ((Section.find("__OBJC,") == 0) ||
+ (Section.find("__DATA, __objc_") == 0)) {
+ DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
+ return false;
+ }
+ // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
+ // Constant CFString instances are compiled in the following way:
+ // -- the string buffer is emitted into
+ // __TEXT,__cstring,cstring_literals
+ // -- the constant NSConstantString structure referencing that buffer
+ // is placed into __DATA,__cfstring
+ // Therefore there's no point in placing redzones into __DATA,__cfstring.
+ // Moreover, it causes the linker to crash on OS X 10.7
+ if (Section.find("__DATA,__cfstring") == 0) {
+ DEBUG(dbgs() << "Ignoring CFString: " << *G);
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void AddressSanitizerModule::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Declare our poisoning and unpoisoning functions.
+ AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
+ AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
+ AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
+ // Declare functions that register/unregister globals.
+ AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanRegisterGlobalsName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, NULL));
+ AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
+ AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnregisterGlobalsName,
+ IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
+}
+
+// This function replaces all global variables with new variables that have
+// trailing redzones. It also creates a function that poisons
+// redzones and inserts this function into llvm.global_ctors.
+bool AddressSanitizerModule::runOnModule(Module &M) {
+ if (!ClGlobals) return false;
+ TD = getAnalysisIfAvailable<DataLayout>();
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ if (BL->isIn(M)) return false;
+ C = &(M.getContext());
+ int LongSize = TD->getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+ Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
+ initializeCallbacks(M);
+ DynamicallyInitializedGlobals.Init(M);
+
+ SmallVector<GlobalVariable *, 16> GlobalsToChange;
+
+ for (Module::GlobalListType::iterator G = M.global_begin(),
+ E = M.global_end(); G != E; ++G) {
+ if (ShouldInstrumentGlobal(G))
+ GlobalsToChange.push_back(G);
+ }
+
+ size_t n = GlobalsToChange.size();
+ if (n == 0) return false;
+
+ // A global is described by a structure
+ // size_t beg;
+ // size_t size;
+ // size_t size_with_redzone;
+ // const char *name;
+ // const char *module_name;
+ // size_t has_dynamic_init;
+ // We initialize an array of such structures and pass it to a run-time call.
+ StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
+ IntptrTy, IntptrTy,
+ IntptrTy, IntptrTy, NULL);
+ SmallVector<Constant *, 16> Initializers(n), DynamicInit;
+
+
+ Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
+ assert(CtorFunc);
+ IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
+
+ bool HasDynamicallyInitializedGlobals = false;
+
+ GlobalVariable *ModuleName = createPrivateGlobalForString(
+ M, M.getModuleIdentifier());
+ // We shouldn't merge same module names, as this string serves as unique
+ // module ID in runtime.
+ ModuleName->setUnnamedAddr(false);
+
+ for (size_t i = 0; i < n; i++) {
+ static const uint64_t kMaxGlobalRedzone = 1 << 18;
+ GlobalVariable *G = GlobalsToChange[i];
+ PointerType *PtrTy = cast<PointerType>(G->getType());
+ Type *Ty = PtrTy->getElementType();
+ uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
+ uint64_t MinRZ = RedzoneSize();
+ // MinRZ <= RZ <= kMaxGlobalRedzone
+ // and trying to make RZ to be ~ 1/4 of SizeInBytes.
+ uint64_t RZ = std::max(MinRZ,
+ std::min(kMaxGlobalRedzone,
+ (SizeInBytes / MinRZ / 4) * MinRZ));
+ uint64_t RightRedzoneSize = RZ;
+ // Round up to MinRZ
+ if (SizeInBytes % MinRZ)
+ RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
+ assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
+ Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
+ // Determine whether this global should be poisoned in initialization.
+ bool GlobalHasDynamicInitializer =
+ DynamicallyInitializedGlobals.Contains(G);
+ // Don't check initialization order if this global is blacklisted.
+ GlobalHasDynamicInitializer &= !BL->isInInit(*G);
+
+ StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
+ Constant *NewInitializer = ConstantStruct::get(
+ NewTy, G->getInitializer(),
+ Constant::getNullValue(RightRedZoneTy), NULL);
+
+ GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
+
+ // Create a new global variable with enough space for a redzone.
+ GlobalVariable *NewGlobal = new GlobalVariable(
+ M, NewTy, G->isConstant(), G->getLinkage(),
+ NewInitializer, "", G, G->getThreadLocalMode());
+ NewGlobal->copyAttributesFrom(G);
+ NewGlobal->setAlignment(MinRZ);
+
+ Value *Indices2[2];
+ Indices2[0] = IRB.getInt32(0);
+ Indices2[1] = IRB.getInt32(0);
+
+ G->replaceAllUsesWith(
+ ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
+ NewGlobal->takeName(G);
+ G->eraseFromParent();
+
+ Initializers[i] = ConstantStruct::get(
+ GlobalStructTy,
+ ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
+ ConstantInt::get(IntptrTy, SizeInBytes),
+ ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
+ ConstantExpr::getPointerCast(Name, IntptrTy),
+ ConstantExpr::getPointerCast(ModuleName, IntptrTy),
+ ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
+ NULL);
+
+ // Populate the first and last globals declared in this TU.
+ if (CheckInitOrder && GlobalHasDynamicInitializer)
+ HasDynamicallyInitializedGlobals = true;
+
+ DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
+ }
+
+ ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
+ GlobalVariable *AllGlobals = new GlobalVariable(
+ M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
+ ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
+
+ // Create calls for poisoning before initializers run and unpoisoning after.
+ if (CheckInitOrder && HasDynamicallyInitializedGlobals)
+ createInitializerPoisonCalls(M, ModuleName);
+ IRB.CreateCall2(AsanRegisterGlobals,
+ IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, n));
+
+ // We also need to unregister globals at the end, e.g. when a shared library
+ // gets closed.
+ Function *AsanDtorFunction = Function::Create(
+ FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
+ BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
+ IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
+ IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
+ IRB.CreatePointerCast(AllGlobals, IntptrTy),
+ ConstantInt::get(IntptrTy, n));
+ appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
+
+ DEBUG(dbgs() << M);
+ return true;
+}
+
+void AddressSanitizer::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ // Create __asan_report* callbacks.
+ for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
+ for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
+ AccessSizeIndex++) {
+ // IsWrite and TypeSize are encoded in the function name.
+ std::string FunctionName = std::string(kAsanReportErrorTemplate) +
+ (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
+ // If we are merging crash callbacks, they have two parameters.
+ AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
+ checkInterfaceFunction(M.getOrInsertFunction(
+ FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
+ }
+ }
+ AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+
+ AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
+ // We insert an empty inline asm after __asan_report* to avoid callback merge.
+ EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
+ StringRef(""), StringRef(""),
+ /*hasSideEffects=*/true);
+}
+
+void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
+ // Tell the values of mapping offset and scale to the run-time.
+ GlobalValue *asan_mapping_offset =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, Mapping.Offset),
+ kAsanMappingOffsetName);
+ // Read the global, otherwise it may be optimized away.
+ IRB.CreateLoad(asan_mapping_offset, true);
+
+ GlobalValue *asan_mapping_scale =
+ new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
+ ConstantInt::get(IntptrTy, Mapping.Scale),
+ kAsanMappingScaleName);
+ // Read the global, otherwise it may be optimized away.
+ IRB.CreateLoad(asan_mapping_scale, true);
+}
+
+// virtual
+bool AddressSanitizer::doInitialization(Module &M) {
+ // Initialize the private fields. No one has accessed them before.
+ TD = getAnalysisIfAvailable<DataLayout>();
+
+ if (!TD)
+ return false;
+ BL.reset(new BlackList(BlacklistFile));
+ DynamicallyInitializedGlobals.Init(M);
+
+ C = &(M.getContext());
+ LongSize = TD->getPointerSizeInBits();
+ IntptrTy = Type::getIntNTy(*C, LongSize);
+
+ AsanCtorFunction = Function::Create(
+ FunctionType::get(Type::getVoidTy(*C), false),
+ GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
+ BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
+ // call __asan_init in the module ctor.
+ IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
+ AsanInitFunction = checkInterfaceFunction(
+ M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
+ AsanInitFunction->setLinkage(Function::ExternalLinkage);
+ IRB.CreateCall(AsanInitFunction);
+
+ Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
+ emitShadowMapping(M, IRB);
+
+ appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
+ return true;
+}
+
+bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
+ // For each NSObject descendant having a +load method, this method is invoked
+ // by the ObjC runtime before any of the static constructors is called.
+ // Therefore we need to instrument such methods with a call to __asan_init
+ // at the beginning in order to initialize our runtime before any access to
+ // the shadow memory.
+ // We cannot just ignore these methods, because they may call other
+ // instrumented functions.
+ if (F.getName().find(" load]") != std::string::npos) {
+ IRBuilder<> IRB(F.begin()->begin());
+ IRB.CreateCall(AsanInitFunction);
+ return true;
+ }
+ return false;
+}
+
+bool AddressSanitizer::runOnFunction(Function &F) {
+ if (BL->isIn(F)) return false;
+ if (&F == AsanCtorFunction) return false;
+ if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
+ DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
+ initializeCallbacks(*F.getParent());
+
+ // If needed, insert __asan_init before checking for SanitizeAddress attr.
+ maybeInsertAsanInitAtFunctionEntry(F);
+
+ if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::SanitizeAddress))
+ return false;
+
+ if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
+ return false;
+
+ // We want to instrument every address only once per basic block (unless there
+ // are calls between uses).
+ SmallSet<Value*, 16> TempsToInstrument;
+ SmallVector<Instruction*, 16> ToInstrument;
+ SmallVector<Instruction*, 8> NoReturnCalls;
+ bool IsWrite;
+
+ // Fill the set of memory operations to instrument.
+ for (Function::iterator FI = F.begin(), FE = F.end();
+ FI != FE; ++FI) {
+ TempsToInstrument.clear();
+ int NumInsnsPerBB = 0;
+ for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
+ BI != BE; ++BI) {
+ if (LooksLikeCodeInBug11395(BI)) return false;
+ if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
+ if (ClOpt && ClOptSameTemp) {
+ if (!TempsToInstrument.insert(Addr))
+ continue; // We've seen this temp in the current BB.
+ }
+ } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
+ // ok, take it.
+ } else {
+ CallSite CS(BI);
+ if (CS) {
+ // A call inside BB.
+ TempsToInstrument.clear();
+ if (CS.doesNotReturn())
+ NoReturnCalls.push_back(CS.getInstruction());
+ }
+ continue;
+ }
+ ToInstrument.push_back(BI);
+ NumInsnsPerBB++;
+ if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
+ break;
+ }
+ }
+
+ // Instrument.
+ int NumInstrumented = 0;
+ for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
+ Instruction *Inst = ToInstrument[i];
+ if (ClDebugMin < 0 || ClDebugMax < 0 ||
+ (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
+ if (isInterestingMemoryAccess(Inst, &IsWrite))
+ instrumentMop(Inst);
+ else
+ instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
+ }
+ NumInstrumented++;
+ }
+
+ FunctionStackPoisoner FSP(F, *this);
+ bool ChangedStack = FSP.runOnFunction();
+
+ // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
+ // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
+ for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
+ Instruction *CI = NoReturnCalls[i];
+ IRBuilder<> IRB(CI);
+ IRB.CreateCall(AsanHandleNoReturnFunc);
+ }
+ DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n");
+
+ return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
+}
+
+static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
+ if (ShadowRedzoneSize == 1) return PoisonByte;
+ if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
+ if (ShadowRedzoneSize == 4)
+ return (PoisonByte << 24) + (PoisonByte << 16) +
+ (PoisonByte << 8) + (PoisonByte);
+ llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
+}
+
+static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
+ size_t Size,
+ size_t RZSize,
+ size_t ShadowGranularity,
+ uint8_t Magic) {
+ for (size_t i = 0; i < RZSize;
+ i+= ShadowGranularity, Shadow++) {
+ if (i + ShadowGranularity <= Size) {
+ *Shadow = 0; // fully addressable
+ } else if (i >= Size) {
+ *Shadow = Magic; // unaddressable
+ } else {
+ *Shadow = Size - i; // first Size-i bytes are addressable
+ }
+ }
+}
+
+// Workaround for bug 11395: we don't want to instrument stack in functions
+// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
+// FIXME: remove once the bug 11395 is fixed.
+bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
+ if (LongSize != 32) return false;
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI || !CI->isInlineAsm()) return false;
+ if (CI->getNumArgOperands() <= 5) return false;
+ // We have inline assembly with quite a few arguments.
+ return true;
+}
+
+void FunctionStackPoisoner::initializeCallbacks(Module &M) {
+ IRBuilder<> IRB(*C);
+ AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanStackFreeName, IRB.getVoidTy(),
+ IntptrTy, IntptrTy, IntptrTy, NULL));
+ AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+ AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
+ kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
+}
+
+void FunctionStackPoisoner::poisonRedZones(
+ const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
+ bool DoPoison) {
+ size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
+ assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
+ Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
+ Type *RZPtrTy = PointerType::get(RZTy, 0);
+
+ Value *PoisonLeft = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
+ Value *PoisonMid = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
+ Value *PoisonRight = ConstantInt::get(RZTy,
+ ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
+
+ // poison the first red zone.
+ IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
+
+ // poison all other red zones.
+ uint64_t Pos = RedzoneSize();
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
+ AllocaInst *AI = AllocaVec[i];
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ uint64_t AlignedSize = getAlignedAllocaSize(AI);
+ assert(AlignedSize - SizeInBytes < RedzoneSize());
+ Value *Ptr = NULL;
+
+ Pos += AlignedSize;
+
+ assert(ShadowBase->getType() == IntptrTy);
+ if (SizeInBytes < AlignedSize) {
+ // Poison the partial redzone at right
+ Ptr = IRB.CreateAdd(
+ ShadowBase, ConstantInt::get(IntptrTy,
+ (Pos >> Mapping.Scale) - ShadowRZSize));
+ size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
+ uint32_t Poison = 0;
+ if (DoPoison) {
+ PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
+ RedzoneSize(),
+ 1ULL << Mapping.Scale,
+ kAsanStackPartialRedzoneMagic);
+ }
+ Value *PartialPoison = ConstantInt::get(RZTy, Poison);
+ IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
+ }
+
+ // Poison the full redzone at right.
+ Ptr = IRB.CreateAdd(ShadowBase,
+ ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
+ bool LastAlloca = (i == AllocaVec.size() - 1);
+ Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
+ IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
+
+ Pos += RedzoneSize();
+ }
+}
+
+void FunctionStackPoisoner::poisonStack() {
+ uint64_t LocalStackSize = TotalStackSize +
+ (AllocaVec.size() + 1) * RedzoneSize();
+
+ bool DoStackMalloc = ASan.CheckUseAfterReturn
+ && LocalStackSize <= kMaxStackMallocSize;
+
+ assert(AllocaVec.size() > 0);
+ Instruction *InsBefore = AllocaVec[0];
+ IRBuilder<> IRB(InsBefore);
+
+
+ Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
+ AllocaInst *MyAlloca =
+ new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
+ if (ClRealignStack && StackAlignment < RedzoneSize())
+ StackAlignment = RedzoneSize();
+ MyAlloca->setAlignment(StackAlignment);
+ assert(MyAlloca->isStaticAlloca());
+ Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
+ Value *LocalStackBase = OrigStackBase;
+
+ if (DoStackMalloc) {
+ LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
+ ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
+ }
+
+ // This string will be parsed by the run-time (DescribeAddressIfStack).
+ SmallString<2048> StackDescriptionStorage;
+ raw_svector_ostream StackDescription(StackDescriptionStorage);
+ StackDescription << AllocaVec.size() << " ";
+
+ // Insert poison calls for lifetime intrinsics for alloca.
+ bool HavePoisonedAllocas = false;
+ for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
+ const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
+ IntrinsicInst *II = APC.InsBefore;
+ AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
+ assert(AI);
+ IRBuilder<> IRB(II);
+ poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
+ HavePoisonedAllocas |= APC.DoPoison;
+ }
+
+ uint64_t Pos = RedzoneSize();
+ // Replace Alloca instructions with base+offset.
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
+ AllocaInst *AI = AllocaVec[i];
+ uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
+ StringRef Name = AI->getName();
+ StackDescription << Pos << " " << SizeInBytes << " "
+ << Name.size() << " " << Name << " ";
+ uint64_t AlignedSize = getAlignedAllocaSize(AI);
+ assert((AlignedSize % RedzoneSize()) == 0);
+ Value *NewAllocaPtr = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
+ AI->getType());
+ replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
+ AI->replaceAllUsesWith(NewAllocaPtr);
+ Pos += AlignedSize + RedzoneSize();
+ }
+ assert(Pos == LocalStackSize);
+
+ // The left-most redzone has enough space for at least 4 pointers.
+ // Write the Magic value to redzone[0].
+ Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
+ IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
+ BasePlus0);
+ // Write the frame description constant to redzone[1].
+ Value *BasePlus1 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
+ IntptrPtrTy);
+ GlobalVariable *StackDescriptionGlobal =
+ createPrivateGlobalForString(*F.getParent(), StackDescription.str());
+ Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
+ IntptrTy);
+ IRB.CreateStore(Description, BasePlus1);
+ // Write the PC to redzone[2].
+ Value *BasePlus2 = IRB.CreateIntToPtr(
+ IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
+ 2 * ASan.LongSize/8)),
+ IntptrPtrTy);
+ IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
+
+ // Poison the stack redzones at the entry.
+ Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
+ poisonRedZones(AllocaVec, IRB, ShadowBase, true);
+
+ // Unpoison the stack before all ret instructions.
+ for (size_t i = 0, n = RetVec.size(); i < n; i++) {
+ Instruction *Ret = RetVec[i];
+ IRBuilder<> IRBRet(Ret);
+ // Mark the current frame as retired.
+ IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
+ BasePlus0);
+ // Unpoison the stack.
+ poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
+ if (DoStackMalloc) {
+ // In use-after-return mode, mark the whole stack frame unaddressable.
+ IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
+ ConstantInt::get(IntptrTy, LocalStackSize),
+ OrigStackBase);
+ } else if (HavePoisonedAllocas) {
+ // If we poisoned some allocas in llvm.lifetime analysis,
+ // unpoison whole stack frame now.
+ assert(LocalStackBase == OrigStackBase);
+ poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
+ }
+ }
+
+ // We are done. Remove the old unused alloca instructions.
+ for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
+ AllocaVec[i]->eraseFromParent();
+}
+
+void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
+ IRBuilder<> IRB, bool DoPoison) {
+ // For now just insert the call to ASan runtime.
+ Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
+ Value *SizeArg = ConstantInt::get(IntptrTy, Size);
+ IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
+ : AsanUnpoisonStackMemoryFunc,
+ AddrArg, SizeArg);
+}
+
+// Handling llvm.lifetime intrinsics for a given %alloca:
+// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
+// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
+// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
+// could be poisoned by previous llvm.lifetime.end instruction, as the
+// variable may go in and out of scope several times, e.g. in loops).
+// (3) if we poisoned at least one %alloca in a function,
+// unpoison the whole stack frame at function exit.
+
+AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
+ if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
+ // We're intested only in allocas we can handle.
+ return isInterestingAlloca(*AI) ? AI : 0;
+ // See if we've already calculated (or started to calculate) alloca for a
+ // given value.
+ AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
+ if (I != AllocaForValue.end())
+ return I->second;
+ // Store 0 while we're calculating alloca for value V to avoid
+ // infinite recursion if the value references itself.
+ AllocaForValue[V] = 0;
+ AllocaInst *Res = 0;
+ if (CastInst *CI = dyn_cast<CastInst>(V))
+ Res = findAllocaForValue(CI->getOperand(0));
+ else if (PHINode *PN = dyn_cast<PHINode>(V)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ Value *IncValue = PN->getIncomingValue(i);
+ // Allow self-referencing phi-nodes.
+ if (IncValue == PN) continue;
+ AllocaInst *IncValueAI = findAllocaForValue(IncValue);
+ // AI for incoming values should exist and should all be equal.
+ if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
+ return 0;
+ Res = IncValueAI;
+ }
+ }
+ if (Res != 0)
+ AllocaForValue[V] = Res;
+ return Res;
+}
OpenPOWER on IntegriCloud