summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombine.h28
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp350
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp597
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp288
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp35
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp772
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp11
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp315
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp79
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp294
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp116
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp100
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp272
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp604
14 files changed, 2423 insertions, 1438 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
index 6f9609c..9c2969c 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombine.h
@@ -81,7 +81,9 @@ public:
BuilderTy *Builder;
static char ID; // Pass identification, replacement for typeid
- InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {}
+ InstCombiner() : FunctionPass(ID), TD(0), Builder(0) {
+ initializeInstCombinerPass(*PassRegistry::getPassRegistry());
+ }
public:
virtual bool runOnFunction(Function &F);
@@ -143,6 +145,8 @@ public:
ConstantInt *RHS);
Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS);
+ Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS);
Instruction *FoldICmpAddOpCst(ICmpInst &ICI, Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred, Value *TheAdd);
Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
@@ -284,9 +288,16 @@ public:
private:
- /// SimplifyCommutative - This performs a few simplifications for
- /// commutative operators.
- bool SimplifyCommutative(BinaryOperator &I);
+ /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
+ /// operators which are associative or commutative.
+ bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
+
+ /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
+ /// which some other binary operation distributes over either by factorizing
+ /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
+ /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
+ /// a win). Returns the simplified value, or null if it didn't simplify.
+ Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
/// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
/// based on the demanded bits.
@@ -310,10 +321,7 @@ private:
// into the PHI (which is only possible if all operands to the PHI are
// constants).
//
- // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
- // that would normally be unprofitable because they strongly encourage jump
- // threading.
- Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
+ Instruction *FoldOpIntoPhi(Instruction &I);
// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
// operator and they all are only used by the PHI, PHI together their
@@ -339,10 +347,6 @@ private:
Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
-
- unsigned GetOrEnforceKnownAlignment(Value *V,
- unsigned PrefAlign = 0);
-
};
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
index 4d2c89e..c36a955 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -84,43 +84,37 @@ bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
}
Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(), TD))
return ReplaceInstUsesWith(I, V);
-
- if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
- // X + (signbit) --> X ^ signbit
- const APInt& Val = CI->getValue();
- uint32_t BitWidth = Val.getBitWidth();
- if (Val == APInt::getSignBit(BitWidth))
- return BinaryOperator::CreateXor(LHS, RHS);
-
- // See if SimplifyDemandedBits can simplify this. This handles stuff like
- // (X & 254)+1 -> (X&254)|1
- if (SimplifyDemandedInstructionBits(I))
- return &I;
-
- // zext(bool) + C -> bool ? C + 1 : C
- if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
- if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
- return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
- }
+ // (A*B)+(A*C) -> A*(B+C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
- if (isa<PHINode>(LHS))
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // X + (signbit) --> X ^ signbit
+ const APInt &Val = CI->getValue();
+ if (Val.isSignBit())
+ return BinaryOperator::CreateXor(LHS, RHS);
+
+ // See if SimplifyDemandedBits can simplify this. This handles stuff like
+ // (X & 254)+1 -> (X&254)|1
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // zext(bool) + C -> bool ? C + 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
+ if (ZI->getSrcTy()->isIntegerTy(1))
+ return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
- ConstantInt *XorRHS = 0;
- Value *XorLHS = 0;
- if (isa<ConstantInt>(RHSC) &&
- match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
+ Value *XorLHS = 0; ConstantInt *XorRHS = 0;
+ if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
- const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
+ const APInt &RHSVal = CI->getValue();
unsigned ExtendAmt = 0;
// If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
// If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
@@ -130,13 +124,13 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
else if (XorRHS->getValue().isPowerOf2())
ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
}
-
+
if (ExtendAmt) {
APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
if (!MaskedValueIsZero(XorLHS, Mask))
ExtendAmt = 0;
}
-
+
if (ExtendAmt) {
Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
@@ -145,34 +139,28 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
}
+ if (isa<Constant>(RHS) && isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+
if (I.getType()->isIntegerTy(1))
return BinaryOperator::CreateXor(LHS, RHS);
- if (I.getType()->isIntegerTy()) {
- // X + X --> X << 1
- if (LHS == RHS)
- return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
-
- if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
- if (RHSI->getOpcode() == Instruction::Sub)
- if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
- return ReplaceInstUsesWith(I, RHSI->getOperand(0));
- }
- if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
- if (LHSI->getOpcode() == Instruction::Sub)
- if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
- return ReplaceInstUsesWith(I, LHSI->getOperand(0));
- }
+ // X + X --> X << 1
+ if (LHS == RHS) {
+ BinaryOperator *New =
+ BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
+ New->setHasNoSignedWrap(I.hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ return New;
}
// -A + B --> B - A
// -A + -B --> -(A + B)
if (Value *LHSV = dyn_castNegVal(LHS)) {
- if (LHS->getType()->isIntOrIntVectorTy()) {
- if (Value *RHSV = dyn_castNegVal(RHS)) {
- Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
- return BinaryOperator::CreateNeg(NewAdd);
- }
+ if (Value *RHSV = dyn_castNegVal(RHS)) {
+ Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
+ return BinaryOperator::CreateNeg(NewAdd);
}
return BinaryOperator::CreateSub(RHS, LHSV);
@@ -199,11 +187,6 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
if (dyn_castFoldableMul(RHS, C2) == LHS)
return BinaryOperator::CreateMul(LHS, AddOne(C2));
- // X + ~X --> -1 since ~X = -X-1
- if (match(LHS, m_Not(m_Specific(RHS))) ||
- match(RHS, m_Not(m_Specific(LHS))))
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
// A+B --> A|B iff A and B have no bits set in common.
if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
@@ -222,7 +205,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
// W*X + Y*Z --> W * (X+Z) iff W == Y
- if (I.getType()->isIntOrIntVectorTy()) {
+ {
Value *W, *X, *Y, *Z;
if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
@@ -251,24 +234,22 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// (X & FF00) + xx00 -> (X+xx00) & FF00
if (LHS->hasOneUse() &&
- match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
- Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
- if (Anded == CRHS) {
- // See if all bits from the first bit set in the Add RHS up are included
- // in the mask. First, get the rightmost bit.
- const APInt &AddRHSV = CRHS->getValue();
-
- // Form a mask of all bits from the lowest bit added through the top.
- APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
-
- // See if the and mask includes all of these bits.
- APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
-
- if (AddRHSHighBits == AddRHSHighBitsAnd) {
- // Okay, the xform is safe. Insert the new add pronto.
- Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
- return BinaryOperator::CreateAnd(NewAdd, C2);
- }
+ match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
+ CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
+ // See if all bits from the first bit set in the Add RHS up are included
+ // in the mask. First, get the rightmost bit.
+ const APInt &AddRHSV = CRHS->getValue();
+
+ // Form a mask of all bits from the lowest bit added through the top.
+ APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
+
+ // See if the and mask includes all of these bits.
+ APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
+
+ if (AddRHSHighBits == AddRHSHighBitsAnd) {
+ // Okay, the xform is safe. Insert the new add pronto.
+ Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
+ return BinaryOperator::CreateAnd(NewAdd, C2);
}
}
@@ -293,12 +274,11 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
// Can we fold the add into the argument of the select?
// We check both true and false select arguments for a matching subtract.
- if (match(FV, m_Zero()) &&
- match(TV, m_Sub(m_Value(N), m_Specific(A))))
+ if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the true select value.
return SelectInst::Create(SI->getCondition(), N, A);
- if (match(TV, m_Zero()) &&
- match(FV, m_Sub(m_Value(N), m_Specific(A))))
+
+ if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
// Fold the add into the false select value.
return SelectInst::Create(SI->getCondition(), A, N);
}
@@ -342,7 +322,7 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
}
Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
@@ -424,6 +404,10 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
Value *Result = Constant::getNullValue(IntPtrTy);
+ // If the GEP is inbounds, we know that none of the addressing operations will
+ // overflow in an unsigned sense.
+ bool isInBounds = cast<GEPOperator>(GEP)->isInBounds();
+
// Build a mask for high order bits.
unsigned IntPtrWidth = TD.getPointerSizeInBits();
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
@@ -439,16 +423,16 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
- Result = Builder->CreateAdd(Result,
- ConstantInt::get(IntPtrTy, Size),
- GEP->getName()+".offs");
+ if (Size)
+ Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".offs");
continue;
}
Constant *Scale = ConstantInt::get(IntPtrTy, Size);
Constant *OC =
ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
- Scale = ConstantExpr::getMul(OC, Scale);
+ Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
// Emit an add instruction.
Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
continue;
@@ -457,9 +441,9 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
if (Op->getType() != IntPtrTy)
Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
if (Size != 1) {
- Constant *Scale = ConstantInt::get(IntPtrTy, Size);
// We'll let instcombine(mul) convert this to a shl if possible.
- Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
+ Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".idx", isInBounds /*NUW*/);
}
// Emit an add instruction.
@@ -545,8 +529,13 @@ Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
Instruction *InstCombiner::visitSub(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (Op0 == Op1) // sub X, X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // (A*B)-(A*C) -> A*(B-C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
// If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
if (Value *V = dyn_castNegVal(Op1)) {
@@ -556,18 +545,14 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
return Res;
}
- if (isa<UndefValue>(Op0))
- return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
- if (isa<UndefValue>(Op1))
- return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
if (I.getType()->isIntegerTy(1))
return BinaryOperator::CreateXor(Op0, Op1);
+
+ // Replace (-1 - A) with (~A).
+ if (match(Op0, m_AllOnes()))
+ return BinaryOperator::CreateNot(Op1);
if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
- // Replace (-1 - A) with (~A).
- if (C->isAllOnesValue())
- return BinaryOperator::CreateNot(Op1);
-
// C - ~X == X + (1+C)
Value *X = 0;
if (match(Op1, m_Not(m_Value(X))))
@@ -576,29 +561,16 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// -(X >>u 31) -> (X >>s 31)
// -(X >>s 31) -> (X >>u 31)
if (C->isZero()) {
- if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
- if (SI->getOpcode() == Instruction::LShr) {
- if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
- // Check to see if we are shifting out everything but the sign bit.
- if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
- SI->getType()->getPrimitiveSizeInBits()-1) {
- // Ok, the transformation is safe. Insert AShr.
- return BinaryOperator::Create(Instruction::AShr,
- SI->getOperand(0), CU, SI->getName());
- }
- }
- } else if (SI->getOpcode() == Instruction::AShr) {
- if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
- // Check to see if we are shifting out everything but the sign bit.
- if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
- SI->getType()->getPrimitiveSizeInBits()-1) {
- // Ok, the transformation is safe. Insert LShr.
- return BinaryOperator::CreateLShr(
- SI->getOperand(0), CU, SI->getName());
- }
- }
- }
- }
+ Value *X; ConstantInt *CI;
+ if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
+ // Verify we are shifting out everything but the sign bit.
+ CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
+ return BinaryOperator::CreateAShr(X, CI);
+
+ if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
+ // Verify we are shifting out everything but the sign bit.
+ CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
+ return BinaryOperator::CreateLShr(X, CI);
}
// Try to fold constant sub into select arguments.
@@ -608,86 +580,80 @@ Instruction *InstCombiner::visitSub(BinaryOperator &I) {
// C - zext(bool) -> bool ? C - 1 : C
if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
- if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+ if (ZI->getSrcTy()->isIntegerTy(1))
return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
+
+ // C-(X+C2) --> (C-C2)-X
+ ConstantInt *C2;
+ if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
+ return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
}
- if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
- if (Op1I->getOpcode() == Instruction::Add) {
- if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(1),
- I.getName());
- else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
- return BinaryOperator::CreateNeg(Op1I->getOperand(0),
- I.getName());
- else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
- if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
- // C1-(X+C2) --> (C1-C2)-X
- return BinaryOperator::CreateSub(
- ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
- }
+
+ { Value *Y;
+ // X-(X+Y) == -Y X-(Y+X) == -Y
+ if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
+ match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
+ return BinaryOperator::CreateNeg(Y);
+
+ // (X-Y)-X == -Y
+ if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNeg(Y);
+ }
+
+ if (Op1->hasOneUse()) {
+ Value *X = 0, *Y = 0, *Z = 0;
+ Constant *C = 0;
+ ConstantInt *CI = 0;
+
+ // (X - (Y - Z)) --> (X + (Z - Y)).
+ if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
+ return BinaryOperator::CreateAdd(Op0,
+ Builder->CreateSub(Z, Y, Op1->getName()));
+
+ // (X - (X & Y)) --> (X & ~Y)
+ //
+ if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
+ match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
+ return BinaryOperator::CreateAnd(Op0,
+ Builder->CreateNot(Y, Y->getName() + ".not"));
+
+ // 0 - (X sdiv C) -> (X sdiv -C)
+ if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
+ match(Op0, m_Zero()))
+ return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
+
+ // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
+ if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
+ if (Value *XNeg = dyn_castNegVal(X))
+ return BinaryOperator::CreateShl(XNeg, Y);
+
+ // X - X*C --> X * (1-C)
+ if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
+ Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
+ return BinaryOperator::CreateMul(Op0, CP1);
}
- if (Op1I->hasOneUse()) {
- // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
- // is not used by anyone else...
- //
- if (Op1I->getOpcode() == Instruction::Sub) {
- // Swap the two operands of the subexpr...
- Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
- Op1I->setOperand(0, IIOp1);
- Op1I->setOperand(1, IIOp0);
-
- // Create the new top level add instruction...
- return BinaryOperator::CreateAdd(Op0, Op1);
- }
-
- // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
- //
- if (Op1I->getOpcode() == Instruction::And &&
- (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
- Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
-
- Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
- return BinaryOperator::CreateAnd(Op0, NewNot);
- }
-
- // 0 - (X sdiv C) -> (X sdiv -C)
- if (Op1I->getOpcode() == Instruction::SDiv)
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
- if (CSI->isZero())
- if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
- return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
- ConstantExpr::getNeg(DivRHS));
-
- // 0 - (C << X) -> (-C << X)
- if (Op1I->getOpcode() == Instruction::Shl)
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
- if (CSI->isZero())
- if (Value *ShlLHSNeg = dyn_castNegVal(Op1I->getOperand(0)))
- return BinaryOperator::CreateShl(ShlLHSNeg, Op1I->getOperand(1));
-
- // X - X*C --> X * (1-C)
- ConstantInt *C2 = 0;
- if (dyn_castFoldableMul(Op1I, C2) == Op0) {
- Constant *CP1 =
- ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
- C2);
- return BinaryOperator::CreateMul(Op0, CP1);
- }
+ // X - X<<C --> X * (1-(1<<C))
+ if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
+ Constant *One = ConstantInt::get(I.getType(), 1);
+ C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
+ return BinaryOperator::CreateMul(Op0, C);
}
- }
-
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- if (Op0I->getOpcode() == Instruction::Add) {
- if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
- return ReplaceInstUsesWith(I, Op0I->getOperand(1));
- else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
- return ReplaceInstUsesWith(I, Op0I->getOperand(0));
- } else if (Op0I->getOpcode() == Instruction::Sub) {
- if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
- return BinaryOperator::CreateNeg(Op0I->getOperand(1),
- I.getName());
+
+ // X - A*-B -> X + A*B
+ // X - -A*B -> X + A*B
+ Value *A, *B;
+ if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
+ match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
+ return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
+
+ // X - A*CI -> X + A*-CI
+ // X - CI*A -> X + A*-CI
+ if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
+ match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
+ Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
+ return BinaryOperator::CreateAdd(Op0, NewMul);
}
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
index 19a05bf..b6b6b84 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAndOrXor.cpp
@@ -172,7 +172,9 @@ static Value *getFCmpValue(bool isordered, unsigned code,
case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
- case 7: return ConstantInt::getTrue(LHS->getContext());
+ case 7:
+ if (!isordered) return ConstantInt::getTrue(LHS->getContext());
+ Pred = FCmpInst::FCMP_ORD; break;
}
return Builder->CreateFCmp(Pred, LHS, RHS);
}
@@ -207,15 +209,26 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
}
break;
case Instruction::Or:
- if (Together == AndRHS) // (X | C) & C --> C
- return ReplaceInstUsesWith(TheAnd, AndRHS);
-
- if (Op->hasOneUse() && Together != OpRHS) {
- // (X | C1) & C2 --> (X | (C1&C2)) & C2
- Value *Or = Builder->CreateOr(X, Together);
- Or->takeName(Op);
- return BinaryOperator::CreateAnd(Or, AndRHS);
+ if (Op->hasOneUse()){
+ if (Together != OpRHS) {
+ // (X | C1) & C2 --> (X | (C1&C2)) & C2
+ Value *Or = Builder->CreateOr(X, Together);
+ Or->takeName(Op);
+ return BinaryOperator::CreateAnd(Or, AndRHS);
+ }
+
+ ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
+ if (TogetherCI && !TogetherCI->isZero()){
+ // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
+ // NOTE: This reduces the number of bits set in the & mask, which
+ // can expose opportunities for store narrowing.
+ Together = ConstantExpr::getXor(AndRHS, Together);
+ Value *And = Builder->CreateAnd(X, Together);
+ And->takeName(Op);
+ return BinaryOperator::CreateOr(And, OpRHS);
+ }
}
+
break;
case Instruction::Add:
if (Op->hasOneUse()) {
@@ -261,10 +274,11 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
AndRHS->getValue() & ShlMask);
- if (CI->getValue() == ShlMask) {
- // Masking out bits that the shift already masks
+ if (CI->getValue() == ShlMask)
+ // Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
- } else if (CI != AndRHS) { // Reducing bits set in and.
+
+ if (CI != AndRHS) { // Reducing bits set in and.
TheAnd.setOperand(1, CI);
return &TheAnd;
}
@@ -281,10 +295,11 @@ Instruction *InstCombiner::OptAndOp(Instruction *Op,
ConstantInt *CI = ConstantInt::get(Op->getContext(),
AndRHS->getValue() & ShrMask);
- if (CI->getValue() == ShrMask) {
- // Masking out bits that the shift already masks.
+ if (CI->getValue() == ShrMask)
+ // Masking out bits that the shift already masks.
return ReplaceInstUsesWith(TheAnd, Op);
- } else if (CI != AndRHS) {
+
+ if (CI != AndRHS) {
TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
return &TheAnd;
}
@@ -434,6 +449,270 @@ Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
}
+/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
+/// One of A and B is considered the mask, the other the value. This is
+/// described as the "AMask" or "BMask" part of the enum. If the enum
+/// contains only "Mask", then both A and B can be considered masks.
+/// If A is the mask, then it was proven, that (A & C) == C. This
+/// is trivial if C == A, or C == 0. If both A and C are constants, this
+/// proof is also easy.
+/// For the following explanations we assume that A is the mask.
+/// The part "AllOnes" declares, that the comparison is true only
+/// if (A & B) == A, or all bits of A are set in B.
+/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
+/// The part "AllZeroes" declares, that the comparison is true only
+/// if (A & B) == 0, or all bits of A are cleared in B.
+/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
+/// The part "Mixed" declares, that (A & B) == C and C might or might not
+/// contain any number of one bits and zero bits.
+/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
+/// The Part "Not" means, that in above descriptions "==" should be replaced
+/// by "!=".
+/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
+/// If the mask A contains a single bit, then the following is equivalent:
+/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
+/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
+enum MaskedICmpType {
+ FoldMskICmp_AMask_AllOnes = 1,
+ FoldMskICmp_AMask_NotAllOnes = 2,
+ FoldMskICmp_BMask_AllOnes = 4,
+ FoldMskICmp_BMask_NotAllOnes = 8,
+ FoldMskICmp_Mask_AllZeroes = 16,
+ FoldMskICmp_Mask_NotAllZeroes = 32,
+ FoldMskICmp_AMask_Mixed = 64,
+ FoldMskICmp_AMask_NotMixed = 128,
+ FoldMskICmp_BMask_Mixed = 256,
+ FoldMskICmp_BMask_NotMixed = 512
+};
+
+/// return the set of pattern classes (from MaskedICmpType)
+/// that (icmp SCC (A & B), C) satisfies
+static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
+ ICmpInst::Predicate SCC)
+{
+ ConstantInt *ACst = dyn_cast<ConstantInt>(A);
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ ConstantInt *CCst = dyn_cast<ConstantInt>(C);
+ bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
+ bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
+ ACst->getValue().isPowerOf2());
+ bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
+ BCst->getValue().isPowerOf2());
+ unsigned result = 0;
+ if (CCst != 0 && CCst->isZero()) {
+ // if C is zero, then both A and B qualify as mask
+ result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
+ FoldMskICmp_Mask_AllZeroes |
+ FoldMskICmp_AMask_Mixed |
+ FoldMskICmp_BMask_Mixed)
+ : (FoldMskICmp_Mask_NotAllZeroes |
+ FoldMskICmp_Mask_NotAllZeroes |
+ FoldMskICmp_AMask_NotMixed |
+ FoldMskICmp_BMask_NotMixed));
+ if (icmp_abit)
+ result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
+ FoldMskICmp_AMask_NotMixed)
+ : (FoldMskICmp_AMask_AllOnes |
+ FoldMskICmp_AMask_Mixed));
+ if (icmp_bbit)
+ result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
+ FoldMskICmp_BMask_NotMixed)
+ : (FoldMskICmp_BMask_AllOnes |
+ FoldMskICmp_BMask_Mixed));
+ return result;
+ }
+ if (A == C) {
+ result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
+ FoldMskICmp_AMask_Mixed)
+ : (FoldMskICmp_AMask_NotAllOnes |
+ FoldMskICmp_AMask_NotMixed));
+ if (icmp_abit)
+ result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
+ FoldMskICmp_AMask_NotMixed)
+ : (FoldMskICmp_Mask_AllZeroes |
+ FoldMskICmp_AMask_Mixed));
+ }
+ else if (ACst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(ACst, CCst) == CCst) {
+ result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
+ : FoldMskICmp_AMask_NotMixed);
+ }
+ if (B == C)
+ {
+ result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
+ FoldMskICmp_BMask_Mixed)
+ : (FoldMskICmp_BMask_NotAllOnes |
+ FoldMskICmp_BMask_NotMixed));
+ if (icmp_bbit)
+ result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
+ FoldMskICmp_BMask_NotMixed)
+ : (FoldMskICmp_Mask_AllZeroes |
+ FoldMskICmp_BMask_Mixed));
+ }
+ else if (BCst != 0 && CCst != 0 &&
+ ConstantExpr::getAnd(BCst, CCst) == CCst) {
+ result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
+ : FoldMskICmp_BMask_NotMixed);
+ }
+ return result;
+}
+
+/// foldLogOpOfMaskedICmpsHelper:
+/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
+/// return the set of pattern classes (from MaskedICmpType)
+/// that both LHS and RHS satisfy
+static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
+ Value*& B, Value*& C,
+ Value*& D, Value*& E,
+ ICmpInst *LHS, ICmpInst *RHS) {
+ ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
+ if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
+ if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
+ if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
+ // vectors are not (yet?) supported
+ if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
+
+ // Here comes the tricky part:
+ // LHS might be of the form L11 & L12 == X, X == L21 & L22,
+ // and L11 & L12 == L21 & L22. The same goes for RHS.
+ // Now we must find those components L** and R**, that are equal, so
+ // that we can extract the parameters A, B, C, D, and E for the canonical
+ // above.
+ Value *L1 = LHS->getOperand(0);
+ Value *L2 = LHS->getOperand(1);
+ Value *L11,*L12,*L21,*L22;
+ if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
+ if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
+ L21 = L22 = 0;
+ }
+ else {
+ if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
+ return 0;
+ std::swap(L1, L2);
+ L21 = L22 = 0;
+ }
+
+ Value *R1 = RHS->getOperand(0);
+ Value *R2 = RHS->getOperand(1);
+ Value *R11,*R12;
+ bool ok = false;
+ if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
+ if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
+ A = R11; D = R12; E = R2; ok = true;
+ }
+ else
+ if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
+ A = R12; D = R11; E = R2; ok = true;
+ }
+ }
+ if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
+ if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
+ A = R11; D = R12; E = R1; ok = true;
+ }
+ else
+ if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
+ A = R12; D = R11; E = R1; ok = true;
+ }
+ else
+ return 0;
+ }
+ if (!ok)
+ return 0;
+
+ if (L11 == A) {
+ B = L12; C = L2;
+ }
+ else if (L12 == A) {
+ B = L11; C = L2;
+ }
+ else if (L21 == A) {
+ B = L22; C = L1;
+ }
+ else if (L22 == A) {
+ B = L21; C = L1;
+ }
+
+ unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
+ unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
+ return left_type & right_type;
+}
+/// foldLogOpOfMaskedICmps:
+/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
+/// into a single (icmp(A & X) ==/!= Y)
+static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
+ ICmpInst::Predicate NEWCC,
+ llvm::InstCombiner::BuilderTy* Builder) {
+ Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
+ unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
+ if (mask == 0) return 0;
+
+ if (NEWCC == ICmpInst::ICMP_NE)
+ mask >>= 1; // treat "Not"-states as normal states
+
+ if (mask & FoldMskICmp_Mask_AllZeroes) {
+ // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
+ // -> (icmp eq (A & (B|D)), 0)
+ Value* newOr = Builder->CreateOr(B, D);
+ Value* newAnd = Builder->CreateAnd(A, newOr);
+ // we can't use C as zero, because we might actually handle
+ // (icmp ne (A & B), B) & (icmp ne (A & D), D)
+ // with B and D, having a single bit set
+ Value* zero = Constant::getNullValue(A->getType());
+ return Builder->CreateICmp(NEWCC, newAnd, zero);
+ }
+ else if (mask & FoldMskICmp_BMask_AllOnes) {
+ // (icmp eq (A & B), B) & (icmp eq (A & D), D)
+ // -> (icmp eq (A & (B|D)), (B|D))
+ Value* newOr = Builder->CreateOr(B, D);
+ Value* newAnd = Builder->CreateAnd(A, newOr);
+ return Builder->CreateICmp(NEWCC, newAnd, newOr);
+ }
+ else if (mask & FoldMskICmp_AMask_AllOnes) {
+ // (icmp eq (A & B), A) & (icmp eq (A & D), A)
+ // -> (icmp eq (A & (B&D)), A)
+ Value* newAnd1 = Builder->CreateAnd(B, D);
+ Value* newAnd = Builder->CreateAnd(A, newAnd1);
+ return Builder->CreateICmp(NEWCC, newAnd, A);
+ }
+ else if (mask & FoldMskICmp_BMask_Mixed) {
+ // (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ // We already know that B & C == C && D & E == E.
+ // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
+ // C and E, which are shared by both the mask B and the mask D, don't
+ // contradict, then we can transform to
+ // -> (icmp eq (A & (B|D)), (C|E))
+ // Currently, we only handle the case of B, C, D, and E being constant.
+ ConstantInt *BCst = dyn_cast<ConstantInt>(B);
+ if (BCst == 0) return 0;
+ ConstantInt *DCst = dyn_cast<ConstantInt>(D);
+ if (DCst == 0) return 0;
+ // we can't simply use C and E, because we might actually handle
+ // (icmp ne (A & B), B) & (icmp eq (A & D), D)
+ // with B and D, having a single bit set
+
+ ConstantInt *CCst = dyn_cast<ConstantInt>(C);
+ if (CCst == 0) return 0;
+ if (LHS->getPredicate() != NEWCC)
+ CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
+ ConstantInt *ECst = dyn_cast<ConstantInt>(E);
+ if (ECst == 0) return 0;
+ if (RHS->getPredicate() != NEWCC)
+ ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
+ ConstantInt* MCst = dyn_cast<ConstantInt>(
+ ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
+ ConstantExpr::getXor(CCst, ECst)) );
+ // if there is a conflict we should actually return a false for the
+ // whole construct
+ if (!MCst->isZero())
+ return 0;
+ Value *newOr1 = Builder->CreateOr(B, D);
+ Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
+ Value *newAnd = Builder->CreateAnd(A, newOr1);
+ return Builder->CreateICmp(NEWCC, newAnd, newOr2);
+ }
+ return 0;
+}
+
/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
@@ -451,6 +730,10 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
return getICmpValue(isSigned, Code, Op0, Op1, Builder);
}
}
+
+ // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
+ return V;
// This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
@@ -472,22 +755,6 @@ Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *NewOr = Builder->CreateOr(Val, Val2);
return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
-
- // (icmp ne (A & C1), 0) & (icmp ne (A & C2), 0) -->
- // (icmp eq (A & (C1|C2)), (C1|C2)) where C1 and C2 are non-zero POT
- if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
- Value *Op1 = 0, *Op2 = 0;
- ConstantInt *CI1 = 0, *CI2 = 0;
- if (match(LHS->getOperand(0), m_And(m_Value(Op1), m_ConstantInt(CI1))) &&
- match(RHS->getOperand(0), m_And(m_Value(Op2), m_ConstantInt(CI2)))) {
- if (Op1 == Op2 && !CI1->isZero() && !CI2->isZero() &&
- CI1->getValue().isPowerOf2() && CI2->getValue().isPowerOf2()) {
- Constant *ConstOr = ConstantExpr::getOr(CI1, CI2);
- Value *NewAnd = Builder->CreateAnd(Op1, ConstOr);
- return Builder->CreateICmp(ICmpInst::ICMP_EQ, NewAnd, ConstOr);
- }
- }
- }
}
// From here on, we only handle:
@@ -712,12 +979,16 @@ Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyAndInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ // (A|B)&(A|C) -> A|(B&C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
+
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@@ -725,7 +996,6 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
const APInt &AndRHSMask = AndRHS->getValue();
- APInt NotAndRHS(~AndRHSMask);
// Optimize a variety of ((val OP C1) & C2) combinations...
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
@@ -734,10 +1004,11 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
switch (Op0I->getOpcode()) {
default: break;
case Instruction::Xor:
- case Instruction::Or:
+ case Instruction::Or: {
// If the mask is only needed on one incoming arm, push it up.
if (!Op0I->hasOneUse()) break;
+ APInt NotAndRHS(~AndRHSMask);
if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
// Not masking anything out for the LHS, move to RHS.
Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
@@ -753,6 +1024,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
break;
+ }
case Instruction::Add:
// ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
// ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
@@ -772,14 +1044,12 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
// (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
// has 1's for all bits that the subtraction with A might affect.
- if (Op0I->hasOneUse()) {
+ if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
uint32_t BitWidth = AndRHSMask.getBitWidth();
uint32_t Zeros = AndRHSMask.countLeadingZeros();
APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
- ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
- if (!(A && A->isZero()) && // avoid infinite recursion.
- MaskedValueIsZero(Op0LHS, Mask)) {
+ if (MaskedValueIsZero(Op0LHS, Mask)) {
Value *NewNeg = Builder->CreateNeg(Op0RHS);
return BinaryOperator::CreateAnd(NewNeg, AndRHS);
}
@@ -797,39 +1067,25 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
}
break;
}
-
+
if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
return Res;
- } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
- // If this is an integer truncation or change from signed-to-unsigned, and
- // if the source is an and/or with immediate, transform it. This
- // frequently occurs for bitfield accesses.
- if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
- if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
- CastOp->getNumOperands() == 2)
- if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
- if (CastOp->getOpcode() == Instruction::And) {
- // Change: and (cast (and X, C1) to T), C2
- // into : and (cast X to T), trunc_or_bitcast(C1)&C2
- // This will fold the two constants together, which may allow
- // other simplifications.
- Value *NewCast = Builder->CreateTruncOrBitCast(
- CastOp->getOperand(0), I.getType(),
- CastOp->getName()+".shrunk");
- // trunc_or_bitcast(C1)&C2
- Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
- C3 = ConstantExpr::getAnd(C3, AndRHS);
- return BinaryOperator::CreateAnd(NewCast, C3);
- } else if (CastOp->getOpcode() == Instruction::Or) {
- // Change: and (cast (or X, C1) to T), C2
- // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
- Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
- if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
- // trunc(C1)&C2
- return ReplaceInstUsesWith(I, AndRHS);
- }
- }
+ }
+
+ // If this is an integer truncation, and if the source is an 'and' with
+ // immediate, transform it. This frequently occurs for bitfield accesses.
+ {
+ Value *X = 0; ConstantInt *YC = 0;
+ if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
+ // Change: and (trunc (and X, YC) to T), C2
+ // into : and (trunc X to T), trunc(YC) & C2
+ // This will fold the two constants together, which may allow
+ // other simplifications.
+ Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
+ Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
+ C3 = ConstantExpr::getAnd(C3, AndRHS);
+ return BinaryOperator::CreateAnd(NewCast, C3);
}
}
@@ -851,7 +1107,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
I.getName()+".demorgan");
return BinaryOperator::CreateNot(Or);
}
-
+
{
Value *A = 0, *B = 0, *C = 0, *D = 0;
// (A|B) & ~(A&B) -> A^B
@@ -884,7 +1140,11 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
cast<BinaryOperator>(Op1)->swapOperands();
std::swap(A, B);
}
- if (A == Op0) // A&(A^B) -> A & ~B
+ // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
+ // A is originally -1 (or a vector of -1 and undefs), then we enter
+ // an endless loop. By checking that A is non-constant we ensure that
+ // we will never get to the loop.
+ if (A == Op0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
}
@@ -1160,7 +1420,12 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
return getICmpValue(isSigned, Code, Op0, Op1, Builder);
}
}
-
+
+ // handle (roughly):
+ // (icmp ne (A & B), C) | (icmp ne (A & D), E)
+ if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
+ return V;
+
// This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
@@ -1173,24 +1438,17 @@ Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Value *NewOr = Builder->CreateOr(Val, Val2);
return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
}
-
- // (icmp eq (A & C1), 0) | (icmp eq (A & C2), 0) -->
- // (icmp ne (A & (C1|C2)), (C1|C2)) where C1 and C2 are non-zero POT
- if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
- Value *Op1 = 0, *Op2 = 0;
- ConstantInt *CI1 = 0, *CI2 = 0;
- if (match(LHS->getOperand(0), m_And(m_Value(Op1), m_ConstantInt(CI1))) &&
- match(RHS->getOperand(0), m_And(m_Value(Op2), m_ConstantInt(CI2)))) {
- if (Op1 == Op2 && !CI1->isZero() && !CI2->isZero() &&
- CI1->getValue().isPowerOf2() && CI2->getValue().isPowerOf2()) {
- Constant *ConstOr = ConstantExpr::getOr(CI1, CI2);
- Value *NewAnd = Builder->CreateAnd(Op1, ConstOr);
- return Builder->CreateICmp(ICmpInst::ICMP_NE, NewAnd, ConstOr);
- }
- }
- }
}
-
+
+ // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
+ // iff C2 + CA == C1.
+ if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
+ ConstantInt *AddCst;
+ if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
+ if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
+ return Builder->CreateICmpULE(Val, LHSCst);
+ }
+
// From here on, we only handle:
// (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
if (Val != Val2) return 0;
@@ -1429,12 +1687,16 @@ Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
}
Instruction *InstCombiner::visitOr(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyOrInst(Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
+ // (A&B)|(A&C) -> A&(B|C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
+
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
@@ -1481,8 +1743,8 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
if (match(Op0, m_Or(m_Value(), m_Value())) ||
match(Op1, m_Or(m_Value(), m_Value())) ||
- (match(Op0, m_Shift(m_Value(), m_Value())) &&
- match(Op1, m_Shift(m_Value(), m_Value())))) {
+ (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
+ match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
if (Instruction *BSwap = MatchBSwap(I))
return BSwap;
}
@@ -1509,7 +1771,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Value *C = 0, *D = 0;
if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
match(Op1, m_And(m_Value(B), m_Value(D)))) {
- Value *V1 = 0, *V2 = 0, *V3 = 0;
+ Value *V1 = 0, *V2 = 0;
C1 = dyn_cast<ConstantInt>(C);
C2 = dyn_cast<ConstantInt>(D);
if (C1 && C2) { // (A & C1)|(B & C2)
@@ -1567,25 +1829,6 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
}
}
}
-
- // Check to see if we have any common things being and'ed. If so, find the
- // terms for V1 & (V2|V3).
- if (Op0->hasOneUse() || Op1->hasOneUse()) {
- V1 = 0;
- if (A == B) // (A & C)|(A & D) == A & (C|D)
- V1 = A, V2 = C, V3 = D;
- else if (A == D) // (A & C)|(B & A) == A & (B|C)
- V1 = A, V2 = B, V3 = C;
- else if (C == B) // (A & C)|(C & D) == C & (A|D)
- V1 = C, V2 = A, V3 = D;
- else if (C == D) // (A & C)|(B & C) == C & (A|B)
- V1 = C, V2 = A, V3 = B;
-
- if (V1) {
- Value *Or = Builder->CreateOr(V2, V3, "tmp");
- return BinaryOperator::CreateAnd(V1, Or);
- }
- }
// (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
// Don't do this for vector select idioms, the code generator doesn't handle
@@ -1667,65 +1910,69 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
// fold (or (cast A), (cast B)) -> (cast (or A, B))
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
- if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
- if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
- const Type *SrcTy = Op0C->getOperand(0)->getType();
- if (SrcTy == Op1C->getOperand(0)->getType() &&
- SrcTy->isIntOrIntVectorTy()) {
- Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
-
- if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
- // Only do this if the casts both really cause code to be
- // generated.
- ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
- ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
- Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
- return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
- }
-
- // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
- if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
- if (Value *Res = FoldOrOfICmps(LHS, RHS))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
-
- // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
- if (Value *Res = FoldOrOfFCmps(LHS, RHS))
- return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
+ CastInst *Op1C = dyn_cast<CastInst>(Op1);
+ if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
+ const Type *SrcTy = Op0C->getOperand(0)->getType();
+ if (SrcTy == Op1C->getOperand(0)->getType() &&
+ SrcTy->isIntOrIntVectorTy()) {
+ Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
+
+ if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
+ // Only do this if the casts both really cause code to be
+ // generated.
+ ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
+ ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
+ Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
+ return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
}
+
+ // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
+ // cast is otherwise not optimizable. This happens for vector sexts.
+ if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
+ if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
+ if (Value *Res = FoldOrOfICmps(LHS, RHS))
+ return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
+
+ // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
+ // cast is otherwise not optimizable. This happens for vector sexts.
+ if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
+ if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
+ if (Value *Res = FoldOrOfFCmps(LHS, RHS))
+ return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
}
+ }
+ }
+
+ // Note: If we've gotten to the point of visiting the outer OR, then the
+ // inner one couldn't be simplified. If it was a constant, then it won't
+ // be simplified by a later pass either, so we try swapping the inner/outer
+ // ORs in the hopes that we'll be able to simplify it this way.
+ // (X|C) | V --> (X|V) | C
+ if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
+ match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
+ Value *Inner = Builder->CreateOr(A, Op1);
+ Inner->takeName(Op0);
+ return BinaryOperator::CreateOr(Inner, C1);
}
return Changed ? &I : 0;
}
Instruction *InstCombiner::visitXor(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isa<UndefValue>(Op1)) {
- if (isa<UndefValue>(Op0))
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
- }
+ if (Value *V = SimplifyXorInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // (A&B)^(A&C) -> A&(B^C) etc
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
- // xor X, X = 0
- if (Op0 == Op1)
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
// See if we can simplify any instructions used by the instruction whose sole
// purpose is to compute bits we don't care about.
if (SimplifyDemandedInstructionBits(I))
return &I;
- if (I.getType()->isVectorTy())
- if (isa<ConstantAggregateZero>(Op1))
- return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
// Is this a ~ operation?
if (Value *NotOp = dyn_castNotVal(&I)) {
@@ -1844,15 +2091,6 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
return NV;
}
- if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
- if (X == Op1)
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
- if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
- if (X == Op0)
- return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
-
-
BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
if (Op1I) {
Value *A, *B;
@@ -1865,10 +2103,6 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
I.swapOperands(); // Simplified below.
std::swap(Op0, Op1);
}
- } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
- return ReplaceInstUsesWith(I, B); // A^(A^B) == B
- } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
- return ReplaceInstUsesWith(I, A); // A^(B^A) == B
} else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
Op1I->hasOneUse()){
if (A == Op0) { // A^(A&B) -> A^(B&A)
@@ -1891,10 +2125,6 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
std::swap(A, B);
if (B == Op1) // (A|B)^B == A & ~B
return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
- } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
- return ReplaceInstUsesWith(I, B); // (A^B)^A == B
- } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
- return ReplaceInstUsesWith(I, A); // (B^A)^A == B
} else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
Op0I->hasOneUse()){
if (A == Op1) // (A&B)^A -> (B&A)^A
@@ -1932,29 +2162,8 @@ Instruction *InstCombiner::visitXor(BinaryOperator &I) {
if ((A == C && B == D) || (A == D && B == C))
return BinaryOperator::CreateXor(A, B);
}
-
- // (A & B)^(C & D)
- if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
- match(Op0I, m_And(m_Value(A), m_Value(B))) &&
- match(Op1I, m_And(m_Value(C), m_Value(D)))) {
- // (X & Y)^(X & Y) -> (Y^Z) & X
- Value *X = 0, *Y = 0, *Z = 0;
- if (A == C)
- X = A, Y = B, Z = D;
- else if (A == D)
- X = A, Y = B, Z = C;
- else if (B == C)
- X = B, Y = A, Z = D;
- else if (B == D)
- X = B, Y = A, Z = C;
-
- if (X) {
- Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
- return BinaryOperator::CreateAnd(NewOp, X);
- }
- }
}
-
+
// (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
index 0ebe3b4..8449f7b 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -17,6 +17,7 @@
#include "llvm/Target/TargetData.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
/// getPromotedType - Return the specified type promoted as it would be to pass
@@ -29,100 +30,10 @@ static const Type *getPromotedType(const Type *Ty) {
return Ty;
}
-/// EnforceKnownAlignment - If the specified pointer points to an object that
-/// we control, modify the object's alignment to PrefAlign. This isn't
-/// often possible though. If alignment is important, a more reliable approach
-/// is to simply align all global variables and allocation instructions to
-/// their preferred alignment from the beginning.
-///
-static unsigned EnforceKnownAlignment(Value *V,
- unsigned Align, unsigned PrefAlign) {
-
- User *U = dyn_cast<User>(V);
- if (!U) return Align;
-
- switch (Operator::getOpcode(U)) {
- default: break;
- case Instruction::BitCast:
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- case Instruction::GetElementPtr: {
- // If all indexes are zero, it is just the alignment of the base pointer.
- bool AllZeroOperands = true;
- for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
- if (!isa<Constant>(*i) ||
- !cast<Constant>(*i)->isNullValue()) {
- AllZeroOperands = false;
- break;
- }
-
- if (AllZeroOperands) {
- // Treat this like a bitcast.
- return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
- }
- return Align;
- }
- case Instruction::Alloca: {
- AllocaInst *AI = cast<AllocaInst>(V);
- // If there is a requested alignment and if this is an alloca, round up.
- if (AI->getAlignment() >= PrefAlign)
- return AI->getAlignment();
- AI->setAlignment(PrefAlign);
- return PrefAlign;
- }
- }
-
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // If there is a large requested alignment and we can, bump up the alignment
- // of the global.
- if (GV->isDeclaration()) return Align;
-
- if (GV->getAlignment() >= PrefAlign)
- return GV->getAlignment();
- // We can only increase the alignment of the global if it has no alignment
- // specified or if it is not assigned a section. If it is assigned a
- // section, the global could be densely packed with other objects in the
- // section, increasing the alignment could cause padding issues.
- if (!GV->hasSection() || GV->getAlignment() == 0)
- GV->setAlignment(PrefAlign);
- return GV->getAlignment();
- }
-
- return Align;
-}
-
-/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
-/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
-/// and it is more than the alignment of the ultimate object, see if we can
-/// increase the alignment of the ultimate object, making this check succeed.
-unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
- unsigned PrefAlign) {
- assert(V->getType()->isPointerTy() &&
- "GetOrEnforceKnownAlignment expects a pointer!");
- unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64;
- APInt Mask = APInt::getAllOnesValue(BitWidth);
- APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
- unsigned TrailZ = KnownZero.countTrailingOnes();
-
- // Avoid trouble with rediculously large TrailZ values, such as
- // those computed from a null pointer.
- TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
-
- unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
-
- // LLVM doesn't support alignments larger than this currently.
- Align = std::min(Align, +Value::MaximumAlignment);
-
- if (PrefAlign > Align)
- Align = EnforceKnownAlignment(V, Align, PrefAlign);
-
- // We don't need to make any adjustment.
- return Align;
-}
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
- unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getArgOperand(0));
- unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getArgOperand(1));
+ unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
+ unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
unsigned MinAlign = std::min(DstAlign, SrcAlign);
unsigned CopyAlign = MI->getAlignment();
@@ -211,7 +122,7 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
}
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
- unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
+ unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
if (MI->getAlignment() < Alignment) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
Alignment, false));
@@ -234,7 +145,9 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
- Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
+ unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
+ Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
+ Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
@@ -280,7 +193,8 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// memmove/cpy/set of zero bytes is a noop.
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
- if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
+ if (NumBytes->isNullValue())
+ return EraseInstFromFunction(CI);
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
if (CI->getZExtValue() == 1) {
@@ -289,6 +203,10 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// alignment is sufficient.
}
}
+
+ // No other transformations apply to volatile transfers.
+ if (MI->isVolatile())
+ return 0;
// If we have a memmove and the source operation is a constant global,
// then the source and dest pointers can't alias, so we can change this
@@ -332,82 +250,73 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (!TD) break;
const Type *ReturnTy = CI.getType();
- bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
+ uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
// Get to the real allocated thing and offset as fast as possible.
Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
-
+
+ uint64_t Offset = 0;
+ uint64_t Size = -1ULL;
+
+ // Try to look through constant GEPs.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
+ if (!GEP->hasAllConstantIndices()) break;
+
+ // Get the current byte offset into the thing. Use the original
+ // operand in case we're looking through a bitcast.
+ SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
+ Offset = TD->getIndexedOffset(GEP->getPointerOperandType(),
+ Ops.data(), Ops.size());
+
+ Op1 = GEP->getPointerOperand()->stripPointerCasts();
+
+ // Make sure we're not a constant offset from an external
+ // global.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
+ if (!GV->hasDefinitiveInitializer()) break;
+ }
+
// If we've stripped down to a single global variable that we
// can know the size of then just return that.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
if (GV->hasDefinitiveInitializer()) {
Constant *C = GV->getInitializer();
- uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
- return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
+ Size = TD->getTypeAllocSize(C->getType());
} else {
// Can't determine size of the GV.
- Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
+ Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
return ReplaceInstUsesWith(CI, RetVal);
}
} else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
// Get alloca size.
if (AI->getAllocatedType()->isSized()) {
- uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
+ Size = TD->getTypeAllocSize(AI->getAllocatedType());
if (AI->isArrayAllocation()) {
const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
if (!C) break;
- AllocaSize *= C->getZExtValue();
+ Size *= C->getZExtValue();
}
- return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
}
} else if (CallInst *MI = extractMallocCall(Op1)) {
+ // Get allocation size.
const Type* MallocType = getMallocAllocatedType(MI);
- // Get alloca size.
- if (MallocType && MallocType->isSized()) {
- if (Value *NElems = getMallocArraySize(MI, TD, true)) {
+ if (MallocType && MallocType->isSized())
+ if (Value *NElems = getMallocArraySize(MI, TD, true))
if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
- return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
- (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
- }
- }
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
- // Only handle constant GEPs here.
- if (CE->getOpcode() != Instruction::GetElementPtr) break;
- GEPOperator *GEP = cast<GEPOperator>(CE);
-
- // Make sure we're not a constant offset from an external
- // global.
- Value *Operand = GEP->getPointerOperand();
- Operand = Operand->stripPointerCasts();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
- if (!GV->hasDefinitiveInitializer()) break;
-
- // Get what we're pointing to and its size.
- const PointerType *BaseType =
- cast<PointerType>(Operand->getType());
- uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
-
- // Get the current byte offset into the thing. Use the original
- // operand in case we're looking through a bitcast.
- SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
- const PointerType *OffsetType =
- cast<PointerType>(GEP->getPointerOperand()->getType());
- uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
-
- if (Size < Offset) {
- // Out of bound reference? Negative index normalized to large
- // index? Just return "I don't know".
- Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
- return ReplaceInstUsesWith(CI, RetVal);
- }
-
- Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
- return ReplaceInstUsesWith(CI, RetVal);
- }
+ Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
+ }
// Do not return "I don't know" here. Later optimization passes could
// make it possible to evaluate objectsize to a constant.
- break;
+ if (Size == -1ULL)
+ break;
+
+ if (Size < Offset) {
+ // Out of bound reference? Negative index normalized to large
+ // index? Just return "I don't know".
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
+ }
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
}
case Intrinsic::bswap:
// bswap(bswap(x)) -> x
@@ -604,7 +513,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_loadu_dq:
// Turn PPC lvx -> load if the pointer is known aligned.
// Turn X86 loadups -> load if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getArgOperand(0), 16) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
PointerType::getUnqual(II->getType()));
return new LoadInst(Ptr);
@@ -613,7 +522,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_stvx:
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getArgOperand(1), 16) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
const Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(0)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
@@ -624,16 +533,23 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_storeu_pd:
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
- if (GetOrEnforceKnownAlignment(II->getArgOperand(0), 16) >= 16) {
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
const Type *OpPtrTy =
PointerType::getUnqual(II->getArgOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
return new StoreInst(II->getArgOperand(1), Ptr);
}
break;
-
- case Intrinsic::x86_sse_cvttss2si: {
- // These intrinsics only demands the 0th element of its input vector. If
+
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64: {
+ // These intrinsics only demand the 0th element of their input vectors. If
// we can simplify the input based on that, do so now.
unsigned VWidth =
cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
@@ -646,7 +562,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
break;
}
-
+
case Intrinsic::ppc_altivec_vperm:
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getArgOperand(2))) {
@@ -697,6 +613,32 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
break;
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
+ unsigned AlignArg = II->getNumArgOperands() - 1;
+ ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
+ if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
+ II->setArgOperand(AlignArg,
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ MemAlign, false));
+ return II;
+ }
+ break;
+ }
+
case Intrinsic::stackrestore: {
// If the save is right next to the restore, remove the restore. This can
// happen when variable allocas are DCE'd.
@@ -783,6 +725,8 @@ protected:
NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
}
bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
+ if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
+ return true;
if (ConstantInt *SizeCI =
dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
if (SizeCI->isAllOnesValue())
@@ -819,11 +763,11 @@ Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
Instruction *InstCombiner::visitCallSite(CallSite CS) {
bool Changed = false;
- // If the callee is a constexpr cast of a function, attempt to move the cast
- // to the arguments of the call/invoke.
- if (transformConstExprCastCall(CS)) return 0;
-
+ // If the callee is a pointer to a function, attempt to move any casts to the
+ // arguments of the call/invoke.
Value *Callee = CS.getCalledValue();
+ if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
+ return 0;
if (Function *CalleeF = dyn_cast<Function>(Callee))
// If the call and callee calling conventions don't match, this call must
@@ -917,12 +861,10 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
// attempt to move the cast to the arguments of the call/invoke.
//
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
- if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
- ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
- if (CE->getOpcode() != Instruction::BitCast ||
- !isa<Function>(CE->getOperand(0)))
+ Function *Callee =
+ dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
+ if (Callee == 0)
return false;
- Function *Callee = cast<Function>(CE->getOperand(0));
Instruction *Caller = CS.getInstruction();
const AttrListPtr &CallerPAL = CS.getAttributes();
@@ -984,9 +926,22 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
- if (CallerPAL.getParamAttributes(i + 1)
- & Attribute::typeIncompatible(ParamTy))
+ unsigned Attrs = CallerPAL.getParamAttributes(i + 1);
+ if (Attrs & Attribute::typeIncompatible(ParamTy))
return false; // Attribute not compatible with transformed value.
+
+ // If the parameter is passed as a byval argument, then we have to have a
+ // sized type and the sized type has to have the same size as the old type.
+ if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
+ const PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
+ if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
+ return false;
+
+ const Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
+ if (TD->getTypeAllocSize(CurElTy) !=
+ TD->getTypeAllocSize(ParamPTy->getElementType()))
+ return false;
+ }
// Converting from one pointer type to another or between a pointer and an
// integer of the same size is safe even if we do not have a body.
@@ -1109,8 +1064,8 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
- Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
- OldRetTy, false);
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(NC, false, OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
// If this is an invoke instruction, we should insert it after the first
@@ -1119,7 +1074,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
InsertNewInstBefore(NC, *I);
} else {
- // Otherwise, it's a call, just insert cast right after the call instr
+ // Otherwise, it's a call, just insert cast right after the call.
InsertNewInstBefore(NC, *Caller);
}
Worklist.AddUsersToWorkList(*Caller);
@@ -1128,7 +1083,6 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
}
}
-
if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 79a9b09..b432641 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -462,8 +462,8 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
Value *A = 0; ConstantInt *Cst = 0;
- if (match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst))) &&
- Src->hasOneUse()) {
+ if (Src->hasOneUse() &&
+ match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
// We have three types to worry about here, the type of A, the source of
// the truncate (MidSize), and the destination of the truncate. We know that
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
@@ -482,6 +482,16 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Shift->takeName(Src);
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
}
+
+ // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
+ // type isn't non-native.
+ if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
+ ShouldChangeType(Src->getType(), CI.getType()) &&
+ match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
+ Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
+ return BinaryOperator::CreateAnd(NewTrunc,
+ ConstantExpr::getTrunc(Cst, CI.getType()));
+ }
return 0;
}
@@ -1019,8 +1029,22 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
}
}
}
-
-
+
+ // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
+ if (const VectorType *VTy = dyn_cast<VectorType>(DestTy)) {
+ ICmpInst::Predicate Pred; Value *CmpLHS;
+ if (match(Src, m_ICmp(Pred, m_Value(CmpLHS), m_Zero()))) {
+ if (Pred == ICmpInst::ICMP_SLT && CmpLHS->getType() == DestTy) {
+ const Type *EltTy = VTy->getElementType();
+
+ // splat the shift constant to a constant vector.
+ Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
+ Value *In = Builder->CreateAShr(CmpLHS, VSh,CmpLHS->getName()+".lobit");
+ return ReplaceInstUsesWith(CI, In);
+ }
+ }
+ }
+
// If the input is a shl/ashr pair of a same constant, then this is a sign
// extension from a smaller value. If we could trust arbitrary bitwidth
// integers, we could turn this into a truncate to the smaller bit and then
@@ -1363,8 +1387,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, const VectorType *DestTy,
ConstantInt::get(Int32Ty, SrcElts));
}
- Constant *Mask = ConstantVector::get(ShuffleMask.data(), ShuffleMask.size());
- return new ShuffleVectorInst(InVal, V2, Mask);
+ return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
}
static bool isMultipleOfTypeSize(unsigned Value, const Type *Ty) {
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index d7e2b72..999de34 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -22,13 +22,17 @@
using namespace llvm;
using namespace PatternMatch;
+static ConstantInt *getOne(Constant *C) {
+ return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
+}
+
/// AddOne - Add one to a ConstantInt
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// SubOne - Subtract one from a ConstantInt
-static Constant *SubOne(ConstantInt *C) {
- return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
+static Constant *SubOne(Constant *C) {
+ return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
@@ -160,8 +164,8 @@ static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
Max = KnownOne|UnknownBits;
if (UnknownBits.isNegative()) { // Sign bit is unknown
- Min.set(Min.getBitWidth()-1);
- Max.clear(Max.getBitWidth()-1);
+ Min.setBit(Min.getBitWidth()-1);
+ Max.clearBit(Max.getBitWidth()-1);
}
}
@@ -694,13 +698,6 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
if (Pred == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
- // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
- bool isNUW = false, isNSW = false;
- if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
- isNUW = Add->hasNoUnsignedWrap();
- isNSW = Add->hasNoSignedWrap();
- }
-
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similiarly for all other "or equals"
// operators.
@@ -709,10 +706,6 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
- // If this is an NUW add, then this is always false.
- if (isNUW)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
-
Value *R =
ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
@@ -721,12 +714,8 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
// (X+1) >u X --> X <u (0-1) --> X != 255
// (X+2) >u X --> X <u (0-2) --> X <u 254
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
- // If this is an NUW add, then this is always true.
- if (isNUW)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
- }
unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
ConstantInt *SMax = ConstantInt::get(X->getContext(),
@@ -738,16 +727,8 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
- // If this is an NSW add, then we have two cases: if the constant is
- // positive, then this is always false, if negative, this is always true.
- if (isNSW) {
- bool isTrue = CI->getValue().isNegative();
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
- }
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
@@ -756,13 +737,6 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
- // If this is an NSW add, then we have two cases: if the constant is
- // positive, then this is always true, if negative, this is always false.
- if (isNSW) {
- bool isTrue = !CI->getValue().isNegative();
- return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
- }
-
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
@@ -782,7 +756,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
// (x /u C1) <u C2. Simply casting the operands and result won't
// work. :( The if statement below tests that condition and bails
- // if it finds it.
+ // if it finds it.
bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
return 0;
@@ -790,9 +764,11 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
return 0; // The ProdOV computation fails on divide by zero.
if (DivIsSigned && DivRHS->isAllOnesValue())
return 0; // The overflow computation also screws up here
- if (DivRHS->isOne())
- return 0; // Not worth bothering, and eliminates some funny cases
- // with INT_MIN.
+ if (DivRHS->isOne()) {
+ // This eliminates some funny cases with INT_MIN.
+ ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
+ return &ICI;
+ }
// Compute Prod = CI * DivRHS. We are essentially solving an equation
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
@@ -809,6 +785,10 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
+ /// If the division is known to be exact, then there is no remainder from the
+ /// divide, so the covered range size is unit, otherwise it is the divisor.
+ ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
+
// Figure out the interval that is being checked. For example, a comparison
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
// Compute this interval based on the constants involved and the signedness of
@@ -818,38 +798,43 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
int LoOverflow = 0, HiOverflow = 0;
Constant *LoBound = 0, *HiBound = 0;
-
+
if (!DivIsSigned) { // udiv
// e.g. X/5 op 3 --> [15, 20)
LoBound = Prod;
HiOverflow = LoOverflow = ProdOV;
- if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
+ if (!HiOverflow) {
+ // If this is not an exact divide, then many values in the range collapse
+ // to the same result value.
+ HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
+ }
+
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
if (CmpRHSV == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
- LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
- HiBound = DivRHS;
+ LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
+ HiBound = RangeSize;
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
+ HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
- ConstantInt* DivNeg =
- cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+ ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
- }
+ }
}
} else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
+ if (DivI->isExact())
+ RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
if (CmpRHSV == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
- LoBound = AddOne(DivRHS);
- HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
+ LoBound = AddOne(RangeSize);
+ HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
@@ -859,12 +844,12 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
- LoOverflow = AddWithOverflow(LoBound, HiBound, DivRHS, true) ? -1 : 0;
+ LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
} else { // (X / neg) op neg
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
LoOverflow = HiOverflow = ProdOV;
if (!HiOverflow)
- HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, true);
+ HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
}
// Dividing by a negative swaps the condition. LT <-> GT
@@ -883,9 +868,8 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
- return ReplaceInstUsesWith(ICI,
- InsertRangeTest(X, LoBound, HiBound, DivIsSigned,
- true));
+ return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ DivIsSigned, true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
@@ -908,13 +892,100 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
- else if (HiOverflow == -1) // High bound less than input range.
+ if (HiOverflow == -1) // High bound less than input range.
return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
- else
- return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+ }
+}
+
+/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
+Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
+ ConstantInt *ShAmt) {
+ const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
+
+ // Check that the shift amount is in range. If not, don't perform
+ // undefined shifts. When the shift is visited it will be
+ // simplified.
+ uint32_t TypeBits = CmpRHSV.getBitWidth();
+ uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+ if (ShAmtVal >= TypeBits || ShAmtVal == 0)
+ return 0;
+
+ if (!ICI.isEquality()) {
+ // If we have an unsigned comparison and an ashr, we can't simplify this.
+ // Similarly for signed comparisons with lshr.
+ if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
+ return 0;
+
+ // Otherwise, all lshr and all exact ashr's are equivalent to a udiv/sdiv by
+ // a power of 2. Since we already have logic to simplify these, transform
+ // to div and then simplify the resultant comparison.
+ if (Shr->getOpcode() == Instruction::AShr &&
+ !Shr->isExact())
+ return 0;
+
+ // Revisit the shift (to delete it).
+ Worklist.Add(Shr);
+
+ Constant *DivCst =
+ ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
+
+ Value *Tmp =
+ Shr->getOpcode() == Instruction::AShr ?
+ Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
+ Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
+
+ ICI.setOperand(0, Tmp);
+
+ // If the builder folded the binop, just return it.
+ BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
+ if (TheDiv == 0)
+ return &ICI;
+
+ // Otherwise, fold this div/compare.
+ assert(TheDiv->getOpcode() == Instruction::SDiv ||
+ TheDiv->getOpcode() == Instruction::UDiv);
+
+ Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
+ assert(Res && "This div/cst should have folded!");
+ return Res;
+ }
+
+
+ // If we are comparing against bits always shifted out, the
+ // comparison cannot succeed.
+ APInt Comp = CmpRHSV << ShAmtVal;
+ ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
+ if (Shr->getOpcode() == Instruction::LShr)
+ Comp = Comp.lshr(ShAmtVal);
+ else
+ Comp = Comp.ashr(ShAmtVal);
+
+ if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
+ bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+ Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
+ IsICMP_NE);
+ return ReplaceInstUsesWith(ICI, Cst);
+ }
+
+ // Otherwise, check to see if the bits shifted out are known to be zero.
+ // If so, we can compare against the unshifted value:
+ // (X & 4) >> 1 == 2 --> (X & 4) == 4.
+ if (Shr->hasOneUse() && Shr->isExact())
+ return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
+
+ if (Shr->hasOneUse()) {
+ // Otherwise strength reduce the shift into an and.
+ APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+ Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
+
+ Value *And = Builder->CreateAnd(Shr->getOperand(0),
+ Mask, Shr->getName()+".mask");
+ return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
}
+ return 0;
}
@@ -939,8 +1010,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
// If all the high bits are known, we can do this xform.
if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
// Pull in the high bits from known-ones set.
- APInt NewRHS(RHS->getValue());
- NewRHS.zext(SrcBits);
+ APInt NewRHS = RHS->getValue().zext(SrcBits);
NewRHS |= KnownOne;
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantInt::get(ICI.getContext(), NewRHS));
@@ -1022,10 +1092,8 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
(AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
uint32_t BitWidth =
cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
- APInt NewCST = AndCST->getValue();
- NewCST.zext(BitWidth);
- APInt NewCI = RHSV;
- NewCI.zext(BitWidth);
+ APInt NewCST = AndCST->getValue().zext(BitWidth);
+ APInt NewCI = RHSV.zext(BitWidth);
Value *NewAnd =
Builder->CreateAnd(Cast->getOperand(0),
ConstantInt::get(ICI.getContext(), NewCST),
@@ -1145,7 +1213,6 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
// -> and (icmp eq P, null), (icmp eq Q, null).
-
Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
Constant::getNullValue(P->getType()));
Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
@@ -1185,6 +1252,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
return ReplaceInstUsesWith(ICI, Cst);
}
+ // If the shift is NUW, then it is just shifting out zeros, no need for an
+ // AND.
+ if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantExpr::getLShr(RHS, ShAmt));
+
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
@@ -1195,8 +1268,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Value *And =
Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
- ConstantInt::get(ICI.getContext(),
- RHSV.lshr(ShAmtVal)));
+ ConstantExpr::getLShr(RHS, ShAmt));
}
}
@@ -1205,8 +1277,9 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
if (LHSI->hasOneUse() &&
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
// (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
- (TypeBits-ShAmt->getZExtValue()-1));
+ Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
+ APInt::getOneBitSet(TypeBits,
+ TypeBits-ShAmt->getZExtValue()-1));
Value *And =
Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
@@ -1216,57 +1289,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
}
case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
- case Instruction::AShr: {
+ case Instruction::AShr:
// Only handle equality comparisons of shift-by-constant.
- ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!ShAmt || !ICI.isEquality()) break;
-
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- uint32_t TypeBits = RHSV.getBitWidth();
- if (ShAmt->uge(TypeBits))
- break;
-
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
-
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- APInt Comp = RHSV << ShAmtVal;
- if (LHSI->getOpcode() == Instruction::LShr)
- Comp = Comp.lshr(ShAmtVal);
- else
- Comp = Comp.ashr(ShAmtVal);
-
- if (Comp != RHSV) { // Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
- IsICMP_NE);
- return ReplaceInstUsesWith(ICI, Cst);
- }
-
- // Otherwise, check to see if the bits shifted out are known to be zero.
- // If so, we can compare against the unshifted value:
- // (X & 4) >> 1 == 2 --> (X & 4) == 4.
- if (LHSI->hasOneUse() &&
- MaskedValueIsZero(LHSI->getOperand(0),
- APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getShl(RHS, ShAmt));
- }
-
- if (LHSI->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
-
- Value *And = Builder->CreateAnd(LHSI->getOperand(0),
- Mask, LHSI->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And,
- ConstantExpr::getShl(RHS, ShAmt));
- }
+ if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
+ if (Instruction *Res = FoldICmpShrCst(ICI, cast<BinaryOperator>(LHSI),
+ ShAmt))
+ return Res;
break;
- }
case Instruction::SDiv:
case Instruction::UDiv:
@@ -1543,50 +1572,174 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
// The re-extended constant changed so the constant cannot be represented
// in the shorter type. Consequently, we cannot emit a simple comparison.
+ // All the cases that fold to true or false will have already been handled
+ // by SimplifyICmpInst, so only deal with the tricky case.
- // First, handle some easy cases. We know the result cannot be equal at this
- // point so handle the ICI.isEquality() cases
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
- if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
+ if (isSignedCmp || !isSignedExt)
+ return 0;
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
- Value *Result;
- if (isSignedCmp) {
- // We're performing a signed comparison.
- if (cast<ConstantInt>(CI)->getValue().isNegative())
- Result = ConstantInt::getFalse(ICI.getContext()); // X < (small) --> false
- else
- Result = ConstantInt::getTrue(ICI.getContext()); // X < (large) --> true
- } else {
- // We're performing an unsigned comparison.
- if (isSignedExt) {
- // We're performing an unsigned comp with a sign extended value.
- // This is true if the input is >= 0. [aka >s -1]
- Constant *NegOne = Constant::getAllOnesValue(SrcTy);
- Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
- } else {
- // Unsigned extend & unsigned compare -> always true.
- Result = ConstantInt::getTrue(ICI.getContext());
- }
- }
+
+ // We're performing an unsigned comp with a sign extended value.
+ // This is true if the input is >= 0. [aka >s -1]
+ Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+ Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
// Finally, return the value computed.
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
- ICI.getPredicate() == ICmpInst::ICMP_SLT)
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
return ReplaceInstUsesWith(ICI, Result);
- assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
- ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
- "ICmp should be folded!");
- if (Constant *CI = dyn_cast<Constant>(Result))
- return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
+ assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
return BinaryOperator::CreateNot(Result);
}
+/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
+/// I = icmp ugt (add (add A, B), CI2), CI1
+/// If this is of the form:
+/// sum = a + b
+/// if (sum+128 >u 255)
+/// Then replace it with llvm.sadd.with.overflow.i8.
+///
+static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
+ ConstantInt *CI2, ConstantInt *CI1,
+ InstCombiner &IC) {
+ // The transformation we're trying to do here is to transform this into an
+ // llvm.sadd.with.overflow. To do this, we have to replace the original add
+ // with a narrower add, and discard the add-with-constant that is part of the
+ // range check (if we can't eliminate it, this isn't profitable).
+
+ // In order to eliminate the add-with-constant, the compare can be its only
+ // use.
+ Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
+ if (!AddWithCst->hasOneUse()) return 0;
+
+ // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
+ if (!CI2->getValue().isPowerOf2()) return 0;
+ unsigned NewWidth = CI2->getValue().countTrailingZeros();
+ if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
+
+ // The width of the new add formed is 1 more than the bias.
+ ++NewWidth;
+
+ // Check to see that CI1 is an all-ones value with NewWidth bits.
+ if (CI1->getBitWidth() == NewWidth ||
+ CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
+ return 0;
+
+ // In order to replace the original add with a narrower
+ // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
+ // and truncates that discard the high bits of the add. Verify that this is
+ // the case.
+ Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
+ for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
+ UI != E; ++UI) {
+ if (*UI == AddWithCst) continue;
+
+ // Only accept truncates for now. We would really like a nice recursive
+ // predicate like SimplifyDemandedBits, but which goes downwards the use-def
+ // chain to see which bits of a value are actually demanded. If the
+ // original add had another add which was then immediately truncated, we
+ // could still do the transformation.
+ TruncInst *TI = dyn_cast<TruncInst>(*UI);
+ if (TI == 0 ||
+ TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
+ }
+
+ // If the pattern matches, truncate the inputs to the narrower type and
+ // use the sadd_with_overflow intrinsic to efficiently compute both the
+ // result and the overflow bit.
+ Module *M = I.getParent()->getParent()->getParent();
+
+ const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+ Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
+ &NewType, 1);
+
+ InstCombiner::BuilderTy *Builder = IC.Builder;
+
+ // Put the new code above the original add, in case there are any uses of the
+ // add between the add and the compare.
+ Builder->SetInsertPoint(OrigAdd);
+
+ Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
+ Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
+ CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
+ Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
+ Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
+
+ // The inner add was the result of the narrow add, zero extended to the
+ // wider type. Replace it with the result computed by the intrinsic.
+ IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
+
+ // The original icmp gets replaced with the overflow value.
+ return ExtractValueInst::Create(Call, 1, "sadd.overflow");
+}
+
+static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
+ InstCombiner &IC) {
+ // Don't bother doing this transformation for pointers, don't do it for
+ // vectors.
+ if (!isa<IntegerType>(OrigAddV->getType())) return 0;
+
+ // If the add is a constant expr, then we don't bother transforming it.
+ Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
+ if (OrigAdd == 0) return 0;
+
+ Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
+
+ // Put the new code above the original add, in case there are any uses of the
+ // add between the add and the compare.
+ InstCombiner::BuilderTy *Builder = IC.Builder;
+ Builder->SetInsertPoint(OrigAdd);
+
+ Module *M = I.getParent()->getParent()->getParent();
+ const Type *Ty = LHS->getType();
+ Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
+ CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
+ Value *Add = Builder->CreateExtractValue(Call, 0);
+ IC.ReplaceInstUsesWith(*OrigAdd, Add);
+
+ // The original icmp gets replaced with the overflow value.
+ return ExtractValueInst::Create(Call, 1, "uadd.overflow");
+}
+
+// DemandedBitsLHSMask - When performing a comparison against a constant,
+// it is possible that not all the bits in the LHS are demanded. This helper
+// method computes the mask that IS demanded.
+static APInt DemandedBitsLHSMask(ICmpInst &I,
+ unsigned BitWidth, bool isSignCheck) {
+ if (isSignCheck)
+ return APInt::getSignBit(BitWidth);
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
+ if (!CI) return APInt::getAllOnesValue(BitWidth);
+ const APInt &RHS = CI->getValue();
+
+ switch (I.getPredicate()) {
+ // For a UGT comparison, we don't care about any bits that
+ // correspond to the trailing ones of the comparand. The value of these
+ // bits doesn't impact the outcome of the comparison, because any value
+ // greater than the RHS must differ in a bit higher than these due to carry.
+ case ICmpInst::ICMP_UGT: {
+ unsigned trailingOnes = RHS.countTrailingOnes();
+ APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
+ return ~lowBitsSet;
+ }
+
+ // Similarly, for a ULT comparison, we don't care about the trailing zeros.
+ // Any value less than the RHS must differ in a higher bit because of carries.
+ case ICmpInst::ICMP_ULT: {
+ unsigned trailingZeros = RHS.countTrailingZeros();
+ APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
+ return ~lowBitsSet;
+ }
+
+ default:
+ return APInt::getAllOnesValue(BitWidth);
+ }
+
+}
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
@@ -1649,17 +1802,37 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
unsigned BitWidth = 0;
- if (TD)
- BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
- else if (Ty->isIntOrIntVectorTy())
+ if (Ty->isIntOrIntVectorTy())
BitWidth = Ty->getScalarSizeInBits();
-
+ else if (TD) // Pointers require TD info to get their size.
+ BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
+
bool isSignBit = false;
// See if we are doing a comparison with a constant.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Value *A = 0, *B = 0;
+ // Match the following pattern, which is a common idiom when writing
+ // overflow-safe integer arithmetic function. The source performs an
+ // addition in wider type, and explicitly checks for overflow using
+ // comparisons against INT_MIN and INT_MAX. Simplify this by using the
+ // sadd_with_overflow intrinsic.
+ //
+ // TODO: This could probably be generalized to handle other overflow-safe
+ // operations if we worked out the formulas to compute the appropriate
+ // magic constants.
+ //
+ // sum = a + b
+ // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
+ {
+ ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
+ if (I.getPredicate() == ICmpInst::ICMP_UGT &&
+ match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
+ if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
+ return Res;
+ }
+
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
if (I.isEquality() && CI->isZero() &&
match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
@@ -1704,8 +1877,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
if (SimplifyDemandedBits(I.getOperandUse(0),
- isSignBit ? APInt::getSignBit(BitWidth)
- : APInt::getAllOnesValue(BitWidth),
+ DemandedBitsLHSMask(I, BitWidth, isSignBit),
Op0KnownZero, Op0KnownOne, 0))
return &I;
if (SimplifyDemandedBits(I.getOperandUse(1),
@@ -1744,14 +1916,80 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// simplify this comparison. For example, (x&4) < 8 is always true.
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown icmp opcode!");
- case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_EQ: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
+
+ // If all bits are known zero except for one, then we know at most one
+ // bit is set. If the comparison is against zero, then this is a check
+ // to see if *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0KnownZero;
+ if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = 0;
+ ConstantInt *LHSC = 0;
+ if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
+ LHSC->getValue() != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
+ // then turn "((1 << x)&8) == 0" into "x != 3".
+ Value *X = 0;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ }
+
+ // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
+ // then turn "((8 >>u x)&1) == 0" into "x != 3".
+ const APInt *CI;
+ if (Op0KnownZeroInverted == 1 &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(X->getType(),
+ CI->countTrailingZeros()));
+ }
+
break;
- case ICmpInst::ICMP_NE:
+ }
+ case ICmpInst::ICMP_NE: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
+
+ // If all bits are known zero except for one, then we know at most one
+ // bit is set. If the comparison is against zero, then this is a check
+ // to see if *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0KnownZero;
+ if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = 0;
+ ConstantInt *LHSC = 0;
+ if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
+ LHSC->getValue() != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
+ // then turn "((1 << x)&8) != 0" into "x == 3".
+ Value *X = 0;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ }
+
+ // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
+ // then turn "((8 >>u x)&1) != 0" into "x == 3".
+ const APInt *CI;
+ if (Op0KnownZeroInverted == 1 &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(X->getType(),
+ CI->countTrailingZeros()));
+ }
+
break;
+ }
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
@@ -1894,7 +2132,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I, true))
+ if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::Select: {
@@ -1995,79 +2233,163 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Instruction *R = visitICmpInstWithCastAndCast(I))
return R;
}
-
- // See if it's the same type of instruction on the left and right.
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
- if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
- if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
- Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
- switch (Op0I->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
- return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
- Op1I->getOperand(0));
- // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- if (CI->getValue().isSignBit()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- return new ICmpInst(Pred, Op0I->getOperand(0),
- Op1I->getOperand(0));
- }
-
- if (CI->getValue().isMaxSignedValue()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- Pred = I.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, Op0I->getOperand(0),
- Op1I->getOperand(0));
- }
+
+ // Special logic for binary operators.
+ BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
+ BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
+ if (BO0 || BO1) {
+ CmpInst::Predicate Pred = I.getPredicate();
+ bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
+ if (BO0 && isa<OverflowingBinaryOperator>(BO0))
+ NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
+ if (BO1 && isa<OverflowingBinaryOperator>(BO1))
+ NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
+
+ // Analyze the case when either Op0 or Op1 is an add instruction.
+ // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
+ Value *A = 0, *B = 0, *C = 0, *D = 0;
+ if (BO0 && BO0->getOpcode() == Instruction::Add)
+ A = BO0->getOperand(0), B = BO0->getOperand(1);
+ if (BO1 && BO1->getOpcode() == Instruction::Add)
+ C = BO1->getOperand(0), D = BO1->getOperand(1);
+
+ // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
+ if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
+ return new ICmpInst(Pred, A == Op1 ? B : A,
+ Constant::getNullValue(Op1->getType()));
+
+ // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
+ if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
+ C == Op0 ? D : C);
+
+ // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
+ if (A && C && (A == C || A == D || B == C || B == D) &&
+ NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse()) {
+ // Determine Y and Z in the form icmp (X+Y), (X+Z).
+ Value *Y = (A == C || A == D) ? B : A;
+ Value *Z = (C == A || C == B) ? D : C;
+ return new ICmpInst(Pred, Y, Z);
+ }
+
+ // Analyze the case when either Op0 or Op1 is a sub instruction.
+ // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
+ A = 0; B = 0; C = 0; D = 0;
+ if (BO0 && BO0->getOpcode() == Instruction::Sub)
+ A = BO0->getOperand(0), B = BO0->getOperand(1);
+ if (BO1 && BO1->getOpcode() == Instruction::Sub)
+ C = BO1->getOperand(0), D = BO1->getOperand(1);
+
+ // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
+ if (A == Op1 && NoOp0WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
+
+ // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
+ if (C == Op0 && NoOp1WrapProblem)
+ return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
+
+ // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
+ if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, A, C);
+
+ // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
+ if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, D, B);
+
+ if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
+ BO0->hasOneUse() && BO1->hasOneUse() &&
+ BO0->getOperand(1) == BO1->getOperand(1)) {
+ switch (BO0->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ if (CI->getValue().isSignBit()) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ return new ICmpInst(Pred, BO0->getOperand(0),
+ BO1->getOperand(0));
+ }
+
+ if (CI->getValue().isMaxSignedValue()) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ Pred = I.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, BO0->getOperand(0),
+ BO1->getOperand(0));
}
+ }
+ break;
+ case Instruction::Mul:
+ if (!I.isEquality())
break;
- case Instruction::Mul:
- if (!I.isEquality())
- break;
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
- // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
- // Mask = -1 >> count-trailing-zeros(Cst).
- if (!CI->isZero() && !CI->isOne()) {
- const APInt &AP = CI->getValue();
- ConstantInt *Mask = ConstantInt::get(I.getContext(),
- APInt::getLowBitsSet(AP.getBitWidth(),
- AP.getBitWidth() -
- AP.countTrailingZeros()));
- Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
- Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
- return new ICmpInst(I.getPredicate(), And1, And2);
- }
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
+ // Mask = -1 >> count-trailing-zeros(Cst).
+ if (!CI->isZero() && !CI->isOne()) {
+ const APInt &AP = CI->getValue();
+ ConstantInt *Mask = ConstantInt::get(I.getContext(),
+ APInt::getLowBitsSet(AP.getBitWidth(),
+ AP.getBitWidth() -
+ AP.countTrailingZeros()));
+ Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
+ return new ICmpInst(I.getPredicate(), And1, And2);
}
- break;
}
+ break;
}
}
}
- // ~x < ~y --> y < x
{ Value *A, *B;
- if (match(Op0, m_Not(m_Value(A))) &&
- match(Op1, m_Not(m_Value(B))))
- return new ICmpInst(I.getPredicate(), B, A);
+ // ~x < ~y --> y < x
+ // ~x < cst --> ~cst < x
+ if (match(Op0, m_Not(m_Value(A)))) {
+ if (match(Op1, m_Not(m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B, A);
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
+ return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
+ }
+
+ // (a+b) <u a --> llvm.uadd.with.overflow.
+ // (a+b) <u b --> llvm.uadd.with.overflow.
+ if (I.getPredicate() == ICmpInst::ICMP_ULT &&
+ match(Op0, m_Add(m_Value(A), m_Value(B))) &&
+ (Op1 == A || Op1 == B))
+ if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
+ return R;
+
+ // a >u (a+b) --> llvm.uadd.with.overflow.
+ // b >u (a+b) --> llvm.uadd.with.overflow.
+ if (I.getPredicate() == ICmpInst::ICMP_UGT &&
+ match(Op1, m_Add(m_Value(A), m_Value(B))) &&
+ (Op0 == A || Op0 == B))
+ if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
+ return R;
}
if (I.isEquality()) {
Value *A, *B, *C, *D;
-
- // -x == -y --> x == y
- if (match(Op0, m_Neg(m_Value(A))) &&
- match(Op1, m_Neg(m_Value(B))))
- return new ICmpInst(I.getPredicate(), A, B);
-
+
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
@@ -2102,16 +2424,6 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Constant::getNullValue(A->getType()));
}
- // (A-B) == A -> B == 0
- if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
- return new ICmpInst(I.getPredicate(), B,
- Constant::getNullValue(B->getType()));
-
- // A == (A-B) -> B == 0
- if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
- return new ICmpInst(I.getPredicate(), B,
- Constant::getNullValue(B->getType()));
-
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (Op0->hasOneUse() && Op1->hasOneUse() &&
match(Op0, m_And(m_Value(A), m_Value(B))) &&
@@ -2397,7 +2709,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I, true))
+ if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::SIToFP:
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
index b68fbc2..78ff734 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineLoadStoreAlloca.cpp
@@ -145,7 +145,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
// Attempt to improve the alignment.
if (TD) {
unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
+ getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
unsigned LoadAlign = LI.getAlignment();
unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
TD->getABITypeAlignment(LI.getType());
@@ -165,7 +165,7 @@ Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
if (LI.isVolatile()) return 0;
// Do really simple store-to-load forwarding and load CSE, to catch cases
- // where there are several consequtive memory accesses to the same location,
+ // where there are several consecutive memory accesses to the same location,
// separated by a few arithmetic operations.
BasicBlock::iterator BBI = &LI;
if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
@@ -330,7 +330,9 @@ static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
SIOp0->getName()+".c");
- return new StoreInst(NewCast, CastOp);
+ SI.setOperand(0, NewCast);
+ SI.setOperand(1, CastOp);
+ return &SI;
}
/// equivalentAddressValues - Test if A and B will obviously have the same
@@ -414,7 +416,8 @@ Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
// Attempt to improve the alignment.
if (TD) {
unsigned KnownAlign =
- GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
+ getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
+ TD);
unsigned StoreAlign = SI.getAlignment();
unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
TD->getABITypeAlignment(Val->getType());
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
index b3974e8..d1a1fd6 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -14,26 +14,22 @@
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
-/// SubOne - Subtract one from a ConstantInt.
-static Constant *SubOne(ConstantInt *C) {
- return ConstantInt::get(C->getContext(), C->getValue()-1);
-}
-
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
uint32_t W = C1->getBitWidth();
APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
if (sign) {
- LHSExt.sext(W * 2);
- RHSExt.sext(W * 2);
+ LHSExt = LHSExt.sext(W * 2);
+ RHSExt = RHSExt.sext(W * 2);
} else {
- LHSExt.zext(W * 2);
- RHSExt.zext(W * 2);
+ LHSExt = LHSExt.zext(W * 2);
+ RHSExt = RHSExt.zext(W * 2);
}
APInt MulExt = LHSExt * RHSExt;
@@ -47,62 +43,48 @@ static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
}
Instruction *InstCombiner::visitMul(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isa<UndefValue>(Op1)) // undef * X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ if (Value *V = SimplifyMulInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
- // Simplify mul instructions with a constant RHS.
- if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1C)) {
-
- // ((X << C1)*C2) == (X * (C2 << C1))
- if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
- if (SI->getOpcode() == Instruction::Shl)
- if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
- return BinaryOperator::CreateMul(SI->getOperand(0),
- ConstantExpr::getShl(CI, ShOp));
-
- if (CI->isZero())
- return ReplaceInstUsesWith(I, Op1C); // X * 0 == 0
- if (CI->equalsInt(1)) // X * 1 == X
- return ReplaceInstUsesWith(I, Op0);
- if (CI->isAllOnesValue()) // X * -1 == 0 - X
- return BinaryOperator::CreateNeg(Op0, I.getName());
-
- const APInt& Val = cast<ConstantInt>(CI)->getValue();
- if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
- return BinaryOperator::CreateShl(Op0,
- ConstantInt::get(Op0->getType(), Val.logBase2()));
- }
- } else if (Op1C->getType()->isVectorTy()) {
- if (Op1C->isNullValue())
- return ReplaceInstUsesWith(I, Op1C);
-
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1C)) {
- if (Op1V->isAllOnesValue()) // X * -1 == 0 - X
- return BinaryOperator::CreateNeg(Op0, I.getName());
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
- // As above, vector X*splat(1.0) -> X in all defined cases.
- if (Constant *Splat = Op1V->getSplatValue()) {
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
- if (CI->equalsInt(1))
- return ReplaceInstUsesWith(I, Op0);
- }
- }
+ if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
+ return BinaryOperator::CreateNeg(Op0, I.getName());
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+
+ // ((X << C1)*C2) == (X * (C2 << C1))
+ if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
+ if (SI->getOpcode() == Instruction::Shl)
+ if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
+ return BinaryOperator::CreateMul(SI->getOperand(0),
+ ConstantExpr::getShl(CI, ShOp));
+
+ const APInt &Val = CI->getValue();
+ if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
+ Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
+ BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
+ if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
+ if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
+ return Shl;
}
- if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
- if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
- isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1C)) {
- // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
- Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1C, "tmp");
- Value *C1C2 = Builder->CreateMul(Op1C, Op0I->getOperand(1));
- return BinaryOperator::CreateAdd(Add, C1C2);
-
+ // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
+ { Value *X; ConstantInt *C1;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
+ Value *Add = Builder->CreateMul(X, CI, "tmp");
+ return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
}
-
+ }
+ }
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
// Try to fold constant mul into select arguments.
if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
if (Instruction *R = FoldOpIntoSelect(I, SI))
@@ -135,8 +117,8 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
BO->getOpcode() == Instruction::SDiv)) {
Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
- // If the division is exact, X % Y is zero.
- if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
+ // If the division is exact, X % Y is zero, so we end up with X or -X.
+ if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
if (SDiv->isExact()) {
if (Op1BO == Op1C)
return ReplaceInstUsesWith(I, Op0BO);
@@ -194,7 +176,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) {
}
Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
- bool Changed = SimplifyCommutative(I);
+ bool Changed = SimplifyAssociativeOrCommutative(I);
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
// Simplify mul instructions with a constant RHS...
@@ -304,28 +286,6 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
}
-/// This function implements the transforms on div instructions that work
-/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
-/// used by the visitors to those instructions.
-/// @brief Transforms common to all three div instructions
-Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- // undef / X -> 0 for integer.
- // undef / X -> undef for FP (the undef could be a snan).
- if (isa<UndefValue>(Op0)) {
- if (Op0->getType()->isFPOrFPVectorTy())
- return ReplaceInstUsesWith(I, Op0);
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
-
- // X / undef -> undef
- if (isa<UndefValue>(Op1))
- return ReplaceInstUsesWith(I, Op1);
-
- return 0;
-}
-
/// This function implements the transforms common to both integer division
/// instructions (udiv and sdiv). It is called by the visitors to those integer
/// division instructions.
@@ -333,31 +293,12 @@ Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // (sdiv X, X) --> 1 (udiv X, X) --> 1
- if (Op0 == Op1) {
- if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
- Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
- std::vector<Constant*> Elts(Ty->getNumElements(), CI);
- return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
- }
-
- Constant *CI = ConstantInt::get(I.getType(), 1);
- return ReplaceInstUsesWith(I, CI);
- }
-
- if (Instruction *Common = commonDivTransforms(I))
- return Common;
-
// Handle cases involving: [su]div X, (select Cond, Y, Z)
// This does not apply for fdiv.
if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
return &I;
if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // div X, 1 == X
- if (RHS->equalsInt(1))
- return ReplaceInstUsesWith(I, Op0);
-
// (X / C1) / C2 -> X / (C1*C2)
if (Instruction *LHS = dyn_cast<Instruction>(Op0))
if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
@@ -365,9 +306,8 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
if (MultiplyOverflows(RHS, LHSRHS,
I.getOpcode()==Instruction::SDiv))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- else
- return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
- ConstantExpr::getMul(RHS, LHSRHS));
+ return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
+ ConstantExpr::getMul(RHS, LHSRHS));
}
if (!RHS->isZero()) { // avoid X udiv 0
@@ -380,20 +320,13 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
}
}
- // 0 / X == 0, we don't need to preserve faults!
- if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
- if (LHS->equalsInt(0))
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
-
- // It can't be division by zero, hence it must be division by one.
- if (I.getType()->isIntegerTy(1))
- return ReplaceInstUsesWith(I, Op0);
-
- if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
- if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
- // div X, 1 == X
- if (X->isOne())
- return ReplaceInstUsesWith(I, Op0);
+ // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
+ Value *X = 0, *Z = 0;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
+ bool isSigned = I.getOpcode() == Instruction::SDiv;
+ if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ return BinaryOperator::Create(I.getOpcode(), X, Op1);
}
return 0;
@@ -402,6 +335,9 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
@@ -410,60 +346,59 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
// X udiv 2^C -> X >> C
// Check to see if this is an unsigned division with an exact power of 2,
// if so, convert to a right shift.
- if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
- return BinaryOperator::CreateLShr(Op0,
+ if (C->getValue().isPowerOf2()) { // 0 not included in isPowerOf2
+ BinaryOperator *LShr =
+ BinaryOperator::CreateLShr(Op0,
ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
+ if (I.isExact()) LShr->setIsExact();
+ return LShr;
+ }
// X udiv C, where C >= signbit
if (C->getValue().isNegative()) {
- Value *IC = Builder->CreateICmpULT( Op0, C);
+ Value *IC = Builder->CreateICmpULT(Op0, C);
return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
ConstantInt::get(I.getType(), 1));
}
}
// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
- if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
- if (RHSI->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(RHSI->getOperand(0))) {
- const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
- if (C1.isPowerOf2()) {
- Value *N = RHSI->getOperand(1);
- const Type *NTy = N->getType();
- if (uint32_t C2 = C1.logBase2())
- N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
- return BinaryOperator::CreateLShr(Op0, N);
- }
+ { const APInt *CI; Value *N;
+ if (match(Op1, m_Shl(m_Power2(CI), m_Value(N)))) {
+ if (*CI != 1)
+ N = Builder->CreateAdd(N, ConstantInt::get(I.getType(), CI->logBase2()),
+ "tmp");
+ if (I.isExact())
+ return BinaryOperator::CreateExactLShr(Op0, N);
+ return BinaryOperator::CreateLShr(Op0, N);
}
}
// udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
// where C1&C2 are powers of two.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
- if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
- const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
- if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
- // Compute the shift amounts
- uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
- // Construct the "on true" case of the select
- Constant *TC = ConstantInt::get(Op0->getType(), TSA);
- Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
+ { Value *Cond; const APInt *C1, *C2;
+ if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
+ // Construct the "on true" case of the select
+ Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
+ I.isExact());
- // Construct the "on false" case of the select
- Constant *FC = ConstantInt::get(Op0->getType(), FSA);
- Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
-
- // construct the select instruction and return it.
- return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
- }
- }
+ // Construct the "on false" case of the select
+ Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
+ I.isExact());
+
+ // construct the select instruction and return it.
+ return SelectInst::Create(Cond, TSI, FSI);
+ }
+ }
return 0;
}
Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (Value *V = SimplifySDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
// Handle the integer div common cases
if (Instruction *Common = commonIDivTransforms(I))
return Common;
@@ -473,20 +408,17 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
if (RHS->isAllOnesValue())
return BinaryOperator::CreateNeg(Op0);
- // sdiv X, C --> ashr X, log2(C)
- if (cast<SDivOperator>(&I)->isExact() &&
- RHS->getValue().isNonNegative() &&
+ // sdiv X, C --> ashr exact X, log2(C)
+ if (I.isExact() && RHS->getValue().isNonNegative() &&
RHS->getValue().isPowerOf2()) {
Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
RHS->getValue().exactLogBase2());
- return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
+ return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
}
// -X/C --> X/-C provided the negation doesn't overflow.
if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
- if (isa<Constant>(Sub->getOperand(0)) &&
- cast<Constant>(Sub->getOperand(0))->isNullValue() &&
- Sub->hasNoSignedWrap())
+ if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
return BinaryOperator::CreateSDiv(Sub->getOperand(1),
ConstantExpr::getNeg(RHS));
}
@@ -500,9 +432,8 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
// X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
}
- ConstantInt *ShiftedInt;
- if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
- ShiftedInt->getValue().isPowerOf2()) {
+
+ if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
// X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
// Safe because the only negative value (1 << Y) can take on is
// INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
@@ -516,7 +447,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
}
Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
- return commonDivTransforms(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ return 0;
}
/// This function implements the transforms on rem instructions that work
@@ -551,6 +487,10 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
if (Instruction *common = commonRemTransforms(I))
return common;
+ // X % X == 0
+ if (Op0 == Op1)
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
// 0 % X == 0 for integer, we don't need to preserve faults!
if (Constant *LHS = dyn_cast<Constant>(Op0))
if (LHS->isNullValue())
@@ -588,42 +528,29 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) {
if (Instruction *common = commonIRemTransforms(I))
return common;
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
- // X urem C^2 -> X and C
- // Check to see if this is an unsigned remainder with an exact power of 2,
- // if so, convert to a bitwise and.
- if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
- if (C->getValue().isPowerOf2())
- return BinaryOperator::CreateAnd(Op0, SubOne(C));
+ // X urem C^2 -> X and C-1
+ { const APInt *C;
+ if (match(Op1, m_Power2(C)))
+ return BinaryOperator::CreateAnd(Op0,
+ ConstantInt::get(I.getType(), *C-1));
}
- if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
- // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
- if (RHSI->getOpcode() == Instruction::Shl &&
- isa<ConstantInt>(RHSI->getOperand(0))) {
- if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
- Constant *N1 = Constant::getAllOnesValue(I.getType());
- Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
- return BinaryOperator::CreateAnd(Op0, Add);
- }
- }
+ // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
+ if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(Op1, N1, "tmp");
+ return BinaryOperator::CreateAnd(Op0, Add);
}
- // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
- // where C1&C2 are powers of two.
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
- if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
- if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
- // STO == 0 and SFO == 0 handled above.
- if ((STO->getValue().isPowerOf2()) &&
- (SFO->getValue().isPowerOf2())) {
- Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
- SI->getName()+".t");
- Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
- SI->getName()+".f");
- return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
- }
- }
+ // urem X, (select Cond, 2^C1, 2^C2) -->
+ // select Cond, (and X, C1-1), (and X, C2-1)
+ // when C1&C2 are powers of two.
+ { Value *Cond; const APInt *C1, *C2;
+ if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
+ Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
+ Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
+ return SelectInst::Create(Cond, TrueAnd, FalseAnd);
+ }
}
return 0;
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
index f7fc62f..297a18c 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
@@ -12,6 +12,7 @@
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/STLExtras.h"
@@ -30,22 +31,37 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
const Type *LHSType = LHSVal->getType();
const Type *RHSType = RHSVal->getType();
+ bool isNUW = false, isNSW = false, isExact = false;
+ if (OverflowingBinaryOperator *BO =
+ dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
+ isNUW = BO->hasNoUnsignedWrap();
+ isNSW = BO->hasNoSignedWrap();
+ } else if (PossiblyExactOperator *PEO =
+ dyn_cast<PossiblyExactOperator>(FirstInst))
+ isExact = PEO->isExact();
+
// Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
// Verify type of the LHS matches so we don't fold cmp's of different
- // types or GEP's with different index types.
+ // types.
I->getOperand(0)->getType() != LHSType ||
I->getOperand(1)->getType() != RHSType)
return 0;
// If they are CmpInst instructions, check their predicates
- if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
- if (cast<CmpInst>(I)->getPredicate() !=
- cast<CmpInst>(FirstInst)->getPredicate())
+ if (CmpInst *CI = dyn_cast<CmpInst>(I))
+ if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
return 0;
+ if (isNUW)
+ isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
+ if (isNSW)
+ isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ if (isExact)
+ isExact = cast<PossiblyExactOperator>(I)->isExact();
+
// Keep track of which operand needs a phi node.
if (I->getOperand(0) != LHSVal) LHSVal = 0;
if (I->getOperand(1) != RHSVal) RHSVal = 0;
@@ -96,11 +112,17 @@ Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
}
}
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
- return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
- CmpInst *CIOp = cast<CmpInst>(FirstInst);
- return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
- LHSVal, RHSVal);
+ if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
+ return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
+ LHSVal, RHSVal);
+
+ BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
+ BinaryOperator *NewBinOp =
+ BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
+ if (isNUW) NewBinOp->setHasNoUnsignedWrap();
+ if (isNSW) NewBinOp->setHasNoSignedWrap();
+ if (isExact) NewBinOp->setIsExact();
+ return NewBinOp;
}
Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
@@ -117,6 +139,8 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
// especially bad when the PHIs are in the header of a loop.
bool NeededPhi = false;
+ bool AllInBounds = true;
+
// Scan to see if all operands are the same opcode, and all have one use.
for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
@@ -124,6 +148,8 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
GEP->getNumOperands() != FirstInst->getNumOperands())
return 0;
+ AllInBounds &= GEP->isInBounds();
+
// Keep track of whether or not all GEPs are of alloca pointers.
if (AllBasePointersAreAllocas &&
(!isa<AllocaInst>(GEP->getOperand(0)) ||
@@ -201,11 +227,11 @@ Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
}
Value *Base = FixedOperands[0];
- return cast<GEPOperator>(FirstInst)->isInBounds() ?
- GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
- FixedOperands.end()) :
+ GetElementPtrInst *NewGEP =
GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
FixedOperands.end());
+ if (AllInBounds) NewGEP->setIsInBounds();
+ return NewGEP;
}
@@ -368,6 +394,7 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
// code size and simplifying code.
Constant *ConstantOp = 0;
const Type *CastSrcTy = 0;
+ bool isNUW = false, isNSW = false, isExact = false;
if (isa<CastInst>(FirstInst)) {
CastSrcTy = FirstInst->getOperand(0)->getType();
@@ -384,6 +411,14 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
if (ConstantOp == 0)
return FoldPHIArgBinOpIntoPHI(PN);
+
+ if (OverflowingBinaryOperator *BO =
+ dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
+ isNUW = BO->hasNoUnsignedWrap();
+ isNSW = BO->hasNoSignedWrap();
+ } else if (PossiblyExactOperator *PEO =
+ dyn_cast<PossiblyExactOperator>(FirstInst))
+ isExact = PEO->isExact();
} else {
return 0; // Cannot fold this operation.
}
@@ -399,6 +434,13 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
} else if (I->getOperand(1) != ConstantOp) {
return 0;
}
+
+ if (isNUW)
+ isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
+ if (isNSW)
+ isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ if (isExact)
+ isExact = cast<PossiblyExactOperator>(I)->isExact();
}
// Okay, they are all the same operation. Create a new PHI node of the
@@ -433,8 +475,13 @@ Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst))
return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
- if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
- return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
+ if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
+ BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
+ if (isNUW) BinOp->setHasNoUnsignedWrap();
+ if (isNSW) BinOp->setHasNoSignedWrap();
+ if (isExact) BinOp->setIsExact();
+ return BinOp;
+ }
CmpInst *CIOp = cast<CmpInst>(FirstInst);
return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
@@ -731,8 +778,8 @@ Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) {
Instruction *InstCombiner::visitPHINode(PHINode &PN) {
// If LCSSA is around, don't mess with Phi nodes
if (MustPreserveLCSSA) return 0;
-
- if (Value *V = PN.hasConstantValue())
+
+ if (Value *V = SimplifyInstruction(&PN, TD))
return ReplaceInstUsesWith(PN, V);
// If all PHI operands are the same operation, pull them through the PHI,
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
index c44fe9d..97abc76 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp
@@ -24,14 +24,14 @@ static SelectPatternFlavor
MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
SelectInst *SI = dyn_cast<SelectInst>(V);
if (SI == 0) return SPF_UNKNOWN;
-
+
ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
if (ICI == 0) return SPF_UNKNOWN;
-
+
LHS = ICI->getOperand(0);
RHS = ICI->getOperand(1);
-
- // (icmp X, Y) ? X : Y
+
+ // (icmp X, Y) ? X : Y
if (SI->getTrueValue() == ICI->getOperand(0) &&
SI->getFalseValue() == ICI->getOperand(1)) {
switch (ICI->getPredicate()) {
@@ -46,8 +46,8 @@ MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
case ICmpInst::ICMP_SLE: return SPF_SMIN;
}
}
-
- // (icmp X, Y) ? Y : X
+
+ // (icmp X, Y) ? Y : X
if (SI->getTrueValue() == ICI->getOperand(1) &&
SI->getFalseValue() == ICI->getOperand(0)) {
switch (ICI->getPredicate()) {
@@ -62,9 +62,9 @@ MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
case ICmpInst::ICMP_SLE: return SPF_SMAX;
}
}
-
+
// TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
-
+
return SPF_UNKNOWN;
}
@@ -136,7 +136,7 @@ Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
FI->getOperand(0), SI.getName()+".v");
InsertNewInstBefore(NewSI, SI);
- return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
+ return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
TI->getType());
}
@@ -195,7 +195,10 @@ static bool isSelect01(Constant *C1, Constant *C2) {
ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
if (!C2I)
return false;
- return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
+ if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
+ return false;
+ return C1I->isOne() || C1I->isAllOnesValue() ||
+ C2I->isOne() || C2I->isAllOnesValue();
}
/// FoldSelectIntoOp - Try fold the select into one of the operands to
@@ -219,7 +222,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
Constant *C = GetSelectFoldableConstant(TVI);
Value *OOp = TVI->getOperand(2-OpToFold);
// Avoid creating select between 2 constants unless it's selecting
- // between 0 and 1.
+ // between 0, 1 and -1.
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
InsertNewInstBefore(NewSel, SI);
@@ -248,7 +251,7 @@ Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
Constant *C = GetSelectFoldableConstant(FVI);
Value *OOp = FVI->getOperand(2-OpToFold);
// Avoid creating select between 2 constants unless it's selecting
- // between 0 and 1.
+ // between 0, 1 and -1.
if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
InsertNewInstBefore(NewSel, SI);
@@ -278,52 +281,95 @@ Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
Value *FalseVal = SI.getFalseValue();
// Check cases where the comparison is with a constant that
- // can be adjusted to fit the min/max idiom. We may edit ICI in
- // place here, so make sure the select is the only user.
+ // can be adjusted to fit the min/max idiom. We may move or edit ICI
+ // here, so make sure the select is the only user.
if (ICI->hasOneUse())
if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
+ // X < MIN ? T : F --> F
+ if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
+ && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
+ return ReplaceInstUsesWith(SI, FalseVal);
+ // X > MAX ? T : F --> F
+ else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
+ && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
+ return ReplaceInstUsesWith(SI, FalseVal);
switch (Pred) {
default: break;
case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT: {
- // X < MIN ? T : F --> F
- if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
- return ReplaceInstUsesWith(SI, FalseVal);
- // X < C ? X : C-1 --> X > C-1 ? C-1 : X
- Constant *AdjustedRHS =
- ConstantInt::get(CI->getContext(), CI->getValue()-1);
- if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
- (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- CmpRHS = AdjustedRHS;
- std::swap(FalseVal, TrueVal);
- ICI->setPredicate(Pred);
- ICI->setOperand(1, CmpRHS);
- SI.setOperand(1, TrueVal);
- SI.setOperand(2, FalseVal);
- Changed = true;
- }
- break;
- }
+ case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT: {
- // X > MAX ? T : F --> F
- if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
- return ReplaceInstUsesWith(SI, FalseVal);
+ // These transformations only work for selects over integers.
+ const IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
+ if (!SelectTy)
+ break;
+
+ Constant *AdjustedRHS;
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
+ AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
+ else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
+ AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
+
// X > C ? X : C+1 --> X < C+1 ? C+1 : X
- Constant *AdjustedRHS =
- ConstantInt::get(CI->getContext(), CI->getValue()+1);
+ // X < C ? X : C-1 --> X > C-1 ? C-1 : X
if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
- (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
- Pred = ICmpInst::getSwappedPredicate(Pred);
- CmpRHS = AdjustedRHS;
- std::swap(FalseVal, TrueVal);
- ICI->setPredicate(Pred);
- ICI->setOperand(1, CmpRHS);
- SI.setOperand(1, TrueVal);
- SI.setOperand(2, FalseVal);
- Changed = true;
- }
+ (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
+ ; // Nothing to do here. Values match without any sign/zero extension.
+
+ // Types do not match. Instead of calculating this with mixed types
+ // promote all to the larger type. This enables scalar evolution to
+ // analyze this expression.
+ else if (CmpRHS->getType()->getScalarSizeInBits()
+ < SelectTy->getBitWidth()) {
+ Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
+
+ // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
+ // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
+ // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
+ // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
+ if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
+ sextRHS == FalseVal) {
+ CmpLHS = TrueVal;
+ AdjustedRHS = sextRHS;
+ } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
+ sextRHS == TrueVal) {
+ CmpLHS = FalseVal;
+ AdjustedRHS = sextRHS;
+ } else if (ICI->isUnsigned()) {
+ Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
+ // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
+ // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
+ // zext + signed compare cannot be changed:
+ // 0xff <s 0x00, but 0x00ff >s 0x0000
+ if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
+ zextRHS == FalseVal) {
+ CmpLHS = TrueVal;
+ AdjustedRHS = zextRHS;
+ } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
+ zextRHS == TrueVal) {
+ CmpLHS = FalseVal;
+ AdjustedRHS = zextRHS;
+ } else
+ break;
+ } else
+ break;
+ } else
+ break;
+
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ CmpRHS = AdjustedRHS;
+ std::swap(FalseVal, TrueVal);
+ ICI->setPredicate(Pred);
+ ICI->setOperand(0, CmpLHS);
+ ICI->setOperand(1, CmpRHS);
+ SI.setOperand(1, TrueVal);
+ SI.setOperand(2, FalseVal);
+
+ // Move ICI instruction right before the select instruction. Otherwise
+ // the sext/zext value may be defined after the ICI instruction uses it.
+ ICI->moveBefore(&SI);
+
+ Changed = true;
break;
}
}
@@ -399,28 +445,28 @@ static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
// can always be mapped.
const Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) return true;
-
+
// If V is a PHI node defined in the same block as the condition PHI, we can
// map the arguments.
const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
-
+
if (const PHINode *VP = dyn_cast<PHINode>(I))
if (VP->getParent() == CondPHI->getParent())
return true;
-
+
// Otherwise, if the PHI and select are defined in the same block and if V is
// defined in a different block, then we can transform it.
if (SI.getParent() == CondPHI->getParent() &&
I->getParent() != CondPHI->getParent())
return true;
-
+
// Otherwise we have a 'hard' case and we can't tell without doing more
// detailed dominator based analysis, punt.
return false;
}
/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
-/// SPF2(SPF1(A, B), C)
+/// SPF2(SPF1(A, B), C)
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
SelectPatternFlavor SPF1,
Value *A, Value *B,
@@ -431,7 +477,7 @@ Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
// MIN(MIN(a, b), a) -> MIN(a, b)
if (SPF1 == SPF2)
return ReplaceInstUsesWith(Outer, Inner);
-
+
// MAX(MIN(a, b), a) -> a
// MIN(MAX(a, b), a) -> a
if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
@@ -440,13 +486,82 @@ Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
(SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
return ReplaceInstUsesWith(Outer, C);
}
-
+
// TODO: MIN(MIN(A, 23), 97)
return 0;
}
+/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
+/// both be) and we have an icmp instruction with zero, and we have an 'and'
+/// with the non-constant value and a power of two we can turn the select
+/// into a shift on the result of the 'and'.
+static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
+ ConstantInt *FalseVal,
+ InstCombiner::BuilderTy *Builder) {
+ const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
+ if (!IC || !IC->isEquality())
+ return 0;
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(IC->getOperand(1)))
+ if (!C->isZero())
+ return 0;
+ ConstantInt *AndRHS;
+ Value *LHS = IC->getOperand(0);
+ if (LHS->getType() != SI.getType() ||
+ !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
+ return 0;
+
+ // If both select arms are non-zero see if we have a select of the form
+ // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
+ // for 'x ? 2^n : 0' and fix the thing up at the end.
+ ConstantInt *Offset = 0;
+ if (!TrueVal->isZero() && !FalseVal->isZero()) {
+ if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
+ Offset = FalseVal;
+ else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
+ Offset = TrueVal;
+ else
+ return 0;
+
+ // Adjust TrueVal and FalseVal to the offset.
+ TrueVal = ConstantInt::get(Builder->getContext(),
+ TrueVal->getValue() - Offset->getValue());
+ FalseVal = ConstantInt::get(Builder->getContext(),
+ FalseVal->getValue() - Offset->getValue());
+ }
+
+ // Make sure the mask in the 'and' and one of the select arms is a power of 2.
+ if (!AndRHS->getValue().isPowerOf2() ||
+ (!TrueVal->getValue().isPowerOf2() &&
+ !FalseVal->getValue().isPowerOf2()))
+ return 0;
+
+ // Determine which shift is needed to transform result of the 'and' into the
+ // desired result.
+ ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
+ unsigned ValZeros = ValC->getValue().logBase2();
+ unsigned AndZeros = AndRHS->getValue().logBase2();
+
+ Value *V = LHS;
+ if (ValZeros > AndZeros)
+ V = Builder->CreateShl(V, ValZeros - AndZeros);
+ else if (ValZeros < AndZeros)
+ V = Builder->CreateLShr(V, AndZeros - ValZeros);
+
+ // Okay, now we know that everything is set up, we just don't know whether we
+ // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
+ bool ShouldNotVal = !TrueVal->isZero();
+ ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
+ if (ShouldNotVal)
+ V = Builder->CreateXor(V, ValC);
+
+ // Apply an offset if needed.
+ if (Offset)
+ V = Builder->CreateAdd(V, Offset);
+ return V;
+}
Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *CondVal = SI.getCondition();
@@ -478,7 +593,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
"not."+CondVal->getName()), SI);
return BinaryOperator::CreateOr(NotCond, TrueVal);
}
-
+
// select a, b, a -> a&b
// select a, a, b -> a|b
if (CondVal == TrueVal)
@@ -497,7 +612,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// select C, -1, 0 -> sext C to int
if (FalseValC->isZero() && TrueValC->isAllOnesValue())
return new SExtInst(CondVal, SI.getType());
-
+
// select C, 0, 1 -> zext !C to int
if (TrueValC->isZero() && FalseValC->getValue() == 1) {
Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
@@ -509,32 +624,9 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
return new SExtInst(NotCond, SI.getType());
}
-
- if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
- // If one of the constants is zero (we know they can't both be) and we
- // have an icmp instruction with zero, and we have an 'and' with the
- // non-constant value, eliminate this whole mess. This corresponds to
- // cases like this: ((X & 27) ? 27 : 0)
- if (TrueValC->isZero() || FalseValC->isZero())
- if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
- cast<Constant>(IC->getOperand(1))->isNullValue())
- if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
- if (ICA->getOpcode() == Instruction::And &&
- isa<ConstantInt>(ICA->getOperand(1)) &&
- (ICA->getOperand(1) == TrueValC ||
- ICA->getOperand(1) == FalseValC) &&
- cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
- // Okay, now we know that everything is set up, we just don't
- // know whether we have a icmp_ne or icmp_eq and whether the
- // true or false val is the zero.
- bool ShouldNotVal = !TrueValC->isZero();
- ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
- Value *V = ICA;
- if (ShouldNotVal)
- V = Builder->CreateXor(V, ICA->getOperand(1));
- return ReplaceInstUsesWith(SI, V);
- }
- }
+
+ if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
+ return ReplaceInstUsesWith(SI, V);
}
// See if we are selecting two values based on a comparison of the two values.
@@ -542,7 +634,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
// Transform (X == Y) ? X : Y -> Y
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
- // This is not safe in general for floating point:
+ // This is not safe in general for floating point:
// consider X== -0, Y== +0.
// It becomes safe if either operand is a nonzero constant.
ConstantFP *CFPt, *CFPf;
@@ -554,7 +646,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
// Transform (X une Y) ? X : Y -> X
if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
- // This is not safe in general for floating point:
+ // This is not safe in general for floating point:
// consider X== -0, Y== +0.
// It becomes safe if either operand is a nonzero constant.
ConstantFP *CFPt, *CFPf;
@@ -569,7 +661,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
} else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
// Transform (X == Y) ? Y : X -> X
if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
- // This is not safe in general for floating point:
+ // This is not safe in general for floating point:
// consider X== -0, Y== +0.
// It becomes safe if either operand is a nonzero constant.
ConstantFP *CFPt, *CFPf;
@@ -581,7 +673,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
// Transform (X une Y) ? Y : X -> Y
if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
- // This is not safe in general for floating point:
+ // This is not safe in general for floating point:
// consider X== -0, Y== +0.
// It becomes safe if either operand is a nonzero constant.
ConstantFP *CFPt, *CFPf;
@@ -639,6 +731,10 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
Value *NegVal; // Compute -Z
if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
NegVal = ConstantExpr::getNeg(C);
+ } else if (SI.getType()->isFloatingPointTy()) {
+ NegVal = InsertNewInstBefore(
+ BinaryOperator::CreateFNeg(SubOp->getOperand(1),
+ "tmp"), SI);
} else {
NegVal = InsertNewInstBefore(
BinaryOperator::CreateNeg(SubOp->getOperand(1),
@@ -654,7 +750,10 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
NewFalseOp, SI.getName() + ".p");
NewSel = InsertNewInstBefore(NewSel, SI);
- return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
+ if (SI.getType()->isFloatingPointTy())
+ return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
+ else
+ return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
}
}
}
@@ -663,7 +762,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
if (SI.getType()->isIntegerTy()) {
if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
return FoldI;
-
+
// MAX(MAX(a, b), a) -> MAX(a, b)
// MIN(MIN(a, b), a) -> MIN(a, b)
// MAX(MIN(a, b), a) -> a
@@ -686,13 +785,26 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
// See if we can fold the select into a phi node if the condition is a select.
- if (isa<PHINode>(SI.getCondition()))
+ if (isa<PHINode>(SI.getCondition()))
// The true/false values have to be live in the PHI predecessor's blocks.
if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
if (Instruction *NV = FoldOpIntoPhi(SI))
return NV;
+ if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
+ if (TrueSI->getCondition() == CondVal) {
+ SI.setOperand(1, TrueSI->getTrueValue());
+ return &SI;
+ }
+ }
+ if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
+ if (FalseSI->getCondition() == CondVal) {
+ SI.setOperand(2, FalseSI->getFalseValue());
+ return &SI;
+ }
+ }
+
if (BinaryOperator::isNot(CondVal)) {
SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
SI.setOperand(1, FalseVal);
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
index 27716b8..a7f8005 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
@@ -13,6 +13,7 @@
#include "InstCombine.h"
#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Support/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;
@@ -21,25 +22,6 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // shl X, 0 == X and shr X, 0 == X
- // shl 0, X == 0 and shr 0, X == 0
- if (Op1 == Constant::getNullValue(Op1->getType()) ||
- Op0 == Constant::getNullValue(Op0->getType()))
- return ReplaceInstUsesWith(I, Op0);
-
- if (isa<UndefValue>(Op0)) {
- if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
- return ReplaceInstUsesWith(I, Op0);
- else // undef << X -> 0, undef >>u X -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
- if (isa<UndefValue>(Op1)) {
- if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
- return ReplaceInstUsesWith(I, Op0);
- else // X << undef, X >>u undef -> 0
- return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- }
-
// See if we can fold away this shift.
if (SimplifyDemandedInstructionBits(I))
return &I;
@@ -53,6 +35,20 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
return Res;
+
+ // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
+ // Because shifts by negative values (which could occur if A were negative)
+ // are undefined.
+ Value *A; const APInt *B;
+ if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
+ // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
+ // demand the sign bit (and many others) here??
+ Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1),
+ Op1->getName());
+ I.setOperand(1, Rem);
+ return &I;
+ }
+
return 0;
}
@@ -81,7 +77,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// if the needed bits are already zero in the input. This allows us to reuse
// the value which means that we don't care if the shift has multiple uses.
// TODO: Handle opposite shift by exact value.
- ConstantInt *CI;
+ ConstantInt *CI = 0;
if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
(!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
if (CI->getZExtValue() == NumBits) {
@@ -131,9 +127,9 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
// We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't
// profitable unless we know the and'd out bits are already zero.
if (CI->getZExtValue() > NumBits) {
- unsigned HighBits = CI->getZExtValue() - NumBits;
+ unsigned LowBits = TypeWidth - CI->getZExtValue();
if (MaskedValueIsZero(I->getOperand(0),
- APInt::getHighBitsSet(TypeWidth, HighBits)))
+ APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
@@ -157,7 +153,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift,
if (CI->getZExtValue() > NumBits) {
unsigned LowBits = CI->getZExtValue() - NumBits;
if (MaskedValueIsZero(I->getOperand(0),
- APInt::getLowBitsSet(TypeWidth, LowBits)))
+ APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits))
return true;
}
@@ -622,16 +618,49 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
}
Instruction *InstCombiner::visitShl(BinaryOperator &I) {
- return commonShiftTransforms(I);
+ if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
+ I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
+ TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Instruction *V = commonShiftTransforms(I))
+ return V;
+
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) {
+ unsigned ShAmt = Op1C->getZExtValue();
+
+ // If the shifted-out value is known-zero, then this is a NUW shift.
+ if (!I.hasNoUnsignedWrap() &&
+ MaskedValueIsZero(I.getOperand(0),
+ APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) {
+ I.setHasNoUnsignedWrap();
+ return &I;
+ }
+
+ // If the shifted out value is all signbits, this is a NSW shift.
+ if (!I.hasNoSignedWrap() &&
+ ComputeNumSignBits(I.getOperand(0)) > ShAmt) {
+ I.setHasNoSignedWrap();
+ return &I;
+ }
+ }
+
+ return 0;
}
Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
+ if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1),
+ I.isExact(), TD))
+ return ReplaceInstUsesWith(I, V);
+
if (Instruction *R = commonShiftTransforms(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1))
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ unsigned ShAmt = Op1C->getZExtValue();
+
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) {
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
// ctlz.i32(x)>>5 --> zext(x == 0)
@@ -640,7 +669,7 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
if ((II->getIntrinsicID() == Intrinsic::ctlz ||
II->getIntrinsicID() == Intrinsic::cttz ||
II->getIntrinsicID() == Intrinsic::ctpop) &&
- isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){
+ isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) {
bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop;
Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0);
Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS);
@@ -648,29 +677,37 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
}
}
+ // If the shifted-out value is known-zero, then this is an exact shift.
+ if (!I.isExact() &&
+ MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
+ I.setIsExact();
+ return &I;
+ }
+ }
+
return 0;
}
Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
+ if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1),
+ I.isExact(), TD))
+ return ReplaceInstUsesWith(I, V);
+
if (Instruction *R = commonShiftTransforms(I))
return R;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
-
- if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) {
- // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
- if (CSI->isAllOnesValue())
- return ReplaceInstUsesWith(I, CSI);
- }
-
+
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ unsigned ShAmt = Op1C->getZExtValue();
+
// If the input is a SHL by the same constant (ashr (shl X, C), C), then we
// have a sign-extend idiom.
Value *X;
if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) {
- // If the input value is known to already be sign extended enough, delete
- // the extension.
- if (ComputeNumSignBits(X) > Op1C->getZExtValue())
+ // If the left shift is just shifting out partial signbits, delete the
+ // extension.
+ if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
return ReplaceInstUsesWith(I, X);
// If the input is an extension from the shifted amount value, e.g.
@@ -685,6 +722,13 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
return new SExtInst(ZI->getOperand(0), ZI->getType());
}
}
+
+ // If the shifted-out value is known-zero, then this is an exact shift.
+ if (!I.isExact() &&
+ MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){
+ I.setIsExact();
+ return &I;
+ }
}
// See if we can turn a signed shr into an unsigned shr.
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
index adf7a76..bda8cea 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -34,7 +34,7 @@ static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
if (!OpC) return false;
// If there are no bits set that aren't demanded, nothing to do.
- Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
+ Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
if ((~Demanded & OpC->getValue()) == 0)
return false;
@@ -121,13 +121,13 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
}
if (isa<ConstantPointerNull>(V)) {
// We know all of the bits for a constant!
- KnownOne.clear();
+ KnownOne.clearAllBits();
KnownZero = DemandedMask;
return 0;
}
- KnownZero.clear();
- KnownOne.clear();
+ KnownZero.clearAllBits();
+ KnownOne.clearAllBits();
if (DemandedMask == 0) { // Not demanding any bits from V.
if (isa<UndefValue>(V))
return 0;
@@ -388,15 +388,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Trunc: {
unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
- DemandedMask.zext(truncBf);
- KnownZero.zext(truncBf);
- KnownOne.zext(truncBf);
+ DemandedMask = DemandedMask.zext(truncBf);
+ KnownZero = KnownZero.zext(truncBf);
+ KnownOne = KnownOne.zext(truncBf);
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
- DemandedMask.trunc(BitWidth);
- KnownZero.trunc(BitWidth);
- KnownOne.trunc(BitWidth);
+ DemandedMask = DemandedMask.trunc(BitWidth);
+ KnownZero = KnownZero.trunc(BitWidth);
+ KnownOne = KnownOne.trunc(BitWidth);
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
break;
}
@@ -426,15 +426,15 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
- DemandedMask.trunc(SrcBitWidth);
- KnownZero.trunc(SrcBitWidth);
- KnownOne.trunc(SrcBitWidth);
+ DemandedMask = DemandedMask.trunc(SrcBitWidth);
+ KnownZero = KnownZero.trunc(SrcBitWidth);
+ KnownOne = KnownOne.trunc(SrcBitWidth);
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
KnownZero, KnownOne, Depth+1))
return I;
- DemandedMask.zext(BitWidth);
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
+ DemandedMask = DemandedMask.zext(BitWidth);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// The top bits are known to be zero.
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
@@ -451,17 +451,17 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
// If any of the sign extended bits are demanded, we know that the sign
// bit is demanded.
if ((NewBits & DemandedMask) != 0)
- InputDemandedBits.set(SrcBitWidth-1);
+ InputDemandedBits.setBit(SrcBitWidth-1);
- InputDemandedBits.trunc(SrcBitWidth);
- KnownZero.trunc(SrcBitWidth);
- KnownOne.trunc(SrcBitWidth);
+ InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
+ KnownZero = KnownZero.trunc(SrcBitWidth);
+ KnownOne = KnownOne.trunc(SrcBitWidth);
if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
KnownZero, KnownOne, Depth+1))
return I;
- InputDemandedBits.zext(BitWidth);
- KnownZero.zext(BitWidth);
- KnownOne.zext(BitWidth);
+ InputDemandedBits = InputDemandedBits.zext(BitWidth);
+ KnownZero = KnownZero.zext(BitWidth);
+ KnownOne = KnownOne.zext(BitWidth);
assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
@@ -576,8 +576,16 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
break;
case Instruction::Shl:
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
+
+ // If the shift is NUW/NSW, then it does demand the high bits.
+ ShlOperator *IOp = cast<ShlOperator>(I);
+ if (IOp->hasNoSignedWrap())
+ DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
+ else if (IOp->hasNoUnsignedWrap())
+ DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -592,10 +600,16 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
case Instruction::LShr:
// For a logical shift right
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Unsigned shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (cast<LShrOperator>(I)->isExact())
+ DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -627,14 +641,20 @@ Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
return I->getOperand(0);
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
- uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
// Signed shift right.
APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
// If any of the "high bits" are demanded, we should set the sign bit as
// demanded.
if (DemandedMask.countLeadingZeros() <= ShiftAmt)
- DemandedMaskIn.set(BitWidth-1);
+ DemandedMaskIn.setBit(BitWidth-1);
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (cast<AShrOperator>(I)->isExact())
+ DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+
if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
KnownZero, KnownOne, Depth+1))
return I;
@@ -793,10 +813,10 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
for (unsigned i = 0; i != VWidth; ++i)
if (!DemandedElts[i]) { // If not demanded, set to undef.
Elts.push_back(Undef);
- UndefElts.set(i);
+ UndefElts.setBit(i);
} else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef.
Elts.push_back(Undef);
- UndefElts.set(i);
+ UndefElts.setBit(i);
} else { // Otherwise, defined.
Elts.push_back(CV->getOperand(i));
}
@@ -879,13 +899,13 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// Otherwise, the element inserted overwrites whatever was there, so the
// input demanded set is simpler than the output set.
APInt DemandedElts2 = DemandedElts;
- DemandedElts2.clear(IdxNo);
+ DemandedElts2.clearBit(IdxNo);
TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
UndefElts, Depth+1);
if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
// The inserted element is defined.
- UndefElts.clear(IdxNo);
+ UndefElts.clearBit(IdxNo);
break;
}
case Instruction::ShuffleVector: {
@@ -900,9 +920,9 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
assert(MaskVal < LHSVWidth * 2 &&
"shufflevector mask index out of range!");
if (MaskVal < LHSVWidth)
- LeftDemanded.set(MaskVal);
+ LeftDemanded.setBit(MaskVal);
else
- RightDemanded.set(MaskVal - LHSVWidth);
+ RightDemanded.setBit(MaskVal - LHSVWidth);
}
}
}
@@ -921,16 +941,16 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
for (unsigned i = 0; i < VWidth; i++) {
unsigned MaskVal = Shuffle->getMaskValue(i);
if (MaskVal == -1u) {
- UndefElts.set(i);
+ UndefElts.setBit(i);
} else if (MaskVal < LHSVWidth) {
if (UndefElts4[MaskVal]) {
NewUndefElts = true;
- UndefElts.set(i);
+ UndefElts.setBit(i);
}
} else {
if (UndefElts3[MaskVal - LHSVWidth]) {
NewUndefElts = true;
- UndefElts.set(i);
+ UndefElts.setBit(i);
}
}
}
@@ -973,7 +993,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Ratio = VWidth/InVWidth;
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
if (DemandedElts[OutIdx])
- InputDemandedElts.set(OutIdx/Ratio);
+ InputDemandedElts.setBit(OutIdx/Ratio);
}
} else {
// Untested so far.
@@ -985,7 +1005,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
Ratio = InVWidth/VWidth;
for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
if (DemandedElts[InIdx/Ratio])
- InputDemandedElts.set(InIdx);
+ InputDemandedElts.setBit(InIdx);
}
// div/rem demand all inputs, because they don't want divide by zero.
@@ -1004,7 +1024,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
// undef.
for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
if (UndefElts2[OutIdx/Ratio])
- UndefElts.set(OutIdx);
+ UndefElts.setBit(OutIdx);
} else if (VWidth < InVWidth) {
llvm_unreachable("Unimp");
// If there are more elements in the source than there are in the result,
@@ -1013,7 +1033,7 @@ Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
if (!UndefElts2[InIdx]) // Not undef?
- UndefElts.clear(InIdx/Ratio); // Clear undef bit.
+ UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
}
break;
}
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
index a58124d..5caa12d 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp
@@ -18,7 +18,7 @@ using namespace llvm;
/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
/// is to leave as a vector operation.
static bool CheapToScalarize(Value *V, bool isConstant) {
- if (isa<ConstantAggregateZero>(V))
+ if (isa<ConstantAggregateZero>(V))
return true;
if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
if (isConstant) return true;
@@ -31,7 +31,7 @@ static bool CheapToScalarize(Value *V, bool isConstant) {
}
Instruction *I = dyn_cast<Instruction>(V);
if (!I) return false;
-
+
// Insert element gets simplified to the inserted element or is deleted if
// this is constant idx extract element and its a constant idx insertelt.
if (I->getOpcode() == Instruction::InsertElement && isConstant &&
@@ -49,26 +49,24 @@ static bool CheapToScalarize(Value *V, bool isConstant) {
(CheapToScalarize(CI->getOperand(0), isConstant) ||
CheapToScalarize(CI->getOperand(1), isConstant)))
return true;
-
+
return false;
}
-/// Read and decode a shufflevector mask.
-///
-/// It turns undef elements into values that are larger than the number of
-/// elements in the input.
-static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
+/// getShuffleMask - Read and decode a shufflevector mask.
+/// Turn undef elements into negative values.
+static std::vector<int> getShuffleMask(const ShuffleVectorInst *SVI) {
unsigned NElts = SVI->getType()->getNumElements();
if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
- return std::vector<unsigned>(NElts, 0);
+ return std::vector<int>(NElts, 0);
if (isa<UndefValue>(SVI->getOperand(2)))
- return std::vector<unsigned>(NElts, 2*NElts);
-
- std::vector<unsigned> Result;
+ return std::vector<int>(NElts, -1);
+
+ std::vector<int> Result;
const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
if (isa<UndefValue>(*i))
- Result.push_back(NElts*2); // undef -> 8
+ Result.push_back(-1); // undef
else
Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
return Result;
@@ -83,42 +81,41 @@ static Value *FindScalarElement(Value *V, unsigned EltNo) {
unsigned Width = PTy->getNumElements();
if (EltNo >= Width) // Out of range access.
return UndefValue::get(PTy->getElementType());
-
+
if (isa<UndefValue>(V))
return UndefValue::get(PTy->getElementType());
if (isa<ConstantAggregateZero>(V))
return Constant::getNullValue(PTy->getElementType());
if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
return CP->getOperand(EltNo);
-
+
if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
// If this is an insert to a variable element, we don't know what it is.
- if (!isa<ConstantInt>(III->getOperand(2)))
+ if (!isa<ConstantInt>(III->getOperand(2)))
return 0;
unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
-
+
// If this is an insert to the element we are looking for, return the
// inserted value.
- if (EltNo == IIElt)
+ if (EltNo == IIElt)
return III->getOperand(1);
-
+
// Otherwise, the insertelement doesn't modify the value, recurse on its
// vector input.
return FindScalarElement(III->getOperand(0), EltNo);
}
-
+
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
unsigned LHSWidth =
- cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
- unsigned InEl = getShuffleMask(SVI)[EltNo];
- if (InEl < LHSWidth)
- return FindScalarElement(SVI->getOperand(0), InEl);
- else if (InEl < LHSWidth*2)
- return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
- else
+ cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+ int InEl = getShuffleMask(SVI)[EltNo];
+ if (InEl < 0)
return UndefValue::get(PTy->getElementType());
+ if (InEl < (int)LHSWidth)
+ return FindScalarElement(SVI->getOperand(0), InEl);
+ return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth);
}
-
+
// Otherwise, we don't know.
return 0;
}
@@ -127,11 +124,11 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// If vector val is undef, replace extract with scalar undef.
if (isa<UndefValue>(EI.getOperand(0)))
return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
-
+
// If vector val is constant 0, replace extract with scalar 0.
if (isa<ConstantAggregateZero>(EI.getOperand(0)))
return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
-
+
if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
// If vector val is constant with all elements the same, replace EI with
// that element. When the elements are not identical, we cannot replace yet
@@ -139,53 +136,53 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
Constant *op0 = C->getOperand(0);
for (unsigned i = 1; i != C->getNumOperands(); ++i)
if (C->getOperand(i) != op0) {
- op0 = 0;
+ op0 = 0;
break;
}
if (op0)
return ReplaceInstUsesWith(EI, op0);
}
-
+
// If extracting a specified index from the vector, see if we can recursively
// find a previously computed scalar that was inserted into the vector.
if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
unsigned IndexVal = IdxC->getZExtValue();
unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
-
+
// If this is extracting an invalid index, turn this into undef, to avoid
// crashing the code below.
if (IndexVal >= VectorWidth)
return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
-
+
// This instruction only demands the single element from the input vector.
// If the input vector has a single use, simplify it based on this use
// property.
if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
APInt UndefElts(VectorWidth, 0);
APInt DemandedMask(VectorWidth, 0);
- DemandedMask.set(IndexVal);
+ DemandedMask.setBit(IndexVal);
if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
DemandedMask, UndefElts)) {
EI.setOperand(0, V);
return &EI;
}
}
-
+
if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
return ReplaceInstUsesWith(EI, Elt);
-
+
// If the this extractelement is directly using a bitcast from a vector of
// the same number of elements, see if we can find the source element from
// it. In this case, we will end up needing to bitcast the scalars.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
- if (const VectorType *VT =
+ if (const VectorType *VT =
dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
if (VT->getNumElements() == VectorWidth)
if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
return new BitCastInst(Elt, EI.getType());
}
}
-
+
if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
// Push extractelement into predecessor operation if legal and
// profitable to do so
@@ -193,11 +190,11 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
if (I->hasOneUse() &&
CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
Value *newEI0 =
- Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
- EI.getName()+".lhs");
+ Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
+ EI.getName()+".lhs");
Value *newEI1 =
- Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
- EI.getName()+".rhs");
+ Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
+ EI.getName()+".rhs");
return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
}
} else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
@@ -215,21 +212,22 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
// If this is extracting an element from a shufflevector, figure out where
// it came from and extract from the appropriate input element instead.
if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
- unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
+ int SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
Value *Src;
unsigned LHSWidth =
- cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
-
- if (SrcIdx < LHSWidth)
+ cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
+
+ if (SrcIdx < 0)
+ return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
+ if (SrcIdx < (int)LHSWidth)
Src = SVI->getOperand(0);
- else if (SrcIdx < LHSWidth*2) {
+ else {
SrcIdx -= LHSWidth;
Src = SVI->getOperand(1);
- } else {
- return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
}
+ const Type *Int32Ty = Type::getInt32Ty(EI.getContext());
return ExtractElementInst::Create(Src,
- ConstantInt::get(Type::getInt32Ty(EI.getContext()),
+ ConstantInt::get(Int32Ty,
SrcIdx, false));
}
}
@@ -239,42 +237,42 @@ Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
}
/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
-/// elements from either LHS or RHS, return the shuffle mask and true.
+/// elements from either LHS or RHS, return the shuffle mask and true.
/// Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
std::vector<Constant*> &Mask) {
assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
"Invalid CollectSingleShuffleElements");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
-
+
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return true;
}
-
+
if (V == LHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
return true;
}
-
+
if (V == RHS) {
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
i+NumElts));
return true;
}
-
+
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
// If this is an insert of an extract from some other vector, include it.
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
-
+
if (!isa<ConstantInt>(IdxOp))
return false;
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
+
if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
// Okay, we can handle this if the vector we are insertinting into is
// transitively ok.
@@ -282,13 +280,13 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
// If so, update the mask to reflect the inserted undef.
Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
return true;
- }
+ }
} else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
if (isa<ConstantInt>(EI->getOperand(1)) &&
EI->getOperand(0)->getType() == V->getType()) {
unsigned ExtractedIdx =
cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
-
+
// This must be extracting from either LHS or RHS.
if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
// Okay, we can handle this if the vector we are insertinting into is
@@ -296,15 +294,14 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
// If so, update the mask to reflect the inserted value.
if (EI->getOperand(0) == LHS) {
- Mask[InsertedIdx % NumElts] =
+ Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx);
} else {
assert(EI->getOperand(0) == RHS);
- Mask[InsertedIdx % NumElts] =
+ Mask[InsertedIdx % NumElts] =
ConstantInt::get(Type::getInt32Ty(V->getContext()),
ExtractedIdx+NumElts);
-
}
return true;
}
@@ -313,7 +310,7 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
}
}
// TODO: Handle shufflevector here!
-
+
return false;
}
@@ -322,11 +319,11 @@ static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
/// that computes V and the LHS value of the shuffle.
static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Value *&RHS) {
- assert(V->getType()->isVectorTy() &&
+ assert(V->getType()->isVectorTy() &&
(RHS == 0 || V->getType() == RHS->getType()) &&
"Invalid shuffle!");
unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
-
+
if (isa<UndefValue>(V)) {
Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
return V;
@@ -338,25 +335,25 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
Value *VecOp = IEI->getOperand(0);
Value *ScalarOp = IEI->getOperand(1);
Value *IdxOp = IEI->getOperand(2);
-
+
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
EI->getOperand(0)->getType() == V->getType()) {
unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
+
// Either the extracted from or inserted into vector must be RHSVec,
// otherwise we'd end up with a shuffle of three inputs.
if (EI->getOperand(0) == RHS || RHS == 0) {
RHS = EI->getOperand(0);
Value *V = CollectShuffleElements(VecOp, Mask, RHS);
- Mask[InsertedIdx % NumElts] =
- ConstantInt::get(Type::getInt32Ty(V->getContext()),
- NumElts+ExtractedIdx);
+ Mask[InsertedIdx % NumElts] =
+ ConstantInt::get(Type::getInt32Ty(V->getContext()),
+ NumElts+ExtractedIdx);
return V;
}
-
+
if (VecOp == RHS) {
Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
// Everything but the extracted element is replaced with the RHS.
@@ -367,7 +364,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
}
return V;
}
-
+
// If this insertelement is a chain that comes from exactly these two
// vectors, return the vector and the effective shuffle.
if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
@@ -376,7 +373,7 @@ static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
}
}
// TODO: Handle shufflevector here!
-
+
// Otherwise, can't do anything fancy. Return an identity vector.
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
@@ -387,32 +384,32 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
Value *VecOp = IE.getOperand(0);
Value *ScalarOp = IE.getOperand(1);
Value *IdxOp = IE.getOperand(2);
-
+
// Inserting an undef or into an undefined place, remove this.
if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
ReplaceInstUsesWith(IE, VecOp);
-
- // If the inserted element was extracted from some other vector, and if the
+
+ // If the inserted element was extracted from some other vector, and if the
// indexes are constant, try to turn this into a shufflevector operation.
if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
EI->getOperand(0)->getType() == IE.getType()) {
unsigned NumVectorElts = IE.getType()->getNumElements();
unsigned ExtractedIdx =
- cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
+ cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
-
+
if (ExtractedIdx >= NumVectorElts) // Out of range extract.
return ReplaceInstUsesWith(IE, VecOp);
-
+
if (InsertedIdx >= NumVectorElts) // Out of range insert.
return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
-
+
// If we are extracting a value from a vector, then inserting it right
// back into the same place, just use the input vector.
if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
- return ReplaceInstUsesWith(IE, VecOp);
-
+ return ReplaceInstUsesWith(IE, VecOp);
+
// If this insertelement isn't used by some other insertelement, turn it
// (and any insertelements it points to), into one big shuffle.
if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
@@ -421,18 +418,20 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
if (RHS == 0) RHS = UndefValue::get(LHS->getType());
// We now have a shuffle of LHS, RHS, Mask.
- return new ShuffleVectorInst(LHS, RHS,
- ConstantVector::get(Mask));
+ return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
}
}
}
-
+
unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
+ if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
+ if (V != &IE)
+ return ReplaceInstUsesWith(IE, V);
return &IE;
-
+ }
+
return 0;
}
@@ -440,27 +439,29 @@ Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
Value *LHS = SVI.getOperand(0);
Value *RHS = SVI.getOperand(1);
- std::vector<unsigned> Mask = getShuffleMask(&SVI);
-
+ std::vector<int> Mask = getShuffleMask(&SVI);
+
bool MadeChange = false;
-
+
// Undefined shuffle mask -> undefined value.
if (isa<UndefValue>(SVI.getOperand(2)))
return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
-
+
unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
-
+
if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
return 0;
-
+
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
- if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
+ if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
+ if (V != &SVI)
+ return ReplaceInstUsesWith(SVI, V);
LHS = SVI.getOperand(0);
RHS = SVI.getOperand(1);
MadeChange = true;
}
-
+
// Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
// Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
if (LHS == RHS || isa<UndefValue>(LHS)) {
@@ -468,16 +469,16 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
// shuffle(undef,undef,mask) -> undef.
return ReplaceInstUsesWith(SVI, LHS);
}
-
+
// Remap any references to RHS to use LHS.
std::vector<Constant*> Elts;
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] >= 2*e)
+ if (Mask[i] < 0)
Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
else {
- if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
- (Mask[i] < e && isa<UndefValue>(LHS))) {
- Mask[i] = 2*e; // Turn into undef.
+ if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
+ (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
+ Mask[i] = -1; // Turn into undef.
Elts.push_back(UndefValue::get(Type::getInt32Ty(SVI.getContext())));
} else {
Mask[i] = Mask[i] % e; // Force to LHS.
@@ -493,59 +494,65 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
RHS = SVI.getOperand(1);
MadeChange = true;
}
-
+
// Analyze the shuffle, are the LHS or RHS and identity shuffles?
bool isLHSID = true, isRHSID = true;
-
+
for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
- if (Mask[i] >= e*2) continue; // Ignore undef values.
+ if (Mask[i] < 0) continue; // Ignore undef values.
// Is this an identity shuffle of the LHS value?
- isLHSID &= (Mask[i] == i);
-
+ isLHSID &= (Mask[i] == (int)i);
+
// Is this an identity shuffle of the RHS value?
isRHSID &= (Mask[i]-e == i);
}
-
+
// Eliminate identity shuffles.
if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
-
+
// If the LHS is a shufflevector itself, see if we can combine it with this
// one without producing an unusual shuffle. Here we are really conservative:
// we are absolutely afraid of producing a shuffle mask not in the input
// program, because the code gen may not be smart enough to turn a merged
// shuffle into two specific shuffles: it may produce worse code. As such,
- // we only merge two shuffles if the result is one of the two input shuffle
- // masks. In this case, merging the shuffles just removes one instruction,
- // which we know is safe. This is good for things like turning:
- // (splat(splat)) -> splat.
+ // we only merge two shuffles if the result is either a splat or one of the
+ // two input shuffle masks. In this case, merging the shuffles just removes
+ // one instruction, which we know is safe. This is good for things like
+ // turning: (splat(splat)) -> splat.
if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
if (isa<UndefValue>(RHS)) {
- std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
-
+ std::vector<int> LHSMask = getShuffleMask(LHSSVI);
+
if (LHSMask.size() == Mask.size()) {
- std::vector<unsigned> NewMask;
- for (unsigned i = 0, e = Mask.size(); i != e; ++i)
- if (Mask[i] >= e)
- NewMask.push_back(2*e);
+ std::vector<int> NewMask;
+ bool isSplat = true;
+ int SplatElt = -1; // undef
+ for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
+ int MaskElt;
+ if (Mask[i] < 0 || Mask[i] >= (int)e)
+ MaskElt = -1; // undef
else
- NewMask.push_back(LHSMask[Mask[i]]);
-
+ MaskElt = LHSMask[Mask[i]];
+ // Check if this could still be a splat.
+ if (MaskElt >= 0) {
+ if (SplatElt >=0 && SplatElt != MaskElt)
+ isSplat = false;
+ SplatElt = MaskElt;
+ }
+ NewMask.push_back(MaskElt);
+ }
+
// If the result mask is equal to the src shuffle or this
// shuffle mask, do the replacement.
- if (NewMask == LHSMask || NewMask == Mask) {
- unsigned LHSInNElts =
- cast<VectorType>(LHSSVI->getOperand(0)->getType())->
- getNumElements();
+ if (isSplat || NewMask == LHSMask || NewMask == Mask) {
std::vector<Constant*> Elts;
+ const Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
- if (NewMask[i] >= LHSInNElts*2) {
- Elts.push_back(UndefValue::get(
- Type::getInt32Ty(SVI.getContext())));
+ if (NewMask[i] < 0) {
+ Elts.push_back(UndefValue::get(Int32Ty));
} else {
- Elts.push_back(ConstantInt::get(
- Type::getInt32Ty(SVI.getContext()),
- NewMask[i]));
+ Elts.push_back(ConstantInt::get(Int32Ty, NewMask[i]));
}
}
return new ShuffleVectorInst(LHSSVI->getOperand(0),
@@ -555,7 +562,6 @@ Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
}
}
}
-
+
return MadeChange ? &SVI : 0;
}
-
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
index e46c679..37123d0 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -48,6 +48,7 @@
#include "llvm/Support/PatternMatch.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
+#include "llvm-c/Initialization.h"
#include <algorithm>
#include <climits>
using namespace llvm;
@@ -57,11 +58,22 @@ STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
+STATISTIC(NumExpand, "Number of expansions");
+STATISTIC(NumFactor , "Number of factorizations");
+STATISTIC(NumReassoc , "Number of reassociations");
+// Initialization Routines
+void llvm::initializeInstCombine(PassRegistry &Registry) {
+ initializeInstCombinerPass(Registry);
+}
+
+void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
+ initializeInstCombine(*unwrap(R));
+}
char InstCombiner::ID = 0;
INITIALIZE_PASS(InstCombiner, "instcombine",
- "Combine redundant instructions", false, false);
+ "Combine redundant instructions", false, false)
void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreservedID(LCSSAID);
@@ -97,53 +109,326 @@ bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
}
-// SimplifyCommutative - This performs a few simplifications for commutative
-// operators:
+/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
+/// operators which are associative or commutative:
+//
+// Commutative operators:
//
// 1. Order operands such that they are listed from right (least complex) to
// left (most complex). This puts constants before unary operators before
// binary operators.
//
-// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
-// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
+// Associative operators:
+//
+// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+//
+// Associative and commutative operators:
+//
+// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+// if C1 and C2 are constants.
//
-bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
+bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
bool Changed = false;
- if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
- Changed = !I.swapOperands();
- if (!I.isAssociative()) return Changed;
-
- Instruction::BinaryOps Opcode = I.getOpcode();
- if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
- if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
- if (isa<Constant>(I.getOperand(1))) {
- Constant *Folded = ConstantExpr::get(I.getOpcode(),
- cast<Constant>(I.getOperand(1)),
- cast<Constant>(Op->getOperand(1)));
- I.setOperand(0, Op->getOperand(0));
- I.setOperand(1, Folded);
- return true;
+ do {
+ // Order operands such that they are listed from right (least complex) to
+ // left (most complex). This puts constants before unary operators before
+ // binary operators.
+ if (I.isCommutative() && getComplexity(I.getOperand(0)) <
+ getComplexity(I.getOperand(1)))
+ Changed = !I.swapOperands();
+
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
+
+ if (I.isAssociative()) {
+ // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "B op C" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
+ // It simplifies to V. Form "A op V".
+ I.setOperand(0, A);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
}
-
- if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)))
- if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
- Op->hasOneUse() && Op1->hasOneUse()) {
- Constant *C1 = cast<Constant>(Op->getOperand(1));
- Constant *C2 = cast<Constant>(Op1->getOperand(1));
-
- // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
- Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
- Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
- Op1->getOperand(0),
- Op1->getName(), &I);
- Worklist.Add(New);
- I.setOperand(0, New);
- I.setOperand(1, Folded);
- return true;
+
+ // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "A op B" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
+ // It simplifies to V. Form "V op C".
+ I.setOperand(0, V);
+ I.setOperand(1, C);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
}
+ }
}
- return Changed;
+
+ if (I.isAssociative() && I.isCommutative()) {
+ // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+ // It simplifies to V. Form "V op B".
+ I.setOperand(0, V);
+ I.setOperand(1, B);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+ // It simplifies to V. Form "B op V".
+ I.setOperand(0, B);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+ // if C1 and C2 are constants.
+ if (Op0 && Op1 &&
+ Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
+ isa<Constant>(Op0->getOperand(1)) &&
+ isa<Constant>(Op1->getOperand(1)) &&
+ Op0->hasOneUse() && Op1->hasOneUse()) {
+ Value *A = Op0->getOperand(0);
+ Constant *C1 = cast<Constant>(Op0->getOperand(1));
+ Value *B = Op1->getOperand(0);
+ Constant *C2 = cast<Constant>(Op1->getOperand(1));
+
+ Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
+ Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(),
+ &I);
+ Worklist.Add(New);
+ I.setOperand(0, New);
+ I.setOperand(1, Folded);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ continue;
+ }
+ }
+
+ // No further simplifications.
+ return Changed;
+ } while (1);
+}
+
+/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
+/// "(X LOp Y) ROp (X LOp Z)".
+static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ switch (LOp) {
+ default:
+ return false;
+
+ case Instruction::And:
+ // And distributes over Or and Xor.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Or:
+ case Instruction::Xor:
+ return true;
+ }
+
+ case Instruction::Mul:
+ // Multiplication distributes over addition and subtraction.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Add:
+ case Instruction::Sub:
+ return true;
+ }
+
+ case Instruction::Or:
+ // Or distributes over And.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::And:
+ return true;
+ }
+ }
+}
+
+/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
+/// "(X ROp Z) LOp (Y ROp Z)".
+static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ if (Instruction::isCommutative(ROp))
+ return LeftDistributesOverRight(ROp, LOp);
+ // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
+ // but this requires knowing that the addition does not overflow and other
+ // such subtleties.
+ return false;
+}
+
+/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
+/// which some other binary operation distributes over either by factorizing
+/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
+/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
+/// a win). Returns the simplified value, or null if it didn't simplify.
+Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
+ Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
+
+ // Factorization.
+ if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
+ // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
+ // a common term.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
+ Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Does "X op' Y" always equal "Y op' X"?
+ bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
+
+ // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
+ if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
+ // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
+ // commutative case, "(A op' B) op (C op' A)"?
+ if (A == C || (InnerCommutative && A == D)) {
+ if (A != C)
+ std::swap(C, D);
+ // Consider forming "A op' (B op D)".
+ // If "B op D" simplifies then it can be formed with no cost.
+ Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
+ // If "B op D" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && Op0->hasOneUse() && Op1->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
+ if (V) {
+ ++NumFactor;
+ V = Builder->CreateBinOp(InnerOpcode, A, V);
+ V->takeName(&I);
+ return V;
+ }
+ }
+
+ // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
+ if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
+ // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
+ // commutative case, "(A op' B) op (B op' D)"?
+ if (B == D || (InnerCommutative && B == C)) {
+ if (B != D)
+ std::swap(C, D);
+ // Consider forming "(A op C) op' B".
+ // If "A op C" simplifies then it can be formed with no cost.
+ Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
+ // If "A op C" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && Op0->hasOneUse() && Op1->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
+ if (V) {
+ ++NumFactor;
+ V = Builder->CreateBinOp(InnerOpcode, V, B);
+ V->takeName(&I);
+ return V;
+ }
+ }
+ }
+
+ // Expansion.
+ if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
+ // The instruction has the form "(A op' B) op C". See if expanding it out
+ // to "(A op C) op' (B op C)" results in simplifications.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Do "A op C" and "B op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
+ if ((L == A && R == B) ||
+ (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
+ return Op0;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+ return V;
+ // Otherwise, create a new instruction.
+ C = Builder->CreateBinOp(InnerOpcode, L, R);
+ C->takeName(&I);
+ return C;
+ }
+ }
+
+ if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
+ // The instruction has the form "A op (B op' C)". See if expanding it out
+ // to "(A op B) op' (A op C)" results in simplifications.
+ Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
+
+ // Do "A op B" and "A op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
+ if ((L == B && R == C) ||
+ (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
+ return Op1;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+ return V;
+ // Otherwise, create a new instruction.
+ A = Builder->CreateBinOp(InnerOpcode, L, R);
+ A->takeName(&I);
+ return A;
+ }
+ }
+
+ return 0;
}
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
@@ -185,8 +470,9 @@ Value *InstCombiner::dyn_castFNegVal(Value *V) const {
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner *IC) {
- if (CastInst *CI = dyn_cast<CastInst>(&I))
+ if (CastInst *CI = dyn_cast<CastInst>(&I)) {
return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
+ }
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
@@ -228,11 +514,24 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
// Bool selects with constant operands can be folded to logical ops.
if (SI->getType()->isIntegerTy(1)) return 0;
+ // If it's a bitcast involving vectors, make sure it has the same number of
+ // elements on both sides.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
+ const VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
+ const VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
+
+ // Verify that either both or neither are vectors.
+ if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
+ // If vectors, verify that they have the same number of elements.
+ if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
+ return 0;
+ }
+
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
- return SelectInst::Create(SI->getCondition(), SelectTrueVal,
- SelectFalseVal);
+ return SelectInst::Create(SI->getCondition(),
+ SelectTrueVal, SelectFalseVal);
}
return 0;
}
@@ -242,20 +541,25 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
///
-/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
-/// that would normally be unprofitable because they strongly encourage jump
-/// threading.
-Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
- bool AllowAggressive) {
- AllowAggressive = false;
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
PHINode *PN = cast<PHINode>(I.getOperand(0));
unsigned NumPHIValues = PN->getNumIncomingValues();
- if (NumPHIValues == 0 ||
- // We normally only transform phis with a single use, unless we're trying
- // hard to make jump threading happen.
- (!PN->hasOneUse() && !AllowAggressive))
+ if (NumPHIValues == 0)
return 0;
+ // We normally only transform phis with a single use. However, if a PHI has
+ // multiple uses and they are all the same operation, we can fold *all* of the
+ // uses into the PHI.
+ if (!PN->hasOneUse()) {
+ // Walk the use list for the instruction, comparing them to I.
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (User != &I && !I.isIdenticalTo(User))
+ return 0;
+ }
+ // Otherwise, we can replace *all* users with the new PHI we form.
+ }
// Check to see if all of the operands of the PHI are simple constants
// (constantint/constantfp/undef). If there is one non-constant value,
@@ -263,24 +567,34 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
// bail out. We don't do arbitrary constant expressions here because moving
// their computation can be expensive without a cost model.
BasicBlock *NonConstBB = 0;
- for (unsigned i = 0; i != NumPHIValues; ++i)
- if (!isa<Constant>(PN->getIncomingValue(i)) ||
- isa<ConstantExpr>(PN->getIncomingValue(i))) {
- if (NonConstBB) return 0; // More than one non-const value.
- if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
- NonConstBB = PN->getIncomingBlock(i);
-
- // If the incoming non-constant value is in I's block, we have an infinite
- // loop.
- if (NonConstBB == I.getParent())
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
+ continue;
+
+ if (isa<PHINode>(InVal)) return 0; // Itself a phi.
+ if (NonConstBB) return 0; // More than one non-const value.
+
+ NonConstBB = PN->getIncomingBlock(i);
+
+ // If the InVal is an invoke at the end of the pred block, then we can't
+ // insert a computation after it without breaking the edge.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
+ if (II->getParent() == NonConstBB)
return 0;
- }
+
+ // If the incoming non-constant value is in I's block, we will remove one
+ // instruction, but insert another equivalent one, leading to infinite
+ // instcombine.
+ if (NonConstBB == I.getParent())
+ return 0;
+ }
// If there is exactly one non-constant value, we can insert a copy of the
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation one some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
- if (NonConstBB != 0 && !AllowAggressive) {
+ if (NonConstBB != 0) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional()) return 0;
}
@@ -290,7 +604,12 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
NewPN->reserveOperandSpace(PN->getNumOperands()/2);
InsertNewInstBefore(NewPN, *PN);
NewPN->takeName(PN);
-
+
+ // If we are going to have to insert a new computation, do so right before the
+ // predecessors terminator.
+ if (NonConstBB)
+ Builder->SetInsertPoint(NonConstBB->getTerminator());
+
// Next, add all of the operands to the PHI.
if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
// We only currently try to fold the condition of a select when it is a phi,
@@ -303,42 +622,36 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Value *InV = 0;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
- FalseVInPred,
- "phitmp", NonConstBB->getTerminator());
- Worklist.Add(cast<Instruction>(InV));
- }
+ else
+ InV = Builder->CreateSelect(PN->getIncomingValue(i),
+ TrueVInPred, FalseVInPred, "phitmp");
NewPN->addIncoming(InV, ThisBB);
}
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+ else if (isa<ICmpInst>(CI))
+ InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ else
+ InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
} else if (I.getNumOperands() == 2) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = 0;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
- if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
- else
- InV = ConstantExpr::get(I.getOpcode(), InC, C);
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
- InV = BinaryOperator::Create(BO->getOpcode(),
- PN->getIncomingValue(i), C, "phitmp",
- NonConstBB->getTerminator());
- else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
- InV = CmpInst::Create(CI->getOpcode(),
- CI->getPredicate(),
- PN->getIncomingValue(i), C, "phitmp",
- NonConstBB->getTerminator());
- else
- llvm_unreachable("Unknown binop!");
-
- Worklist.Add(cast<Instruction>(InV));
- }
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
+ else
+ InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
+ PN->getIncomingValue(i), C, "phitmp");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else {
@@ -346,18 +659,22 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
const Type *RetTy = CI->getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
- if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
- } else {
- assert(PN->getIncomingBlock(i) == NonConstBB);
- InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i),
- I.getType(), "phitmp",
- NonConstBB->getTerminator());
- Worklist.Add(cast<Instruction>(InV));
- }
+ else
+ InV = Builder->CreateCast(CI->getOpcode(),
+ PN->getIncomingValue(i), I.getType(), "phitmp");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
}
+
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ) {
+ Instruction *User = cast<Instruction>(*UI++);
+ if (User == &I) continue;
+ ReplaceInstUsesWith(*User, NewPN);
+ EraseInstFromFunction(*User);
+ }
return ReplaceInstUsesWith(I, NewPN);
}
@@ -432,28 +749,35 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Value *PtrOp = GEP.getOperand(0);
- if (isa<UndefValue>(GEP.getOperand(0)))
- return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
-
- // Eliminate unneeded casts for indices.
+ // Eliminate unneeded casts for indices, and replace indices which displace
+ // by multiples of a zero size type with zero.
if (TD) {
bool MadeChange = false;
- unsigned PtrSize = TD->getPointerSizeInBits();
-
+ const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
+
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
I != E; ++I, ++GTI) {
- if (!isa<SequentialType>(*GTI)) continue;
-
- // If we are using a wider index than needed for this platform, shrink it
- // to what we need. If narrower, sign-extend it to what we need. This
- // explicit cast can make subsequent optimizations more obvious.
- unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
- if (OpBits == PtrSize)
- continue;
-
- *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
- MadeChange = true;
+ // Skip indices into struct types.
+ const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ if (!SeqTy) continue;
+
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ if (SeqTy->getElementType()->isSized() &&
+ TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
+ if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
+ *I = Constant::getNullValue(IntPtrTy);
+ MadeChange = true;
+ }
+
+ if ((*I)->getType() != IntPtrTy) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ MadeChange = true;
+ }
}
if (MadeChange) return &GEP;
}
@@ -940,6 +1264,14 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
EraseInstFromFunction(*II);
return BinaryOperator::CreateAdd(LHS, RHS);
}
+
+ // If the normal result of the add is dead, and the RHS is a constant,
+ // we can transform this into a range comparison.
+ // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
+ if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
+ return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
+ ConstantExpr::getNot(CI));
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
@@ -964,10 +1296,37 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
}
}
}
- // Can't simplify extracts from other values. Note that nested extracts are
- // already simplified implicitely by the above (extract ( extract (insert) )
+ if (LoadInst *L = dyn_cast<LoadInst>(Agg))
+ // If the (non-volatile) load only has one use, we can rewrite this to a
+ // load from a GEP. This reduces the size of the load.
+ // FIXME: If a load is used only by extractvalue instructions then this
+ // could be done regardless of having multiple uses.
+ if (!L->isVolatile() && L->hasOneUse()) {
+ // extractvalue has integer indices, getelementptr has Value*s. Convert.
+ SmallVector<Value*, 4> Indices;
+ // Prefix an i32 0 since we need the first element.
+ Indices.push_back(Builder->getInt32(0));
+ for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
+ I != E; ++I)
+ Indices.push_back(Builder->getInt32(*I));
+
+ // We need to insert these at the location of the old load, not at that of
+ // the extractvalue.
+ Builder->SetInsertPoint(L->getParent(), L);
+ Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(),
+ Indices.begin(), Indices.end());
+ // Returning the load directly will cause the main loop to insert it in
+ // the wrong spot, so use ReplaceInstUsesWith().
+ return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
+ }
+ // We could simplify extracts from other values. Note that nested extracts may
+ // already be simplified implicitly by the above: extract (extract (insert) )
// will be translated into extract ( insert ( extract ) ) first and then just
- // the value inserted, if appropriate).
+ // the value inserted, if appropriate. Similarly for extracts from single-use
+ // loads: extract (extract (load)) will be translated to extract (load (gep))
+ // and if again single-use then via load (gep (gep)) to load (gep).
+ // However, double extracts from e.g. function arguments or return values
+ // aren't handled yet.
return 0;
}
@@ -1023,10 +1382,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB,
bool MadeIRChange = false;
SmallVector<BasicBlock*, 256> Worklist;
Worklist.push_back(BB);
-
- std::vector<Instruction*> InstrsForInstCombineWorklist;
- InstrsForInstCombineWorklist.reserve(128);
+ SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
do {
@@ -1231,6 +1588,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
DEBUG(errs() << "IC: Old = " << *I << '\n'
<< " New = " << *Result << '\n');
+ Result->setDebugLoc(I->getDebugLoc());
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
OpenPOWER on IntegriCloud