summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp2087
1 files changed, 2087 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
new file mode 100644
index 0000000..92874b9
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -0,0 +1,2087 @@
+//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// InstructionCombining - Combine instructions to form fewer, simple
+// instructions. This pass does not modify the CFG. This pass is where
+// algebraic simplification happens.
+//
+// This pass combines things like:
+// %Y = add i32 %X, 1
+// %Z = add i32 %Y, 1
+// into:
+// %Z = add i32 %X, 2
+//
+// This is a simple worklist driven algorithm.
+//
+// This pass guarantees that the following canonicalizations are performed on
+// the program:
+// 1. If a binary operator has a constant operand, it is moved to the RHS
+// 2. Bitwise operators with constant operands are always grouped so that
+// shifts are performed first, then or's, then and's, then xor's.
+// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
+// 4. All cmp instructions on boolean values are replaced with logical ops
+// 5. add X, X is represented as (X*2) => (X << 1)
+// 6. Multiplies with a power-of-two constant argument are transformed into
+// shifts.
+// ... etc.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "instcombine"
+#include "llvm/Transforms/Scalar.h"
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm-c/Initialization.h"
+#include <algorithm>
+#include <climits>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+STATISTIC(NumCombined , "Number of insts combined");
+STATISTIC(NumConstProp, "Number of constant folds");
+STATISTIC(NumDeadInst , "Number of dead inst eliminated");
+STATISTIC(NumSunkInst , "Number of instructions sunk");
+STATISTIC(NumExpand, "Number of expansions");
+STATISTIC(NumFactor , "Number of factorizations");
+STATISTIC(NumReassoc , "Number of reassociations");
+
+// Initialization Routines
+void llvm::initializeInstCombine(PassRegistry &Registry) {
+ initializeInstCombinerPass(Registry);
+}
+
+void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
+ initializeInstCombine(*unwrap(R));
+}
+
+char InstCombiner::ID = 0;
+INITIALIZE_PASS(InstCombiner, "instcombine",
+ "Combine redundant instructions", false, false)
+
+void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+}
+
+
+/// ShouldChangeType - Return true if it is desirable to convert a computation
+/// from 'From' to 'To'. We don't want to convert from a legal to an illegal
+/// type for example, or from a smaller to a larger illegal type.
+bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
+ assert(From->isIntegerTy() && To->isIntegerTy());
+
+ // If we don't have TD, we don't know if the source/dest are legal.
+ if (!TD) return false;
+
+ unsigned FromWidth = From->getPrimitiveSizeInBits();
+ unsigned ToWidth = To->getPrimitiveSizeInBits();
+ bool FromLegal = TD->isLegalInteger(FromWidth);
+ bool ToLegal = TD->isLegalInteger(ToWidth);
+
+ // If this is a legal integer from type, and the result would be an illegal
+ // type, don't do the transformation.
+ if (FromLegal && !ToLegal)
+ return false;
+
+ // Otherwise, if both are illegal, do not increase the size of the result. We
+ // do allow things like i160 -> i64, but not i64 -> i160.
+ if (!FromLegal && !ToLegal && ToWidth > FromWidth)
+ return false;
+
+ return true;
+}
+
+// Return true, if No Signed Wrap should be maintained for I.
+// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
+// where both B and C should be ConstantInts, results in a constant that does
+// not overflow. This function only handles the Add and Sub opcodes. For
+// all other opcodes, the function conservatively returns false.
+static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
+ OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
+ if (!OBO || !OBO->hasNoSignedWrap()) {
+ return false;
+ }
+
+ // We reason about Add and Sub Only.
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ if (Opcode != Instruction::Add &&
+ Opcode != Instruction::Sub) {
+ return false;
+ }
+
+ ConstantInt *CB = dyn_cast<ConstantInt>(B);
+ ConstantInt *CC = dyn_cast<ConstantInt>(C);
+
+ if (!CB || !CC) {
+ return false;
+ }
+
+ const APInt &BVal = CB->getValue();
+ const APInt &CVal = CC->getValue();
+ bool Overflow = false;
+
+ if (Opcode == Instruction::Add) {
+ BVal.sadd_ov(CVal, Overflow);
+ } else {
+ BVal.ssub_ov(CVal, Overflow);
+ }
+
+ return !Overflow;
+}
+
+/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
+/// operators which are associative or commutative:
+//
+// Commutative operators:
+//
+// 1. Order operands such that they are listed from right (least complex) to
+// left (most complex). This puts constants before unary operators before
+// binary operators.
+//
+// Associative operators:
+//
+// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+//
+// Associative and commutative operators:
+//
+// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+// if C1 and C2 are constants.
+//
+bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ bool Changed = false;
+
+ do {
+ // Order operands such that they are listed from right (least complex) to
+ // left (most complex). This puts constants before unary operators before
+ // binary operators.
+ if (I.isCommutative() && getComplexity(I.getOperand(0)) <
+ getComplexity(I.getOperand(1)))
+ Changed = !I.swapOperands();
+
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
+
+ if (I.isAssociative()) {
+ // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "B op C" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
+ // It simplifies to V. Form "A op V".
+ I.setOperand(0, A);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ if (MaintainNoSignedWrap(I, B, C) &&
+ (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
+ // Note: this is only valid because SimplifyBinOp doesn't look at
+ // the operands to Op0.
+ I.clearSubclassOptionalData();
+ I.setHasNoSignedWrap(true);
+ } else {
+ I.clearSubclassOptionalData();
+ }
+
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "A op B" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
+ // It simplifies to V. Form "V op C".
+ I.setOperand(0, V);
+ I.setOperand(1, C);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+ }
+
+ if (I.isAssociative() && I.isCommutative()) {
+ // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+ // It simplifies to V. Form "V op B".
+ I.setOperand(0, V);
+ I.setOperand(1, B);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
+ // It simplifies to V. Form "B op V".
+ I.setOperand(0, B);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+ // if C1 and C2 are constants.
+ if (Op0 && Op1 &&
+ Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
+ isa<Constant>(Op0->getOperand(1)) &&
+ isa<Constant>(Op1->getOperand(1)) &&
+ Op0->hasOneUse() && Op1->hasOneUse()) {
+ Value *A = Op0->getOperand(0);
+ Constant *C1 = cast<Constant>(Op0->getOperand(1));
+ Value *B = Op1->getOperand(0);
+ Constant *C2 = cast<Constant>(Op1->getOperand(1));
+
+ Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
+ BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
+ InsertNewInstWith(New, I);
+ New->takeName(Op1);
+ I.setOperand(0, New);
+ I.setOperand(1, Folded);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ I.clearSubclassOptionalData();
+
+ Changed = true;
+ continue;
+ }
+ }
+
+ // No further simplifications.
+ return Changed;
+ } while (1);
+}
+
+/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
+/// "(X LOp Y) ROp (X LOp Z)".
+static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ switch (LOp) {
+ default:
+ return false;
+
+ case Instruction::And:
+ // And distributes over Or and Xor.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Or:
+ case Instruction::Xor:
+ return true;
+ }
+
+ case Instruction::Mul:
+ // Multiplication distributes over addition and subtraction.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Add:
+ case Instruction::Sub:
+ return true;
+ }
+
+ case Instruction::Or:
+ // Or distributes over And.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::And:
+ return true;
+ }
+ }
+}
+
+/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
+/// "(X ROp Z) LOp (Y ROp Z)".
+static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ if (Instruction::isCommutative(ROp))
+ return LeftDistributesOverRight(ROp, LOp);
+ // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
+ // but this requires knowing that the addition does not overflow and other
+ // such subtleties.
+ return false;
+}
+
+/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
+/// which some other binary operation distributes over either by factorizing
+/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
+/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
+/// a win). Returns the simplified value, or null if it didn't simplify.
+Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
+ Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
+
+ // Factorization.
+ if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
+ // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
+ // a common term.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
+ Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Does "X op' Y" always equal "Y op' X"?
+ bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
+
+ // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
+ if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
+ // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
+ // commutative case, "(A op' B) op (C op' A)"?
+ if (A == C || (InnerCommutative && A == D)) {
+ if (A != C)
+ std::swap(C, D);
+ // Consider forming "A op' (B op D)".
+ // If "B op D" simplifies then it can be formed with no cost.
+ Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
+ // If "B op D" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && Op0->hasOneUse() && Op1->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
+ if (V) {
+ ++NumFactor;
+ V = Builder->CreateBinOp(InnerOpcode, A, V);
+ V->takeName(&I);
+ return V;
+ }
+ }
+
+ // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
+ if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
+ // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
+ // commutative case, "(A op' B) op (B op' D)"?
+ if (B == D || (InnerCommutative && B == C)) {
+ if (B != D)
+ std::swap(C, D);
+ // Consider forming "(A op C) op' B".
+ // If "A op C" simplifies then it can be formed with no cost.
+ Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
+ // If "A op C" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && Op0->hasOneUse() && Op1->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
+ if (V) {
+ ++NumFactor;
+ V = Builder->CreateBinOp(InnerOpcode, V, B);
+ V->takeName(&I);
+ return V;
+ }
+ }
+ }
+
+ // Expansion.
+ if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
+ // The instruction has the form "(A op' B) op C". See if expanding it out
+ // to "(A op C) op' (B op C)" results in simplifications.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Do "A op C" and "B op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
+ if ((L == A && R == B) ||
+ (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
+ return Op0;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+ return V;
+ // Otherwise, create a new instruction.
+ C = Builder->CreateBinOp(InnerOpcode, L, R);
+ C->takeName(&I);
+ return C;
+ }
+ }
+
+ if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
+ // The instruction has the form "A op (B op' C)". See if expanding it out
+ // to "(A op B) op' (A op C)" results in simplifications.
+ Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
+
+ // Do "A op B" and "A op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
+ if ((L == B && R == C) ||
+ (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
+ return Op1;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
+ return V;
+ // Otherwise, create a new instruction.
+ A = Builder->CreateBinOp(InnerOpcode, L, R);
+ A->takeName(&I);
+ return A;
+ }
+ }
+
+ return 0;
+}
+
+// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
+// if the LHS is a constant zero (which is the 'negate' form).
+//
+Value *InstCombiner::dyn_castNegVal(Value *V) const {
+ if (BinaryOperator::isNeg(V))
+ return BinaryOperator::getNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+ return ConstantExpr::getNeg(C);
+
+ if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+ if (C->getType()->getElementType()->isIntegerTy())
+ return ConstantExpr::getNeg(C);
+
+ return 0;
+}
+
+// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
+// instruction if the LHS is a constant negative zero (which is the 'negate'
+// form).
+//
+Value *InstCombiner::dyn_castFNegVal(Value *V) const {
+ if (BinaryOperator::isFNeg(V))
+ return BinaryOperator::getFNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V))
+ return ConstantExpr::getFNeg(C);
+
+ if (ConstantVector *C = dyn_cast<ConstantVector>(V))
+ if (C->getType()->getElementType()->isFloatingPointTy())
+ return ConstantExpr::getFNeg(C);
+
+ return 0;
+}
+
+static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
+ InstCombiner *IC) {
+ if (CastInst *CI = dyn_cast<CastInst>(&I)) {
+ return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
+ }
+
+ // Figure out if the constant is the left or the right argument.
+ bool ConstIsRHS = isa<Constant>(I.getOperand(1));
+ Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
+
+ if (Constant *SOC = dyn_cast<Constant>(SO)) {
+ if (ConstIsRHS)
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
+ }
+
+ Value *Op0 = SO, *Op1 = ConstOperand;
+ if (!ConstIsRHS)
+ std::swap(Op0, Op1);
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
+ return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName()+".op");
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ llvm_unreachable("Unknown binary instruction type!");
+}
+
+// FoldOpIntoSelect - Given an instruction with a select as one operand and a
+// constant as the other operand, try to fold the binary operator into the
+// select arguments. This also works for Cast instructions, which obviously do
+// not have a second operand.
+Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
+ // Don't modify shared select instructions
+ if (!SI->hasOneUse()) return 0;
+ Value *TV = SI->getOperand(1);
+ Value *FV = SI->getOperand(2);
+
+ if (isa<Constant>(TV) || isa<Constant>(FV)) {
+ // Bool selects with constant operands can be folded to logical ops.
+ if (SI->getType()->isIntegerTy(1)) return 0;
+
+ // If it's a bitcast involving vectors, make sure it has the same number of
+ // elements on both sides.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
+ VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
+ VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
+
+ // Verify that either both or neither are vectors.
+ if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
+ // If vectors, verify that they have the same number of elements.
+ if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
+ return 0;
+ }
+
+ Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
+ Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
+
+ return SelectInst::Create(SI->getCondition(),
+ SelectTrueVal, SelectFalseVal);
+ }
+ return 0;
+}
+
+
+/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
+/// has a PHI node as operand #0, see if we can fold the instruction into the
+/// PHI (which is only possible if all operands to the PHI are constants).
+///
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
+ PHINode *PN = cast<PHINode>(I.getOperand(0));
+ unsigned NumPHIValues = PN->getNumIncomingValues();
+ if (NumPHIValues == 0)
+ return 0;
+
+ // We normally only transform phis with a single use. However, if a PHI has
+ // multiple uses and they are all the same operation, we can fold *all* of the
+ // uses into the PHI.
+ if (!PN->hasOneUse()) {
+ // Walk the use list for the instruction, comparing them to I.
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ if (User != &I && !I.isIdenticalTo(User))
+ return 0;
+ }
+ // Otherwise, we can replace *all* users with the new PHI we form.
+ }
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
+ BasicBlock *NonConstBB = 0;
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
+ continue;
+
+ if (isa<PHINode>(InVal)) return 0; // Itself a phi.
+ if (NonConstBB) return 0; // More than one non-const value.
+
+ NonConstBB = PN->getIncomingBlock(i);
+
+ // If the InVal is an invoke at the end of the pred block, then we can't
+ // insert a computation after it without breaking the edge.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
+ if (II->getParent() == NonConstBB)
+ return 0;
+
+ // If the incoming non-constant value is in I's block, we will remove one
+ // instruction, but insert another equivalent one, leading to infinite
+ // instcombine.
+ if (NonConstBB == I.getParent())
+ return 0;
+ }
+
+ // If there is exactly one non-constant value, we can insert a copy of the
+ // operation in that block. However, if this is a critical edge, we would be
+ // inserting the computation one some other paths (e.g. inside a loop). Only
+ // do this if the pred block is unconditionally branching into the phi block.
+ if (NonConstBB != 0) {
+ BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
+ if (!BI || !BI->isUnconditional()) return 0;
+ }
+
+ // Okay, we can do the transformation: create the new PHI node.
+ PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
+ InsertNewInstBefore(NewPN, *PN);
+ NewPN->takeName(PN);
+
+ // If we are going to have to insert a new computation, do so right before the
+ // predecessors terminator.
+ if (NonConstBB)
+ Builder->SetInsertPoint(NonConstBB->getTerminator());
+
+ // Next, add all of the operands to the PHI.
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ else
+ InV = Builder->CreateSelect(PN->getIncomingValue(i),
+ TrueVInPred, FalseVInPred, "phitmp");
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+ else if (isa<ICmpInst>(CI))
+ InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ else
+ InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else if (I.getNumOperands() == 2) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = 0;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
+ else
+ InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
+ PN->getIncomingValue(i), C, "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else {
+ CastInst *CI = cast<CastInst>(&I);
+ Type *RetTy = CI->getType();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
+ else
+ InV = Builder->CreateCast(CI->getOpcode(),
+ PN->getIncomingValue(i), I.getType(), "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ }
+
+ for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
+ UI != E; ) {
+ Instruction *User = cast<Instruction>(*UI++);
+ if (User == &I) continue;
+ ReplaceInstUsesWith(*User, NewPN);
+ EraseInstFromFunction(*User);
+ }
+ return ReplaceInstUsesWith(I, NewPN);
+}
+
+/// FindElementAtOffset - Given a type and a constant offset, determine whether
+/// or not there is a sequence of GEP indices into the type that will land us at
+/// the specified offset. If so, fill them into NewIndices and return the
+/// resultant element type, otherwise return null.
+Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
+ SmallVectorImpl<Value*> &NewIndices) {
+ if (!TD) return 0;
+ if (!Ty->isSized()) return 0;
+
+ // Start with the index over the outer type. Note that the type size
+ // might be zero (even if the offset isn't zero) if the indexed type
+ // is something like [0 x {int, int}]
+ Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
+ int64_t FirstIdx = 0;
+ if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
+ FirstIdx = Offset/TySize;
+ Offset -= FirstIdx*TySize;
+
+ // Handle hosts where % returns negative instead of values [0..TySize).
+ if (Offset < 0) {
+ --FirstIdx;
+ Offset += TySize;
+ assert(Offset >= 0);
+ }
+ assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
+ }
+
+ NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+
+ // Index into the types. If we fail, set OrigBase to null.
+ while (Offset) {
+ // Indexing into tail padding between struct/array elements.
+ if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
+ return 0;
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = TD->getStructLayout(STy);
+ assert(Offset < (int64_t)SL->getSizeInBytes() &&
+ "Offset must stay within the indexed type");
+
+ unsigned Elt = SL->getElementContainingOffset(Offset);
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ Elt));
+
+ Offset -= SL->getElementOffset(Elt);
+ Ty = STy->getElementType(Elt);
+ } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
+ assert(EltSize && "Cannot index into a zero-sized array");
+ NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+ Offset %= EltSize;
+ Ty = AT->getElementType();
+ } else {
+ // Otherwise, we can't index into the middle of this atomic type, bail.
+ return 0;
+ }
+ }
+
+ return Ty;
+}
+
+static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
+ // If this GEP has only 0 indices, it is the same pointer as
+ // Src. If Src is not a trivial GEP too, don't combine
+ // the indices.
+ if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
+ !Src.hasOneUse())
+ return false;
+ return true;
+}
+
+Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
+
+ if (Value *V = SimplifyGEPInst(Ops, TD))
+ return ReplaceInstUsesWith(GEP, V);
+
+ Value *PtrOp = GEP.getOperand(0);
+
+ // Eliminate unneeded casts for indices, and replace indices which displace
+ // by multiples of a zero size type with zero.
+ if (TD) {
+ bool MadeChange = false;
+ Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
+ I != E; ++I, ++GTI) {
+ // Skip indices into struct types.
+ SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ if (!SeqTy) continue;
+
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ if (SeqTy->getElementType()->isSized() &&
+ TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
+ if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
+ *I = Constant::getNullValue(IntPtrTy);
+ MadeChange = true;
+ }
+
+ if ((*I)->getType() != IntPtrTy) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ MadeChange = true;
+ }
+ }
+ if (MadeChange) return &GEP;
+ }
+
+ // Combine Indices - If the source pointer to this getelementptr instruction
+ // is a getelementptr instruction, combine the indices of the two
+ // getelementptr instructions into a single instruction.
+ //
+ if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+ if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
+ return 0;
+
+ // Note that if our source is a gep chain itself that we wait for that
+ // chain to be resolved before we perform this transformation. This
+ // avoids us creating a TON of code in some cases.
+ if (GEPOperator *SrcGEP =
+ dyn_cast<GEPOperator>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
+ return 0; // Wait until our source is folded to completion.
+
+ SmallVector<Value*, 8> Indices;
+
+ // Find out whether the last index in the source GEP is a sequential idx.
+ bool EndsWithSequential = false;
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
+ EndsWithSequential = !(*I)->isStructTy();
+
+ // Can we combine the two pointer arithmetics offsets?
+ if (EndsWithSequential) {
+ // Replace: gep (gep %P, long B), long A, ...
+ // With: T = long A+B; gep %P, T, ...
+ //
+ Value *Sum;
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+ if (SO1 == Constant::getNullValue(SO1->getType())) {
+ Sum = GO1;
+ } else if (GO1 == Constant::getNullValue(GO1->getType())) {
+ Sum = SO1;
+ } else {
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return 0;
+ Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
+ }
+
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setOperand(0, Src->getOperand(0));
+ GEP.setOperand(1, Sum);
+ return &GEP;
+ }
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
+ } else if (isa<Constant>(*GEP.idx_begin()) &&
+ cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+ Src->getNumOperands() != 1) {
+ // Otherwise we can do the fold if the first index of the GEP is a zero
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
+ }
+
+ if (!Indices.empty())
+ return (GEP.isInBounds() && Src->isInBounds()) ?
+ GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
+ GEP.getName()) :
+ GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
+ }
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ Value *StrippedPtr = PtrOp->stripPointerCasts();
+ PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
+ if (StrippedPtr != PtrOp &&
+ StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
+
+ bool HasZeroPointerIndex = false;
+ if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ HasZeroPointerIndex = C->isZero();
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
+ PointerType *CPTy = cast<PointerType>(PtrOp->getType());
+ if (ArrayType *CATy =
+ dyn_cast<ArrayType>(CPTy->getElementType())) {
+ // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
+ // -> GEP i8* X, ...
+ SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
+ GetElementPtrInst *Res =
+ GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
+ Res->setIsInBounds(GEP.isInBounds());
+ return Res;
+ }
+
+ if (ArrayType *XATy =
+ dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
+ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == XATy->getElementType()) {
+ // -> GEP [10 x i8]* X, i32 0, ...
+ // At this point, we know that the cast source type is a pointer
+ // to an array of the same type as the destination pointer
+ // array. Because the array type is never stepped over (there
+ // is a leading zero) we can fold the cast into this GEP.
+ GEP.setOperand(0, StrippedPtr);
+ return &GEP;
+ }
+ }
+ }
+ } else if (GEP.getNumOperands() == 2) {
+ // Transform things like:
+ // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
+ // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
+ Type *SrcElTy = StrippedPtrTy->getElementType();
+ Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
+ if (TD && SrcElTy->isArrayTy() &&
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
+ TD->getTypeAllocSize(ResElTy)) {
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+ Idx[1] = GEP.getOperand(1);
+ Value *NewGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
+ Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
+ // V and GEP are both pointer types --> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
+ }
+
+ // Transform things like:
+ // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
+ // (where tmp = 8*tmp2) into:
+ // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
+
+ if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
+ uint64_t ArrayEltSize =
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
+
+ // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
+ // allow either a mul, shift, or constant here.
+ Value *NewIdx = 0;
+ ConstantInt *Scale = 0;
+ if (ArrayEltSize == 1) {
+ NewIdx = GEP.getOperand(1);
+ Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
+ } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
+ NewIdx = ConstantInt::get(CI->getType(), 1);
+ Scale = CI;
+ } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
+ if (Inst->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(Inst->getOperand(1))) {
+ ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
+ uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
+ Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
+ 1ULL << ShAmtVal);
+ NewIdx = Inst->getOperand(0);
+ } else if (Inst->getOpcode() == Instruction::Mul &&
+ isa<ConstantInt>(Inst->getOperand(1))) {
+ Scale = cast<ConstantInt>(Inst->getOperand(1));
+ NewIdx = Inst->getOperand(0);
+ }
+ }
+
+ // If the index will be to exactly the right offset with the scale taken
+ // out, perform the transformation. Note, we don't know whether Scale is
+ // signed or not. We'll use unsigned version of division/modulo
+ // operation after making sure Scale doesn't have the sign bit set.
+ if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
+ Scale->getZExtValue() % ArrayEltSize == 0) {
+ Scale = ConstantInt::get(Scale->getType(),
+ Scale->getZExtValue() / ArrayEltSize);
+ if (Scale->getZExtValue() != 1) {
+ Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
+ false /*ZExt*/);
+ NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
+ }
+
+ // Insert the new GEP instruction.
+ Value *Idx[2];
+ Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
+ Idx[1] = NewIdx;
+ Value *NewGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
+ Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return new BitCastInst(NewGEP, GEP.getType());
+ }
+ }
+ }
+ }
+
+ /// See if we can simplify:
+ /// X = bitcast A* to B*
+ /// Y = gep X, <...constant indices...>
+ /// into a gep of the original struct. This is important for SROA and alias
+ /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ if (TD &&
+ !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
+ StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
+
+ // Determine how much the GEP moves the pointer. We are guaranteed to get
+ // a constant back from EmitGEPOffset.
+ ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
+ int64_t Offset = OffsetV->getSExtValue();
+
+ // If this GEP instruction doesn't move the pointer, just replace the GEP
+ // with a bitcast of the real input to the dest type.
+ if (Offset == 0) {
+ // If the bitcast is of an allocation, and the allocation will be
+ // converted to match the type of the cast, don't touch this.
+ if (isa<AllocaInst>(BCI->getOperand(0)) ||
+ isMalloc(BCI->getOperand(0))) {
+ // See if the bitcast simplifies, if so, don't nuke this GEP yet.
+ if (Instruction *I = visitBitCast(*BCI)) {
+ if (I != BCI) {
+ I->takeName(BCI);
+ BCI->getParent()->getInstList().insert(BCI, I);
+ ReplaceInstUsesWith(*BCI, I);
+ }
+ return &GEP;
+ }
+ }
+ return new BitCastInst(BCI->getOperand(0), GEP.getType());
+ }
+
+ // Otherwise, if the offset is non-zero, we need to find out if there is a
+ // field at Offset in 'A's type. If so, we can pull the cast through the
+ // GEP.
+ SmallVector<Value*, 8> NewIndices;
+ Type *InTy =
+ cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
+ if (FindElementAtOffset(InTy, Offset, NewIndices)) {
+ Value *NGEP = GEP.isInBounds() ?
+ Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
+ Builder->CreateGEP(BCI->getOperand(0), NewIndices);
+
+ if (NGEP->getType() == GEP.getType())
+ return ReplaceInstUsesWith(GEP, NGEP);
+ NGEP->takeName(&GEP);
+ return new BitCastInst(NGEP, GEP.getType());
+ }
+ }
+ }
+
+ return 0;
+}
+
+
+
+static bool IsOnlyNullComparedAndFreed(Value *V, SmallVectorImpl<WeakVH> &Users,
+ int Depth = 0) {
+ if (Depth == 8)
+ return false;
+
+ for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ User *U = *UI;
+ if (isFreeCall(U)) {
+ Users.push_back(U);
+ continue;
+ }
+ if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
+ if (ICI->isEquality() && isa<ConstantPointerNull>(ICI->getOperand(1))) {
+ Users.push_back(ICI);
+ continue;
+ }
+ }
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
+ if (IsOnlyNullComparedAndFreed(BCI, Users, Depth+1)) {
+ Users.push_back(BCI);
+ continue;
+ }
+ }
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
+ if (IsOnlyNullComparedAndFreed(GEPI, Users, Depth+1)) {
+ Users.push_back(GEPI);
+ continue;
+ }
+ }
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
+ if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
+ II->getIntrinsicID() == Intrinsic::lifetime_end) {
+ Users.push_back(II);
+ continue;
+ }
+ }
+ return false;
+ }
+ return true;
+}
+
+Instruction *InstCombiner::visitMalloc(Instruction &MI) {
+ // If we have a malloc call which is only used in any amount of comparisons
+ // to null and free calls, delete the calls and replace the comparisons with
+ // true or false as appropriate.
+ SmallVector<WeakVH, 64> Users;
+ if (IsOnlyNullComparedAndFreed(&MI, Users)) {
+ for (unsigned i = 0, e = Users.size(); i != e; ++i) {
+ Instruction *I = cast_or_null<Instruction>(&*Users[i]);
+ if (!I) continue;
+
+ if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
+ ReplaceInstUsesWith(*C,
+ ConstantInt::get(Type::getInt1Ty(C->getContext()),
+ C->isFalseWhenEqual()));
+ } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
+ ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
+ }
+ EraseInstFromFunction(*I);
+ }
+ return EraseInstFromFunction(MI);
+ }
+ return 0;
+}
+
+
+
+Instruction *InstCombiner::visitFree(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+
+ // free undef -> unreachable.
+ if (isa<UndefValue>(Op)) {
+ // Insert a new store to null because we cannot modify the CFG here.
+ Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
+ UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
+ return EraseInstFromFunction(FI);
+ }
+
+ // If we have 'free null' delete the instruction. This can happen in stl code
+ // when lots of inlining happens.
+ if (isa<ConstantPointerNull>(Op))
+ return EraseInstFromFunction(FI);
+
+ return 0;
+}
+
+
+
+Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
+ // Change br (not X), label True, label False to: br X, label False, True
+ Value *X = 0;
+ BasicBlock *TrueDest;
+ BasicBlock *FalseDest;
+ if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
+ !isa<Constant>(X)) {
+ // Swap Destinations and condition...
+ BI.setCondition(X);
+ BI.swapSuccessors();
+ return &BI;
+ }
+
+ // Cannonicalize fcmp_one -> fcmp_oeq
+ FCmpInst::Predicate FPred; Value *Y;
+ if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+ FPred == FCmpInst::FCMP_OGE) {
+ FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+ Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+
+ // Swap Destinations and condition.
+ BI.swapSuccessors();
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ // Cannonicalize icmp_ne -> icmp_eq
+ ICmpInst::Predicate IPred;
+ if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
+ IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+ IPred == ICmpInst::ICMP_SGE) {
+ ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+ Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+ // Swap Destinations and condition.
+ BI.swapSuccessors();
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
+ Value *Cond = SI.getCondition();
+ if (Instruction *I = dyn_cast<Instruction>(Cond)) {
+ if (I->getOpcode() == Instruction::Add)
+ if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // change 'switch (X+4) case 1:' into 'switch (X) case -3'
+ unsigned NumCases = SI.getNumCases();
+ // Skip the first item since that's the default case.
+ for (unsigned i = 1; i < NumCases; ++i) {
+ ConstantInt* CaseVal = SI.getCaseValue(i);
+ Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
+ AddRHS);
+ assert(isa<ConstantInt>(NewCaseVal) &&
+ "Result of expression should be constant");
+ SI.setSuccessorValue(i, cast<ConstantInt>(NewCaseVal));
+ }
+ SI.setCondition(I->getOperand(0));
+ Worklist.Add(I);
+ return &SI;
+ }
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
+ Value *Agg = EV.getAggregateOperand();
+
+ if (!EV.hasIndices())
+ return ReplaceInstUsesWith(EV, Agg);
+
+ if (Constant *C = dyn_cast<Constant>(Agg)) {
+ if (isa<UndefValue>(C))
+ return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
+
+ if (isa<ConstantAggregateZero>(C))
+ return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
+
+ if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
+ // Extract the element indexed by the first index out of the constant
+ Value *V = C->getOperand(*EV.idx_begin());
+ if (EV.getNumIndices() > 1)
+ // Extract the remaining indices out of the constant indexed by the
+ // first index
+ return ExtractValueInst::Create(V, EV.getIndices().slice(1));
+ else
+ return ReplaceInstUsesWith(EV, V);
+ }
+ return 0; // Can't handle other constants
+ }
+ if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
+ // We're extracting from an insertvalue instruction, compare the indices
+ const unsigned *exti, *exte, *insi, *inse;
+ for (exti = EV.idx_begin(), insi = IV->idx_begin(),
+ exte = EV.idx_end(), inse = IV->idx_end();
+ exti != exte && insi != inse;
+ ++exti, ++insi) {
+ if (*insi != *exti)
+ // The insert and extract both reference distinctly different elements.
+ // This means the extract is not influenced by the insert, and we can
+ // replace the aggregate operand of the extract with the aggregate
+ // operand of the insert. i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 0
+ // with
+ // %E = extractvalue { i32, { i32 } } %A, 0
+ return ExtractValueInst::Create(IV->getAggregateOperand(),
+ EV.getIndices());
+ }
+ if (exti == exte && insi == inse)
+ // Both iterators are at the end: Index lists are identical. Replace
+ // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %C = extractvalue { i32, { i32 } } %B, 1, 0
+ // with "i32 42"
+ return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
+ if (exti == exte) {
+ // The extract list is a prefix of the insert list. i.e. replace
+ // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %E = extractvalue { i32, { i32 } } %I, 1
+ // with
+ // %X = extractvalue { i32, { i32 } } %A, 1
+ // %E = insertvalue { i32 } %X, i32 42, 0
+ // by switching the order of the insert and extract (though the
+ // insertvalue should be left in, since it may have other uses).
+ Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+ EV.getIndices());
+ return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
+ makeArrayRef(insi, inse));
+ }
+ if (insi == inse)
+ // The insert list is a prefix of the extract list
+ // We can simply remove the common indices from the extract and make it
+ // operate on the inserted value instead of the insertvalue result.
+ // i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 1, 0
+ // with
+ // %E extractvalue { i32 } { i32 42 }, 0
+ return ExtractValueInst::Create(IV->getInsertedValueOperand(),
+ makeArrayRef(exti, exte));
+ }
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
+ // We're extracting from an intrinsic, see if we're the only user, which
+ // allows us to simplify multiple result intrinsics to simpler things that
+ // just get one value.
+ if (II->hasOneUse()) {
+ // Check if we're grabbing the overflow bit or the result of a 'with
+ // overflow' intrinsic. If it's the latter we can remove the intrinsic
+ // and replace it with a traditional binary instruction.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateAdd(LHS, RHS);
+ }
+
+ // If the normal result of the add is dead, and the RHS is a constant,
+ // we can transform this into a range comparison.
+ // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
+ if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
+ return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
+ ConstantExpr::getNot(CI));
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateSub(LHS, RHS);
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateMul(LHS, RHS);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ if (LoadInst *L = dyn_cast<LoadInst>(Agg))
+ // If the (non-volatile) load only has one use, we can rewrite this to a
+ // load from a GEP. This reduces the size of the load.
+ // FIXME: If a load is used only by extractvalue instructions then this
+ // could be done regardless of having multiple uses.
+ if (L->isSimple() && L->hasOneUse()) {
+ // extractvalue has integer indices, getelementptr has Value*s. Convert.
+ SmallVector<Value*, 4> Indices;
+ // Prefix an i32 0 since we need the first element.
+ Indices.push_back(Builder->getInt32(0));
+ for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
+ I != E; ++I)
+ Indices.push_back(Builder->getInt32(*I));
+
+ // We need to insert these at the location of the old load, not at that of
+ // the extractvalue.
+ Builder->SetInsertPoint(L->getParent(), L);
+ Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
+ // Returning the load directly will cause the main loop to insert it in
+ // the wrong spot, so use ReplaceInstUsesWith().
+ return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
+ }
+ // We could simplify extracts from other values. Note that nested extracts may
+ // already be simplified implicitly by the above: extract (extract (insert) )
+ // will be translated into extract ( insert ( extract ) ) first and then just
+ // the value inserted, if appropriate. Similarly for extracts from single-use
+ // loads: extract (extract (load)) will be translated to extract (load (gep))
+ // and if again single-use then via load (gep (gep)) to load (gep).
+ // However, double extracts from e.g. function arguments or return values
+ // aren't handled yet.
+ return 0;
+}
+
+enum Personality_Type {
+ Unknown_Personality,
+ GNU_Ada_Personality,
+ GNU_CXX_Personality
+};
+
+/// RecognizePersonality - See if the given exception handling personality
+/// function is one that we understand. If so, return a description of it;
+/// otherwise return Unknown_Personality.
+static Personality_Type RecognizePersonality(Value *Pers) {
+ Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
+ if (!F)
+ return Unknown_Personality;
+ return StringSwitch<Personality_Type>(F->getName())
+ .Case("__gnat_eh_personality", GNU_Ada_Personality)
+ .Case("__gxx_personality_v0", GNU_CXX_Personality)
+ .Default(Unknown_Personality);
+}
+
+/// isCatchAll - Return 'true' if the given typeinfo will match anything.
+static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
+ switch (Personality) {
+ case Unknown_Personality:
+ return false;
+ case GNU_Ada_Personality:
+ // While __gnat_all_others_value will match any Ada exception, it doesn't
+ // match foreign exceptions (or didn't, before gcc-4.7).
+ return false;
+ case GNU_CXX_Personality:
+ return TypeInfo->isNullValue();
+ }
+ llvm_unreachable("Unknown personality!");
+}
+
+static bool shorter_filter(const Value *LHS, const Value *RHS) {
+ return
+ cast<ArrayType>(LHS->getType())->getNumElements()
+ <
+ cast<ArrayType>(RHS->getType())->getNumElements();
+}
+
+Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
+ // The logic here should be correct for any real-world personality function.
+ // However if that turns out not to be true, the offending logic can always
+ // be conditioned on the personality function, like the catch-all logic is.
+ Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
+
+ // Simplify the list of clauses, eg by removing repeated catch clauses
+ // (these are often created by inlining).
+ bool MakeNewInstruction = false; // If true, recreate using the following:
+ SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
+ bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
+
+ SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
+ for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
+ bool isLastClause = i + 1 == e;
+ if (LI.isCatch(i)) {
+ // A catch clause.
+ Value *CatchClause = LI.getClause(i);
+ Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
+
+ // If we already saw this clause, there is no point in having a second
+ // copy of it.
+ if (AlreadyCaught.insert(TypeInfo)) {
+ // This catch clause was not already seen.
+ NewClauses.push_back(CatchClause);
+ } else {
+ // Repeated catch clause - drop the redundant copy.
+ MakeNewInstruction = true;
+ }
+
+ // If this is a catch-all then there is no point in keeping any following
+ // clauses or marking the landingpad as having a cleanup.
+ if (isCatchAll(Personality, TypeInfo)) {
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+ } else {
+ // A filter clause. If any of the filter elements were already caught
+ // then they can be dropped from the filter. It is tempting to try to
+ // exploit the filter further by saying that any typeinfo that does not
+ // occur in the filter can't be caught later (and thus can be dropped).
+ // However this would be wrong, since typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some
+ // class derived from it).
+ assert(LI.isFilter(i) && "Unsupported landingpad clause!");
+ Value *FilterClause = LI.getClause(i);
+ ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
+ unsigned NumTypeInfos = FilterType->getNumElements();
+
+ // An empty filter catches everything, so there is no point in keeping any
+ // following clauses or marking the landingpad as having a cleanup. By
+ // dealing with this case here the following code is made a bit simpler.
+ if (!NumTypeInfos) {
+ NewClauses.push_back(FilterClause);
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+
+ bool MakeNewFilter = false; // If true, make a new filter.
+ SmallVector<Constant *, 16> NewFilterElts; // New elements.
+ if (isa<ConstantAggregateZero>(FilterClause)) {
+ // Not an empty filter - it contains at least one null typeinfo.
+ assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
+ Constant *TypeInfo =
+ Constant::getNullValue(FilterType->getElementType());
+ // If this typeinfo is a catch-all then the filter can never match.
+ if (isCatchAll(Personality, TypeInfo)) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // There is no point in having multiple copies of this typeinfo, so
+ // discard all but the first copy if there is more than one.
+ NewFilterElts.push_back(TypeInfo);
+ if (NumTypeInfos > 1)
+ MakeNewFilter = true;
+ } else {
+ ConstantArray *Filter = cast<ConstantArray>(FilterClause);
+ SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
+ NewFilterElts.reserve(NumTypeInfos);
+
+ // Remove any filter elements that were already caught or that already
+ // occurred in the filter. While there, see if any of the elements are
+ // catch-alls. If so, the filter can be discarded.
+ bool SawCatchAll = false;
+ for (unsigned j = 0; j != NumTypeInfos; ++j) {
+ Value *Elt = Filter->getOperand(j);
+ Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
+ if (isCatchAll(Personality, TypeInfo)) {
+ // This element is a catch-all. Bail out, noting this fact.
+ SawCatchAll = true;
+ break;
+ }
+ if (AlreadyCaught.count(TypeInfo))
+ // Already caught by an earlier clause, so having it in the filter
+ // is pointless.
+ continue;
+ // There is no point in having multiple copies of the same typeinfo in
+ // a filter, so only add it if we didn't already.
+ if (SeenInFilter.insert(TypeInfo))
+ NewFilterElts.push_back(cast<Constant>(Elt));
+ }
+ // A filter containing a catch-all cannot match anything by definition.
+ if (SawCatchAll) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // If we dropped something from the filter, make a new one.
+ if (NewFilterElts.size() < NumTypeInfos)
+ MakeNewFilter = true;
+ }
+ if (MakeNewFilter) {
+ FilterType = ArrayType::get(FilterType->getElementType(),
+ NewFilterElts.size());
+ FilterClause = ConstantArray::get(FilterType, NewFilterElts);
+ MakeNewInstruction = true;
+ }
+
+ NewClauses.push_back(FilterClause);
+
+ // If the new filter is empty then it will catch everything so there is
+ // no point in keeping any following clauses or marking the landingpad
+ // as having a cleanup. The case of the original filter being empty was
+ // already handled above.
+ if (MakeNewFilter && !NewFilterElts.size()) {
+ assert(MakeNewInstruction && "New filter but not a new instruction!");
+ CleanupFlag = false;
+ break;
+ }
+ }
+ }
+
+ // If several filters occur in a row then reorder them so that the shortest
+ // filters come first (those with the smallest number of elements). This is
+ // advantageous because shorter filters are more likely to match, speeding up
+ // unwinding, but mostly because it increases the effectiveness of the other
+ // filter optimizations below.
+ for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
+ unsigned j;
+ // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
+ for (j = i; j != e; ++j)
+ if (!isa<ArrayType>(NewClauses[j]->getType()))
+ break;
+
+ // Check whether the filters are already sorted by length. We need to know
+ // if sorting them is actually going to do anything so that we only make a
+ // new landingpad instruction if it does.
+ for (unsigned k = i; k + 1 < j; ++k)
+ if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
+ // Not sorted, so sort the filters now. Doing an unstable sort would be
+ // correct too but reordering filters pointlessly might confuse users.
+ std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
+ shorter_filter);
+ MakeNewInstruction = true;
+ break;
+ }
+
+ // Look for the next batch of filters.
+ i = j + 1;
+ }
+
+ // If typeinfos matched if and only if equal, then the elements of a filter L
+ // that occurs later than a filter F could be replaced by the intersection of
+ // the elements of F and L. In reality two typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some class
+ // derived from it) so it would be wrong to perform this transform in general.
+ // However the transform is correct and useful if F is a subset of L. In that
+ // case L can be replaced by F, and thus removed altogether since repeating a
+ // filter is pointless. So here we look at all pairs of filters F and L where
+ // L follows F in the list of clauses, and remove L if every element of F is
+ // an element of L. This can occur when inlining C++ functions with exception
+ // specifications.
+ for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
+ // Examine each filter in turn.
+ Value *Filter = NewClauses[i];
+ ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
+ if (!FTy)
+ // Not a filter - skip it.
+ continue;
+ unsigned FElts = FTy->getNumElements();
+ // Examine each filter following this one. Doing this backwards means that
+ // we don't have to worry about filters disappearing under us when removed.
+ for (unsigned j = NewClauses.size() - 1; j != i; --j) {
+ Value *LFilter = NewClauses[j];
+ ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
+ if (!LTy)
+ // Not a filter - skip it.
+ continue;
+ // If Filter is a subset of LFilter, i.e. every element of Filter is also
+ // an element of LFilter, then discard LFilter.
+ SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
+ // If Filter is empty then it is a subset of LFilter.
+ if (!FElts) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ // Move on to the next filter.
+ continue;
+ }
+ unsigned LElts = LTy->getNumElements();
+ // If Filter is longer than LFilter then it cannot be a subset of it.
+ if (FElts > LElts)
+ // Move on to the next filter.
+ continue;
+ // At this point we know that LFilter has at least one element.
+ if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
+ // Filter is a subset of LFilter iff Filter contains only zeros (as we
+ // already know that Filter is not longer than LFilter).
+ if (isa<ConstantAggregateZero>(Filter)) {
+ assert(FElts <= LElts && "Should have handled this case earlier!");
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ ConstantArray *LArray = cast<ConstantArray>(LFilter);
+ if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
+ // Since Filter is non-empty and contains only zeros, it is a subset of
+ // LFilter iff LFilter contains a zero.
+ assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
+ for (unsigned l = 0; l != LElts; ++l)
+ if (LArray->getOperand(l)->isNullValue()) {
+ // LFilter contains a zero - discard it.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ break;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ // At this point we know that both filters are ConstantArrays. Loop over
+ // operands to see whether every element of Filter is also an element of
+ // LFilter. Since filters tend to be short this is probably faster than
+ // using a method that scales nicely.
+ ConstantArray *FArray = cast<ConstantArray>(Filter);
+ bool AllFound = true;
+ for (unsigned f = 0; f != FElts; ++f) {
+ Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
+ AllFound = false;
+ for (unsigned l = 0; l != LElts; ++l) {
+ Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
+ if (LTypeInfo == FTypeInfo) {
+ AllFound = true;
+ break;
+ }
+ }
+ if (!AllFound)
+ break;
+ }
+ if (AllFound) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ }
+ }
+
+ // If we changed any of the clauses, replace the old landingpad instruction
+ // with a new one.
+ if (MakeNewInstruction) {
+ LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
+ LI.getPersonalityFn(),
+ NewClauses.size());
+ for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
+ NLI->addClause(NewClauses[i]);
+ // A landing pad with no clauses must have the cleanup flag set. It is
+ // theoretically possible, though highly unlikely, that we eliminated all
+ // clauses. If so, force the cleanup flag to true.
+ if (NewClauses.empty())
+ CleanupFlag = true;
+ NLI->setCleanup(CleanupFlag);
+ return NLI;
+ }
+
+ // Even if none of the clauses changed, we may nonetheless have understood
+ // that the cleanup flag is pointless. Clear it if so.
+ if (LI.isCleanup() != CleanupFlag) {
+ assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
+ LI.setCleanup(CleanupFlag);
+ return &LI;
+ }
+
+ return 0;
+}
+
+
+
+
+/// TryToSinkInstruction - Try to move the specified instruction from its
+/// current block into the beginning of DestBlock, which can only happen if it's
+/// safe to move the instruction past all of the instructions between it and the
+/// end of its block.
+static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
+ assert(I->hasOneUse() && "Invariants didn't hold!");
+
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
+ isa<TerminatorInst>(I))
+ return false;
+
+ // Do not sink alloca instructions out of the entry block.
+ if (isa<AllocaInst>(I) && I->getParent() ==
+ &DestBlock->getParent()->getEntryBlock())
+ return false;
+
+ // We can only sink load instructions if there is nothing between the load and
+ // the end of block that could change the value.
+ if (I->mayReadFromMemory()) {
+ for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
+ Scan != E; ++Scan)
+ if (Scan->mayWriteToMemory())
+ return false;
+ }
+
+ BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
+ I->moveBefore(InsertPos);
+ ++NumSunkInst;
+ return true;
+}
+
+
+/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
+/// all reachable code to the worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful. In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant). Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+///
+static bool AddReachableCodeToWorklist(BasicBlock *BB,
+ SmallPtrSet<BasicBlock*, 64> &Visited,
+ InstCombiner &IC,
+ const TargetData *TD) {
+ bool MadeIRChange = false;
+ SmallVector<BasicBlock*, 256> Worklist;
+ Worklist.push_back(BB);
+
+ SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
+ DenseMap<ConstantExpr*, Constant*> FoldedConstants;
+
+ do {
+ BB = Worklist.pop_back_val();
+
+ // We have now visited this block! If we've already been here, ignore it.
+ if (!Visited.insert(BB)) continue;
+
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *Inst = BBI++;
+
+ // DCE instruction if trivially dead.
+ if (isInstructionTriviallyDead(Inst)) {
+ ++NumDeadInst;
+ DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // ConstantProp instruction if trivially constant.
+ if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
+ if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
+ Inst->replaceAllUsesWith(C);
+ ++NumConstProp;
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ if (TD) {
+ // See if we can constant fold its operands.
+ for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
+ i != e; ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+ if (CE == 0) continue;
+
+ Constant*& FoldRes = FoldedConstants[CE];
+ if (!FoldRes)
+ FoldRes = ConstantFoldConstantExpression(CE, TD);
+ if (!FoldRes)
+ FoldRes = CE;
+
+ if (FoldRes != CE) {
+ *i = FoldRes;
+ MadeIRChange = true;
+ }
+ }
+ }
+
+ InstrsForInstCombineWorklist.push_back(Inst);
+ }
+
+ // Recursively visit successors. If this is a branch or switch on a
+ // constant, only visit the reachable successor.
+ TerminatorInst *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+ bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+ BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+ // See if this is an explicit destination.
+ for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
+ if (SI->getCaseValue(i) == Cond) {
+ BasicBlock *ReachableBB = SI->getSuccessor(i);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+
+ // Otherwise it is the default destination.
+ Worklist.push_back(SI->getSuccessor(0));
+ continue;
+ }
+ }
+
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ Worklist.push_back(TI->getSuccessor(i));
+ } while (!Worklist.empty());
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+ InstrsForInstCombineWorklist.size());
+
+ return MadeIRChange;
+}
+
+bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
+ MadeIRChange = false;
+
+ DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getNameStr() << "\n");
+
+ {
+ // Do a depth-first traversal of the function, populate the worklist with
+ // the reachable instructions. Ignore blocks that are not reachable. Keep
+ // track of which blocks we visit.
+ SmallPtrSet<BasicBlock*, 64> Visited;
+ MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
+
+ // Do a quick scan over the function. If we find any blocks that are
+ // unreachable, remove any instructions inside of them. This prevents
+ // the instcombine code from having to deal with some bad special cases.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Visited.count(BB)) continue;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
+ while (EndInst != BB->begin()) {
+ // Delete the next to last instruction.
+ BasicBlock::iterator I = EndInst;
+ Instruction *Inst = --I;
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ if (isa<LandingPadInst>(Inst)) {
+ EndInst = Inst;
+ continue;
+ }
+ if (!isa<DbgInfoIntrinsic>(Inst)) {
+ ++NumDeadInst;
+ MadeIRChange = true;
+ }
+ Inst->eraseFromParent();
+ }
+ }
+ }
+
+ while (!Worklist.isEmpty()) {
+ Instruction *I = Worklist.RemoveOne();
+ if (I == 0) continue; // skip null values.
+
+ // Check to see if we can DCE the instruction.
+ if (isInstructionTriviallyDead(I)) {
+ DEBUG(errs() << "IC: DCE: " << *I << '\n');
+ EraseInstFromFunction(*I);
+ ++NumDeadInst;
+ MadeIRChange = true;
+ continue;
+ }
+
+ // Instruction isn't dead, see if we can constant propagate it.
+ if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
+ if (Constant *C = ConstantFoldInstruction(I, TD)) {
+ DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
+
+ // Add operands to the worklist.
+ ReplaceInstUsesWith(*I, C);
+ ++NumConstProp;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
+ continue;
+ }
+
+ // See if we can trivially sink this instruction to a successor basic block.
+ if (I->hasOneUse()) {
+ BasicBlock *BB = I->getParent();
+ Instruction *UserInst = cast<Instruction>(I->use_back());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(I->use_begin().getUse());
+ else
+ UserParent = UserInst->getParent();
+
+ if (UserParent != BB) {
+ bool UserIsSuccessor = false;
+ // See if the user is one of our successors.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+ if (*SI == UserParent) {
+ UserIsSuccessor = true;
+ break;
+ }
+
+ // If the user is one of our immediate successors, and if that successor
+ // only has us as a predecessors (we'd have to split the critical edge
+ // otherwise), we can keep going.
+ if (UserIsSuccessor && UserParent->getSinglePredecessor())
+ // Okay, the CFG is simple enough, try to sink this instruction.
+ MadeIRChange |= TryToSinkInstruction(I, UserParent);
+ }
+ }
+
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder->SetInsertPoint(I->getParent(), I);
+ Builder->SetCurrentDebugLocation(I->getDebugLoc());
+
+#ifndef NDEBUG
+ std::string OrigI;
+#endif
+ DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
+
+ if (Instruction *Result = visit(*I)) {
+ ++NumCombined;
+ // Should we replace the old instruction with a new one?
+ if (Result != I) {
+ DEBUG(errs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
+
+ if (!I->getDebugLoc().isUnknown())
+ Result->setDebugLoc(I->getDebugLoc());
+ // Everything uses the new instruction now.
+ I->replaceAllUsesWith(Result);
+
+ // Move the name to the new instruction first.
+ Result->takeName(I);
+
+ // Push the new instruction and any users onto the worklist.
+ Worklist.Add(Result);
+ Worklist.AddUsersToWorkList(*Result);
+
+ // Insert the new instruction into the basic block...
+ BasicBlock *InstParent = I->getParent();
+ BasicBlock::iterator InsertPos = I;
+
+ if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
+ while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
+ ++InsertPos;
+
+ InstParent->getInstList().insert(InsertPos, Result);
+
+ EraseInstFromFunction(*I);
+ } else {
+#ifndef NDEBUG
+ DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
+#endif
+
+ // If the instruction was modified, it's possible that it is now dead.
+ // if so, remove it.
+ if (isInstructionTriviallyDead(I)) {
+ EraseInstFromFunction(*I);
+ } else {
+ Worklist.Add(I);
+ Worklist.AddUsersToWorkList(*I);
+ }
+ }
+ MadeIRChange = true;
+ }
+ }
+
+ Worklist.Zap();
+ return MadeIRChange;
+}
+
+
+bool InstCombiner::runOnFunction(Function &F) {
+ TD = getAnalysisIfAvailable<TargetData>();
+
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<true, TargetFolder, InstCombineIRInserter>
+ TheBuilder(F.getContext(), TargetFolder(TD),
+ InstCombineIRInserter(Worklist));
+ Builder = &TheBuilder;
+
+ bool EverMadeChange = false;
+
+ // Lower dbg.declare intrinsics otherwise their value may be clobbered
+ // by instcombiner.
+ EverMadeChange = LowerDbgDeclare(F);
+
+ // Iterate while there is work to do.
+ unsigned Iteration = 0;
+ while (DoOneIteration(F, Iteration++))
+ EverMadeChange = true;
+
+ Builder = 0;
+ return EverMadeChange;
+}
+
+FunctionPass *llvm::createInstructionCombiningPass() {
+ return new InstCombiner();
+}
OpenPOWER on IntegriCloud