summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp3167
1 files changed, 3167 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
new file mode 100644
index 0000000..903a0b5
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -0,0 +1,3167 @@
+//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// InstructionCombining - Combine instructions to form fewer, simple
+// instructions. This pass does not modify the CFG. This pass is where
+// algebraic simplification happens.
+//
+// This pass combines things like:
+// %Y = add i32 %X, 1
+// %Z = add i32 %Y, 1
+// into:
+// %Z = add i32 %X, 2
+//
+// This is a simple worklist driven algorithm.
+//
+// This pass guarantees that the following canonicalizations are performed on
+// the program:
+// 1. If a binary operator has a constant operand, it is moved to the RHS
+// 2. Bitwise operators with constant operands are always grouped so that
+// shifts are performed first, then or's, then and's, then xor's.
+// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
+// 4. All cmp instructions on boolean values are replaced with logical ops
+// 5. add X, X is represented as (X*2) => (X << 1)
+// 6. Multiplies with a power-of-two constant argument are transformed into
+// shifts.
+// ... etc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/InstCombine/InstCombine.h"
+#include "InstCombineInternal.h"
+#include "llvm-c/Initialization.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <algorithm>
+#include <climits>
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+STATISTIC(NumCombined , "Number of insts combined");
+STATISTIC(NumConstProp, "Number of constant folds");
+STATISTIC(NumDeadInst , "Number of dead inst eliminated");
+STATISTIC(NumSunkInst , "Number of instructions sunk");
+STATISTIC(NumExpand, "Number of expansions");
+STATISTIC(NumFactor , "Number of factorizations");
+STATISTIC(NumReassoc , "Number of reassociations");
+
+Value *InstCombiner::EmitGEPOffset(User *GEP) {
+ return llvm::EmitGEPOffset(Builder, DL, GEP);
+}
+
+/// Return true if it is desirable to convert an integer computation from a
+/// given bit width to a new bit width.
+/// We don't want to convert from a legal to an illegal type for example or from
+/// a smaller to a larger illegal type.
+bool InstCombiner::ShouldChangeType(unsigned FromWidth,
+ unsigned ToWidth) const {
+ bool FromLegal = DL.isLegalInteger(FromWidth);
+ bool ToLegal = DL.isLegalInteger(ToWidth);
+
+ // If this is a legal integer from type, and the result would be an illegal
+ // type, don't do the transformation.
+ if (FromLegal && !ToLegal)
+ return false;
+
+ // Otherwise, if both are illegal, do not increase the size of the result. We
+ // do allow things like i160 -> i64, but not i64 -> i160.
+ if (!FromLegal && !ToLegal && ToWidth > FromWidth)
+ return false;
+
+ return true;
+}
+
+/// Return true if it is desirable to convert a computation from 'From' to 'To'.
+/// We don't want to convert from a legal to an illegal type for example or from
+/// a smaller to a larger illegal type.
+bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
+ assert(From->isIntegerTy() && To->isIntegerTy());
+
+ unsigned FromWidth = From->getPrimitiveSizeInBits();
+ unsigned ToWidth = To->getPrimitiveSizeInBits();
+ return ShouldChangeType(FromWidth, ToWidth);
+}
+
+// Return true, if No Signed Wrap should be maintained for I.
+// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
+// where both B and C should be ConstantInts, results in a constant that does
+// not overflow. This function only handles the Add and Sub opcodes. For
+// all other opcodes, the function conservatively returns false.
+static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
+ OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
+ if (!OBO || !OBO->hasNoSignedWrap()) {
+ return false;
+ }
+
+ // We reason about Add and Sub Only.
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ if (Opcode != Instruction::Add &&
+ Opcode != Instruction::Sub) {
+ return false;
+ }
+
+ ConstantInt *CB = dyn_cast<ConstantInt>(B);
+ ConstantInt *CC = dyn_cast<ConstantInt>(C);
+
+ if (!CB || !CC) {
+ return false;
+ }
+
+ const APInt &BVal = CB->getValue();
+ const APInt &CVal = CC->getValue();
+ bool Overflow = false;
+
+ if (Opcode == Instruction::Add) {
+ BVal.sadd_ov(CVal, Overflow);
+ } else {
+ BVal.ssub_ov(CVal, Overflow);
+ }
+
+ return !Overflow;
+}
+
+/// Conservatively clears subclassOptionalData after a reassociation or
+/// commutation. We preserve fast-math flags when applicable as they can be
+/// preserved.
+static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
+ FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
+ if (!FPMO) {
+ I.clearSubclassOptionalData();
+ return;
+ }
+
+ FastMathFlags FMF = I.getFastMathFlags();
+ I.clearSubclassOptionalData();
+ I.setFastMathFlags(FMF);
+}
+
+/// This performs a few simplifications for operators that are associative or
+/// commutative:
+///
+/// Commutative operators:
+///
+/// 1. Order operands such that they are listed from right (least complex) to
+/// left (most complex). This puts constants before unary operators before
+/// binary operators.
+///
+/// Associative operators:
+///
+/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+///
+/// Associative and commutative operators:
+///
+/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+/// if C1 and C2 are constants.
+bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ bool Changed = false;
+
+ do {
+ // Order operands such that they are listed from right (least complex) to
+ // left (most complex). This puts constants before unary operators before
+ // binary operators.
+ if (I.isCommutative() && getComplexity(I.getOperand(0)) <
+ getComplexity(I.getOperand(1)))
+ Changed = !I.swapOperands();
+
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
+
+ if (I.isAssociative()) {
+ // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "B op C" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
+ // It simplifies to V. Form "A op V".
+ I.setOperand(0, A);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ if (MaintainNoSignedWrap(I, B, C) &&
+ (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
+ // Note: this is only valid because SimplifyBinOp doesn't look at
+ // the operands to Op0.
+ I.clearSubclassOptionalData();
+ I.setHasNoSignedWrap(true);
+ } else {
+ ClearSubclassDataAfterReassociation(I);
+ }
+
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "A op B" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
+ // It simplifies to V. Form "V op C".
+ I.setOperand(0, V);
+ I.setOperand(1, C);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+ }
+
+ if (I.isAssociative() && I.isCommutative()) {
+ // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
+ if (Op0 && Op0->getOpcode() == Opcode) {
+ Value *A = Op0->getOperand(0);
+ Value *B = Op0->getOperand(1);
+ Value *C = I.getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
+ // It simplifies to V. Form "V op B".
+ I.setOperand(0, V);
+ I.setOperand(1, B);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
+ if (Op1 && Op1->getOpcode() == Opcode) {
+ Value *A = I.getOperand(0);
+ Value *B = Op1->getOperand(0);
+ Value *C = Op1->getOperand(1);
+
+ // Does "C op A" simplify?
+ if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
+ // It simplifies to V. Form "B op V".
+ I.setOperand(0, B);
+ I.setOperand(1, V);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+ Changed = true;
+ ++NumReassoc;
+ continue;
+ }
+ }
+
+ // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
+ // if C1 and C2 are constants.
+ if (Op0 && Op1 &&
+ Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
+ isa<Constant>(Op0->getOperand(1)) &&
+ isa<Constant>(Op1->getOperand(1)) &&
+ Op0->hasOneUse() && Op1->hasOneUse()) {
+ Value *A = Op0->getOperand(0);
+ Constant *C1 = cast<Constant>(Op0->getOperand(1));
+ Value *B = Op1->getOperand(0);
+ Constant *C2 = cast<Constant>(Op1->getOperand(1));
+
+ Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
+ BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
+ if (isa<FPMathOperator>(New)) {
+ FastMathFlags Flags = I.getFastMathFlags();
+ Flags &= Op0->getFastMathFlags();
+ Flags &= Op1->getFastMathFlags();
+ New->setFastMathFlags(Flags);
+ }
+ InsertNewInstWith(New, I);
+ New->takeName(Op1);
+ I.setOperand(0, New);
+ I.setOperand(1, Folded);
+ // Conservatively clear the optional flags, since they may not be
+ // preserved by the reassociation.
+ ClearSubclassDataAfterReassociation(I);
+
+ Changed = true;
+ continue;
+ }
+ }
+
+ // No further simplifications.
+ return Changed;
+ } while (1);
+}
+
+/// Return whether "X LOp (Y ROp Z)" is always equal to
+/// "(X LOp Y) ROp (X LOp Z)".
+static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ switch (LOp) {
+ default:
+ return false;
+
+ case Instruction::And:
+ // And distributes over Or and Xor.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Or:
+ case Instruction::Xor:
+ return true;
+ }
+
+ case Instruction::Mul:
+ // Multiplication distributes over addition and subtraction.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Add:
+ case Instruction::Sub:
+ return true;
+ }
+
+ case Instruction::Or:
+ // Or distributes over And.
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::And:
+ return true;
+ }
+ }
+}
+
+/// Return whether "(X LOp Y) ROp Z" is always equal to
+/// "(X ROp Z) LOp (Y ROp Z)".
+static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
+ Instruction::BinaryOps ROp) {
+ if (Instruction::isCommutative(ROp))
+ return LeftDistributesOverRight(ROp, LOp);
+
+ switch (LOp) {
+ default:
+ return false;
+ // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
+ // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
+ // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ switch (ROp) {
+ default:
+ return false;
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return true;
+ }
+ }
+ // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
+ // but this requires knowing that the addition does not overflow and other
+ // such subtleties.
+ return false;
+}
+
+/// This function returns identity value for given opcode, which can be used to
+/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
+static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
+ if (isa<Constant>(V))
+ return nullptr;
+
+ if (OpCode == Instruction::Mul)
+ return ConstantInt::get(V->getType(), 1);
+
+ // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
+
+ return nullptr;
+}
+
+/// This function factors binary ops which can be combined using distributive
+/// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
+/// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
+/// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
+/// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
+/// RHS to 4.
+static Instruction::BinaryOps
+getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
+ BinaryOperator *Op, Value *&LHS, Value *&RHS) {
+ if (!Op)
+ return Instruction::BinaryOpsEnd;
+
+ LHS = Op->getOperand(0);
+ RHS = Op->getOperand(1);
+
+ switch (TopLevelOpcode) {
+ default:
+ return Op->getOpcode();
+
+ case Instruction::Add:
+ case Instruction::Sub:
+ if (Op->getOpcode() == Instruction::Shl) {
+ if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
+ // The multiplier is really 1 << CST.
+ RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
+ return Instruction::Mul;
+ }
+ }
+ return Op->getOpcode();
+ }
+
+ // TODO: We can add other conversions e.g. shr => div etc.
+}
+
+/// This tries to simplify binary operations by factorizing out common terms
+/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
+static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
+ const DataLayout &DL, BinaryOperator &I,
+ Instruction::BinaryOps InnerOpcode, Value *A,
+ Value *B, Value *C, Value *D) {
+
+ // If any of A, B, C, D are null, we can not factor I, return early.
+ // Checking A and C should be enough.
+ if (!A || !C || !B || !D)
+ return nullptr;
+
+ Value *V = nullptr;
+ Value *SimplifiedInst = nullptr;
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
+
+ // Does "X op' Y" always equal "Y op' X"?
+ bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
+
+ // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
+ if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
+ // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
+ // commutative case, "(A op' B) op (C op' A)"?
+ if (A == C || (InnerCommutative && A == D)) {
+ if (A != C)
+ std::swap(C, D);
+ // Consider forming "A op' (B op D)".
+ // If "B op D" simplifies then it can be formed with no cost.
+ V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
+ // If "B op D" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && LHS->hasOneUse() && RHS->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
+ if (V) {
+ SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
+ }
+ }
+
+ // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
+ if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
+ // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
+ // commutative case, "(A op' B) op (B op' D)"?
+ if (B == D || (InnerCommutative && B == C)) {
+ if (B != D)
+ std::swap(C, D);
+ // Consider forming "(A op C) op' B".
+ // If "A op C" simplifies then it can be formed with no cost.
+ V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
+
+ // If "A op C" doesn't simplify then only go on if both of the existing
+ // operations "A op' B" and "C op' D" will be zapped as no longer used.
+ if (!V && LHS->hasOneUse() && RHS->hasOneUse())
+ V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
+ if (V) {
+ SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
+ }
+ }
+
+ if (SimplifiedInst) {
+ ++NumFactor;
+ SimplifiedInst->takeName(&I);
+
+ // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
+ // TODO: Check for NUW.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
+ if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
+ bool HasNSW = false;
+ if (isa<OverflowingBinaryOperator>(&I))
+ HasNSW = I.hasNoSignedWrap();
+
+ if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
+ if (isa<OverflowingBinaryOperator>(Op0))
+ HasNSW &= Op0->hasNoSignedWrap();
+
+ if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
+ if (isa<OverflowingBinaryOperator>(Op1))
+ HasNSW &= Op1->hasNoSignedWrap();
+
+ // We can propagate 'nsw' if we know that
+ // %Y = mul nsw i16 %X, C
+ // %Z = add nsw i16 %Y, %X
+ // =>
+ // %Z = mul nsw i16 %X, C+1
+ //
+ // iff C+1 isn't INT_MIN
+ const APInt *CInt;
+ if (TopLevelOpcode == Instruction::Add &&
+ InnerOpcode == Instruction::Mul)
+ if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
+ BO->setHasNoSignedWrap(HasNSW);
+ }
+ }
+ }
+ return SimplifiedInst;
+}
+
+/// This tries to simplify binary operations which some other binary operation
+/// distributes over either by factorizing out common terms
+/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
+/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
+/// Returns the simplified value, or null if it didn't simplify.
+Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
+ BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
+
+ // Factorization.
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
+ auto TopLevelOpcode = I.getOpcode();
+ auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
+ auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
+
+ // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
+ // a common term.
+ if (LHSOpcode == RHSOpcode) {
+ if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
+ return V;
+ }
+
+ // The instruction has the form "(A op' B) op (C)". Try to factorize common
+ // term.
+ if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
+ getIdentityValue(LHSOpcode, RHS)))
+ return V;
+
+ // The instruction has the form "(B) op (C op' D)". Try to factorize common
+ // term.
+ if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
+ getIdentityValue(RHSOpcode, LHS), C, D))
+ return V;
+
+ // Expansion.
+ if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
+ // The instruction has the form "(A op' B) op C". See if expanding it out
+ // to "(A op C) op' (B op C)" results in simplifications.
+ Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
+ Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
+
+ // Do "A op C" and "B op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
+ if ((L == A && R == B) ||
+ (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
+ return Op0;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
+ return V;
+ // Otherwise, create a new instruction.
+ C = Builder->CreateBinOp(InnerOpcode, L, R);
+ C->takeName(&I);
+ return C;
+ }
+ }
+
+ if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
+ // The instruction has the form "A op (B op' C)". See if expanding it out
+ // to "(A op B) op' (A op C)" results in simplifications.
+ Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
+ Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
+
+ // Do "A op B" and "A op C" both simplify?
+ if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
+ if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
+ // They do! Return "L op' R".
+ ++NumExpand;
+ // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
+ if ((L == B && R == C) ||
+ (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
+ return Op1;
+ // Otherwise return "L op' R" if it simplifies.
+ if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
+ return V;
+ // Otherwise, create a new instruction.
+ A = Builder->CreateBinOp(InnerOpcode, L, R);
+ A->takeName(&I);
+ return A;
+ }
+ }
+
+ // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0))
+ // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d)))
+ if (auto *SI0 = dyn_cast<SelectInst>(LHS)) {
+ if (auto *SI1 = dyn_cast<SelectInst>(RHS)) {
+ if (SI0->getCondition() == SI1->getCondition()) {
+ Value *SI = nullptr;
+ if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(),
+ SI1->getFalseValue(), DL, TLI, DT, AC))
+ SI = Builder->CreateSelect(SI0->getCondition(),
+ Builder->CreateBinOp(TopLevelOpcode,
+ SI0->getTrueValue(),
+ SI1->getTrueValue()),
+ V);
+ if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(),
+ SI1->getTrueValue(), DL, TLI, DT, AC))
+ SI = Builder->CreateSelect(
+ SI0->getCondition(), V,
+ Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(),
+ SI1->getFalseValue()));
+ if (SI) {
+ SI->takeName(&I);
+ return SI;
+ }
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
+/// constant zero (which is the 'negate' form).
+Value *InstCombiner::dyn_castNegVal(Value *V) const {
+ if (BinaryOperator::isNeg(V))
+ return BinaryOperator::getNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(V))
+ return ConstantExpr::getNeg(C);
+
+ if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
+ if (C->getType()->getElementType()->isIntegerTy())
+ return ConstantExpr::getNeg(C);
+
+ return nullptr;
+}
+
+/// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is
+/// a constant negative zero (which is the 'negate' form).
+Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
+ if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
+ return BinaryOperator::getFNegArgument(V);
+
+ // Constants can be considered to be negated values if they can be folded.
+ if (ConstantFP *C = dyn_cast<ConstantFP>(V))
+ return ConstantExpr::getFNeg(C);
+
+ if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
+ if (C->getType()->getElementType()->isFloatingPointTy())
+ return ConstantExpr::getFNeg(C);
+
+ return nullptr;
+}
+
+static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
+ InstCombiner *IC) {
+ if (CastInst *CI = dyn_cast<CastInst>(&I)) {
+ return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
+ }
+
+ // Figure out if the constant is the left or the right argument.
+ bool ConstIsRHS = isa<Constant>(I.getOperand(1));
+ Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
+
+ if (Constant *SOC = dyn_cast<Constant>(SO)) {
+ if (ConstIsRHS)
+ return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
+ return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
+ }
+
+ Value *Op0 = SO, *Op1 = ConstOperand;
+ if (!ConstIsRHS)
+ std::swap(Op0, Op1);
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
+ Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
+ SO->getName()+".op");
+ Instruction *FPInst = dyn_cast<Instruction>(RI);
+ if (FPInst && isa<FPMathOperator>(FPInst))
+ FPInst->copyFastMathFlags(BO);
+ return RI;
+ }
+ if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
+ return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
+ SO->getName()+".cmp");
+ llvm_unreachable("Unknown binary instruction type!");
+}
+
+/// Given an instruction with a select as one operand and a constant as the
+/// other operand, try to fold the binary operator into the select arguments.
+/// This also works for Cast instructions, which obviously do not have a second
+/// operand.
+Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
+ // Don't modify shared select instructions
+ if (!SI->hasOneUse()) return nullptr;
+ Value *TV = SI->getOperand(1);
+ Value *FV = SI->getOperand(2);
+
+ if (isa<Constant>(TV) || isa<Constant>(FV)) {
+ // Bool selects with constant operands can be folded to logical ops.
+ if (SI->getType()->isIntegerTy(1)) return nullptr;
+
+ // If it's a bitcast involving vectors, make sure it has the same number of
+ // elements on both sides.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
+ VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
+ VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
+
+ // Verify that either both or neither are vectors.
+ if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
+ // If vectors, verify that they have the same number of elements.
+ if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
+ return nullptr;
+ }
+
+ // Test if a CmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
+ if (CI->hasOneUse()) {
+ Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+ if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+ (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+ return nullptr;
+ }
+ }
+
+ Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
+ Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
+
+ return SelectInst::Create(SI->getCondition(),
+ SelectTrueVal, SelectFalseVal);
+ }
+ return nullptr;
+}
+
+/// Given a binary operator, cast instruction, or select which has a PHI node as
+/// operand #0, see if we can fold the instruction into the PHI (which is only
+/// possible if all operands to the PHI are constants).
+Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
+ PHINode *PN = cast<PHINode>(I.getOperand(0));
+ unsigned NumPHIValues = PN->getNumIncomingValues();
+ if (NumPHIValues == 0)
+ return nullptr;
+
+ // We normally only transform phis with a single use. However, if a PHI has
+ // multiple uses and they are all the same operation, we can fold *all* of the
+ // uses into the PHI.
+ if (!PN->hasOneUse()) {
+ // Walk the use list for the instruction, comparing them to I.
+ for (User *U : PN->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (UI != &I && !I.isIdenticalTo(UI))
+ return nullptr;
+ }
+ // Otherwise, we can replace *all* users with the new PHI we form.
+ }
+
+ // Check to see if all of the operands of the PHI are simple constants
+ // (constantint/constantfp/undef). If there is one non-constant value,
+ // remember the BB it is in. If there is more than one or if *it* is a PHI,
+ // bail out. We don't do arbitrary constant expressions here because moving
+ // their computation can be expensive without a cost model.
+ BasicBlock *NonConstBB = nullptr;
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InVal = PN->getIncomingValue(i);
+ if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
+ continue;
+
+ if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
+ if (NonConstBB) return nullptr; // More than one non-const value.
+
+ NonConstBB = PN->getIncomingBlock(i);
+
+ // If the InVal is an invoke at the end of the pred block, then we can't
+ // insert a computation after it without breaking the edge.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
+ if (II->getParent() == NonConstBB)
+ return nullptr;
+
+ // If the incoming non-constant value is in I's block, we will remove one
+ // instruction, but insert another equivalent one, leading to infinite
+ // instcombine.
+ if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
+ return nullptr;
+ }
+
+ // If there is exactly one non-constant value, we can insert a copy of the
+ // operation in that block. However, if this is a critical edge, we would be
+ // inserting the computation on some other paths (e.g. inside a loop). Only
+ // do this if the pred block is unconditionally branching into the phi block.
+ if (NonConstBB != nullptr) {
+ BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
+ if (!BI || !BI->isUnconditional()) return nullptr;
+ }
+
+ // Okay, we can do the transformation: create the new PHI node.
+ PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
+ InsertNewInstBefore(NewPN, *PN);
+ NewPN->takeName(PN);
+
+ // If we are going to have to insert a new computation, do so right before the
+ // predecessor's terminator.
+ if (NonConstBB)
+ Builder->SetInsertPoint(NonConstBB->getTerminator());
+
+ // Next, add all of the operands to the PHI.
+ if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
+ // We only currently try to fold the condition of a select when it is a phi,
+ // not the true/false values.
+ Value *TrueV = SI->getTrueValue();
+ Value *FalseV = SI->getFalseValue();
+ BasicBlock *PhiTransBB = PN->getParent();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ BasicBlock *ThisBB = PN->getIncomingBlock(i);
+ Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
+ Value *InV = nullptr;
+ // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
+ // even if currently isNullValue gives false.
+ Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
+ if (InC && !isa<ConstantExpr>(InC))
+ InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
+ else
+ InV = Builder->CreateSelect(PN->getIncomingValue(i),
+ TrueVInPred, FalseVInPred, "phitmp");
+ NewPN->addIncoming(InV, ThisBB);
+ }
+ } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = nullptr;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
+ else if (isa<ICmpInst>(CI))
+ InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ else
+ InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
+ C, "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else if (I.getNumOperands() == 2) {
+ Constant *C = cast<Constant>(I.getOperand(1));
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV = nullptr;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::get(I.getOpcode(), InC, C);
+ else
+ InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
+ PN->getIncomingValue(i), C, "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ } else {
+ CastInst *CI = cast<CastInst>(&I);
+ Type *RetTy = CI->getType();
+ for (unsigned i = 0; i != NumPHIValues; ++i) {
+ Value *InV;
+ if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
+ InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
+ else
+ InV = Builder->CreateCast(CI->getOpcode(),
+ PN->getIncomingValue(i), I.getType(), "phitmp");
+ NewPN->addIncoming(InV, PN->getIncomingBlock(i));
+ }
+ }
+
+ for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
+ Instruction *User = cast<Instruction>(*UI++);
+ if (User == &I) continue;
+ ReplaceInstUsesWith(*User, NewPN);
+ EraseInstFromFunction(*User);
+ }
+ return ReplaceInstUsesWith(I, NewPN);
+}
+
+/// Given a pointer type and a constant offset, determine whether or not there
+/// is a sequence of GEP indices into the pointed type that will land us at the
+/// specified offset. If so, fill them into NewIndices and return the resultant
+/// element type, otherwise return null.
+Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
+ SmallVectorImpl<Value *> &NewIndices) {
+ Type *Ty = PtrTy->getElementType();
+ if (!Ty->isSized())
+ return nullptr;
+
+ // Start with the index over the outer type. Note that the type size
+ // might be zero (even if the offset isn't zero) if the indexed type
+ // is something like [0 x {int, int}]
+ Type *IntPtrTy = DL.getIntPtrType(PtrTy);
+ int64_t FirstIdx = 0;
+ if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
+ FirstIdx = Offset/TySize;
+ Offset -= FirstIdx*TySize;
+
+ // Handle hosts where % returns negative instead of values [0..TySize).
+ if (Offset < 0) {
+ --FirstIdx;
+ Offset += TySize;
+ assert(Offset >= 0);
+ }
+ assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
+ }
+
+ NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
+
+ // Index into the types. If we fail, set OrigBase to null.
+ while (Offset) {
+ // Indexing into tail padding between struct/array elements.
+ if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
+ return nullptr;
+
+ if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ const StructLayout *SL = DL.getStructLayout(STy);
+ assert(Offset < (int64_t)SL->getSizeInBytes() &&
+ "Offset must stay within the indexed type");
+
+ unsigned Elt = SL->getElementContainingOffset(Offset);
+ NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
+ Elt));
+
+ Offset -= SL->getElementOffset(Elt);
+ Ty = STy->getElementType(Elt);
+ } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
+ assert(EltSize && "Cannot index into a zero-sized array");
+ NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
+ Offset %= EltSize;
+ Ty = AT->getElementType();
+ } else {
+ // Otherwise, we can't index into the middle of this atomic type, bail.
+ return nullptr;
+ }
+ }
+
+ return Ty;
+}
+
+static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
+ // If this GEP has only 0 indices, it is the same pointer as
+ // Src. If Src is not a trivial GEP too, don't combine
+ // the indices.
+ if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
+ !Src.hasOneUse())
+ return false;
+ return true;
+}
+
+/// Return a value X such that Val = X * Scale, or null if none.
+/// If the multiplication is known not to overflow, then NoSignedWrap is set.
+Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
+ assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
+ assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
+ Scale.getBitWidth() && "Scale not compatible with value!");
+
+ // If Val is zero or Scale is one then Val = Val * Scale.
+ if (match(Val, m_Zero()) || Scale == 1) {
+ NoSignedWrap = true;
+ return Val;
+ }
+
+ // If Scale is zero then it does not divide Val.
+ if (Scale.isMinValue())
+ return nullptr;
+
+ // Look through chains of multiplications, searching for a constant that is
+ // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
+ // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
+ // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
+ // down from Val:
+ //
+ // Val = M1 * X || Analysis starts here and works down
+ // M1 = M2 * Y || Doesn't descend into terms with more
+ // M2 = Z * 4 \/ than one use
+ //
+ // Then to modify a term at the bottom:
+ //
+ // Val = M1 * X
+ // M1 = Z * Y || Replaced M2 with Z
+ //
+ // Then to work back up correcting nsw flags.
+
+ // Op - the term we are currently analyzing. Starts at Val then drills down.
+ // Replaced with its descaled value before exiting from the drill down loop.
+ Value *Op = Val;
+
+ // Parent - initially null, but after drilling down notes where Op came from.
+ // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
+ // 0'th operand of Val.
+ std::pair<Instruction*, unsigned> Parent;
+
+ // Set if the transform requires a descaling at deeper levels that doesn't
+ // overflow.
+ bool RequireNoSignedWrap = false;
+
+ // Log base 2 of the scale. Negative if not a power of 2.
+ int32_t logScale = Scale.exactLogBase2();
+
+ for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // If Op is a constant divisible by Scale then descale to the quotient.
+ APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
+ APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
+ if (!Remainder.isMinValue())
+ // Not divisible by Scale.
+ return nullptr;
+ // Replace with the quotient in the parent.
+ Op = ConstantInt::get(CI->getType(), Quotient);
+ NoSignedWrap = true;
+ break;
+ }
+
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
+
+ if (BO->getOpcode() == Instruction::Mul) {
+ // Multiplication.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return nullptr;
+
+ // There are three cases for multiplication: multiplication by exactly
+ // the scale, multiplication by a constant different to the scale, and
+ // multiplication by something else.
+ Value *LHS = BO->getOperand(0);
+ Value *RHS = BO->getOperand(1);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
+ // Multiplication by a constant.
+ if (CI->getValue() == Scale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+
+ // Otherwise drill down into the constant.
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ Parent = std::make_pair(BO, 1);
+ continue;
+ }
+
+ // Multiplication by something else. Drill down into the left-hand side
+ // since that's where the reassociate pass puts the good stuff.
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ Parent = std::make_pair(BO, 0);
+ continue;
+ }
+
+ if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
+ isa<ConstantInt>(BO->getOperand(1))) {
+ // Multiplication by a power of 2.
+ NoSignedWrap = BO->hasNoSignedWrap();
+ if (RequireNoSignedWrap && !NoSignedWrap)
+ return nullptr;
+
+ Value *LHS = BO->getOperand(0);
+ int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
+ getLimitedValue(Scale.getBitWidth());
+ // Op = LHS << Amt.
+
+ if (Amt == logScale) {
+ // Multiplication by exactly the scale, replace the multiplication
+ // by its left-hand side in the parent.
+ Op = LHS;
+ break;
+ }
+ if (Amt < logScale || !Op->hasOneUse())
+ return nullptr;
+
+ // Multiplication by more than the scale. Reduce the multiplying amount
+ // by the scale in the parent.
+ Parent = std::make_pair(BO, 1);
+ Op = ConstantInt::get(BO->getType(), Amt - logScale);
+ break;
+ }
+ }
+
+ if (!Op->hasOneUse())
+ return nullptr;
+
+ if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
+ if (Cast->getOpcode() == Instruction::SExt) {
+ // Op is sign-extended from a smaller type, descale in the smaller type.
+ unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ APInt SmallScale = Scale.trunc(SmallSize);
+ // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
+ // descale Op as (sext Y) * Scale. In order to have
+ // sext (Y * SmallScale) = (sext Y) * Scale
+ // some conditions need to hold however: SmallScale must sign-extend to
+ // Scale and the multiplication Y * SmallScale should not overflow.
+ if (SmallScale.sext(Scale.getBitWidth()) != Scale)
+ // SmallScale does not sign-extend to Scale.
+ return nullptr;
+ assert(SmallScale.exactLogBase2() == logScale);
+ // Require that Y * SmallScale must not overflow.
+ RequireNoSignedWrap = true;
+
+ // Drill down through the cast.
+ Parent = std::make_pair(Cast, 0);
+ Scale = SmallScale;
+ continue;
+ }
+
+ if (Cast->getOpcode() == Instruction::Trunc) {
+ // Op is truncated from a larger type, descale in the larger type.
+ // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
+ // trunc (Y * sext Scale) = (trunc Y) * Scale
+ // always holds. However (trunc Y) * Scale may overflow even if
+ // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
+ // from this point up in the expression (see later).
+ if (RequireNoSignedWrap)
+ return nullptr;
+
+ // Drill down through the cast.
+ unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
+ Parent = std::make_pair(Cast, 0);
+ Scale = Scale.sext(LargeSize);
+ if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
+ logScale = -1;
+ assert(Scale.exactLogBase2() == logScale);
+ continue;
+ }
+ }
+
+ // Unsupported expression, bail out.
+ return nullptr;
+ }
+
+ // If Op is zero then Val = Op * Scale.
+ if (match(Op, m_Zero())) {
+ NoSignedWrap = true;
+ return Op;
+ }
+
+ // We know that we can successfully descale, so from here on we can safely
+ // modify the IR. Op holds the descaled version of the deepest term in the
+ // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
+ // not to overflow.
+
+ if (!Parent.first)
+ // The expression only had one term.
+ return Op;
+
+ // Rewrite the parent using the descaled version of its operand.
+ assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
+ assert(Op != Parent.first->getOperand(Parent.second) &&
+ "Descaling was a no-op?");
+ Parent.first->setOperand(Parent.second, Op);
+ Worklist.Add(Parent.first);
+
+ // Now work back up the expression correcting nsw flags. The logic is based
+ // on the following observation: if X * Y is known not to overflow as a signed
+ // multiplication, and Y is replaced by a value Z with smaller absolute value,
+ // then X * Z will not overflow as a signed multiplication either. As we work
+ // our way up, having NoSignedWrap 'true' means that the descaled value at the
+ // current level has strictly smaller absolute value than the original.
+ Instruction *Ancestor = Parent.first;
+ do {
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
+ // If the multiplication wasn't nsw then we can't say anything about the
+ // value of the descaled multiplication, and we have to clear nsw flags
+ // from this point on up.
+ bool OpNoSignedWrap = BO->hasNoSignedWrap();
+ NoSignedWrap &= OpNoSignedWrap;
+ if (NoSignedWrap != OpNoSignedWrap) {
+ BO->setHasNoSignedWrap(NoSignedWrap);
+ Worklist.Add(Ancestor);
+ }
+ } else if (Ancestor->getOpcode() == Instruction::Trunc) {
+ // The fact that the descaled input to the trunc has smaller absolute
+ // value than the original input doesn't tell us anything useful about
+ // the absolute values of the truncations.
+ NoSignedWrap = false;
+ }
+ assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
+ "Failed to keep proper track of nsw flags while drilling down?");
+
+ if (Ancestor == Val)
+ // Got to the top, all done!
+ return Val;
+
+ // Move up one level in the expression.
+ assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
+ Ancestor = Ancestor->user_back();
+ } while (1);
+}
+
+/// \brief Creates node of binary operation with the same attributes as the
+/// specified one but with other operands.
+static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
+ InstCombiner::BuilderTy *B) {
+ Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
+ // If LHS and RHS are constant, BO won't be a binary operator.
+ if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO))
+ NewBO->copyIRFlags(&Inst);
+ return BO;
+}
+
+/// \brief Makes transformation of binary operation specific for vector types.
+/// \param Inst Binary operator to transform.
+/// \return Pointer to node that must replace the original binary operator, or
+/// null pointer if no transformation was made.
+Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
+ if (!Inst.getType()->isVectorTy()) return nullptr;
+
+ // It may not be safe to reorder shuffles and things like div, urem, etc.
+ // because we may trap when executing those ops on unknown vector elements.
+ // See PR20059.
+ if (!isSafeToSpeculativelyExecute(&Inst))
+ return nullptr;
+
+ unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
+ Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
+ assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
+ assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
+
+ // If both arguments of binary operation are shuffles, which use the same
+ // mask and shuffle within a single vector, it is worthwhile to move the
+ // shuffle after binary operation:
+ // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
+ if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
+ ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
+ ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
+ if (isa<UndefValue>(LShuf->getOperand(1)) &&
+ isa<UndefValue>(RShuf->getOperand(1)) &&
+ LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
+ LShuf->getMask() == RShuf->getMask()) {
+ Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
+ RShuf->getOperand(0), Builder);
+ return Builder->CreateShuffleVector(NewBO,
+ UndefValue::get(NewBO->getType()), LShuf->getMask());
+ }
+ }
+
+ // If one argument is a shuffle within one vector, the other is a constant,
+ // try moving the shuffle after the binary operation.
+ ShuffleVectorInst *Shuffle = nullptr;
+ Constant *C1 = nullptr;
+ if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
+ if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
+ if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
+ if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
+ if (Shuffle && C1 &&
+ (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
+ isa<UndefValue>(Shuffle->getOperand(1)) &&
+ Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
+ SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
+ // Find constant C2 that has property:
+ // shuffle(C2, ShMask) = C1
+ // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
+ // reorder is not possible.
+ SmallVector<Constant*, 16> C2M(VWidth,
+ UndefValue::get(C1->getType()->getScalarType()));
+ bool MayChange = true;
+ for (unsigned I = 0; I < VWidth; ++I) {
+ if (ShMask[I] >= 0) {
+ assert(ShMask[I] < (int)VWidth);
+ if (!isa<UndefValue>(C2M[ShMask[I]])) {
+ MayChange = false;
+ break;
+ }
+ C2M[ShMask[I]] = C1->getAggregateElement(I);
+ }
+ }
+ if (MayChange) {
+ Constant *C2 = ConstantVector::get(C2M);
+ Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0);
+ Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2;
+ Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
+ return Builder->CreateShuffleVector(NewBO,
+ UndefValue::get(Inst.getType()), Shuffle->getMask());
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
+ SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
+
+ if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
+ return ReplaceInstUsesWith(GEP, V);
+
+ Value *PtrOp = GEP.getOperand(0);
+
+ // Eliminate unneeded casts for indices, and replace indices which displace
+ // by multiples of a zero size type with zero.
+ bool MadeChange = false;
+ Type *IntPtrTy =
+ DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
+ ++I, ++GTI) {
+ // Skip indices into struct types.
+ SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ if (!SeqTy)
+ continue;
+
+ // Index type should have the same width as IntPtr
+ Type *IndexTy = (*I)->getType();
+ Type *NewIndexType = IndexTy->isVectorTy() ?
+ VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy;
+
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ if (SeqTy->getElementType()->isSized() &&
+ DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
+ if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
+ *I = Constant::getNullValue(NewIndexType);
+ MadeChange = true;
+ }
+
+ if (IndexTy != NewIndexType) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder->CreateIntCast(*I, NewIndexType, true);
+ MadeChange = true;
+ }
+ }
+ if (MadeChange)
+ return &GEP;
+
+ // Check to see if the inputs to the PHI node are getelementptr instructions.
+ if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
+ GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
+ if (!Op1)
+ return nullptr;
+
+ // Don't fold a GEP into itself through a PHI node. This can only happen
+ // through the back-edge of a loop. Folding a GEP into itself means that
+ // the value of the previous iteration needs to be stored in the meantime,
+ // thus requiring an additional register variable to be live, but not
+ // actually achieving anything (the GEP still needs to be executed once per
+ // loop iteration).
+ if (Op1 == &GEP)
+ return nullptr;
+
+ signed DI = -1;
+
+ for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
+ GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
+ if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
+ return nullptr;
+
+ // As for Op1 above, don't try to fold a GEP into itself.
+ if (Op2 == &GEP)
+ return nullptr;
+
+ // Keep track of the type as we walk the GEP.
+ Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
+
+ for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
+ if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
+ return nullptr;
+
+ if (Op1->getOperand(J) != Op2->getOperand(J)) {
+ if (DI == -1) {
+ // We have not seen any differences yet in the GEPs feeding the
+ // PHI yet, so we record this one if it is allowed to be a
+ // variable.
+
+ // The first two arguments can vary for any GEP, the rest have to be
+ // static for struct slots
+ if (J > 1 && CurTy->isStructTy())
+ return nullptr;
+
+ DI = J;
+ } else {
+ // The GEP is different by more than one input. While this could be
+ // extended to support GEPs that vary by more than one variable it
+ // doesn't make sense since it greatly increases the complexity and
+ // would result in an R+R+R addressing mode which no backend
+ // directly supports and would need to be broken into several
+ // simpler instructions anyway.
+ return nullptr;
+ }
+ }
+
+ // Sink down a layer of the type for the next iteration.
+ if (J > 0) {
+ if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
+ CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
+ } else {
+ CurTy = nullptr;
+ }
+ }
+ }
+ }
+
+ // If not all GEPs are identical we'll have to create a new PHI node.
+ // Check that the old PHI node has only one use so that it will get
+ // removed.
+ if (DI != -1 && !PN->hasOneUse())
+ return nullptr;
+
+ GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
+ if (DI == -1) {
+ // All the GEPs feeding the PHI are identical. Clone one down into our
+ // BB so that it can be merged with the current GEP.
+ GEP.getParent()->getInstList().insert(
+ GEP.getParent()->getFirstInsertionPt(), NewGEP);
+ } else {
+ // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
+ // into the current block so it can be merged, and create a new PHI to
+ // set that index.
+ PHINode *NewPN;
+ {
+ IRBuilderBase::InsertPointGuard Guard(*Builder);
+ Builder->SetInsertPoint(PN);
+ NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
+ PN->getNumOperands());
+ }
+
+ for (auto &I : PN->operands())
+ NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
+ PN->getIncomingBlock(I));
+
+ NewGEP->setOperand(DI, NewPN);
+ GEP.getParent()->getInstList().insert(
+ GEP.getParent()->getFirstInsertionPt(), NewGEP);
+ NewGEP->setOperand(DI, NewPN);
+ }
+
+ GEP.setOperand(0, NewGEP);
+ PtrOp = NewGEP;
+ }
+
+ // Combine Indices - If the source pointer to this getelementptr instruction
+ // is a getelementptr instruction, combine the indices of the two
+ // getelementptr instructions into a single instruction.
+ //
+ if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
+ if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
+ return nullptr;
+
+ // Note that if our source is a gep chain itself then we wait for that
+ // chain to be resolved before we perform this transformation. This
+ // avoids us creating a TON of code in some cases.
+ if (GEPOperator *SrcGEP =
+ dyn_cast<GEPOperator>(Src->getOperand(0)))
+ if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
+ return nullptr; // Wait until our source is folded to completion.
+
+ SmallVector<Value*, 8> Indices;
+
+ // Find out whether the last index in the source GEP is a sequential idx.
+ bool EndsWithSequential = false;
+ for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
+ I != E; ++I)
+ EndsWithSequential = !(*I)->isStructTy();
+
+ // Can we combine the two pointer arithmetics offsets?
+ if (EndsWithSequential) {
+ // Replace: gep (gep %P, long B), long A, ...
+ // With: T = long A+B; gep %P, T, ...
+ //
+ Value *Sum;
+ Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
+ Value *GO1 = GEP.getOperand(1);
+ if (SO1 == Constant::getNullValue(SO1->getType())) {
+ Sum = GO1;
+ } else if (GO1 == Constant::getNullValue(GO1->getType())) {
+ Sum = SO1;
+ } else {
+ // If they aren't the same type, then the input hasn't been processed
+ // by the loop above yet (which canonicalizes sequential index types to
+ // intptr_t). Just avoid transforming this until the input has been
+ // normalized.
+ if (SO1->getType() != GO1->getType())
+ return nullptr;
+ // Only do the combine when GO1 and SO1 are both constants. Only in
+ // this case, we are sure the cost after the merge is never more than
+ // that before the merge.
+ if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
+ return nullptr;
+ Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
+ }
+
+ // Update the GEP in place if possible.
+ if (Src->getNumOperands() == 2) {
+ GEP.setOperand(0, Src->getOperand(0));
+ GEP.setOperand(1, Sum);
+ return &GEP;
+ }
+ Indices.append(Src->op_begin()+1, Src->op_end()-1);
+ Indices.push_back(Sum);
+ Indices.append(GEP.op_begin()+2, GEP.op_end());
+ } else if (isa<Constant>(*GEP.idx_begin()) &&
+ cast<Constant>(*GEP.idx_begin())->isNullValue() &&
+ Src->getNumOperands() != 1) {
+ // Otherwise we can do the fold if the first index of the GEP is a zero
+ Indices.append(Src->op_begin()+1, Src->op_end());
+ Indices.append(GEP.idx_begin()+1, GEP.idx_end());
+ }
+
+ if (!Indices.empty())
+ return GEP.isInBounds() && Src->isInBounds()
+ ? GetElementPtrInst::CreateInBounds(
+ Src->getSourceElementType(), Src->getOperand(0), Indices,
+ GEP.getName())
+ : GetElementPtrInst::Create(Src->getSourceElementType(),
+ Src->getOperand(0), Indices,
+ GEP.getName());
+ }
+
+ if (GEP.getNumIndices() == 1) {
+ unsigned AS = GEP.getPointerAddressSpace();
+ if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
+ DL.getPointerSizeInBits(AS)) {
+ Type *PtrTy = GEP.getPointerOperandType();
+ Type *Ty = PtrTy->getPointerElementType();
+ uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
+
+ bool Matched = false;
+ uint64_t C;
+ Value *V = nullptr;
+ if (TyAllocSize == 1) {
+ V = GEP.getOperand(1);
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_AShr(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == 1ULL << C)
+ Matched = true;
+ } else if (match(GEP.getOperand(1),
+ m_SDiv(m_Value(V), m_ConstantInt(C)))) {
+ if (TyAllocSize == C)
+ Matched = true;
+ }
+
+ if (Matched) {
+ // Canonicalize (gep i8* X, -(ptrtoint Y))
+ // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
+ // The GEP pattern is emitted by the SCEV expander for certain kinds of
+ // pointer arithmetic.
+ if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
+ Operator *Index = cast<Operator>(V);
+ Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
+ Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
+ return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
+ }
+ // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
+ // to (bitcast Y)
+ Value *Y;
+ if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
+ m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
+ GEP.getType());
+ }
+ }
+ }
+ }
+
+ // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
+ Value *StrippedPtr = PtrOp->stripPointerCasts();
+ PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
+
+ // We do not handle pointer-vector geps here.
+ if (!StrippedPtrTy)
+ return nullptr;
+
+ if (StrippedPtr != PtrOp) {
+ bool HasZeroPointerIndex = false;
+ if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
+ HasZeroPointerIndex = C->isZero();
+
+ // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
+ // into : GEP [10 x i8]* X, i32 0, ...
+ //
+ // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
+ // into : GEP i8* X, ...
+ //
+ // This occurs when the program declares an array extern like "int X[];"
+ if (HasZeroPointerIndex) {
+ PointerType *CPTy = cast<PointerType>(PtrOp->getType());
+ if (ArrayType *CATy =
+ dyn_cast<ArrayType>(CPTy->getElementType())) {
+ // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
+ // -> GEP i8* X, ...
+ SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
+ GetElementPtrInst *Res = GetElementPtrInst::Create(
+ StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
+ Res->setIsInBounds(GEP.isInBounds());
+ if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
+ return Res;
+ // Insert Res, and create an addrspacecast.
+ // e.g.,
+ // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
+ // ->
+ // %0 = GEP i8 addrspace(1)* X, ...
+ // addrspacecast i8 addrspace(1)* %0 to i8*
+ return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
+ }
+
+ if (ArrayType *XATy =
+ dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
+ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
+ if (CATy->getElementType() == XATy->getElementType()) {
+ // -> GEP [10 x i8]* X, i32 0, ...
+ // At this point, we know that the cast source type is a pointer
+ // to an array of the same type as the destination pointer
+ // array. Because the array type is never stepped over (there
+ // is a leading zero) we can fold the cast into this GEP.
+ if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
+ GEP.setOperand(0, StrippedPtr);
+ GEP.setSourceElementType(XATy);
+ return &GEP;
+ }
+ // Cannot replace the base pointer directly because StrippedPtr's
+ // address space is different. Instead, create a new GEP followed by
+ // an addrspacecast.
+ // e.g.,
+ // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
+ // i32 0, ...
+ // ->
+ // %0 = GEP [10 x i8] addrspace(1)* X, ...
+ // addrspacecast i8 addrspace(1)* %0 to i8*
+ SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
+ Value *NewGEP = GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(
+ nullptr, StrippedPtr, Idx, GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
+ GEP.getName());
+ return new AddrSpaceCastInst(NewGEP, GEP.getType());
+ }
+ }
+ }
+ } else if (GEP.getNumOperands() == 2) {
+ // Transform things like:
+ // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
+ // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
+ Type *SrcElTy = StrippedPtrTy->getElementType();
+ Type *ResElTy = PtrOp->getType()->getPointerElementType();
+ if (SrcElTy->isArrayTy() &&
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
+ DL.getTypeAllocSize(ResElTy)) {
+ Type *IdxType = DL.getIntPtrType(GEP.getType());
+ Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
+ Value *NewGEP =
+ GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
+ GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
+
+ // V and GEP are both pointer types --> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
+ GEP.getType());
+ }
+
+ // Transform things like:
+ // %V = mul i64 %N, 4
+ // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
+ // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
+ if (ResElTy->isSized() && SrcElTy->isSized()) {
+ // Check that changing the type amounts to dividing the index by a scale
+ // factor.
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
+ if (ResSize && SrcSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = SrcSize / ResSize;
+
+ // Earlier transforms ensure that the index has type IntPtrType, which
+ // considerably simplifies the logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
+ "Index not cast to pointer width?");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Value *NewGEP =
+ GEP.isInBounds() && NSW
+ ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
+ GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
+ GEP.getName());
+
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
+ GEP.getType());
+ }
+ }
+ }
+
+ // Similarly, transform things like:
+ // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
+ // (where tmp = 8*tmp2) into:
+ // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
+ if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
+ // Check that changing to the array element type amounts to dividing the
+ // index by a scale factor.
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t ArrayEltSize =
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType());
+ if (ResSize && ArrayEltSize % ResSize == 0) {
+ Value *Idx = GEP.getOperand(1);
+ unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
+ uint64_t Scale = ArrayEltSize / ResSize;
+
+ // Earlier transforms ensure that the index has type IntPtrType, which
+ // considerably simplifies the logic by eliminating implicit casts.
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
+ "Index not cast to pointer width?");
+
+ bool NSW;
+ if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
+ // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
+ // If the multiplication NewIdx * Scale may overflow then the new
+ // GEP may not be "inbounds".
+ Value *Off[2] = {
+ Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
+ NewIdx};
+
+ Value *NewGEP = GEP.isInBounds() && NSW
+ ? Builder->CreateInBoundsGEP(
+ SrcElTy, StrippedPtr, Off, GEP.getName())
+ : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
+ GEP.getName());
+ // The NewGEP must be pointer typed, so must the old one -> BitCast
+ return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
+ GEP.getType());
+ }
+ }
+ }
+ }
+ }
+
+ // addrspacecast between types is canonicalized as a bitcast, then an
+ // addrspacecast. To take advantage of the below bitcast + struct GEP, look
+ // through the addrspacecast.
+ if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
+ // X = bitcast A addrspace(1)* to B addrspace(1)*
+ // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
+ // Z = gep Y, <...constant indices...>
+ // Into an addrspacecasted GEP of the struct.
+ if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
+ PtrOp = BC;
+ }
+
+ /// See if we can simplify:
+ /// X = bitcast A* to B*
+ /// Y = gep X, <...constant indices...>
+ /// into a gep of the original struct. This is important for SROA and alias
+ /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
+ Value *Operand = BCI->getOperand(0);
+ PointerType *OpType = cast<PointerType>(Operand->getType());
+ unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
+ APInt Offset(OffsetBits, 0);
+ if (!isa<BitCastInst>(Operand) &&
+ GEP.accumulateConstantOffset(DL, Offset)) {
+
+ // If this GEP instruction doesn't move the pointer, just replace the GEP
+ // with a bitcast of the real input to the dest type.
+ if (!Offset) {
+ // If the bitcast is of an allocation, and the allocation will be
+ // converted to match the type of the cast, don't touch this.
+ if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
+ // See if the bitcast simplifies, if so, don't nuke this GEP yet.
+ if (Instruction *I = visitBitCast(*BCI)) {
+ if (I != BCI) {
+ I->takeName(BCI);
+ BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
+ ReplaceInstUsesWith(*BCI, I);
+ }
+ return &GEP;
+ }
+ }
+
+ if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(Operand, GEP.getType());
+ return new BitCastInst(Operand, GEP.getType());
+ }
+
+ // Otherwise, if the offset is non-zero, we need to find out if there is a
+ // field at Offset in 'A's type. If so, we can pull the cast through the
+ // GEP.
+ SmallVector<Value*, 8> NewIndices;
+ if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
+ Value *NGEP =
+ GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
+ : Builder->CreateGEP(nullptr, Operand, NewIndices);
+
+ if (NGEP->getType() == GEP.getType())
+ return ReplaceInstUsesWith(GEP, NGEP);
+ NGEP->takeName(&GEP);
+
+ if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
+ return new AddrSpaceCastInst(NGEP, GEP.getType());
+ return new BitCastInst(NGEP, GEP.getType());
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+static bool
+isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
+ const TargetLibraryInfo *TLI) {
+ SmallVector<Instruction*, 4> Worklist;
+ Worklist.push_back(AI);
+
+ do {
+ Instruction *PI = Worklist.pop_back_val();
+ for (User *U : PI->users()) {
+ Instruction *I = cast<Instruction>(U);
+ switch (I->getOpcode()) {
+ default:
+ // Give up the moment we see something we can't handle.
+ return false;
+
+ case Instruction::BitCast:
+ case Instruction::GetElementPtr:
+ Users.emplace_back(I);
+ Worklist.push_back(I);
+ continue;
+
+ case Instruction::ICmp: {
+ ICmpInst *ICI = cast<ICmpInst>(I);
+ // We can fold eq/ne comparisons with null to false/true, respectively.
+ if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
+ return false;
+ Users.emplace_back(I);
+ continue;
+ }
+
+ case Instruction::Call:
+ // Ignore no-op and store intrinsics.
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default:
+ return false;
+
+ case Intrinsic::memmove:
+ case Intrinsic::memcpy:
+ case Intrinsic::memset: {
+ MemIntrinsic *MI = cast<MemIntrinsic>(II);
+ if (MI->isVolatile() || MI->getRawDest() != PI)
+ return false;
+ }
+ // fall through
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ Users.emplace_back(I);
+ continue;
+ }
+ }
+
+ if (isFreeCall(I, TLI)) {
+ Users.emplace_back(I);
+ continue;
+ }
+ return false;
+
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(I);
+ if (SI->isVolatile() || SI->getPointerOperand() != PI)
+ return false;
+ Users.emplace_back(I);
+ continue;
+ }
+ }
+ llvm_unreachable("missing a return?");
+ }
+ } while (!Worklist.empty());
+ return true;
+}
+
+Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
+ // If we have a malloc call which is only used in any amount of comparisons
+ // to null and free calls, delete the calls and replace the comparisons with
+ // true or false as appropriate.
+ SmallVector<WeakVH, 64> Users;
+ if (isAllocSiteRemovable(&MI, Users, TLI)) {
+ for (unsigned i = 0, e = Users.size(); i != e; ++i) {
+ Instruction *I = cast_or_null<Instruction>(&*Users[i]);
+ if (!I) continue;
+
+ if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
+ ReplaceInstUsesWith(*C,
+ ConstantInt::get(Type::getInt1Ty(C->getContext()),
+ C->isFalseWhenEqual()));
+ } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
+ ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ if (II->getIntrinsicID() == Intrinsic::objectsize) {
+ ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
+ uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
+ ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
+ }
+ }
+ EraseInstFromFunction(*I);
+ }
+
+ if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
+ // Replace invoke with a NOP intrinsic to maintain the original CFG
+ Module *M = II->getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
+ InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
+ None, "", II->getParent());
+ }
+ return EraseInstFromFunction(MI);
+ }
+ return nullptr;
+}
+
+/// \brief Move the call to free before a NULL test.
+///
+/// Check if this free is accessed after its argument has been test
+/// against NULL (property 0).
+/// If yes, it is legal to move this call in its predecessor block.
+///
+/// The move is performed only if the block containing the call to free
+/// will be removed, i.e.:
+/// 1. it has only one predecessor P, and P has two successors
+/// 2. it contains the call and an unconditional branch
+/// 3. its successor is the same as its predecessor's successor
+///
+/// The profitability is out-of concern here and this function should
+/// be called only if the caller knows this transformation would be
+/// profitable (e.g., for code size).
+static Instruction *
+tryToMoveFreeBeforeNullTest(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+ BasicBlock *FreeInstrBB = FI.getParent();
+ BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
+
+ // Validate part of constraint #1: Only one predecessor
+ // FIXME: We can extend the number of predecessor, but in that case, we
+ // would duplicate the call to free in each predecessor and it may
+ // not be profitable even for code size.
+ if (!PredBB)
+ return nullptr;
+
+ // Validate constraint #2: Does this block contains only the call to
+ // free and an unconditional branch?
+ // FIXME: We could check if we can speculate everything in the
+ // predecessor block
+ if (FreeInstrBB->size() != 2)
+ return nullptr;
+ BasicBlock *SuccBB;
+ if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
+ return nullptr;
+
+ // Validate the rest of constraint #1 by matching on the pred branch.
+ TerminatorInst *TI = PredBB->getTerminator();
+ BasicBlock *TrueBB, *FalseBB;
+ ICmpInst::Predicate Pred;
+ if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
+ return nullptr;
+ if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
+ return nullptr;
+
+ // Validate constraint #3: Ensure the null case just falls through.
+ if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
+ return nullptr;
+ assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
+ "Broken CFG: missing edge from predecessor to successor");
+
+ FI.moveBefore(TI);
+ return &FI;
+}
+
+
+Instruction *InstCombiner::visitFree(CallInst &FI) {
+ Value *Op = FI.getArgOperand(0);
+
+ // free undef -> unreachable.
+ if (isa<UndefValue>(Op)) {
+ // Insert a new store to null because we cannot modify the CFG here.
+ Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
+ UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
+ return EraseInstFromFunction(FI);
+ }
+
+ // If we have 'free null' delete the instruction. This can happen in stl code
+ // when lots of inlining happens.
+ if (isa<ConstantPointerNull>(Op))
+ return EraseInstFromFunction(FI);
+
+ // If we optimize for code size, try to move the call to free before the null
+ // test so that simplify cfg can remove the empty block and dead code
+ // elimination the branch. I.e., helps to turn something like:
+ // if (foo) free(foo);
+ // into
+ // free(foo);
+ if (MinimizeSize)
+ if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
+ return I;
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
+ if (RI.getNumOperands() == 0) // ret void
+ return nullptr;
+
+ Value *ResultOp = RI.getOperand(0);
+ Type *VTy = ResultOp->getType();
+ if (!VTy->isIntegerTy())
+ return nullptr;
+
+ // There might be assume intrinsics dominating this return that completely
+ // determine the value. If so, constant fold it.
+ unsigned BitWidth = VTy->getPrimitiveSizeInBits();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
+ if ((KnownZero|KnownOne).isAllOnesValue())
+ RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
+ // Change br (not X), label True, label False to: br X, label False, True
+ Value *X = nullptr;
+ BasicBlock *TrueDest;
+ BasicBlock *FalseDest;
+ if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
+ !isa<Constant>(X)) {
+ // Swap Destinations and condition...
+ BI.setCondition(X);
+ BI.swapSuccessors();
+ return &BI;
+ }
+
+ // If the condition is irrelevant, remove the use so that other
+ // transforms on the condition become more effective.
+ if (BI.isConditional() &&
+ BI.getSuccessor(0) == BI.getSuccessor(1) &&
+ !isa<UndefValue>(BI.getCondition())) {
+ BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
+ return &BI;
+ }
+
+ // Canonicalize fcmp_one -> fcmp_oeq
+ FCmpInst::Predicate FPred; Value *Y;
+ if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
+ FPred == FCmpInst::FCMP_OGE) {
+ FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
+ Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
+
+ // Swap Destinations and condition.
+ BI.swapSuccessors();
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ // Canonicalize icmp_ne -> icmp_eq
+ ICmpInst::Predicate IPred;
+ if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
+ TrueDest, FalseDest)) &&
+ BI.getCondition()->hasOneUse())
+ if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
+ IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
+ IPred == ICmpInst::ICMP_SGE) {
+ ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
+ Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
+ // Swap Destinations and condition.
+ BI.swapSuccessors();
+ Worklist.Add(Cond);
+ return &BI;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
+ Value *Cond = SI.getCondition();
+ unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
+ APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
+ computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
+ unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
+ unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
+
+ // Compute the number of leading bits we can ignore.
+ for (auto &C : SI.cases()) {
+ LeadingKnownZeros = std::min(
+ LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
+ LeadingKnownOnes = std::min(
+ LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
+ }
+
+ unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
+
+ // Truncate the condition operand if the new type is equal to or larger than
+ // the largest legal integer type. We need to be conservative here since
+ // x86 generates redundant zero-extension instructions if the operand is
+ // truncated to i8 or i16.
+ bool TruncCond = false;
+ if (NewWidth > 0 && BitWidth > NewWidth &&
+ NewWidth >= DL.getLargestLegalIntTypeSize()) {
+ TruncCond = true;
+ IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
+ Builder->SetInsertPoint(&SI);
+ Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
+ SI.setCondition(NewCond);
+
+ for (auto &C : SI.cases())
+ static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
+ SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
+ }
+
+ if (Instruction *I = dyn_cast<Instruction>(Cond)) {
+ if (I->getOpcode() == Instruction::Add)
+ if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // change 'switch (X+4) case 1:' into 'switch (X) case -3'
+ // Skip the first item since that's the default case.
+ for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
+ i != e; ++i) {
+ ConstantInt* CaseVal = i.getCaseValue();
+ Constant *LHS = CaseVal;
+ if (TruncCond)
+ LHS = LeadingKnownZeros
+ ? ConstantExpr::getZExt(CaseVal, Cond->getType())
+ : ConstantExpr::getSExt(CaseVal, Cond->getType());
+ Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
+ assert(isa<ConstantInt>(NewCaseVal) &&
+ "Result of expression should be constant");
+ i.setValue(cast<ConstantInt>(NewCaseVal));
+ }
+ SI.setCondition(I->getOperand(0));
+ Worklist.Add(I);
+ return &SI;
+ }
+ }
+
+ return TruncCond ? &SI : nullptr;
+}
+
+Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
+ Value *Agg = EV.getAggregateOperand();
+
+ if (!EV.hasIndices())
+ return ReplaceInstUsesWith(EV, Agg);
+
+ if (Value *V =
+ SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC))
+ return ReplaceInstUsesWith(EV, V);
+
+ if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
+ // We're extracting from an insertvalue instruction, compare the indices
+ const unsigned *exti, *exte, *insi, *inse;
+ for (exti = EV.idx_begin(), insi = IV->idx_begin(),
+ exte = EV.idx_end(), inse = IV->idx_end();
+ exti != exte && insi != inse;
+ ++exti, ++insi) {
+ if (*insi != *exti)
+ // The insert and extract both reference distinctly different elements.
+ // This means the extract is not influenced by the insert, and we can
+ // replace the aggregate operand of the extract with the aggregate
+ // operand of the insert. i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 0
+ // with
+ // %E = extractvalue { i32, { i32 } } %A, 0
+ return ExtractValueInst::Create(IV->getAggregateOperand(),
+ EV.getIndices());
+ }
+ if (exti == exte && insi == inse)
+ // Both iterators are at the end: Index lists are identical. Replace
+ // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %C = extractvalue { i32, { i32 } } %B, 1, 0
+ // with "i32 42"
+ return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
+ if (exti == exte) {
+ // The extract list is a prefix of the insert list. i.e. replace
+ // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
+ // %E = extractvalue { i32, { i32 } } %I, 1
+ // with
+ // %X = extractvalue { i32, { i32 } } %A, 1
+ // %E = insertvalue { i32 } %X, i32 42, 0
+ // by switching the order of the insert and extract (though the
+ // insertvalue should be left in, since it may have other uses).
+ Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
+ EV.getIndices());
+ return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
+ makeArrayRef(insi, inse));
+ }
+ if (insi == inse)
+ // The insert list is a prefix of the extract list
+ // We can simply remove the common indices from the extract and make it
+ // operate on the inserted value instead of the insertvalue result.
+ // i.e., replace
+ // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
+ // %E = extractvalue { i32, { i32 } } %I, 1, 0
+ // with
+ // %E extractvalue { i32 } { i32 42 }, 0
+ return ExtractValueInst::Create(IV->getInsertedValueOperand(),
+ makeArrayRef(exti, exte));
+ }
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
+ // We're extracting from an intrinsic, see if we're the only user, which
+ // allows us to simplify multiple result intrinsics to simpler things that
+ // just get one value.
+ if (II->hasOneUse()) {
+ // Check if we're grabbing the overflow bit or the result of a 'with
+ // overflow' intrinsic. If it's the latter we can remove the intrinsic
+ // and replace it with a traditional binary instruction.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateAdd(LHS, RHS);
+ }
+
+ // If the normal result of the add is dead, and the RHS is a constant,
+ // we can transform this into a range comparison.
+ // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
+ if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
+ return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
+ ConstantExpr::getNot(CI));
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateSub(LHS, RHS);
+ }
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ if (*EV.idx_begin() == 0) { // Normal result.
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
+ EraseInstFromFunction(*II);
+ return BinaryOperator::CreateMul(LHS, RHS);
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ if (LoadInst *L = dyn_cast<LoadInst>(Agg))
+ // If the (non-volatile) load only has one use, we can rewrite this to a
+ // load from a GEP. This reduces the size of the load. If a load is used
+ // only by extractvalue instructions then this either must have been
+ // optimized before, or it is a struct with padding, in which case we
+ // don't want to do the transformation as it loses padding knowledge.
+ if (L->isSimple() && L->hasOneUse()) {
+ // extractvalue has integer indices, getelementptr has Value*s. Convert.
+ SmallVector<Value*, 4> Indices;
+ // Prefix an i32 0 since we need the first element.
+ Indices.push_back(Builder->getInt32(0));
+ for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
+ I != E; ++I)
+ Indices.push_back(Builder->getInt32(*I));
+
+ // We need to insert these at the location of the old load, not at that of
+ // the extractvalue.
+ Builder->SetInsertPoint(L);
+ Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
+ L->getPointerOperand(), Indices);
+ // Returning the load directly will cause the main loop to insert it in
+ // the wrong spot, so use ReplaceInstUsesWith().
+ return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
+ }
+ // We could simplify extracts from other values. Note that nested extracts may
+ // already be simplified implicitly by the above: extract (extract (insert) )
+ // will be translated into extract ( insert ( extract ) ) first and then just
+ // the value inserted, if appropriate. Similarly for extracts from single-use
+ // loads: extract (extract (load)) will be translated to extract (load (gep))
+ // and if again single-use then via load (gep (gep)) to load (gep).
+ // However, double extracts from e.g. function arguments or return values
+ // aren't handled yet.
+ return nullptr;
+}
+
+/// Return 'true' if the given typeinfo will match anything.
+static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
+ switch (Personality) {
+ case EHPersonality::GNU_C:
+ // The GCC C EH personality only exists to support cleanups, so it's not
+ // clear what the semantics of catch clauses are.
+ return false;
+ case EHPersonality::Unknown:
+ return false;
+ case EHPersonality::GNU_Ada:
+ // While __gnat_all_others_value will match any Ada exception, it doesn't
+ // match foreign exceptions (or didn't, before gcc-4.7).
+ return false;
+ case EHPersonality::GNU_CXX:
+ case EHPersonality::GNU_ObjC:
+ case EHPersonality::MSVC_X86SEH:
+ case EHPersonality::MSVC_Win64SEH:
+ case EHPersonality::MSVC_CXX:
+ case EHPersonality::CoreCLR:
+ return TypeInfo->isNullValue();
+ }
+ llvm_unreachable("invalid enum");
+}
+
+static bool shorter_filter(const Value *LHS, const Value *RHS) {
+ return
+ cast<ArrayType>(LHS->getType())->getNumElements()
+ <
+ cast<ArrayType>(RHS->getType())->getNumElements();
+}
+
+Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
+ // The logic here should be correct for any real-world personality function.
+ // However if that turns out not to be true, the offending logic can always
+ // be conditioned on the personality function, like the catch-all logic is.
+ EHPersonality Personality =
+ classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
+
+ // Simplify the list of clauses, eg by removing repeated catch clauses
+ // (these are often created by inlining).
+ bool MakeNewInstruction = false; // If true, recreate using the following:
+ SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
+ bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
+
+ SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
+ for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
+ bool isLastClause = i + 1 == e;
+ if (LI.isCatch(i)) {
+ // A catch clause.
+ Constant *CatchClause = LI.getClause(i);
+ Constant *TypeInfo = CatchClause->stripPointerCasts();
+
+ // If we already saw this clause, there is no point in having a second
+ // copy of it.
+ if (AlreadyCaught.insert(TypeInfo).second) {
+ // This catch clause was not already seen.
+ NewClauses.push_back(CatchClause);
+ } else {
+ // Repeated catch clause - drop the redundant copy.
+ MakeNewInstruction = true;
+ }
+
+ // If this is a catch-all then there is no point in keeping any following
+ // clauses or marking the landingpad as having a cleanup.
+ if (isCatchAll(Personality, TypeInfo)) {
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+ } else {
+ // A filter clause. If any of the filter elements were already caught
+ // then they can be dropped from the filter. It is tempting to try to
+ // exploit the filter further by saying that any typeinfo that does not
+ // occur in the filter can't be caught later (and thus can be dropped).
+ // However this would be wrong, since typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some
+ // class derived from it).
+ assert(LI.isFilter(i) && "Unsupported landingpad clause!");
+ Constant *FilterClause = LI.getClause(i);
+ ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
+ unsigned NumTypeInfos = FilterType->getNumElements();
+
+ // An empty filter catches everything, so there is no point in keeping any
+ // following clauses or marking the landingpad as having a cleanup. By
+ // dealing with this case here the following code is made a bit simpler.
+ if (!NumTypeInfos) {
+ NewClauses.push_back(FilterClause);
+ if (!isLastClause)
+ MakeNewInstruction = true;
+ CleanupFlag = false;
+ break;
+ }
+
+ bool MakeNewFilter = false; // If true, make a new filter.
+ SmallVector<Constant *, 16> NewFilterElts; // New elements.
+ if (isa<ConstantAggregateZero>(FilterClause)) {
+ // Not an empty filter - it contains at least one null typeinfo.
+ assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
+ Constant *TypeInfo =
+ Constant::getNullValue(FilterType->getElementType());
+ // If this typeinfo is a catch-all then the filter can never match.
+ if (isCatchAll(Personality, TypeInfo)) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // There is no point in having multiple copies of this typeinfo, so
+ // discard all but the first copy if there is more than one.
+ NewFilterElts.push_back(TypeInfo);
+ if (NumTypeInfos > 1)
+ MakeNewFilter = true;
+ } else {
+ ConstantArray *Filter = cast<ConstantArray>(FilterClause);
+ SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
+ NewFilterElts.reserve(NumTypeInfos);
+
+ // Remove any filter elements that were already caught or that already
+ // occurred in the filter. While there, see if any of the elements are
+ // catch-alls. If so, the filter can be discarded.
+ bool SawCatchAll = false;
+ for (unsigned j = 0; j != NumTypeInfos; ++j) {
+ Constant *Elt = Filter->getOperand(j);
+ Constant *TypeInfo = Elt->stripPointerCasts();
+ if (isCatchAll(Personality, TypeInfo)) {
+ // This element is a catch-all. Bail out, noting this fact.
+ SawCatchAll = true;
+ break;
+ }
+
+ // Even if we've seen a type in a catch clause, we don't want to
+ // remove it from the filter. An unexpected type handler may be
+ // set up for a call site which throws an exception of the same
+ // type caught. In order for the exception thrown by the unexpected
+ // handler to propogate correctly, the filter must be correctly
+ // described for the call site.
+ //
+ // Example:
+ //
+ // void unexpected() { throw 1;}
+ // void foo() throw (int) {
+ // std::set_unexpected(unexpected);
+ // try {
+ // throw 2.0;
+ // } catch (int i) {}
+ // }
+
+ // There is no point in having multiple copies of the same typeinfo in
+ // a filter, so only add it if we didn't already.
+ if (SeenInFilter.insert(TypeInfo).second)
+ NewFilterElts.push_back(cast<Constant>(Elt));
+ }
+ // A filter containing a catch-all cannot match anything by definition.
+ if (SawCatchAll) {
+ // Throw the filter away.
+ MakeNewInstruction = true;
+ continue;
+ }
+
+ // If we dropped something from the filter, make a new one.
+ if (NewFilterElts.size() < NumTypeInfos)
+ MakeNewFilter = true;
+ }
+ if (MakeNewFilter) {
+ FilterType = ArrayType::get(FilterType->getElementType(),
+ NewFilterElts.size());
+ FilterClause = ConstantArray::get(FilterType, NewFilterElts);
+ MakeNewInstruction = true;
+ }
+
+ NewClauses.push_back(FilterClause);
+
+ // If the new filter is empty then it will catch everything so there is
+ // no point in keeping any following clauses or marking the landingpad
+ // as having a cleanup. The case of the original filter being empty was
+ // already handled above.
+ if (MakeNewFilter && !NewFilterElts.size()) {
+ assert(MakeNewInstruction && "New filter but not a new instruction!");
+ CleanupFlag = false;
+ break;
+ }
+ }
+ }
+
+ // If several filters occur in a row then reorder them so that the shortest
+ // filters come first (those with the smallest number of elements). This is
+ // advantageous because shorter filters are more likely to match, speeding up
+ // unwinding, but mostly because it increases the effectiveness of the other
+ // filter optimizations below.
+ for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
+ unsigned j;
+ // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
+ for (j = i; j != e; ++j)
+ if (!isa<ArrayType>(NewClauses[j]->getType()))
+ break;
+
+ // Check whether the filters are already sorted by length. We need to know
+ // if sorting them is actually going to do anything so that we only make a
+ // new landingpad instruction if it does.
+ for (unsigned k = i; k + 1 < j; ++k)
+ if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
+ // Not sorted, so sort the filters now. Doing an unstable sort would be
+ // correct too but reordering filters pointlessly might confuse users.
+ std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
+ shorter_filter);
+ MakeNewInstruction = true;
+ break;
+ }
+
+ // Look for the next batch of filters.
+ i = j + 1;
+ }
+
+ // If typeinfos matched if and only if equal, then the elements of a filter L
+ // that occurs later than a filter F could be replaced by the intersection of
+ // the elements of F and L. In reality two typeinfos can match without being
+ // equal (for example if one represents a C++ class, and the other some class
+ // derived from it) so it would be wrong to perform this transform in general.
+ // However the transform is correct and useful if F is a subset of L. In that
+ // case L can be replaced by F, and thus removed altogether since repeating a
+ // filter is pointless. So here we look at all pairs of filters F and L where
+ // L follows F in the list of clauses, and remove L if every element of F is
+ // an element of L. This can occur when inlining C++ functions with exception
+ // specifications.
+ for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
+ // Examine each filter in turn.
+ Value *Filter = NewClauses[i];
+ ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
+ if (!FTy)
+ // Not a filter - skip it.
+ continue;
+ unsigned FElts = FTy->getNumElements();
+ // Examine each filter following this one. Doing this backwards means that
+ // we don't have to worry about filters disappearing under us when removed.
+ for (unsigned j = NewClauses.size() - 1; j != i; --j) {
+ Value *LFilter = NewClauses[j];
+ ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
+ if (!LTy)
+ // Not a filter - skip it.
+ continue;
+ // If Filter is a subset of LFilter, i.e. every element of Filter is also
+ // an element of LFilter, then discard LFilter.
+ SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
+ // If Filter is empty then it is a subset of LFilter.
+ if (!FElts) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ // Move on to the next filter.
+ continue;
+ }
+ unsigned LElts = LTy->getNumElements();
+ // If Filter is longer than LFilter then it cannot be a subset of it.
+ if (FElts > LElts)
+ // Move on to the next filter.
+ continue;
+ // At this point we know that LFilter has at least one element.
+ if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
+ // Filter is a subset of LFilter iff Filter contains only zeros (as we
+ // already know that Filter is not longer than LFilter).
+ if (isa<ConstantAggregateZero>(Filter)) {
+ assert(FElts <= LElts && "Should have handled this case earlier!");
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ ConstantArray *LArray = cast<ConstantArray>(LFilter);
+ if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
+ // Since Filter is non-empty and contains only zeros, it is a subset of
+ // LFilter iff LFilter contains a zero.
+ assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
+ for (unsigned l = 0; l != LElts; ++l)
+ if (LArray->getOperand(l)->isNullValue()) {
+ // LFilter contains a zero - discard it.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ break;
+ }
+ // Move on to the next filter.
+ continue;
+ }
+ // At this point we know that both filters are ConstantArrays. Loop over
+ // operands to see whether every element of Filter is also an element of
+ // LFilter. Since filters tend to be short this is probably faster than
+ // using a method that scales nicely.
+ ConstantArray *FArray = cast<ConstantArray>(Filter);
+ bool AllFound = true;
+ for (unsigned f = 0; f != FElts; ++f) {
+ Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
+ AllFound = false;
+ for (unsigned l = 0; l != LElts; ++l) {
+ Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
+ if (LTypeInfo == FTypeInfo) {
+ AllFound = true;
+ break;
+ }
+ }
+ if (!AllFound)
+ break;
+ }
+ if (AllFound) {
+ // Discard LFilter.
+ NewClauses.erase(J);
+ MakeNewInstruction = true;
+ }
+ // Move on to the next filter.
+ }
+ }
+
+ // If we changed any of the clauses, replace the old landingpad instruction
+ // with a new one.
+ if (MakeNewInstruction) {
+ LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
+ NewClauses.size());
+ for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
+ NLI->addClause(NewClauses[i]);
+ // A landing pad with no clauses must have the cleanup flag set. It is
+ // theoretically possible, though highly unlikely, that we eliminated all
+ // clauses. If so, force the cleanup flag to true.
+ if (NewClauses.empty())
+ CleanupFlag = true;
+ NLI->setCleanup(CleanupFlag);
+ return NLI;
+ }
+
+ // Even if none of the clauses changed, we may nonetheless have understood
+ // that the cleanup flag is pointless. Clear it if so.
+ if (LI.isCleanup() != CleanupFlag) {
+ assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
+ LI.setCleanup(CleanupFlag);
+ return &LI;
+ }
+
+ return nullptr;
+}
+
+/// Try to move the specified instruction from its current block into the
+/// beginning of DestBlock, which can only happen if it's safe to move the
+/// instruction past all of the instructions between it and the end of its
+/// block.
+static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
+ assert(I->hasOneUse() && "Invariants didn't hold!");
+
+ // Cannot move control-flow-involving, volatile loads, vaarg, etc.
+ if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
+ isa<TerminatorInst>(I))
+ return false;
+
+ // Do not sink alloca instructions out of the entry block.
+ if (isa<AllocaInst>(I) && I->getParent() ==
+ &DestBlock->getParent()->getEntryBlock())
+ return false;
+
+ // Do not sink convergent call instructions.
+ if (auto *CI = dyn_cast<CallInst>(I)) {
+ if (CI->isConvergent())
+ return false;
+ }
+
+ // We can only sink load instructions if there is nothing between the load and
+ // the end of block that could change the value.
+ if (I->mayReadFromMemory()) {
+ for (BasicBlock::iterator Scan = I->getIterator(),
+ E = I->getParent()->end();
+ Scan != E; ++Scan)
+ if (Scan->mayWriteToMemory())
+ return false;
+ }
+
+ BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
+ I->moveBefore(&*InsertPos);
+ ++NumSunkInst;
+ return true;
+}
+
+bool InstCombiner::run() {
+ while (!Worklist.isEmpty()) {
+ Instruction *I = Worklist.RemoveOne();
+ if (I == nullptr) continue; // skip null values.
+
+ // Check to see if we can DCE the instruction.
+ if (isInstructionTriviallyDead(I, TLI)) {
+ DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
+ EraseInstFromFunction(*I);
+ ++NumDeadInst;
+ MadeIRChange = true;
+ continue;
+ }
+
+ // Instruction isn't dead, see if we can constant propagate it.
+ if (!I->use_empty() &&
+ (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
+ if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
+ DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
+
+ // Add operands to the worklist.
+ ReplaceInstUsesWith(*I, C);
+ ++NumConstProp;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
+ continue;
+ }
+ }
+
+ // In general, it is possible for computeKnownBits to determine all bits in a
+ // value even when the operands are not all constants.
+ if (!I->use_empty() && I->getType()->isIntegerTy()) {
+ unsigned BitWidth = I->getType()->getScalarSizeInBits();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I);
+ if ((KnownZero | KnownOne).isAllOnesValue()) {
+ Constant *C = ConstantInt::get(I->getContext(), KnownOne);
+ DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C <<
+ " from: " << *I << '\n');
+
+ // Add operands to the worklist.
+ ReplaceInstUsesWith(*I, C);
+ ++NumConstProp;
+ EraseInstFromFunction(*I);
+ MadeIRChange = true;
+ continue;
+ }
+ }
+
+ // See if we can trivially sink this instruction to a successor basic block.
+ if (I->hasOneUse()) {
+ BasicBlock *BB = I->getParent();
+ Instruction *UserInst = cast<Instruction>(*I->user_begin());
+ BasicBlock *UserParent;
+
+ // Get the block the use occurs in.
+ if (PHINode *PN = dyn_cast<PHINode>(UserInst))
+ UserParent = PN->getIncomingBlock(*I->use_begin());
+ else
+ UserParent = UserInst->getParent();
+
+ if (UserParent != BB) {
+ bool UserIsSuccessor = false;
+ // See if the user is one of our successors.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
+ if (*SI == UserParent) {
+ UserIsSuccessor = true;
+ break;
+ }
+
+ // If the user is one of our immediate successors, and if that successor
+ // only has us as a predecessors (we'd have to split the critical edge
+ // otherwise), we can keep going.
+ if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
+ // Okay, the CFG is simple enough, try to sink this instruction.
+ if (TryToSinkInstruction(I, UserParent)) {
+ MadeIRChange = true;
+ // We'll add uses of the sunk instruction below, but since sinking
+ // can expose opportunities for it's *operands* add them to the
+ // worklist
+ for (Use &U : I->operands())
+ if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
+ Worklist.Add(OpI);
+ }
+ }
+ }
+ }
+
+ // Now that we have an instruction, try combining it to simplify it.
+ Builder->SetInsertPoint(I);
+ Builder->SetCurrentDebugLocation(I->getDebugLoc());
+
+#ifndef NDEBUG
+ std::string OrigI;
+#endif
+ DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
+ DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
+
+ if (Instruction *Result = visit(*I)) {
+ ++NumCombined;
+ // Should we replace the old instruction with a new one?
+ if (Result != I) {
+ DEBUG(dbgs() << "IC: Old = " << *I << '\n'
+ << " New = " << *Result << '\n');
+
+ if (I->getDebugLoc())
+ Result->setDebugLoc(I->getDebugLoc());
+ // Everything uses the new instruction now.
+ I->replaceAllUsesWith(Result);
+
+ // Move the name to the new instruction first.
+ Result->takeName(I);
+
+ // Push the new instruction and any users onto the worklist.
+ Worklist.Add(Result);
+ Worklist.AddUsersToWorkList(*Result);
+
+ // Insert the new instruction into the basic block...
+ BasicBlock *InstParent = I->getParent();
+ BasicBlock::iterator InsertPos = I->getIterator();
+
+ // If we replace a PHI with something that isn't a PHI, fix up the
+ // insertion point.
+ if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
+ InsertPos = InstParent->getFirstInsertionPt();
+
+ InstParent->getInstList().insert(InsertPos, Result);
+
+ EraseInstFromFunction(*I);
+ } else {
+#ifndef NDEBUG
+ DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
+ << " New = " << *I << '\n');
+#endif
+
+ // If the instruction was modified, it's possible that it is now dead.
+ // if so, remove it.
+ if (isInstructionTriviallyDead(I, TLI)) {
+ EraseInstFromFunction(*I);
+ } else {
+ Worklist.Add(I);
+ Worklist.AddUsersToWorkList(*I);
+ }
+ }
+ MadeIRChange = true;
+ }
+ }
+
+ Worklist.Zap();
+ return MadeIRChange;
+}
+
+/// Walk the function in depth-first order, adding all reachable code to the
+/// worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful. In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant). Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+///
+static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
+ SmallPtrSetImpl<BasicBlock *> &Visited,
+ InstCombineWorklist &ICWorklist,
+ const TargetLibraryInfo *TLI) {
+ bool MadeIRChange = false;
+ SmallVector<BasicBlock*, 256> Worklist;
+ Worklist.push_back(BB);
+
+ SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
+ DenseMap<ConstantExpr*, Constant*> FoldedConstants;
+
+ do {
+ BB = Worklist.pop_back_val();
+
+ // We have now visited this block! If we've already been here, ignore it.
+ if (!Visited.insert(BB).second)
+ continue;
+
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *Inst = &*BBI++;
+
+ // DCE instruction if trivially dead.
+ if (isInstructionTriviallyDead(Inst, TLI)) {
+ ++NumDeadInst;
+ DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // ConstantProp instruction if trivially constant.
+ if (!Inst->use_empty() &&
+ (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
+ if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
+ DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
+ Inst->replaceAllUsesWith(C);
+ ++NumConstProp;
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // See if we can constant fold its operands.
+ for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
+ ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+ if (CE == nullptr)
+ continue;
+
+ Constant *&FoldRes = FoldedConstants[CE];
+ if (!FoldRes)
+ FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
+ if (!FoldRes)
+ FoldRes = CE;
+
+ if (FoldRes != CE) {
+ *i = FoldRes;
+ MadeIRChange = true;
+ }
+ }
+
+ InstrsForInstCombineWorklist.push_back(Inst);
+ }
+
+ // Recursively visit successors. If this is a branch or switch on a
+ // constant, only visit the reachable successor.
+ TerminatorInst *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+ bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+ BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+ // See if this is an explicit destination.
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i)
+ if (i.getCaseValue() == Cond) {
+ BasicBlock *ReachableBB = i.getCaseSuccessor();
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+
+ // Otherwise it is the default destination.
+ Worklist.push_back(SI->getDefaultDest());
+ continue;
+ }
+ }
+
+ for (BasicBlock *SuccBB : TI->successors())
+ Worklist.push_back(SuccBB);
+ } while (!Worklist.empty());
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist);
+
+ return MadeIRChange;
+}
+
+/// \brief Populate the IC worklist from a function, and prune any dead basic
+/// blocks discovered in the process.
+///
+/// This also does basic constant propagation and other forward fixing to make
+/// the combiner itself run much faster.
+static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
+ TargetLibraryInfo *TLI,
+ InstCombineWorklist &ICWorklist) {
+ bool MadeIRChange = false;
+
+ // Do a depth-first traversal of the function, populate the worklist with
+ // the reachable instructions. Ignore blocks that are not reachable. Keep
+ // track of which blocks we visit.
+ SmallPtrSet<BasicBlock *, 64> Visited;
+ MadeIRChange |=
+ AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI);
+
+ // Do a quick scan over the function. If we find any blocks that are
+ // unreachable, remove any instructions inside of them. This prevents
+ // the instcombine code from having to deal with some bad special cases.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Visited.count(&*BB))
+ continue;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
+ while (EndInst != BB->begin()) {
+ // Delete the next to last instruction.
+ Instruction *Inst = &*--EndInst->getIterator();
+ if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
+ EndInst = Inst;
+ continue;
+ }
+ if (!isa<DbgInfoIntrinsic>(Inst)) {
+ ++NumDeadInst;
+ MadeIRChange = true;
+ }
+ Inst->eraseFromParent();
+ }
+ }
+
+ return MadeIRChange;
+}
+
+static bool
+combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
+ AliasAnalysis *AA, AssumptionCache &AC,
+ TargetLibraryInfo &TLI, DominatorTree &DT,
+ LoopInfo *LI = nullptr) {
+ auto &DL = F.getParent()->getDataLayout();
+
+ /// Builder - This is an IRBuilder that automatically inserts new
+ /// instructions into the worklist when they are created.
+ IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
+ F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
+
+ // Lower dbg.declare intrinsics otherwise their value may be clobbered
+ // by instcombiner.
+ bool DbgDeclaresChanged = LowerDbgDeclare(F);
+
+ // Iterate while there is work to do.
+ int Iteration = 0;
+ for (;;) {
+ ++Iteration;
+ DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getName() << "\n");
+
+ bool Changed = false;
+ if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
+ Changed = true;
+
+ InstCombiner IC(Worklist, &Builder, F.optForMinSize(),
+ AA, &AC, &TLI, &DT, DL, LI);
+ if (IC.run())
+ Changed = true;
+
+ if (!Changed)
+ break;
+ }
+
+ return DbgDeclaresChanged || Iteration > 1;
+}
+
+PreservedAnalyses InstCombinePass::run(Function &F,
+ AnalysisManager<Function> *AM) {
+ auto &AC = AM->getResult<AssumptionAnalysis>(F);
+ auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
+
+ auto *LI = AM->getCachedResult<LoopAnalysis>(F);
+
+ // FIXME: The AliasAnalysis is not yet supported in the new pass manager
+ if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, LI))
+ // No changes, all analyses are preserved.
+ return PreservedAnalyses::all();
+
+ // Mark all the analyses that instcombine updates as preserved.
+ // FIXME: Need a way to preserve CFG analyses here!
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ return PA;
+}
+
+namespace {
+/// \brief The legacy pass manager's instcombine pass.
+///
+/// This is a basic whole-function wrapper around the instcombine utility. It
+/// will try to combine all instructions in the function.
+class InstructionCombiningPass : public FunctionPass {
+ InstCombineWorklist Worklist;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ InstructionCombiningPass() : FunctionPass(ID) {
+ initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnFunction(Function &F) override;
+};
+}
+
+void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+}
+
+bool InstructionCombiningPass::runOnFunction(Function &F) {
+ if (skipOptnoneFunction(F))
+ return false;
+
+ // Required analyses.
+ auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ // Optional analyses.
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
+
+ return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, LI);
+}
+
+char InstructionCombiningPass::ID = 0;
+INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
+INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+
+// Initialization Routines
+void llvm::initializeInstCombine(PassRegistry &Registry) {
+ initializeInstructionCombiningPassPass(Registry);
+}
+
+void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
+ initializeInstructionCombiningPassPass(*unwrap(R));
+}
+
+FunctionPass *llvm::createInstructionCombiningPass() {
+ return new InstructionCombiningPass();
+}
OpenPOWER on IntegriCloud