diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp | 604 |
1 files changed, 481 insertions, 123 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp index e46c679..37123d0 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -48,6 +48,7 @@ #include "llvm/Support/PatternMatch.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" +#include "llvm-c/Initialization.h" #include <algorithm> #include <climits> using namespace llvm; @@ -57,11 +58,22 @@ STATISTIC(NumCombined , "Number of insts combined"); STATISTIC(NumConstProp, "Number of constant folds"); STATISTIC(NumDeadInst , "Number of dead inst eliminated"); STATISTIC(NumSunkInst , "Number of instructions sunk"); +STATISTIC(NumExpand, "Number of expansions"); +STATISTIC(NumFactor , "Number of factorizations"); +STATISTIC(NumReassoc , "Number of reassociations"); +// Initialization Routines +void llvm::initializeInstCombine(PassRegistry &Registry) { + initializeInstCombinerPass(Registry); +} + +void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { + initializeInstCombine(*unwrap(R)); +} char InstCombiner::ID = 0; INITIALIZE_PASS(InstCombiner, "instcombine", - "Combine redundant instructions", false, false); + "Combine redundant instructions", false, false) void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreservedID(LCSSAID); @@ -97,53 +109,326 @@ bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const { } -// SimplifyCommutative - This performs a few simplifications for commutative -// operators: +/// SimplifyAssociativeOrCommutative - This performs a few simplifications for +/// operators which are associative or commutative: +// +// Commutative operators: // // 1. Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. // -// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) -// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) +// Associative operators: +// +// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. +// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. +// +// Associative and commutative operators: +// +// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. +// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. +// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" +// if C1 and C2 are constants. // -bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { +bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { + Instruction::BinaryOps Opcode = I.getOpcode(); bool Changed = false; - if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) - Changed = !I.swapOperands(); - if (!I.isAssociative()) return Changed; - - Instruction::BinaryOps Opcode = I.getOpcode(); - if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) - if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { - if (isa<Constant>(I.getOperand(1))) { - Constant *Folded = ConstantExpr::get(I.getOpcode(), - cast<Constant>(I.getOperand(1)), - cast<Constant>(Op->getOperand(1))); - I.setOperand(0, Op->getOperand(0)); - I.setOperand(1, Folded); - return true; + do { + // Order operands such that they are listed from right (least complex) to + // left (most complex). This puts constants before unary operators before + // binary operators. + if (I.isCommutative() && getComplexity(I.getOperand(0)) < + getComplexity(I.getOperand(1))) + Changed = !I.swapOperands(); + + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); + + if (I.isAssociative()) { + // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = I.getOperand(1); + + // Does "B op C" simplify? + if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) { + // It simplifies to V. Form "A op V". + I.setOperand(0, A); + I.setOperand(1, V); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + I.clearSubclassOptionalData(); + Changed = true; + ++NumReassoc; + continue; + } } - - if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1))) - if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && - Op->hasOneUse() && Op1->hasOneUse()) { - Constant *C1 = cast<Constant>(Op->getOperand(1)); - Constant *C2 = cast<Constant>(Op1->getOperand(1)); - - // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) - Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); - Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), - Op1->getOperand(0), - Op1->getName(), &I); - Worklist.Add(New); - I.setOperand(0, New); - I.setOperand(1, Folded); - return true; + + // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = I.getOperand(0); + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "A op B" simplify? + if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) { + // It simplifies to V. Form "V op C". + I.setOperand(0, V); + I.setOperand(1, C); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + I.clearSubclassOptionalData(); + Changed = true; + ++NumReassoc; + continue; } + } } - return Changed; + + if (I.isAssociative() && I.isCommutative()) { + // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. + if (Op0 && Op0->getOpcode() == Opcode) { + Value *A = Op0->getOperand(0); + Value *B = Op0->getOperand(1); + Value *C = I.getOperand(1); + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { + // It simplifies to V. Form "V op B". + I.setOperand(0, V); + I.setOperand(1, B); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + I.clearSubclassOptionalData(); + Changed = true; + ++NumReassoc; + continue; + } + } + + // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. + if (Op1 && Op1->getOpcode() == Opcode) { + Value *A = I.getOperand(0); + Value *B = Op1->getOperand(0); + Value *C = Op1->getOperand(1); + + // Does "C op A" simplify? + if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) { + // It simplifies to V. Form "B op V". + I.setOperand(0, B); + I.setOperand(1, V); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + I.clearSubclassOptionalData(); + Changed = true; + ++NumReassoc; + continue; + } + } + + // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" + // if C1 and C2 are constants. + if (Op0 && Op1 && + Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && + isa<Constant>(Op0->getOperand(1)) && + isa<Constant>(Op1->getOperand(1)) && + Op0->hasOneUse() && Op1->hasOneUse()) { + Value *A = Op0->getOperand(0); + Constant *C1 = cast<Constant>(Op0->getOperand(1)); + Value *B = Op1->getOperand(0); + Constant *C2 = cast<Constant>(Op1->getOperand(1)); + + Constant *Folded = ConstantExpr::get(Opcode, C1, C2); + Instruction *New = BinaryOperator::Create(Opcode, A, B, Op1->getName(), + &I); + Worklist.Add(New); + I.setOperand(0, New); + I.setOperand(1, Folded); + // Conservatively clear the optional flags, since they may not be + // preserved by the reassociation. + I.clearSubclassOptionalData(); + Changed = true; + continue; + } + } + + // No further simplifications. + return Changed; + } while (1); +} + +/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to +/// "(X LOp Y) ROp (X LOp Z)". +static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, + Instruction::BinaryOps ROp) { + switch (LOp) { + default: + return false; + + case Instruction::And: + // And distributes over Or and Xor. + switch (ROp) { + default: + return false; + case Instruction::Or: + case Instruction::Xor: + return true; + } + + case Instruction::Mul: + // Multiplication distributes over addition and subtraction. + switch (ROp) { + default: + return false; + case Instruction::Add: + case Instruction::Sub: + return true; + } + + case Instruction::Or: + // Or distributes over And. + switch (ROp) { + default: + return false; + case Instruction::And: + return true; + } + } +} + +/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to +/// "(X ROp Z) LOp (Y ROp Z)". +static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, + Instruction::BinaryOps ROp) { + if (Instruction::isCommutative(ROp)) + return LeftDistributesOverRight(ROp, LOp); + // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", + // but this requires knowing that the addition does not overflow and other + // such subtleties. + return false; +} + +/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations +/// which some other binary operation distributes over either by factorizing +/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this +/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is +/// a win). Returns the simplified value, or null if it didn't simplify. +Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); + BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); + Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op + + // Factorization. + if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) { + // The instruction has the form "(A op' B) op (C op' D)". Try to factorize + // a common term. + Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); + Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); + Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' + + // Does "X op' Y" always equal "Y op' X"? + bool InnerCommutative = Instruction::isCommutative(InnerOpcode); + + // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? + if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) + // Does the instruction have the form "(A op' B) op (A op' D)" or, in the + // commutative case, "(A op' B) op (C op' A)"? + if (A == C || (InnerCommutative && A == D)) { + if (A != C) + std::swap(C, D); + // Consider forming "A op' (B op D)". + // If "B op D" simplifies then it can be formed with no cost. + Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD); + // If "B op D" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && Op0->hasOneUse() && Op1->hasOneUse()) + V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName()); + if (V) { + ++NumFactor; + V = Builder->CreateBinOp(InnerOpcode, A, V); + V->takeName(&I); + return V; + } + } + + // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? + if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) + // Does the instruction have the form "(A op' B) op (C op' B)" or, in the + // commutative case, "(A op' B) op (B op' D)"? + if (B == D || (InnerCommutative && B == C)) { + if (B != D) + std::swap(C, D); + // Consider forming "(A op C) op' B". + // If "A op C" simplifies then it can be formed with no cost. + Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD); + // If "A op C" doesn't simplify then only go on if both of the existing + // operations "A op' B" and "C op' D" will be zapped as no longer used. + if (!V && Op0->hasOneUse() && Op1->hasOneUse()) + V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName()); + if (V) { + ++NumFactor; + V = Builder->CreateBinOp(InnerOpcode, V, B); + V->takeName(&I); + return V; + } + } + } + + // Expansion. + if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { + // The instruction has the form "(A op' B) op C". See if expanding it out + // to "(A op C) op' (B op C)" results in simplifications. + Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; + Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' + + // Do "A op C" and "B op C" both simplify? + if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD)) + if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) { + // They do! Return "L op' R". + ++NumExpand; + // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. + if ((L == A && R == B) || + (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) + return Op0; + // Otherwise return "L op' R" if it simplifies. + if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) + return V; + // Otherwise, create a new instruction. + C = Builder->CreateBinOp(InnerOpcode, L, R); + C->takeName(&I); + return C; + } + } + + if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { + // The instruction has the form "A op (B op' C)". See if expanding it out + // to "(A op B) op' (A op C)" results in simplifications. + Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); + Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' + + // Do "A op B" and "A op C" both simplify? + if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD)) + if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) { + // They do! Return "L op' R". + ++NumExpand; + // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. + if ((L == B && R == C) || + (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) + return Op1; + // Otherwise return "L op' R" if it simplifies. + if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD)) + return V; + // Otherwise, create a new instruction. + A = Builder->CreateBinOp(InnerOpcode, L, R); + A->takeName(&I); + return A; + } + } + + return 0; } // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction @@ -185,8 +470,9 @@ Value *InstCombiner::dyn_castFNegVal(Value *V) const { static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC) { - if (CastInst *CI = dyn_cast<CastInst>(&I)) + if (CastInst *CI = dyn_cast<CastInst>(&I)) { return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); + } // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa<Constant>(I.getOperand(1)); @@ -228,11 +514,24 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { // Bool selects with constant operands can be folded to logical ops. if (SI->getType()->isIntegerTy(1)) return 0; + // If it's a bitcast involving vectors, make sure it has the same number of + // elements on both sides. + if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { + const VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); + const VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); + + // Verify that either both or neither are vectors. + if ((SrcTy == NULL) != (DestTy == NULL)) return 0; + // If vectors, verify that they have the same number of elements. + if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) + return 0; + } + Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); - return SelectInst::Create(SI->getCondition(), SelectTrueVal, - SelectFalseVal); + return SelectInst::Create(SI->getCondition(), + SelectTrueVal, SelectFalseVal); } return 0; } @@ -242,20 +541,25 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { /// has a PHI node as operand #0, see if we can fold the instruction into the /// PHI (which is only possible if all operands to the PHI are constants). /// -/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms -/// that would normally be unprofitable because they strongly encourage jump -/// threading. -Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, - bool AllowAggressive) { - AllowAggressive = false; +Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast<PHINode>(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); - if (NumPHIValues == 0 || - // We normally only transform phis with a single use, unless we're trying - // hard to make jump threading happen. - (!PN->hasOneUse() && !AllowAggressive)) + if (NumPHIValues == 0) return 0; + // We normally only transform phis with a single use. However, if a PHI has + // multiple uses and they are all the same operation, we can fold *all* of the + // uses into the PHI. + if (!PN->hasOneUse()) { + // Walk the use list for the instruction, comparing them to I. + for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); + UI != E; ++UI) { + Instruction *User = cast<Instruction>(*UI); + if (User != &I && !I.isIdenticalTo(User)) + return 0; + } + // Otherwise, we can replace *all* users with the new PHI we form. + } // Check to see if all of the operands of the PHI are simple constants // (constantint/constantfp/undef). If there is one non-constant value, @@ -263,24 +567,34 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, // bail out. We don't do arbitrary constant expressions here because moving // their computation can be expensive without a cost model. BasicBlock *NonConstBB = 0; - for (unsigned i = 0; i != NumPHIValues; ++i) - if (!isa<Constant>(PN->getIncomingValue(i)) || - isa<ConstantExpr>(PN->getIncomingValue(i))) { - if (NonConstBB) return 0; // More than one non-const value. - if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi. - NonConstBB = PN->getIncomingBlock(i); - - // If the incoming non-constant value is in I's block, we have an infinite - // loop. - if (NonConstBB == I.getParent()) + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InVal = PN->getIncomingValue(i); + if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) + continue; + + if (isa<PHINode>(InVal)) return 0; // Itself a phi. + if (NonConstBB) return 0; // More than one non-const value. + + NonConstBB = PN->getIncomingBlock(i); + + // If the InVal is an invoke at the end of the pred block, then we can't + // insert a computation after it without breaking the edge. + if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) + if (II->getParent() == NonConstBB) return 0; - } + + // If the incoming non-constant value is in I's block, we will remove one + // instruction, but insert another equivalent one, leading to infinite + // instcombine. + if (NonConstBB == I.getParent()) + return 0; + } // If there is exactly one non-constant value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation one some other paths (e.g. inside a loop). Only // do this if the pred block is unconditionally branching into the phi block. - if (NonConstBB != 0 && !AllowAggressive) { + if (NonConstBB != 0) { BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); if (!BI || !BI->isUnconditional()) return 0; } @@ -290,7 +604,12 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, NewPN->reserveOperandSpace(PN->getNumOperands()/2); InsertNewInstBefore(NewPN, *PN); NewPN->takeName(PN); - + + // If we are going to have to insert a new computation, do so right before the + // predecessors terminator. + if (NonConstBB) + Builder->SetInsertPoint(NonConstBB->getTerminator()); + // Next, add all of the operands to the PHI. if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { // We only currently try to fold the condition of a select when it is a phi, @@ -303,42 +622,36 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); Value *InV = 0; - if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; - } else { - assert(PN->getIncomingBlock(i) == NonConstBB); - InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred, - FalseVInPred, - "phitmp", NonConstBB->getTerminator()); - Worklist.Add(cast<Instruction>(InV)); - } + else + InV = Builder->CreateSelect(PN->getIncomingValue(i), + TrueVInPred, FalseVInPred, "phitmp"); NewPN->addIncoming(InV, ThisBB); } + } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { + Constant *C = cast<Constant>(I.getOperand(1)); + for (unsigned i = 0; i != NumPHIValues; ++i) { + Value *InV = 0; + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) + InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); + else if (isa<ICmpInst>(CI)) + InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), + C, "phitmp"); + else + InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), + C, "phitmp"); + NewPN->addIncoming(InV, PN->getIncomingBlock(i)); + } } else if (I.getNumOperands() == 2) { Constant *C = cast<Constant>(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV = 0; - if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { - if (CmpInst *CI = dyn_cast<CmpInst>(&I)) - InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); - else - InV = ConstantExpr::get(I.getOpcode(), InC, C); - } else { - assert(PN->getIncomingBlock(i) == NonConstBB); - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) - InV = BinaryOperator::Create(BO->getOpcode(), - PN->getIncomingValue(i), C, "phitmp", - NonConstBB->getTerminator()); - else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) - InV = CmpInst::Create(CI->getOpcode(), - CI->getPredicate(), - PN->getIncomingValue(i), C, "phitmp", - NonConstBB->getTerminator()); - else - llvm_unreachable("Unknown binop!"); - - Worklist.Add(cast<Instruction>(InV)); - } + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) + InV = ConstantExpr::get(I.getOpcode(), InC, C); + else + InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), + PN->getIncomingValue(i), C, "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } else { @@ -346,18 +659,22 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, const Type *RetTy = CI->getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV; - if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { + if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); - } else { - assert(PN->getIncomingBlock(i) == NonConstBB); - InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), - I.getType(), "phitmp", - NonConstBB->getTerminator()); - Worklist.Add(cast<Instruction>(InV)); - } + else + InV = Builder->CreateCast(CI->getOpcode(), + PN->getIncomingValue(i), I.getType(), "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } + + for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); + UI != E; ) { + Instruction *User = cast<Instruction>(*UI++); + if (User == &I) continue; + ReplaceInstUsesWith(*User, NewPN); + EraseInstFromFunction(*User); + } return ReplaceInstUsesWith(I, NewPN); } @@ -432,28 +749,35 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); - if (isa<UndefValue>(GEP.getOperand(0))) - return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); - - // Eliminate unneeded casts for indices. + // Eliminate unneeded casts for indices, and replace indices which displace + // by multiples of a zero size type with zero. if (TD) { bool MadeChange = false; - unsigned PtrSize = TD->getPointerSizeInBits(); - + const Type *IntPtrTy = TD->getIntPtrType(GEP.getContext()); + gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; ++I, ++GTI) { - if (!isa<SequentialType>(*GTI)) continue; - - // If we are using a wider index than needed for this platform, shrink it - // to what we need. If narrower, sign-extend it to what we need. This - // explicit cast can make subsequent optimizations more obvious. - unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth(); - if (OpBits == PtrSize) - continue; - - *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true); - MadeChange = true; + // Skip indices into struct types. + const SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); + if (!SeqTy) continue; + + // If the element type has zero size then any index over it is equivalent + // to an index of zero, so replace it with zero if it is not zero already. + if (SeqTy->getElementType()->isSized() && + TD->getTypeAllocSize(SeqTy->getElementType()) == 0) + if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { + *I = Constant::getNullValue(IntPtrTy); + MadeChange = true; + } + + if ((*I)->getType() != IntPtrTy) { + // If we are using a wider index than needed for this platform, shrink + // it to what we need. If narrower, sign-extend it to what we need. + // This explicit cast can make subsequent optimizations more obvious. + *I = Builder->CreateIntCast(*I, IntPtrTy, true); + MadeChange = true; + } } if (MadeChange) return &GEP; } @@ -940,6 +1264,14 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { EraseInstFromFunction(*II); return BinaryOperator::CreateAdd(LHS, RHS); } + + // If the normal result of the add is dead, and the RHS is a constant, + // we can transform this into a range comparison. + // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 + if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) + if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) + return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), + ConstantExpr::getNot(CI)); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: @@ -964,10 +1296,37 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { } } } - // Can't simplify extracts from other values. Note that nested extracts are - // already simplified implicitely by the above (extract ( extract (insert) ) + if (LoadInst *L = dyn_cast<LoadInst>(Agg)) + // If the (non-volatile) load only has one use, we can rewrite this to a + // load from a GEP. This reduces the size of the load. + // FIXME: If a load is used only by extractvalue instructions then this + // could be done regardless of having multiple uses. + if (!L->isVolatile() && L->hasOneUse()) { + // extractvalue has integer indices, getelementptr has Value*s. Convert. + SmallVector<Value*, 4> Indices; + // Prefix an i32 0 since we need the first element. + Indices.push_back(Builder->getInt32(0)); + for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); + I != E; ++I) + Indices.push_back(Builder->getInt32(*I)); + + // We need to insert these at the location of the old load, not at that of + // the extractvalue. + Builder->SetInsertPoint(L->getParent(), L); + Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), + Indices.begin(), Indices.end()); + // Returning the load directly will cause the main loop to insert it in + // the wrong spot, so use ReplaceInstUsesWith(). + return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); + } + // We could simplify extracts from other values. Note that nested extracts may + // already be simplified implicitly by the above: extract (extract (insert) ) // will be translated into extract ( insert ( extract ) ) first and then just - // the value inserted, if appropriate). + // the value inserted, if appropriate. Similarly for extracts from single-use + // loads: extract (extract (load)) will be translated to extract (load (gep)) + // and if again single-use then via load (gep (gep)) to load (gep). + // However, double extracts from e.g. function arguments or return values + // aren't handled yet. return 0; } @@ -1023,10 +1382,8 @@ static bool AddReachableCodeToWorklist(BasicBlock *BB, bool MadeIRChange = false; SmallVector<BasicBlock*, 256> Worklist; Worklist.push_back(BB); - - std::vector<Instruction*> InstrsForInstCombineWorklist; - InstrsForInstCombineWorklist.reserve(128); + SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; SmallPtrSet<ConstantExpr*, 64> FoldedConstants; do { @@ -1231,6 +1588,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { DEBUG(errs() << "IC: Old = " << *I << '\n' << " New = " << *Result << '\n'); + Result->setDebugLoc(I->getDebugLoc()); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); |