diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp | 1113 |
1 files changed, 1113 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp new file mode 100644 index 0000000..cd41844 --- /dev/null +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp @@ -0,0 +1,1113 @@ +//===- InstCombineSimplifyDemanded.cpp ------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains logic for simplifying instructions based on information +// about how they are used. +// +//===----------------------------------------------------------------------===// + + +#include "InstCombine.h" +#include "llvm/Target/TargetData.h" +#include "llvm/IntrinsicInst.h" + +using namespace llvm; + + +/// ShrinkDemandedConstant - Check to see if the specified operand of the +/// specified instruction is a constant integer. If so, check to see if there +/// are any bits set in the constant that are not demanded. If so, shrink the +/// constant and return true. +static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, + APInt Demanded) { + assert(I && "No instruction?"); + assert(OpNo < I->getNumOperands() && "Operand index too large"); + + // If the operand is not a constant integer, nothing to do. + ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo)); + if (!OpC) return false; + + // If there are no bits set that aren't demanded, nothing to do. + Demanded.zextOrTrunc(OpC->getValue().getBitWidth()); + if ((~Demanded & OpC->getValue()) == 0) + return false; + + // This instruction is producing bits that are not demanded. Shrink the RHS. + Demanded &= OpC->getValue(); + I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded)); + return true; +} + + + +/// SimplifyDemandedInstructionBits - Inst is an integer instruction that +/// SimplifyDemandedBits knows about. See if the instruction has any +/// properties that allow us to simplify its operands. +bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { + unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); + + Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, + KnownZero, KnownOne, 0); + if (V == 0) return false; + if (V == &Inst) return true; + ReplaceInstUsesWith(Inst, V); + return true; +} + +/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the +/// specified instruction operand if possible, updating it in place. It returns +/// true if it made any change and false otherwise. +bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, + APInt &KnownZero, APInt &KnownOne, + unsigned Depth) { + Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, + KnownZero, KnownOne, Depth); + if (NewVal == 0) return false; + U = NewVal; + return true; +} + + +/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler +/// value based on the demanded bits. When this function is called, it is known +/// that only the bits set in DemandedMask of the result of V are ever used +/// downstream. Consequently, depending on the mask and V, it may be possible +/// to replace V with a constant or one of its operands. In such cases, this +/// function does the replacement and returns true. In all other cases, it +/// returns false after analyzing the expression and setting KnownOne and known +/// to be one in the expression. KnownZero contains all the bits that are known +/// to be zero in the expression. These are provided to potentially allow the +/// caller (which might recursively be SimplifyDemandedBits itself) to simplify +/// the expression. KnownOne and KnownZero always follow the invariant that +/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that +/// the bits in KnownOne and KnownZero may only be accurate for those bits set +/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero +/// and KnownOne must all be the same. +/// +/// This returns null if it did not change anything and it permits no +/// simplification. This returns V itself if it did some simplification of V's +/// operands based on the information about what bits are demanded. This returns +/// some other non-null value if it found out that V is equal to another value +/// in the context where the specified bits are demanded, but not for all users. +Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, + APInt &KnownZero, APInt &KnownOne, + unsigned Depth) { + assert(V != 0 && "Null pointer of Value???"); + assert(Depth <= 6 && "Limit Search Depth"); + uint32_t BitWidth = DemandedMask.getBitWidth(); + const Type *VTy = V->getType(); + assert((TD || !VTy->isPointerTy()) && + "SimplifyDemandedBits needs to know bit widths!"); + assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) && + (!VTy->isIntOrIntVectorTy() || + VTy->getScalarSizeInBits() == BitWidth) && + KnownZero.getBitWidth() == BitWidth && + KnownOne.getBitWidth() == BitWidth && + "Value *V, DemandedMask, KnownZero and KnownOne " + "must have same BitWidth"); + if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { + // We know all of the bits for a constant! + KnownOne = CI->getValue() & DemandedMask; + KnownZero = ~KnownOne & DemandedMask; + return 0; + } + if (isa<ConstantPointerNull>(V)) { + // We know all of the bits for a constant! + KnownOne.clear(); + KnownZero = DemandedMask; + return 0; + } + + KnownZero.clear(); + KnownOne.clear(); + if (DemandedMask == 0) { // Not demanding any bits from V. + if (isa<UndefValue>(V)) + return 0; + return UndefValue::get(VTy); + } + + if (Depth == 6) // Limit search depth. + return 0; + + APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); + APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) { + ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); + return 0; // Only analyze instructions. + } + + // If there are multiple uses of this value and we aren't at the root, then + // we can't do any simplifications of the operands, because DemandedMask + // only reflects the bits demanded by *one* of the users. + if (Depth != 0 && !I->hasOneUse()) { + // Despite the fact that we can't simplify this instruction in all User's + // context, we can at least compute the knownzero/knownone bits, and we can + // do simplifications that apply to *just* the one user if we know that + // this instruction has a simpler value in that context. + if (I->getOpcode() == Instruction::And) { + // If either the LHS or the RHS are Zero, the result is zero. + ComputeMaskedBits(I->getOperand(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1); + ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero, + LHSKnownZero, LHSKnownOne, Depth+1); + + // If all of the demanded bits are known 1 on one side, return the other. + // These bits cannot contribute to the result of the 'and' in this + // context. + if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == + (DemandedMask & ~LHSKnownZero)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == + (DemandedMask & ~RHSKnownZero)) + return I->getOperand(1); + + // If all of the demanded bits in the inputs are known zeros, return zero. + if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) + return Constant::getNullValue(VTy); + + } else if (I->getOpcode() == Instruction::Or) { + // We can simplify (X|Y) -> X or Y in the user's context if we know that + // only bits from X or Y are demanded. + + // If either the LHS or the RHS are One, the result is One. + ComputeMaskedBits(I->getOperand(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1); + ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, + LHSKnownZero, LHSKnownOne, Depth+1); + + // If all of the demanded bits are known zero on one side, return the + // other. These bits cannot contribute to the result of the 'or' in this + // context. + if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == + (DemandedMask & ~LHSKnownOne)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == + (DemandedMask & ~RHSKnownOne)) + return I->getOperand(1); + + // If all of the potentially set bits on one side are known to be set on + // the other side, just use the 'other' side. + if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == + (DemandedMask & (~RHSKnownZero))) + return I->getOperand(0); + if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == + (DemandedMask & (~LHSKnownZero))) + return I->getOperand(1); + } + + // Compute the KnownZero/KnownOne bits to simplify things downstream. + ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); + return 0; + } + + // If this is the root being simplified, allow it to have multiple uses, + // just set the DemandedMask to all bits so that we can try to simplify the + // operands. This allows visitTruncInst (for example) to simplify the + // operand of a trunc without duplicating all the logic below. + if (Depth == 0 && !V->hasOneUse()) + DemandedMask = APInt::getAllOnesValue(BitWidth); + + switch (I->getOpcode()) { + default: + ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth); + break; + case Instruction::And: + // If either the LHS or the RHS are Zero, the result is zero. + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known 1 on one side, return the other. + // These bits cannot contribute to the result of the 'and'. + if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == + (DemandedMask & ~LHSKnownZero)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == + (DemandedMask & ~RHSKnownZero)) + return I->getOperand(1); + + // If all of the demanded bits in the inputs are known zeros, return zero. + if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask) + return Constant::getNullValue(VTy); + + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero)) + return I; + + // Output known-1 bits are only known if set in both the LHS & RHS. + KnownOne = RHSKnownOne & LHSKnownOne; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + KnownZero = RHSKnownZero | LHSKnownZero; + break; + case Instruction::Or: + // If either the LHS or the RHS are One, the result is One. + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'or'. + if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == + (DemandedMask & ~LHSKnownOne)) + return I->getOperand(0); + if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == + (DemandedMask & ~RHSKnownOne)) + return I->getOperand(1); + + // If all of the potentially set bits on one side are known to be set on + // the other side, just use the 'other' side. + if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == + (DemandedMask & (~RHSKnownZero))) + return I->getOperand(0); + if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == + (DemandedMask & (~LHSKnownZero))) + return I->getOperand(1); + + // If the RHS is a constant, see if we can simplify it. + if (ShrinkDemandedConstant(I, 1, DemandedMask)) + return I; + + // Output known-0 bits are only known if clear in both the LHS & RHS. + KnownZero = RHSKnownZero & LHSKnownZero; + // Output known-1 are known to be set if set in either the LHS | RHS. + KnownOne = RHSKnownOne | LHSKnownOne; + break; + case Instruction::Xor: { + if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If all of the demanded bits are known zero on one side, return the other. + // These bits cannot contribute to the result of the 'xor'. + if ((DemandedMask & RHSKnownZero) == DemandedMask) + return I->getOperand(0); + if ((DemandedMask & LHSKnownZero) == DemandedMask) + return I->getOperand(1); + + // If all of the demanded bits are known to be zero on one side or the + // other, turn this into an *inclusive* or. + // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 + if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) { + Instruction *Or = + BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), + I->getName()); + return InsertNewInstBefore(Or, *I); + } + + // If all of the demanded bits on one side are known, and all of the set + // bits on that side are also known to be set on the other side, turn this + // into an AND, as we know the bits will be cleared. + // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 + if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { + // all known + if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) { + Constant *AndC = Constant::getIntegerValue(VTy, + ~RHSKnownOne & DemandedMask); + Instruction *And = + BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); + return InsertNewInstBefore(And, *I); + } + } + + // If the RHS is a constant, see if we can simplify it. + // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. + if (ShrinkDemandedConstant(I, 1, DemandedMask)) + return I; + + // If our LHS is an 'and' and if it has one use, and if any of the bits we + // are flipping are known to be set, then the xor is just resetting those + // bits to zero. We can just knock out bits from the 'and' and the 'xor', + // simplifying both of them. + if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) + if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && + isa<ConstantInt>(I->getOperand(1)) && + isa<ConstantInt>(LHSInst->getOperand(1)) && + (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) { + ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); + ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); + APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask); + + Constant *AndC = + ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); + Instruction *NewAnd = + BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp"); + InsertNewInstBefore(NewAnd, *I); + + Constant *XorC = + ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); + Instruction *NewXor = + BinaryOperator::CreateXor(NewAnd, XorC, "tmp"); + return InsertNewInstBefore(NewXor, *I); + } + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero); + break; + } + case Instruction::Select: + if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask, + RHSKnownZero, RHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); + assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); + + // If the operands are constants, see if we can simplify them. + if (ShrinkDemandedConstant(I, 1, DemandedMask) || + ShrinkDemandedConstant(I, 2, DemandedMask)) + return I; + + // Only known if known in both the LHS and RHS. + KnownOne = RHSKnownOne & LHSKnownOne; + KnownZero = RHSKnownZero & LHSKnownZero; + break; + case Instruction::Trunc: { + unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits(); + DemandedMask.zext(truncBf); + KnownZero.zext(truncBf); + KnownOne.zext(truncBf); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + KnownZero, KnownOne, Depth+1)) + return I; + DemandedMask.trunc(BitWidth); + KnownZero.trunc(BitWidth); + KnownOne.trunc(BitWidth); + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + break; + } + case Instruction::BitCast: + if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) + return 0; // vector->int or fp->int? + + if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { + if (const VectorType *SrcVTy = + dyn_cast<VectorType>(I->getOperand(0)->getType())) { + if (DstVTy->getNumElements() != SrcVTy->getNumElements()) + // Don't touch a bitcast between vectors of different element counts. + return 0; + } else + // Don't touch a scalar-to-vector bitcast. + return 0; + } else if (I->getOperand(0)->getType()->isVectorTy()) + // Don't touch a vector-to-scalar bitcast. + return 0; + + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + KnownZero, KnownOne, Depth+1)) + return I; + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + break; + case Instruction::ZExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); + + DemandedMask.trunc(SrcBitWidth); + KnownZero.trunc(SrcBitWidth); + KnownOne.trunc(SrcBitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, + KnownZero, KnownOne, Depth+1)) + return I; + DemandedMask.zext(BitWidth); + KnownZero.zext(BitWidth); + KnownOne.zext(BitWidth); + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + // The top bits are known to be zero. + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); + break; + } + case Instruction::SExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits(); + + APInt InputDemandedBits = DemandedMask & + APInt::getLowBitsSet(BitWidth, SrcBitWidth); + + APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth)); + // If any of the sign extended bits are demanded, we know that the sign + // bit is demanded. + if ((NewBits & DemandedMask) != 0) + InputDemandedBits.set(SrcBitWidth-1); + + InputDemandedBits.trunc(SrcBitWidth); + KnownZero.trunc(SrcBitWidth); + KnownOne.trunc(SrcBitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits, + KnownZero, KnownOne, Depth+1)) + return I; + InputDemandedBits.zext(BitWidth); + KnownZero.zext(BitWidth); + KnownOne.zext(BitWidth); + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + + // If the input sign bit is known zero, or if the NewBits are not demanded + // convert this into a zero extension. + if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) { + // Convert to ZExt cast + CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); + return InsertNewInstBefore(NewCast, *I); + } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set + KnownOne |= NewBits; + } + break; + } + case Instruction::Add: { + // Figure out what the input bits are. If the top bits of the and result + // are not demanded, then the add doesn't demand them from its input + // either. + unsigned NLZ = DemandedMask.countLeadingZeros(); + + // If there is a constant on the RHS, there are a variety of xformations + // we can do. + if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { + // If null, this should be simplified elsewhere. Some of the xforms here + // won't work if the RHS is zero. + if (RHS->isZero()) + break; + + // If the top bit of the output is demanded, demand everything from the + // input. Otherwise, we demand all the input bits except NLZ top bits. + APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ)); + + // Find information about known zero/one bits in the input. + if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + + // If the RHS of the add has bits set that can't affect the input, reduce + // the constant. + if (ShrinkDemandedConstant(I, 1, InDemandedBits)) + return I; + + // Avoid excess work. + if (LHSKnownZero == 0 && LHSKnownOne == 0) + break; + + // Turn it into OR if input bits are zero. + if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) { + Instruction *Or = + BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), + I->getName()); + return InsertNewInstBefore(Or, *I); + } + + // We can say something about the output known-zero and known-one bits, + // depending on potential carries from the input constant and the + // unknowns. For example if the LHS is known to have at most the 0x0F0F0 + // bits set and the RHS constant is 0x01001, then we know we have a known + // one mask of 0x00001 and a known zero mask of 0xE0F0E. + + // To compute this, we first compute the potential carry bits. These are + // the bits which may be modified. I'm not aware of a better way to do + // this scan. + const APInt &RHSVal = RHS->getValue(); + APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal)); + + // Now that we know which bits have carries, compute the known-1/0 sets. + + // Bits are known one if they are known zero in one operand and one in the + // other, and there is no input carry. + KnownOne = ((LHSKnownZero & RHSVal) | + (LHSKnownOne & ~RHSVal)) & ~CarryBits; + + // Bits are known zero if they are known zero in both operands and there + // is no input carry. + KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits; + } else { + // If the high-bits of this ADD are not demanded, then it does not demand + // the high bits of its LHS or RHS. + if (DemandedMask[BitWidth-1] == 0) { + // Right fill the mask of bits for this ADD to demand the most + // significant bit and all those below it. + APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + } + } + break; + } + case Instruction::Sub: + // If the high-bits of this SUB are not demanded, then it does not demand + // the high bits of its LHS or RHS. + if (DemandedMask[BitWidth-1] == 0) { + // Right fill the mask of bits for this SUB to demand the most + // significant bit and all those below it. + uint32_t NLZ = DemandedMask.countLeadingZeros(); + APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + } + // Otherwise just hand the sub off to ComputeMaskedBits to fill in + // the known zeros and ones. + ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); + break; + case Instruction::Shl: + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); + APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + KnownZero, KnownOne, Depth+1)) + return I; + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + KnownZero <<= ShiftAmt; + KnownOne <<= ShiftAmt; + // low bits known zero. + if (ShiftAmt) + KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); + } + break; + case Instruction::LShr: + // For a logical shift right + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); + + // Unsigned shift right. + APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + KnownZero, KnownOne, Depth+1)) + return I; + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); + KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); + if (ShiftAmt) { + // Compute the new bits that are at the top now. + APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); + KnownZero |= HighBits; // high bits known zero. + } + } + break; + case Instruction::AShr: + // If this is an arithmetic shift right and only the low-bit is set, we can + // always convert this into a logical shr, even if the shift amount is + // variable. The low bit of the shift cannot be an input sign bit unless + // the shift amount is >= the size of the datatype, which is undefined. + if (DemandedMask == 1) { + // Perform the logical shift right. + Instruction *NewVal = BinaryOperator::CreateLShr( + I->getOperand(0), I->getOperand(1), I->getName()); + return InsertNewInstBefore(NewVal, *I); + } + + // If the sign bit is the only bit demanded by this ashr, then there is no + // need to do it, the shift doesn't change the high bit. + if (DemandedMask.isSignBit()) + return I->getOperand(0); + + if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + uint32_t ShiftAmt = SA->getLimitedValue(BitWidth); + + // Signed shift right. + APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); + // If any of the "high bits" are demanded, we should set the sign bit as + // demanded. + if (DemandedMask.countLeadingZeros() <= ShiftAmt) + DemandedMaskIn.set(BitWidth-1); + if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, + KnownZero, KnownOne, Depth+1)) + return I; + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + // Compute the new bits that are at the top now. + APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); + KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); + KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); + + // Handle the sign bits. + APInt SignBit(APInt::getSignBit(BitWidth)); + // Adjust to where it is now in the mask. + SignBit = APIntOps::lshr(SignBit, ShiftAmt); + + // If the input sign bit is known to be zero, or if none of the top bits + // are demanded, turn this into an unsigned shift right. + if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] || + (HighBits & ~DemandedMask) == HighBits) { + // Perform the logical shift right. + Instruction *NewVal = BinaryOperator::CreateLShr( + I->getOperand(0), SA, I->getName()); + return InsertNewInstBefore(NewVal, *I); + } else if ((KnownOne & SignBit) != 0) { // New bits are known one. + KnownOne |= HighBits; + } + } + break; + case Instruction::SRem: + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + APInt RA = Rem->getValue().abs(); + if (RA.isPowerOf2()) { + if (DemandedMask.ult(RA)) // srem won't affect demanded bits + return I->getOperand(0); + + APInt LowBits = RA - 1; + APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), Mask2, + LHSKnownZero, LHSKnownOne, Depth+1)) + return I; + + // The low bits of LHS are unchanged by the srem. + KnownZero = LHSKnownZero & LowBits; + KnownOne = LHSKnownOne & LowBits; + + // If LHS is non-negative or has all low bits zero, then the upper bits + // are all zero. + if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits)) + KnownZero |= ~LowBits; + + // If LHS is negative and not all low bits are zero, then the upper bits + // are all one. + if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0)) + KnownOne |= ~LowBits; + + assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); + } + } + break; + case Instruction::URem: { + APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); + APInt AllOnes = APInt::getAllOnesValue(BitWidth); + if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes, + KnownZero2, KnownOne2, Depth+1) || + SimplifyDemandedBits(I->getOperandUse(1), AllOnes, + KnownZero2, KnownOne2, Depth+1)) + return I; + + unsigned Leaders = KnownZero2.countLeadingOnes(); + Leaders = std::max(Leaders, + KnownZero2.countLeadingOnes()); + KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; + break; + } + case Instruction::Call: + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::bswap: { + // If the only bits demanded come from one byte of the bswap result, + // just shift the input byte into position to eliminate the bswap. + unsigned NLZ = DemandedMask.countLeadingZeros(); + unsigned NTZ = DemandedMask.countTrailingZeros(); + + // Round NTZ down to the next byte. If we have 11 trailing zeros, then + // we need all the bits down to bit 8. Likewise, round NLZ. If we + // have 14 leading zeros, round to 8. + NLZ &= ~7; + NTZ &= ~7; + // If we need exactly one byte, we can do this transformation. + if (BitWidth-NLZ-NTZ == 8) { + unsigned ResultBit = NTZ; + unsigned InputBit = BitWidth-NTZ-8; + + // Replace this with either a left or right shift to get the byte into + // the right place. + Instruction *NewVal; + if (InputBit > ResultBit) + NewVal = BinaryOperator::CreateLShr(I->getOperand(1), + ConstantInt::get(I->getType(), InputBit-ResultBit)); + else + NewVal = BinaryOperator::CreateShl(I->getOperand(1), + ConstantInt::get(I->getType(), ResultBit-InputBit)); + NewVal->takeName(I); + return InsertNewInstBefore(NewVal, *I); + } + + // TODO: Could compute known zero/one bits based on the input. + break; + } + } + } + ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); + break; + } + + // If the client is only demanding bits that we know, return the known + // constant. + if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) + return Constant::getIntegerValue(VTy, KnownOne); + return 0; +} + + +/// SimplifyDemandedVectorElts - The specified value produces a vector with +/// any number of elements. DemandedElts contains the set of elements that are +/// actually used by the caller. This method analyzes which elements of the +/// operand are undef and returns that information in UndefElts. +/// +/// If the information about demanded elements can be used to simplify the +/// operation, the operation is simplified, then the resultant value is +/// returned. This returns null if no change was made. +Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, + APInt &UndefElts, + unsigned Depth) { + unsigned VWidth = cast<VectorType>(V->getType())->getNumElements(); + APInt EltMask(APInt::getAllOnesValue(VWidth)); + assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); + + if (isa<UndefValue>(V)) { + // If the entire vector is undefined, just return this info. + UndefElts = EltMask; + return 0; + } + + if (DemandedElts == 0) { // If nothing is demanded, provide undef. + UndefElts = EltMask; + return UndefValue::get(V->getType()); + } + + UndefElts = 0; + if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { + const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); + Constant *Undef = UndefValue::get(EltTy); + + std::vector<Constant*> Elts; + for (unsigned i = 0; i != VWidth; ++i) + if (!DemandedElts[i]) { // If not demanded, set to undef. + Elts.push_back(Undef); + UndefElts.set(i); + } else if (isa<UndefValue>(CV->getOperand(i))) { // Already undef. + Elts.push_back(Undef); + UndefElts.set(i); + } else { // Otherwise, defined. + Elts.push_back(CV->getOperand(i)); + } + + // If we changed the constant, return it. + Constant *NewCP = ConstantVector::get(Elts); + return NewCP != CV ? NewCP : 0; + } + + if (isa<ConstantAggregateZero>(V)) { + // Simplify the CAZ to a ConstantVector where the non-demanded elements are + // set to undef. + + // Check if this is identity. If so, return 0 since we are not simplifying + // anything. + if (DemandedElts.isAllOnesValue()) + return 0; + + const Type *EltTy = cast<VectorType>(V->getType())->getElementType(); + Constant *Zero = Constant::getNullValue(EltTy); + Constant *Undef = UndefValue::get(EltTy); + std::vector<Constant*> Elts; + for (unsigned i = 0; i != VWidth; ++i) { + Constant *Elt = DemandedElts[i] ? Zero : Undef; + Elts.push_back(Elt); + } + UndefElts = DemandedElts ^ EltMask; + return ConstantVector::get(Elts); + } + + // Limit search depth. + if (Depth == 10) + return 0; + + // If multiple users are using the root value, procede with + // simplification conservatively assuming that all elements + // are needed. + if (!V->hasOneUse()) { + // Quit if we find multiple users of a non-root value though. + // They'll be handled when it's their turn to be visited by + // the main instcombine process. + if (Depth != 0) + // TODO: Just compute the UndefElts information recursively. + return 0; + + // Conservatively assume that all elements are needed. + DemandedElts = EltMask; + } + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) return 0; // Only analyze instructions. + + bool MadeChange = false; + APInt UndefElts2(VWidth, 0); + Value *TmpV; + switch (I->getOpcode()) { + default: break; + + case Instruction::InsertElement: { + // If this is a variable index, we don't know which element it overwrites. + // demand exactly the same input as we produce. + ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); + if (Idx == 0) { + // Note that we can't propagate undef elt info, because we don't know + // which elt is getting updated. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + break; + } + + // If this is inserting an element that isn't demanded, remove this + // insertelement. + unsigned IdxNo = Idx->getZExtValue(); + if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { + Worklist.Add(I); + return I->getOperand(0); + } + + // Otherwise, the element inserted overwrites whatever was there, so the + // input demanded set is simpler than the output set. + APInt DemandedElts2 = DemandedElts; + DemandedElts2.clear(IdxNo); + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2, + UndefElts, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + + // The inserted element is defined. + UndefElts.clear(IdxNo); + break; + } + case Instruction::ShuffleVector: { + ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I); + uint64_t LHSVWidth = + cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements(); + APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0); + for (unsigned i = 0; i < VWidth; i++) { + if (DemandedElts[i]) { + unsigned MaskVal = Shuffle->getMaskValue(i); + if (MaskVal != -1u) { + assert(MaskVal < LHSVWidth * 2 && + "shufflevector mask index out of range!"); + if (MaskVal < LHSVWidth) + LeftDemanded.set(MaskVal); + else + RightDemanded.set(MaskVal - LHSVWidth); + } + } + } + + APInt UndefElts4(LHSVWidth, 0); + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded, + UndefElts4, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + + APInt UndefElts3(LHSVWidth, 0); + TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded, + UndefElts3, Depth+1); + if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } + + bool NewUndefElts = false; + for (unsigned i = 0; i < VWidth; i++) { + unsigned MaskVal = Shuffle->getMaskValue(i); + if (MaskVal == -1u) { + UndefElts.set(i); + } else if (MaskVal < LHSVWidth) { + if (UndefElts4[MaskVal]) { + NewUndefElts = true; + UndefElts.set(i); + } + } else { + if (UndefElts3[MaskVal - LHSVWidth]) { + NewUndefElts = true; + UndefElts.set(i); + } + } + } + + if (NewUndefElts) { + // Add additional discovered undefs. + std::vector<Constant*> Elts; + for (unsigned i = 0; i < VWidth; ++i) { + if (UndefElts[i]) + Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); + else + Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), + Shuffle->getMaskValue(i))); + } + I->setOperand(2, ConstantVector::get(Elts)); + MadeChange = true; + } + break; + } + case Instruction::BitCast: { + // Vector->vector casts only. + const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); + if (!VTy) break; + unsigned InVWidth = VTy->getNumElements(); + APInt InputDemandedElts(InVWidth, 0); + unsigned Ratio; + + if (VWidth == InVWidth) { + // If we are converting from <4 x i32> -> <4 x f32>, we demand the same + // elements as are demanded of us. + Ratio = 1; + InputDemandedElts = DemandedElts; + } else if (VWidth > InVWidth) { + // Untested so far. + break; + + // If there are more elements in the result than there are in the source, + // then an input element is live if any of the corresponding output + // elements are live. + Ratio = VWidth/InVWidth; + for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { + if (DemandedElts[OutIdx]) + InputDemandedElts.set(OutIdx/Ratio); + } + } else { + // Untested so far. + break; + + // If there are more elements in the source than there are in the result, + // then an input element is live if the corresponding output element is + // live. + Ratio = InVWidth/VWidth; + for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) + if (DemandedElts[InIdx/Ratio]) + InputDemandedElts.set(InIdx); + } + + // div/rem demand all inputs, because they don't want divide by zero. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts, + UndefElts2, Depth+1); + if (TmpV) { + I->setOperand(0, TmpV); + MadeChange = true; + } + + UndefElts = UndefElts2; + if (VWidth > InVWidth) { + llvm_unreachable("Unimp"); + // If there are more elements in the result than there are in the source, + // then an output element is undef if the corresponding input element is + // undef. + for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) + if (UndefElts2[OutIdx/Ratio]) + UndefElts.set(OutIdx); + } else if (VWidth < InVWidth) { + llvm_unreachable("Unimp"); + // If there are more elements in the source than there are in the result, + // then a result element is undef if all of the corresponding input + // elements are undef. + UndefElts = ~0ULL >> (64-VWidth); // Start out all undef. + for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) + if (!UndefElts2[InIdx]) // Not undef? + UndefElts.clear(InIdx/Ratio); // Clear undef bit. + } + break; + } + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + // div/rem demand all inputs, because they don't want divide by zero. + TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts, + UndefElts, Depth+1); + if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; } + TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; } + + // Output elements are undefined if both are undefined. Consider things + // like undef&0. The result is known zero, not undef. + UndefElts &= UndefElts2; + break; + + case Instruction::Call: { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); + if (!II) break; + switch (II->getIntrinsicID()) { + default: break; + + // Binary vector operations that work column-wise. A dest element is a + // function of the corresponding input elements from the two inputs. + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse_min_ss: + case Intrinsic::x86_sse_max_ss: + case Intrinsic::x86_sse2_sub_sd: + case Intrinsic::x86_sse2_mul_sd: + case Intrinsic::x86_sse2_min_sd: + case Intrinsic::x86_sse2_max_sd: + TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, + UndefElts, Depth+1); + if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; } + TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts, + UndefElts2, Depth+1); + if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; } + + // If only the low elt is demanded and this is a scalarizable intrinsic, + // scalarize it now. + if (DemandedElts == 1) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse2_sub_sd: + case Intrinsic::x86_sse2_mul_sd: + // TODO: Lower MIN/MAX/ABS/etc + Value *LHS = II->getOperand(1); + Value *RHS = II->getOperand(2); + // Extract the element as scalars. + LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS, + ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); + RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS, + ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II); + + switch (II->getIntrinsicID()) { + default: llvm_unreachable("Case stmts out of sync!"); + case Intrinsic::x86_sse_sub_ss: + case Intrinsic::x86_sse2_sub_sd: + TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS, + II->getName()), *II); + break; + case Intrinsic::x86_sse_mul_ss: + case Intrinsic::x86_sse2_mul_sd: + TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS, + II->getName()), *II); + break; + } + + Instruction *New = + InsertElementInst::Create( + UndefValue::get(II->getType()), TmpV, + ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false), + II->getName()); + InsertNewInstBefore(New, *II); + return New; + } + } + + // Output elements are undefined if both are undefined. Consider things + // like undef&0. The result is known zero, not undef. + UndefElts &= UndefElts2; + break; + } + break; + } + } + return MadeChange ? I : 0; +} |