diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp | 116 |
1 files changed, 80 insertions, 36 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp index 27716b8..a7f8005 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp @@ -13,6 +13,7 @@ #include "InstCombine.h" #include "llvm/IntrinsicInst.h" +#include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace PatternMatch; @@ -21,25 +22,6 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - // shl X, 0 == X and shr X, 0 == X - // shl 0, X == 0 and shr 0, X == 0 - if (Op1 == Constant::getNullValue(Op1->getType()) || - Op0 == Constant::getNullValue(Op0->getType())) - return ReplaceInstUsesWith(I, Op0); - - if (isa<UndefValue>(Op0)) { - if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef - return ReplaceInstUsesWith(I, Op0); - else // undef << X -> 0, undef >>u X -> 0 - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); - } - if (isa<UndefValue>(Op1)) { - if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X - return ReplaceInstUsesWith(I, Op0); - else // X << undef, X >>u undef -> 0 - return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); - } - // See if we can fold away this shift. if (SimplifyDemandedInstructionBits(I)) return &I; @@ -53,6 +35,20 @@ Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) return Res; + + // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. + // Because shifts by negative values (which could occur if A were negative) + // are undefined. + Value *A; const APInt *B; + if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { + // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't + // demand the sign bit (and many others) here?? + Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1), + Op1->getName()); + I.setOperand(1, Rem); + return &I; + } + return 0; } @@ -81,7 +77,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, // if the needed bits are already zero in the input. This allows us to reuse // the value which means that we don't care if the shift has multiple uses. // TODO: Handle opposite shift by exact value. - ConstantInt *CI; + ConstantInt *CI = 0; if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { if (CI->getZExtValue() == NumBits) { @@ -131,9 +127,9 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't // profitable unless we know the and'd out bits are already zero. if (CI->getZExtValue() > NumBits) { - unsigned HighBits = CI->getZExtValue() - NumBits; + unsigned LowBits = TypeWidth - CI->getZExtValue(); if (MaskedValueIsZero(I->getOperand(0), - APInt::getHighBitsSet(TypeWidth, HighBits))) + APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) return true; } @@ -157,7 +153,7 @@ static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, if (CI->getZExtValue() > NumBits) { unsigned LowBits = CI->getZExtValue() - NumBits; if (MaskedValueIsZero(I->getOperand(0), - APInt::getLowBitsSet(TypeWidth, LowBits))) + APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) return true; } @@ -622,16 +618,49 @@ Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, } Instruction *InstCombiner::visitShl(BinaryOperator &I) { - return commonShiftTransforms(I); + if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), + I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), + TD)) + return ReplaceInstUsesWith(I, V); + + if (Instruction *V = commonShiftTransforms(I)) + return V; + + if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) { + unsigned ShAmt = Op1C->getZExtValue(); + + // If the shifted-out value is known-zero, then this is a NUW shift. + if (!I.hasNoUnsignedWrap() && + MaskedValueIsZero(I.getOperand(0), + APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) { + I.setHasNoUnsignedWrap(); + return &I; + } + + // If the shifted out value is all signbits, this is a NSW shift. + if (!I.hasNoSignedWrap() && + ComputeNumSignBits(I.getOperand(0)) > ShAmt) { + I.setHasNoSignedWrap(); + return &I; + } + } + + return 0; } Instruction *InstCombiner::visitLShr(BinaryOperator &I) { + if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), + I.isExact(), TD)) + return ReplaceInstUsesWith(I, V); + if (Instruction *R = commonShiftTransforms(I)) return R; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) + if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { + unsigned ShAmt = Op1C->getZExtValue(); + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); // ctlz.i32(x)>>5 --> zext(x == 0) @@ -640,7 +669,7 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) { if ((II->getIntrinsicID() == Intrinsic::ctlz || II->getIntrinsicID() == Intrinsic::cttz || II->getIntrinsicID() == Intrinsic::ctpop) && - isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == Op1C->getZExtValue()){ + isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) { bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop; Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0); Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS); @@ -648,29 +677,37 @@ Instruction *InstCombiner::visitLShr(BinaryOperator &I) { } } + // If the shifted-out value is known-zero, then this is an exact shift. + if (!I.isExact() && + MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){ + I.setIsExact(); + return &I; + } + } + return 0; } Instruction *InstCombiner::visitAShr(BinaryOperator &I) { + if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), + I.isExact(), TD)) + return ReplaceInstUsesWith(I, V); + if (Instruction *R = commonShiftTransforms(I)) return R; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - - if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0)) { - // ashr int -1, X = -1 (for any arithmetic shift rights of ~0) - if (CSI->isAllOnesValue()) - return ReplaceInstUsesWith(I, CSI); - } - + if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { + unsigned ShAmt = Op1C->getZExtValue(); + // If the input is a SHL by the same constant (ashr (shl X, C), C), then we // have a sign-extend idiom. Value *X; if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) { - // If the input value is known to already be sign extended enough, delete - // the extension. - if (ComputeNumSignBits(X) > Op1C->getZExtValue()) + // If the left shift is just shifting out partial signbits, delete the + // extension. + if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) return ReplaceInstUsesWith(I, X); // If the input is an extension from the shifted amount value, e.g. @@ -685,6 +722,13 @@ Instruction *InstCombiner::visitAShr(BinaryOperator &I) { return new SExtInst(ZI->getOperand(0), ZI->getType()); } } + + // If the shifted-out value is known-zero, then this is an exact shift. + if (!I.isExact() && + MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){ + I.setIsExact(); + return &I; + } } // See if we can turn a signed shr into an unsigned shr. |