diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp | 1157 |
1 files changed, 1157 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp new file mode 100644 index 0000000..bf3c33e --- /dev/null +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineSelect.cpp @@ -0,0 +1,1157 @@ +//===- InstCombineSelect.cpp ----------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitSelect function. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/IR/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "instcombine" + +/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms, +/// returning the kind and providing the out parameter results if we +/// successfully match. +static SelectPatternFlavor +MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) { + SelectInst *SI = dyn_cast<SelectInst>(V); + if (!SI) return SPF_UNKNOWN; + + ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition()); + if (!ICI) return SPF_UNKNOWN; + + ICmpInst::Predicate Pred = ICI->getPredicate(); + Value *CmpLHS = ICI->getOperand(0); + Value *CmpRHS = ICI->getOperand(1); + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + + LHS = CmpLHS; + RHS = CmpRHS; + + // (icmp X, Y) ? X : Y + if (TrueVal == CmpLHS && FalseVal == CmpRHS) { + switch (Pred) { + default: return SPF_UNKNOWN; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return SPF_UMAX; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return SPF_SMAX; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return SPF_UMIN; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return SPF_SMIN; + } + } + + // (icmp X, Y) ? Y : X + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + switch (Pred) { + default: return SPF_UNKNOWN; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return SPF_UMIN; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return SPF_SMIN; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return SPF_UMAX; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return SPF_SMAX; + } + } + + if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { + if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || + (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { + + // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X + // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X + if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { + return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS; + } + + // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X + // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X + if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { + return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS; + } + } + } + + // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) + + return SPF_UNKNOWN; +} + + +/// GetSelectFoldableOperands - We want to turn code that looks like this: +/// %C = or %A, %B +/// %D = select %cond, %C, %A +/// into: +/// %C = select %cond, %B, 0 +/// %D = or %A, %C +/// +/// Assuming that the specified instruction is an operand to the select, return +/// a bitmask indicating which operands of this instruction are foldable if they +/// equal the other incoming value of the select. +/// +static unsigned GetSelectFoldableOperands(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + return 3; // Can fold through either operand. + case Instruction::Sub: // Can only fold on the amount subtracted. + case Instruction::Shl: // Can only fold on the shift amount. + case Instruction::LShr: + case Instruction::AShr: + return 1; + default: + return 0; // Cannot fold + } +} + +/// GetSelectFoldableConstant - For the same transformation as the previous +/// function, return the identity constant that goes into the select. +static Constant *GetSelectFoldableConstant(Instruction *I) { + switch (I->getOpcode()) { + default: llvm_unreachable("This cannot happen!"); + case Instruction::Add: + case Instruction::Sub: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return Constant::getNullValue(I->getType()); + case Instruction::And: + return Constant::getAllOnesValue(I->getType()); + case Instruction::Mul: + return ConstantInt::get(I->getType(), 1); + } +} + +/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI +/// have the same opcode and only one use each. Try to simplify this. +Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, + Instruction *FI) { + if (TI->getNumOperands() == 1) { + // If this is a non-volatile load or a cast from the same type, + // merge. + if (TI->isCast()) { + Type *FIOpndTy = FI->getOperand(0)->getType(); + if (TI->getOperand(0)->getType() != FIOpndTy) + return nullptr; + // The select condition may be a vector. We may only change the operand + // type if the vector width remains the same (and matches the condition). + Type *CondTy = SI.getCondition()->getType(); + if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() || + CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())) + return nullptr; + } else { + return nullptr; // unknown unary op. + } + + // Fold this by inserting a select from the input values. + Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), + FI->getOperand(0), SI.getName()+".v"); + return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, + TI->getType()); + } + + // Only handle binary operators here. + if (!isa<BinaryOperator>(TI)) + return nullptr; + + // Figure out if the operations have any operands in common. + Value *MatchOp, *OtherOpT, *OtherOpF; + bool MatchIsOpZero; + if (TI->getOperand(0) == FI->getOperand(0)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(1)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = false; + } else if (!TI->isCommutative()) { + return nullptr; + } else if (TI->getOperand(0) == FI->getOperand(1)) { + MatchOp = TI->getOperand(0); + OtherOpT = TI->getOperand(1); + OtherOpF = FI->getOperand(0); + MatchIsOpZero = true; + } else if (TI->getOperand(1) == FI->getOperand(0)) { + MatchOp = TI->getOperand(1); + OtherOpT = TI->getOperand(0); + OtherOpF = FI->getOperand(1); + MatchIsOpZero = true; + } else { + return nullptr; + } + + // If we reach here, they do have operations in common. + Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, + OtherOpF, SI.getName()+".v"); + + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { + if (MatchIsOpZero) + return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); + else + return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); + } + llvm_unreachable("Shouldn't get here"); +} + +static bool isSelect01(Constant *C1, Constant *C2) { + ConstantInt *C1I = dyn_cast<ConstantInt>(C1); + if (!C1I) + return false; + ConstantInt *C2I = dyn_cast<ConstantInt>(C2); + if (!C2I) + return false; + if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. + return false; + return C1I->isOne() || C1I->isAllOnesValue() || + C2I->isOne() || C2I->isAllOnesValue(); +} + +/// FoldSelectIntoOp - Try fold the select into one of the operands to +/// facilitate further optimization. +Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, + Value *FalseVal) { + // See the comment above GetSelectFoldableOperands for a description of the + // transformation we are doing here. + if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { + if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && + !isa<Constant>(FalseVal)) { + if (unsigned SFO = GetSelectFoldableOperands(TVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(TVI); + Value *OOp = TVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0, 1 and -1. + if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { + Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); + NewSel->takeName(TVI); + BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); + BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), + FalseVal, NewSel); + if (isa<PossiblyExactOperator>(BO)) + BO->setIsExact(TVI_BO->isExact()); + if (isa<OverflowingBinaryOperator>(BO)) { + BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap()); + BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap()); + } + return BO; + } + } + } + } + } + + if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { + if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && + !isa<Constant>(TrueVal)) { + if (unsigned SFO = GetSelectFoldableOperands(FVI)) { + unsigned OpToFold = 0; + if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { + OpToFold = 1; + } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { + OpToFold = 2; + } + + if (OpToFold) { + Constant *C = GetSelectFoldableConstant(FVI); + Value *OOp = FVI->getOperand(2-OpToFold); + // Avoid creating select between 2 constants unless it's selecting + // between 0, 1 and -1. + if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { + Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); + NewSel->takeName(FVI); + BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); + BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), + TrueVal, NewSel); + if (isa<PossiblyExactOperator>(BO)) + BO->setIsExact(FVI_BO->isExact()); + if (isa<OverflowingBinaryOperator>(BO)) { + BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap()); + BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap()); + } + return BO; + } + } + } + } + } + + return nullptr; +} + +/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is +/// replaced with RepOp. +static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, + const DataLayout *TD, + const TargetLibraryInfo *TLI, + DominatorTree *DT, AssumptionCache *AC) { + // Trivial replacement. + if (V == Op) + return RepOp; + + Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return nullptr; + + // If this is a binary operator, try to simplify it with the replaced op. + if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) { + if (B->getOperand(0) == Op) + return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI); + if (B->getOperand(1) == Op) + return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI); + } + + // Same for CmpInsts. + if (CmpInst *C = dyn_cast<CmpInst>(I)) { + if (C->getOperand(0) == Op) + return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD, + TLI, DT, AC); + if (C->getOperand(1) == Op) + return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD, + TLI, DT, AC); + } + + // TODO: We could hand off more cases to instsimplify here. + + // If all operands are constant after substituting Op for RepOp then we can + // constant fold the instruction. + if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { + // Build a list of all constant operands. + SmallVector<Constant*, 8> ConstOps; + for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { + if (I->getOperand(i) == Op) + ConstOps.push_back(CRepOp); + else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) + ConstOps.push_back(COp); + else + break; + } + + // All operands were constants, fold it. + if (ConstOps.size() == I->getNumOperands()) { + if (CmpInst *C = dyn_cast<CmpInst>(I)) + return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], + ConstOps[1], TD, TLI); + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + if (!LI->isVolatile()) + return ConstantFoldLoadFromConstPtr(ConstOps[0], TD); + + return ConstantFoldInstOperands(I->getOpcode(), I->getType(), + ConstOps, TD, TLI); + } + } + + return nullptr; +} + +/// foldSelectICmpAndOr - We want to turn: +/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) +/// into: +/// (or (shl (and X, C1), C3), y) +/// iff: +/// C1 and C2 are both powers of 2 +/// where: +/// C3 = Log(C2) - Log(C1) +/// +/// This transform handles cases where: +/// 1. The icmp predicate is inverted +/// 2. The select operands are reversed +/// 3. The magnitude of C2 and C1 are flipped +static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, + Value *FalseVal, + InstCombiner::BuilderTy *Builder) { + const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); + if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) + return nullptr; + + Value *CmpLHS = IC->getOperand(0); + Value *CmpRHS = IC->getOperand(1); + + if (!match(CmpRHS, m_Zero())) + return nullptr; + + Value *X; + const APInt *C1; + if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) + return nullptr; + + const APInt *C2; + bool OrOnTrueVal = false; + bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); + if (!OrOnFalseVal) + OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); + + if (!OrOnFalseVal && !OrOnTrueVal) + return nullptr; + + Value *V = CmpLHS; + Value *Y = OrOnFalseVal ? TrueVal : FalseVal; + + unsigned C1Log = C1->logBase2(); + unsigned C2Log = C2->logBase2(); + if (C2Log > C1Log) { + V = Builder->CreateZExtOrTrunc(V, Y->getType()); + V = Builder->CreateShl(V, C2Log - C1Log); + } else if (C1Log > C2Log) { + V = Builder->CreateLShr(V, C1Log - C2Log); + V = Builder->CreateZExtOrTrunc(V, Y->getType()); + } else + V = Builder->CreateZExtOrTrunc(V, Y->getType()); + + ICmpInst::Predicate Pred = IC->getPredicate(); + if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || + (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) + V = Builder->CreateXor(V, *C2); + + return Builder->CreateOr(V, Y); +} + +/// visitSelectInstWithICmp - Visit a SelectInst that has an +/// ICmpInst as its first operand. +/// +Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, + ICmpInst *ICI) { + bool Changed = false; + ICmpInst::Predicate Pred = ICI->getPredicate(); + Value *CmpLHS = ICI->getOperand(0); + Value *CmpRHS = ICI->getOperand(1); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + // Check cases where the comparison is with a constant that + // can be adjusted to fit the min/max idiom. We may move or edit ICI + // here, so make sure the select is the only user. + if (ICI->hasOneUse()) + if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { + // X < MIN ? T : F --> F + if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT) + && CI->isMinValue(Pred == ICmpInst::ICMP_SLT)) + return ReplaceInstUsesWith(SI, FalseVal); + // X > MAX ? T : F --> F + else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT) + && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT)) + return ReplaceInstUsesWith(SI, FalseVal); + switch (Pred) { + default: break; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_SGT: { + // These transformations only work for selects over integers. + IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); + if (!SelectTy) + break; + + Constant *AdjustedRHS; + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) + AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); + else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) + AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); + + // X > C ? X : C+1 --> X < C+1 ? C+1 : X + // X < C ? X : C-1 --> X > C-1 ? C-1 : X + if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || + (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) + ; // Nothing to do here. Values match without any sign/zero extension. + + // Types do not match. Instead of calculating this with mixed types + // promote all to the larger type. This enables scalar evolution to + // analyze this expression. + else if (CmpRHS->getType()->getScalarSizeInBits() + < SelectTy->getBitWidth()) { + Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); + + // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X + // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X + // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X + // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X + if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && + sextRHS == FalseVal) { + CmpLHS = TrueVal; + AdjustedRHS = sextRHS; + } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && + sextRHS == TrueVal) { + CmpLHS = FalseVal; + AdjustedRHS = sextRHS; + } else if (ICI->isUnsigned()) { + Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); + // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X + // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X + // zext + signed compare cannot be changed: + // 0xff <s 0x00, but 0x00ff >s 0x0000 + if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && + zextRHS == FalseVal) { + CmpLHS = TrueVal; + AdjustedRHS = zextRHS; + } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && + zextRHS == TrueVal) { + CmpLHS = FalseVal; + AdjustedRHS = zextRHS; + } else + break; + } else + break; + } else + break; + + Pred = ICmpInst::getSwappedPredicate(Pred); + CmpRHS = AdjustedRHS; + std::swap(FalseVal, TrueVal); + ICI->setPredicate(Pred); + ICI->setOperand(0, CmpLHS); + ICI->setOperand(1, CmpRHS); + SI.setOperand(1, TrueVal); + SI.setOperand(2, FalseVal); + + // Move ICI instruction right before the select instruction. Otherwise + // the sext/zext value may be defined after the ICI instruction uses it. + ICI->moveBefore(&SI); + + Changed = true; + break; + } + } + } + + // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 + // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 + // FIXME: Type and constness constraints could be lifted, but we have to + // watch code size carefully. We should consider xor instead of + // sub/add when we decide to do that. + if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { + if (TrueVal->getType() == Ty) { + if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { + ConstantInt *C1 = nullptr, *C2 = nullptr; + if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { + C1 = dyn_cast<ConstantInt>(TrueVal); + C2 = dyn_cast<ConstantInt>(FalseVal); + } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { + C1 = dyn_cast<ConstantInt>(FalseVal); + C2 = dyn_cast<ConstantInt>(TrueVal); + } + if (C1 && C2) { + // This shift results in either -1 or 0. + Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); + + // Check if we can express the operation with a single or. + if (C2->isAllOnesValue()) + return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); + + Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); + return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); + } + } + } + } + + // If we have an equality comparison then we know the value in one of the + // arms of the select. See if substituting this value into the arm and + // simplifying the result yields the same value as the other arm. + if (Pred == ICmpInst::ICMP_EQ) { + if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == + TrueVal || + SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == + TrueVal) + return ReplaceInstUsesWith(SI, FalseVal); + if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == + FalseVal || + SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == + FalseVal) + return ReplaceInstUsesWith(SI, FalseVal); + } else if (Pred == ICmpInst::ICMP_NE) { + if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == + FalseVal || + SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == + FalseVal) + return ReplaceInstUsesWith(SI, TrueVal); + if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, DL, TLI, DT, AC) == + TrueVal || + SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, DL, TLI, DT, AC) == + TrueVal) + return ReplaceInstUsesWith(SI, TrueVal); + } + + // NOTE: if we wanted to, this is where to detect integer MIN/MAX + + if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { + if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { + // Transform (X == C) ? X : Y -> (X == C) ? C : Y + SI.setOperand(1, CmpRHS); + Changed = true; + } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { + // Transform (X != C) ? Y : X -> (X != C) ? Y : C + SI.setOperand(2, CmpRHS); + Changed = true; + } + } + + if (unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits()) { + APInt MinSignedValue = APInt::getSignBit(BitWidth); + Value *X; + const APInt *Y, *C; + bool TrueWhenUnset; + bool IsBitTest = false; + if (ICmpInst::isEquality(Pred) && + match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && + match(CmpRHS, m_Zero())) { + IsBitTest = true; + TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; + } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { + X = CmpLHS; + Y = &MinSignedValue; + IsBitTest = true; + TrueWhenUnset = false; + } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { + X = CmpLHS; + Y = &MinSignedValue; + IsBitTest = true; + TrueWhenUnset = true; + } + if (IsBitTest) { + Value *V = nullptr; + // (X & Y) == 0 ? X : X ^ Y --> X & ~Y + if (TrueWhenUnset && TrueVal == X && + match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) + V = Builder->CreateAnd(X, ~(*Y)); + // (X & Y) != 0 ? X ^ Y : X --> X & ~Y + else if (!TrueWhenUnset && FalseVal == X && + match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) + V = Builder->CreateAnd(X, ~(*Y)); + // (X & Y) == 0 ? X ^ Y : X --> X | Y + else if (TrueWhenUnset && FalseVal == X && + match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) + V = Builder->CreateOr(X, *Y); + // (X & Y) != 0 ? X : X ^ Y --> X | Y + else if (!TrueWhenUnset && TrueVal == X && + match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) + V = Builder->CreateOr(X, *Y); + + if (V) + return ReplaceInstUsesWith(SI, V); + } + } + + if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) + return ReplaceInstUsesWith(SI, V); + + return Changed ? &SI : nullptr; +} + + +/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a +/// PHI node (but the two may be in different blocks). See if the true/false +/// values (V) are live in all of the predecessor blocks of the PHI. For +/// example, cases like this cannot be mapped: +/// +/// X = phi [ C1, BB1], [C2, BB2] +/// Y = add +/// Z = select X, Y, 0 +/// +/// because Y is not live in BB1/BB2. +/// +static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, + const SelectInst &SI) { + // If the value is a non-instruction value like a constant or argument, it + // can always be mapped. + const Instruction *I = dyn_cast<Instruction>(V); + if (!I) return true; + + // If V is a PHI node defined in the same block as the condition PHI, we can + // map the arguments. + const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); + + if (const PHINode *VP = dyn_cast<PHINode>(I)) + if (VP->getParent() == CondPHI->getParent()) + return true; + + // Otherwise, if the PHI and select are defined in the same block and if V is + // defined in a different block, then we can transform it. + if (SI.getParent() == CondPHI->getParent() && + I->getParent() != CondPHI->getParent()) + return true; + + // Otherwise we have a 'hard' case and we can't tell without doing more + // detailed dominator based analysis, punt. + return false; +} + +/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form: +/// SPF2(SPF1(A, B), C) +Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, + SelectPatternFlavor SPF1, + Value *A, Value *B, + Instruction &Outer, + SelectPatternFlavor SPF2, Value *C) { + if (C == A || C == B) { + // MAX(MAX(A, B), B) -> MAX(A, B) + // MIN(MIN(a, b), a) -> MIN(a, b) + if (SPF1 == SPF2) + return ReplaceInstUsesWith(Outer, Inner); + + // MAX(MIN(a, b), a) -> a + // MIN(MAX(a, b), a) -> a + if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || + (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || + (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || + (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) + return ReplaceInstUsesWith(Outer, C); + } + + if (SPF1 == SPF2) { + if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { + if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { + APInt ACB = CB->getValue(); + APInt ACC = CC->getValue(); + + // MIN(MIN(A, 23), 97) -> MIN(A, 23) + // MAX(MAX(A, 97), 23) -> MAX(A, 97) + if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || + (SPF1 == SPF_SMIN && ACB.sle(ACC)) || + (SPF1 == SPF_UMAX && ACB.uge(ACC)) || + (SPF1 == SPF_SMAX && ACB.sge(ACC))) + return ReplaceInstUsesWith(Outer, Inner); + + // MIN(MIN(A, 97), 23) -> MIN(A, 23) + // MAX(MAX(A, 23), 97) -> MAX(A, 97) + if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || + (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || + (SPF1 == SPF_UMAX && ACB.ult(ACC)) || + (SPF1 == SPF_SMAX && ACB.slt(ACC))) { + Outer.replaceUsesOfWith(Inner, A); + return &Outer; + } + } + } + } + + // ABS(ABS(X)) -> ABS(X) + // NABS(NABS(X)) -> NABS(X) + if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { + return ReplaceInstUsesWith(Outer, Inner); + } + + // ABS(NABS(X)) -> ABS(X) + // NABS(ABS(X)) -> NABS(X) + if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || + (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { + SelectInst *SI = cast<SelectInst>(Inner); + Value *NewSI = Builder->CreateSelect( + SI->getCondition(), SI->getFalseValue(), SI->getTrueValue()); + return ReplaceInstUsesWith(Outer, NewSI); + } + return nullptr; +} + +/// foldSelectICmpAnd - If one of the constants is zero (we know they can't +/// both be) and we have an icmp instruction with zero, and we have an 'and' +/// with the non-constant value and a power of two we can turn the select +/// into a shift on the result of the 'and'. +static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, + ConstantInt *FalseVal, + InstCombiner::BuilderTy *Builder) { + const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); + if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) + return nullptr; + + if (!match(IC->getOperand(1), m_Zero())) + return nullptr; + + ConstantInt *AndRHS; + Value *LHS = IC->getOperand(0); + if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) + return nullptr; + + // If both select arms are non-zero see if we have a select of the form + // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic + // for 'x ? 2^n : 0' and fix the thing up at the end. + ConstantInt *Offset = nullptr; + if (!TrueVal->isZero() && !FalseVal->isZero()) { + if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) + Offset = FalseVal; + else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) + Offset = TrueVal; + else + return nullptr; + + // Adjust TrueVal and FalseVal to the offset. + TrueVal = ConstantInt::get(Builder->getContext(), + TrueVal->getValue() - Offset->getValue()); + FalseVal = ConstantInt::get(Builder->getContext(), + FalseVal->getValue() - Offset->getValue()); + } + + // Make sure the mask in the 'and' and one of the select arms is a power of 2. + if (!AndRHS->getValue().isPowerOf2() || + (!TrueVal->getValue().isPowerOf2() && + !FalseVal->getValue().isPowerOf2())) + return nullptr; + + // Determine which shift is needed to transform result of the 'and' into the + // desired result. + ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; + unsigned ValZeros = ValC->getValue().logBase2(); + unsigned AndZeros = AndRHS->getValue().logBase2(); + + // If types don't match we can still convert the select by introducing a zext + // or a trunc of the 'and'. The trunc case requires that all of the truncated + // bits are zero, we can figure that out by looking at the 'and' mask. + if (AndZeros >= ValC->getBitWidth()) + return nullptr; + + Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); + if (ValZeros > AndZeros) + V = Builder->CreateShl(V, ValZeros - AndZeros); + else if (ValZeros < AndZeros) + V = Builder->CreateLShr(V, AndZeros - ValZeros); + + // Okay, now we know that everything is set up, we just don't know whether we + // have a icmp_ne or icmp_eq and whether the true or false val is the zero. + bool ShouldNotVal = !TrueVal->isZero(); + ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; + if (ShouldNotVal) + V = Builder->CreateXor(V, ValC); + + // Apply an offset if needed. + if (Offset) + V = Builder->CreateAdd(V, Offset); + return V; +} + +Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { + Value *CondVal = SI.getCondition(); + Value *TrueVal = SI.getTrueValue(); + Value *FalseVal = SI.getFalseValue(); + + if (Value *V = + SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC)) + return ReplaceInstUsesWith(SI, V); + + if (SI.getType()->isIntegerTy(1)) { + if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { + if (C->getZExtValue()) { + // Change: A = select B, true, C --> A = or B, C + return BinaryOperator::CreateOr(CondVal, FalseVal); + } + // Change: A = select B, false, C --> A = and !B, C + Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); + return BinaryOperator::CreateAnd(NotCond, FalseVal); + } + if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { + if (C->getZExtValue() == false) { + // Change: A = select B, C, false --> A = and B, C + return BinaryOperator::CreateAnd(CondVal, TrueVal); + } + // Change: A = select B, C, true --> A = or !B, C + Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); + return BinaryOperator::CreateOr(NotCond, TrueVal); + } + + // select a, b, a -> a&b + // select a, a, b -> a|b + if (CondVal == TrueVal) + return BinaryOperator::CreateOr(CondVal, FalseVal); + if (CondVal == FalseVal) + return BinaryOperator::CreateAnd(CondVal, TrueVal); + + // select a, ~a, b -> (~a)&b + // select a, b, ~a -> (~a)|b + if (match(TrueVal, m_Not(m_Specific(CondVal)))) + return BinaryOperator::CreateAnd(TrueVal, FalseVal); + if (match(FalseVal, m_Not(m_Specific(CondVal)))) + return BinaryOperator::CreateOr(TrueVal, FalseVal); + } + + // Selecting between two integer constants? + if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) + if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { + // select C, 1, 0 -> zext C to int + if (FalseValC->isZero() && TrueValC->getValue() == 1) + return new ZExtInst(CondVal, SI.getType()); + + // select C, -1, 0 -> sext C to int + if (FalseValC->isZero() && TrueValC->isAllOnesValue()) + return new SExtInst(CondVal, SI.getType()); + + // select C, 0, 1 -> zext !C to int + if (TrueValC->isZero() && FalseValC->getValue() == 1) { + Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); + return new ZExtInst(NotCond, SI.getType()); + } + + // select C, 0, -1 -> sext !C to int + if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { + Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); + return new SExtInst(NotCond, SI.getType()); + } + + if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) + return ReplaceInstUsesWith(SI, V); + } + + // See if we are selecting two values based on a comparison of the two values. + if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { + if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { + // Transform (X == Y) ? X : Y -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X une Y) ? X : Y -> X + if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, TrueVal); + } + + // Canonicalize to use ordered comparisons by swapping the select + // operands. + // + // e.g. + // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X + if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { + FCmpInst::Predicate InvPred = FCI->getInversePredicate(); + Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, + FCI->getName() + ".inv"); + + return SelectInst::Create(NewCond, FalseVal, TrueVal, + SI.getName() + ".p"); + } + + // NOTE: if we wanted to, this is where to detect MIN/MAX + } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ + // Transform (X == Y) ? Y : X -> X + if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, FalseVal); + } + // Transform (X une Y) ? Y : X -> Y + if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { + // This is not safe in general for floating point: + // consider X== -0, Y== +0. + // It becomes safe if either operand is a nonzero constant. + ConstantFP *CFPt, *CFPf; + if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && + !CFPt->getValueAPF().isZero()) || + ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && + !CFPf->getValueAPF().isZero())) + return ReplaceInstUsesWith(SI, TrueVal); + } + + // Canonicalize to use ordered comparisons by swapping the select + // operands. + // + // e.g. + // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y + if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { + FCmpInst::Predicate InvPred = FCI->getInversePredicate(); + Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, + FCI->getName() + ".inv"); + + return SelectInst::Create(NewCond, FalseVal, TrueVal, + SI.getName() + ".p"); + } + + // NOTE: if we wanted to, this is where to detect MIN/MAX + } + // NOTE: if we wanted to, this is where to detect ABS + } + + // See if we are selecting two values based on a comparison of the two values. + if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) + if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) + return Result; + + if (Instruction *TI = dyn_cast<Instruction>(TrueVal)) + if (Instruction *FI = dyn_cast<Instruction>(FalseVal)) + if (TI->hasOneUse() && FI->hasOneUse()) { + Instruction *AddOp = nullptr, *SubOp = nullptr; + + // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) + if (TI->getOpcode() == FI->getOpcode()) + if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) + return IV; + + // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is + // even legal for FP. + if ((TI->getOpcode() == Instruction::Sub && + FI->getOpcode() == Instruction::Add) || + (TI->getOpcode() == Instruction::FSub && + FI->getOpcode() == Instruction::FAdd)) { + AddOp = FI; SubOp = TI; + } else if ((FI->getOpcode() == Instruction::Sub && + TI->getOpcode() == Instruction::Add) || + (FI->getOpcode() == Instruction::FSub && + TI->getOpcode() == Instruction::FAdd)) { + AddOp = TI; SubOp = FI; + } + + if (AddOp) { + Value *OtherAddOp = nullptr; + if (SubOp->getOperand(0) == AddOp->getOperand(0)) { + OtherAddOp = AddOp->getOperand(1); + } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { + OtherAddOp = AddOp->getOperand(0); + } + + if (OtherAddOp) { + // So at this point we know we have (Y -> OtherAddOp): + // select C, (add X, Y), (sub X, Z) + Value *NegVal; // Compute -Z + if (SI.getType()->isFPOrFPVectorTy()) { + NegVal = Builder->CreateFNeg(SubOp->getOperand(1)); + if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { + FastMathFlags Flags = AddOp->getFastMathFlags(); + Flags &= SubOp->getFastMathFlags(); + NegInst->setFastMathFlags(Flags); + } + } else { + NegVal = Builder->CreateNeg(SubOp->getOperand(1)); + } + + Value *NewTrueOp = OtherAddOp; + Value *NewFalseOp = NegVal; + if (AddOp != TI) + std::swap(NewTrueOp, NewFalseOp); + Value *NewSel = + Builder->CreateSelect(CondVal, NewTrueOp, + NewFalseOp, SI.getName() + ".p"); + + if (SI.getType()->isFPOrFPVectorTy()) { + Instruction *RI = + BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); + + FastMathFlags Flags = AddOp->getFastMathFlags(); + Flags &= SubOp->getFastMathFlags(); + RI->setFastMathFlags(Flags); + return RI; + } else + return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); + } + } + } + + // See if we can fold the select into one of our operands. + if (SI.getType()->isIntegerTy()) { + if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) + return FoldI; + + // MAX(MAX(a, b), a) -> MAX(a, b) + // MIN(MIN(a, b), a) -> MIN(a, b) + // MAX(MIN(a, b), a) -> a + // MIN(MAX(a, b), a) -> a + Value *LHS, *RHS, *LHS2, *RHS2; + if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) { + if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2)) + if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, + SI, SPF, RHS)) + return R; + if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2)) + if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, + SI, SPF, LHS)) + return R; + } + + // TODO. + // ABS(-X) -> ABS(X) + } + + // See if we can fold the select into a phi node if the condition is a select. + if (isa<PHINode>(SI.getCondition())) + // The true/false values have to be live in the PHI predecessor's blocks. + if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && + CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) + if (Instruction *NV = FoldOpIntoPhi(SI)) + return NV; + + if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { + if (TrueSI->getCondition() == CondVal) { + if (SI.getTrueValue() == TrueSI->getTrueValue()) + return nullptr; + SI.setOperand(1, TrueSI->getTrueValue()); + return &SI; + } + } + if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { + if (FalseSI->getCondition() == CondVal) { + if (SI.getFalseValue() == FalseSI->getFalseValue()) + return nullptr; + SI.setOperand(2, FalseSI->getFalseValue()); + return &SI; + } + } + + if (BinaryOperator::isNot(CondVal)) { + SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); + SI.setOperand(1, FalseVal); + SI.setOperand(2, TrueVal); + return &SI; + } + + if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) { + unsigned VWidth = VecTy->getNumElements(); + APInt UndefElts(VWidth, 0); + APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); + if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { + if (V != &SI) + return ReplaceInstUsesWith(SI, V); + return &SI; + } + + if (isa<ConstantAggregateZero>(CondVal)) { + return ReplaceInstUsesWith(SI, FalseVal); + } + } + + return nullptr; +} |