summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp741
1 files changed, 741 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 0000000..35a0bbb
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,741 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+
+/// simplifyValueKnownNonZero - The specific integer value is used in a context
+/// where it is known to be non-zero. If this allows us to simplify the
+/// computation, do so and return the new operand, otherwise return null.
+static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
+ // If V has multiple uses, then we would have to do more analysis to determine
+ // if this is safe. For example, the use could be in dynamically unreached
+ // code.
+ if (!V->hasOneUse()) return 0;
+
+ bool MadeChange = false;
+
+ // ((1 << A) >>u B) --> (1 << (A-B))
+ // Because V cannot be zero, we know that B is less than A.
+ Value *A = 0, *B = 0, *PowerOf2 = 0;
+ if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
+ m_Value(B))) &&
+ // The "1" can be any value known to be a power of 2.
+ isPowerOfTwo(PowerOf2, IC.getTargetData())) {
+ A = IC.Builder->CreateSub(A, B);
+ return IC.Builder->CreateShl(PowerOf2, A);
+ }
+
+ // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
+ // inexact. Similarly for <<.
+ if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
+ if (I->isLogicalShift() &&
+ isPowerOfTwo(I->getOperand(0), IC.getTargetData())) {
+ // We know that this is an exact/nuw shift and that the input is a
+ // non-zero context as well.
+ if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
+ I->setOperand(0, V2);
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
+ I->setIsExact();
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
+ I->setHasNoUnsignedWrap();
+ MadeChange = true;
+ }
+ }
+
+ // TODO: Lots more we could do here:
+ // If V is a phi node, we can call this on each of its operands.
+ // "select cond, X, 0" can simplify to "X".
+
+ return MadeChange ? V : 0;
+}
+
+
+/// MultiplyOverflows - True if the multiply can not be expressed in an int
+/// this size.
+static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
+ uint32_t W = C1->getBitWidth();
+ APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
+ if (sign) {
+ LHSExt = LHSExt.sext(W * 2);
+ RHSExt = RHSExt.sext(W * 2);
+ } else {
+ LHSExt = LHSExt.zext(W * 2);
+ RHSExt = RHSExt.zext(W * 2);
+ }
+
+ APInt MulExt = LHSExt * RHSExt;
+
+ if (!sign)
+ return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
+
+ APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
+ APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
+ return MulExt.slt(Min) || MulExt.sgt(Max);
+}
+
+Instruction *InstCombiner::visitMul(BinaryOperator &I) {
+ bool Changed = SimplifyAssociativeOrCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyMulInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return ReplaceInstUsesWith(I, V);
+
+ if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
+ return BinaryOperator::CreateNeg(Op0, I.getName());
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+
+ // ((X << C1)*C2) == (X * (C2 << C1))
+ if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
+ if (SI->getOpcode() == Instruction::Shl)
+ if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
+ return BinaryOperator::CreateMul(SI->getOperand(0),
+ ConstantExpr::getShl(CI, ShOp));
+
+ const APInt &Val = CI->getValue();
+ if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
+ Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
+ BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
+ if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
+ if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
+ return Shl;
+ }
+
+ // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
+ { Value *X; ConstantInt *C1;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
+ Value *Add = Builder->CreateMul(X, CI);
+ return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
+ }
+ }
+
+ // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
+ // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
+ // The "* (2**n)" thus becomes a potential shifting opportunity.
+ {
+ const APInt & Val = CI->getValue();
+ const APInt &PosVal = Val.abs();
+ if (Val.isNegative() && PosVal.isPowerOf2()) {
+ Value *X = 0, *Y = 0;
+ if (Op0->hasOneUse()) {
+ ConstantInt *C1;
+ Value *Sub = 0;
+ if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
+ Sub = Builder->CreateSub(X, Y, "suba");
+ else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
+ Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
+ if (Sub)
+ return
+ BinaryOperator::CreateMul(Sub,
+ ConstantInt::get(Y->getType(), PosVal));
+ }
+ }
+ }
+ }
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castNegVal(Op1))
+ return BinaryOperator::CreateMul(Op0v, Op1v);
+
+ // (X / Y) * Y = X - (X % Y)
+ // (X / Y) * -Y = (X % Y) - X
+ {
+ Value *Op1C = Op1;
+ BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
+ if (!BO ||
+ (BO->getOpcode() != Instruction::UDiv &&
+ BO->getOpcode() != Instruction::SDiv)) {
+ Op1C = Op0;
+ BO = dyn_cast<BinaryOperator>(Op1);
+ }
+ Value *Neg = dyn_castNegVal(Op1C);
+ if (BO && BO->hasOneUse() &&
+ (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
+ (BO->getOpcode() == Instruction::UDiv ||
+ BO->getOpcode() == Instruction::SDiv)) {
+ Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
+
+ // If the division is exact, X % Y is zero, so we end up with X or -X.
+ if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
+ if (SDiv->isExact()) {
+ if (Op1BO == Op1C)
+ return ReplaceInstUsesWith(I, Op0BO);
+ return BinaryOperator::CreateNeg(Op0BO);
+ }
+
+ Value *Rem;
+ if (BO->getOpcode() == Instruction::UDiv)
+ Rem = Builder->CreateURem(Op0BO, Op1BO);
+ else
+ Rem = Builder->CreateSRem(Op0BO, Op1BO);
+ Rem->takeName(BO);
+
+ if (Op1BO == Op1C)
+ return BinaryOperator::CreateSub(Op0BO, Rem);
+ return BinaryOperator::CreateSub(Rem, Op0BO);
+ }
+ }
+
+ /// i1 mul -> i1 and.
+ if (I.getType()->isIntegerTy(1))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op1, Y);
+ if (match(Op1, m_Shl(m_One(), m_Value(Y))))
+ return BinaryOperator::CreateShl(Op0, Y);
+ }
+
+ // If one of the operands of the multiply is a cast from a boolean value, then
+ // we know the bool is either zero or one, so this is a 'masking' multiply.
+ // X * Y (where Y is 0 or 1) -> X & (0-Y)
+ if (!I.getType()->isVectorTy()) {
+ // -2 is "-1 << 1" so it is all bits set except the low one.
+ APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
+
+ Value *BoolCast = 0, *OtherOp = 0;
+ if (MaskedValueIsZero(Op0, Negative2))
+ BoolCast = Op0, OtherOp = Op1;
+ else if (MaskedValueIsZero(Op1, Negative2))
+ BoolCast = Op1, OtherOp = Op0;
+
+ if (BoolCast) {
+ Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
+ BoolCast);
+ return BinaryOperator::CreateAnd(V, OtherOp);
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+ bool Changed = SimplifyAssociativeOrCommutative(I);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // Simplify mul instructions with a constant RHS.
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1C)) {
+ // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
+ // ANSI says we can drop signals, so we can do this anyway." (from GCC)
+ if (Op1F->isExactlyValue(1.0))
+ return ReplaceInstUsesWith(I, Op0); // Eliminate 'fmul double %X, 1.0'
+ } else if (ConstantDataVector *Op1V = dyn_cast<ConstantDataVector>(Op1C)) {
+ // As above, vector X*splat(1.0) -> X in all defined cases.
+ if (ConstantFP *F = dyn_cast_or_null<ConstantFP>(Op1V->getSplatValue()))
+ if (F->isExactlyValue(1.0))
+ return ReplaceInstUsesWith(I, Op0);
+ }
+
+ // Try to fold constant mul into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
+ if (Value *Op1v = dyn_castFNegVal(Op1))
+ return BinaryOperator::CreateFMul(Op0v, Op1v);
+
+ return Changed ? &I : 0;
+}
+
+/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
+/// instruction.
+bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
+ SelectInst *SI = cast<SelectInst>(I.getOperand(1));
+
+ // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+ int NonNullOperand = -1;
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
+ if (ST->isNullValue())
+ NonNullOperand = 2;
+ // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+ if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
+ if (ST->isNullValue())
+ NonNullOperand = 1;
+
+ if (NonNullOperand == -1)
+ return false;
+
+ Value *SelectCond = SI->getOperand(0);
+
+ // Change the div/rem to use 'Y' instead of the select.
+ I.setOperand(1, SI->getOperand(NonNullOperand));
+
+ // Okay, we know we replace the operand of the div/rem with 'Y' with no
+ // problem. However, the select, or the condition of the select may have
+ // multiple uses. Based on our knowledge that the operand must be non-zero,
+ // propagate the known value for the select into other uses of it, and
+ // propagate a known value of the condition into its other users.
+
+ // If the select and condition only have a single use, don't bother with this,
+ // early exit.
+ if (SI->use_empty() && SelectCond->hasOneUse())
+ return true;
+
+ // Scan the current block backward, looking for other uses of SI.
+ BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
+
+ while (BBI != BBFront) {
+ --BBI;
+ // If we found a call to a function, we can't assume it will return, so
+ // information from below it cannot be propagated above it.
+ if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
+ break;
+
+ // Replace uses of the select or its condition with the known values.
+ for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
+ I != E; ++I) {
+ if (*I == SI) {
+ *I = SI->getOperand(NonNullOperand);
+ Worklist.Add(BBI);
+ } else if (*I == SelectCond) {
+ *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
+ ConstantInt::getFalse(BBI->getContext());
+ Worklist.Add(BBI);
+ }
+ }
+
+ // If we past the instruction, quit looking for it.
+ if (&*BBI == SI)
+ SI = 0;
+ if (&*BBI == SelectCond)
+ SelectCond = 0;
+
+ // If we ran out of things to eliminate, break out of the loop.
+ if (SelectCond == 0 && SI == 0)
+ break;
+
+ }
+ return true;
+}
+
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// @brief Common integer divide transforms
+Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: [su]div X, (select Cond, Y, Z)
+ // This does not apply for fdiv.
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // (X / C1) / C2 -> X / (C1*C2)
+ if (Instruction *LHS = dyn_cast<Instruction>(Op0))
+ if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
+ if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
+ if (MultiplyOverflows(RHS, LHSRHS,
+ I.getOpcode()==Instruction::SDiv))
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+ return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
+ ConstantExpr::getMul(RHS, LHSRHS));
+ }
+
+ if (!RHS->isZero()) { // avoid X udiv 0
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+ }
+
+ // See if we can fold away this div instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
+ Value *X = 0, *Z = 0;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
+ bool isSigned = I.getOpcode() == Instruction::SDiv;
+ if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ return BinaryOperator::Create(I.getOpcode(), X, Op1);
+ }
+
+ return 0;
+}
+
+/// dyn_castZExtVal - Checks if V is a zext or constant that can
+/// be truncated to Ty without losing bits.
+static Value *dyn_castZExtVal(Value *V, Type *Ty) {
+ if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
+ if (Z->getSrcTy() == Ty)
+ return Z->getOperand(0);
+ } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
+ if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
+ return ConstantExpr::getTrunc(C, Ty);
+ }
+ return 0;
+}
+
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ {
+ // X udiv 2^C -> X >> C
+ // Check to see if this is an unsigned division with an exact power of 2,
+ // if so, convert to a right shift.
+ const APInt *C;
+ if (match(Op1, m_Power2(C))) {
+ BinaryOperator *LShr =
+ BinaryOperator::CreateLShr(Op0,
+ ConstantInt::get(Op0->getType(),
+ C->logBase2()));
+ if (I.isExact()) LShr->setIsExact();
+ return LShr;
+ }
+ }
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
+ // X udiv C, where C >= signbit
+ if (C->getValue().isNegative()) {
+ Value *IC = Builder->CreateICmpULT(Op0, C);
+ return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
+ ConstantInt::get(I.getType(), 1));
+ }
+ }
+
+ // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+ { const APInt *CI; Value *N;
+ if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
+ match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
+ if (*CI != 1)
+ N = Builder->CreateAdd(N, ConstantInt::get(I.getType(),CI->logBase2()));
+ if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
+ N = Builder->CreateZExt(N, Z->getDestTy());
+ if (I.isExact())
+ return BinaryOperator::CreateExactLShr(Op0, N);
+ return BinaryOperator::CreateLShr(Op0, N);
+ }
+ }
+
+ // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
+ // where C1&C2 are powers of two.
+ { Value *Cond; const APInt *C1, *C2;
+ if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
+ // Construct the "on true" case of the select
+ Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
+ I.isExact());
+
+ // Construct the "on false" case of the select
+ Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
+ I.isExact());
+
+ // construct the select instruction and return it.
+ return SelectInst::Create(Cond, TSI, FSI);
+ }
+ }
+
+ // (zext A) udiv (zext B) --> zext (A udiv B)
+ if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
+ if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
+ return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
+ I.isExact()),
+ I.getType());
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifySDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
+ // sdiv X, -1 == -X
+ if (RHS->isAllOnesValue())
+ return BinaryOperator::CreateNeg(Op0);
+
+ // sdiv X, C --> ashr exact X, log2(C)
+ if (I.isExact() && RHS->getValue().isNonNegative() &&
+ RHS->getValue().isPowerOf2()) {
+ Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
+ RHS->getValue().exactLogBase2());
+ return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
+ }
+
+ // -X/C --> X/-C provided the negation doesn't overflow.
+ if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
+ if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
+ return BinaryOperator::CreateSDiv(Sub->getOperand(1),
+ ConstantExpr::getNeg(RHS));
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a udiv.
+ if (I.getType()->isIntegerTy()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask)) {
+ if (MaskedValueIsZero(Op1, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+
+ if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+ const APFloat &Op1F = Op1C->getValueAPF();
+
+ // If the divisor has an exact multiplicative inverse we can turn the fdiv
+ // into a cheaper fmul.
+ APFloat Reciprocal(Op1F.getSemantics());
+ if (Op1F.getExactInverse(&Reciprocal)) {
+ ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
+ return BinaryOperator::CreateFMul(Op0, RFP);
+ }
+ }
+
+ return 0;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// @brief Common integer remainder transforms
+Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ if (isa<ConstantInt>(Op1)) {
+ if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ } else if (isa<PHINode>(Op0I)) {
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ // See if we can fold away this rem instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitURem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyURemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ if (Instruction *common = commonIRemTransforms(I))
+ return common;
+
+ // X urem C^2 -> X and C-1
+ { const APInt *C;
+ if (match(Op1, m_Power2(C)))
+ return BinaryOperator::CreateAnd(Op0,
+ ConstantInt::get(I.getType(), *C-1));
+ }
+
+ // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
+ if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
+ Constant *N1 = Constant::getAllOnesValue(I.getType());
+ Value *Add = Builder->CreateAdd(Op1, N1);
+ return BinaryOperator::CreateAnd(Op0, Add);
+ }
+
+ // urem X, (select Cond, 2^C1, 2^C2) -->
+ // select Cond, (and X, C1-1), (and X, C2-1)
+ // when C1&C2 are powers of two.
+ { Value *Cond; const APInt *C1, *C2;
+ if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
+ Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
+ Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
+ return SelectInst::Create(Cond, TrueAnd, FalseAnd);
+ }
+ }
+
+ // (zext A) urem (zext B) --> zext (A urem B)
+ if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
+ if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
+ return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
+ I.getType());
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifySRemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle the integer rem common cases
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
+
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
+ if (!isa<Constant>(RHSNeg) ||
+ (isa<ConstantInt>(RHSNeg) &&
+ cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
+ // X % -Y -> X % Y
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, RHSNeg);
+ return &I;
+ }
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a urem.
+ if (I.getType()->isIntegerTy()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+ }
+ }
+
+ // If it's a constant vector, flip any negative values positive.
+ if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
+ Constant *C = cast<Constant>(Op1);
+ unsigned VWidth = C->getType()->getVectorNumElements();
+
+ bool hasNegative = false;
+ bool hasMissing = false;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (Elt == 0) {
+ hasMissing = true;
+ break;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
+ if (RHS->isNegative())
+ hasNegative = true;
+ }
+
+ if (hasNegative && !hasMissing) {
+ SmallVector<Constant *, 16> Elts(VWidth);
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
+ if (RHS->isNegative())
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+ }
+ }
+
+ Constant *NewRHSV = ConstantVector::get(Elts);
+ if (NewRHSV != C) { // Don't loop on -MININT
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, NewRHSV);
+ return &I;
+ }
+ }
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
+ return ReplaceInstUsesWith(I, V);
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
+ return &I;
+
+ return 0;
+}
OpenPOWER on IntegriCloud