diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp | 362 |
1 files changed, 226 insertions, 136 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp index a759548..6c6e7d8 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp @@ -15,10 +15,12 @@ #include "InstCombine.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/IntrinsicInst.h" -#include "llvm/Support/PatternMatch.h" +#include "llvm/IR/PatternMatch.h" using namespace llvm; using namespace PatternMatch; +#define DEBUG_TYPE "instcombine" + /// simplifyValueKnownNonZero - The specific integer value is used in a context /// where it is known to be non-zero. If this allows us to simplify the @@ -27,13 +29,13 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { // If V has multiple uses, then we would have to do more analysis to determine // if this is safe. For example, the use could be in dynamically unreached // code. - if (!V->hasOneUse()) return 0; + if (!V->hasOneUse()) return nullptr; bool MadeChange = false; // ((1 << A) >>u B) --> (1 << (A-B)) // Because V cannot be zero, we know that B is less than A. - Value *A = 0, *B = 0, *PowerOf2 = 0; + Value *A = nullptr, *B = nullptr, *PowerOf2 = nullptr; if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))), m_Value(B))) && // The "1" can be any value known to be a power of 2. @@ -68,7 +70,7 @@ static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) { // If V is a phi node, we can call this on each of its operands. // "select cond, X, 0" can simplify to "X". - return MadeChange ? V : 0; + return MadeChange ? V : nullptr; } @@ -107,7 +109,7 @@ static Constant *getLogBase2Vector(ConstantDataVector *CV) { for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { Constant *Elt = CV->getElementAsConstant(I); if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2()) - return 0; + return nullptr; Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2())); } @@ -118,7 +120,10 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyMulInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifyMulInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (Value *V = SimplifyUsingDistributiveLaws(I)) @@ -139,7 +144,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { return BinaryOperator::CreateMul(NewOp, ConstantExpr::getShl(C1, C2)); if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) { - Constant *NewCst = 0; + Constant *NewCst = nullptr; if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2()) // Replace X*(2^C) with X << C, where C is either a scalar or a splat. NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2()); @@ -158,15 +163,6 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - // Canonicalize (X+C1)*CI -> X*CI+C1*CI. - { Value *X; ConstantInt *C1; - if (Op0->hasOneUse() && - match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) { - Value *Add = Builder->CreateMul(X, CI); - return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI)); - } - } - // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n // The "* (2**n)" thus becomes a potential shifting opportunity. @@ -174,10 +170,10 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { const APInt & Val = CI->getValue(); const APInt &PosVal = Val.abs(); if (Val.isNegative() && PosVal.isPowerOf2()) { - Value *X = 0, *Y = 0; + Value *X = nullptr, *Y = nullptr; if (Op0->hasOneUse()) { ConstantInt *C1; - Value *Sub = 0; + Value *Sub = nullptr; if (match(Op0, m_Sub(m_Value(Y), m_Value(X)))) Sub = Builder->CreateSub(X, Y, "suba"); else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1)))) @@ -201,6 +197,19 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { if (isa<PHINode>(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; + + // Canonicalize (X+C1)*CI -> X*CI+C1*CI. + { + Value *X; + Constant *C1; + if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) { + Value *Mul = Builder->CreateMul(C1, Op1); + // Only go forward with the transform if C1*CI simplifies to a tidier + // constant. + if (!match(Mul, m_Mul(m_Value(), m_Value()))) + return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul); + } + } } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y @@ -247,7 +256,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } /// i1 mul -> i1 and. - if (I.getType()->isIntegerTy(1)) + if (I.getType()->getScalarType()->isIntegerTy(1)) return BinaryOperator::CreateAnd(Op0, Op1); // X*(1 << Y) --> X << Y @@ -267,7 +276,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { // -2 is "-1 << 1" so it is all bits set except the low one. APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true); - Value *BoolCast = 0, *OtherOp = 0; + Value *BoolCast = nullptr, *OtherOp = nullptr; if (MaskedValueIsZero(Op0, Negative2)) BoolCast = Op0, OtherOp = Op1; else if (MaskedValueIsZero(Op1, Negative2)) @@ -280,7 +289,7 @@ Instruction *InstCombiner::visitMul(BinaryOperator &I) { } } - return Changed ? &I : 0; + return Changed ? &I : nullptr; } // @@ -313,16 +322,41 @@ static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) { if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra()) return; - ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0)); - if (CFP && CFP->isExactlyValue(0.5)) { + if (match(I->getOperand(0), m_SpecificFP(0.5))) Y = I->getOperand(1); - return; - } - CFP = dyn_cast<ConstantFP>(I->getOperand(1)); - if (CFP && CFP->isExactlyValue(0.5)) + else if (match(I->getOperand(1), m_SpecificFP(0.5))) Y = I->getOperand(0); } +static bool isFiniteNonZeroFp(Constant *C) { + if (C->getType()->isVectorTy()) { + for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; + ++I) { + ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); + if (!CFP || !CFP->getValueAPF().isFiniteNonZero()) + return false; + } + return true; + } + + return isa<ConstantFP>(C) && + cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero(); +} + +static bool isNormalFp(Constant *C) { + if (C->getType()->isVectorTy()) { + for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; + ++I) { + ConstantFP *CFP = dyn_cast<ConstantFP>(C->getAggregateElement(I)); + if (!CFP || !CFP->getValueAPF().isNormal()) + return false; + } + return true; + } + + return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal(); +} + /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns /// true iff the given value is FMul or FDiv with one and only one operand /// being a normal constant (i.e. not Zero/NaN/Infinity). @@ -332,19 +366,13 @@ static bool isFMulOrFDivWithConstant(Value *V) { I->getOpcode() != Instruction::FDiv)) return false; - ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0)); - ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1)); + Constant *C0 = dyn_cast<Constant>(I->getOperand(0)); + Constant *C1 = dyn_cast<Constant>(I->getOperand(1)); if (C0 && C1) return false; - return (C0 && C0->getValueAPF().isFiniteNonZero()) || - (C1 && C1->getValueAPF().isFiniteNonZero()); -} - -static bool isNormalFp(const ConstantFP *C) { - const APFloat &Flt = C->getValueAPF(); - return Flt.isNormal(); + return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1)); } /// foldFMulConst() is a helper routine of InstCombiner::visitFMul(). @@ -354,41 +382,41 @@ static bool isNormalFp(const ConstantFP *C) { /// resulting expression. Note that this function could return NULL in /// case the constants cannot be folded into a normal floating-point. /// -Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, ConstantFP *C, +Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C, Instruction *InsertBefore) { assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid"); Value *Opnd0 = FMulOrDiv->getOperand(0); Value *Opnd1 = FMulOrDiv->getOperand(1); - ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); - ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + Constant *C0 = dyn_cast<Constant>(Opnd0); + Constant *C1 = dyn_cast<Constant>(Opnd1); - BinaryOperator *R = 0; + BinaryOperator *R = nullptr; // (X * C0) * C => X * (C0*C) if (FMulOrDiv->getOpcode() == Instruction::FMul) { Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C); - if (isNormalFp(cast<ConstantFP>(F))) + if (isNormalFp(F)) R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F); } else { if (C0) { // (C0 / X) * C => (C0 * C) / X if (FMulOrDiv->hasOneUse()) { // It would otherwise introduce another div. - ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C)); + Constant *F = ConstantExpr::getFMul(C0, C); if (isNormalFp(F)) R = BinaryOperator::CreateFDiv(F, Opnd1); } } else { // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal - ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1)); + Constant *F = ConstantExpr::getFDiv(C, C1); if (isNormalFp(F)) { R = BinaryOperator::CreateFMul(Opnd0, F); } else { // (X / C1) * C => X / (C1/C) Constant *F = ConstantExpr::getFDiv(C1, C); - if (isNormalFp(cast<ConstantFP>(F))) + if (isNormalFp(F)) R = BinaryOperator::CreateFDiv(Opnd0, F); } } @@ -406,10 +434,13 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { bool Changed = SimplifyAssociativeOrCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + if (isa<Constant>(Op0)) std::swap(Op0, Op1); - if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD)) + if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL)) return ReplaceInstUsesWith(I, V); bool AllowReassociate = I.hasUnsafeAlgebra(); @@ -425,17 +456,23 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (Instruction *NV = FoldOpIntoPhi(I)) return NV; - ConstantFP *C = dyn_cast<ConstantFP>(Op1); - if (C && AllowReassociate && C->getValueAPF().isFiniteNonZero()) { + // (fmul X, -1.0) --> (fsub -0.0, X) + if (match(Op1, m_SpecificFP(-1.0))) { + Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType()); + Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0); + RI->copyFastMathFlags(&I); + return RI; + } + + Constant *C = cast<Constant>(Op1); + if (AllowReassociate && isFiniteNonZeroFp(C)) { // Let MDC denote an expression in one of these forms: // X * C, C/X, X/C, where C is a constant. // // Try to simplify "MDC * Constant" - if (isFMulOrFDivWithConstant(Op0)) { - Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I); - if (V) + if (isFMulOrFDivWithConstant(Op0)) + if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I)) return ReplaceInstUsesWith(I, V); - } // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C) Instruction *FAddSub = dyn_cast<Instruction>(Op0); @@ -444,8 +481,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { FAddSub->getOpcode() == Instruction::FSub)) { Value *Opnd0 = FAddSub->getOperand(0); Value *Opnd1 = FAddSub->getOperand(1); - ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0); - ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1); + Constant *C0 = dyn_cast<Constant>(Opnd0); + Constant *C1 = dyn_cast<Constant>(Opnd1); bool Swap = false; if (C0) { std::swap(C0, C1); @@ -453,12 +490,11 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Swap = true; } - if (C1 && C1->getValueAPF().isFiniteNonZero() && - isFMulOrFDivWithConstant(Opnd0)) { + if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) { Value *M1 = ConstantExpr::getFMul(C1, C); - Value *M0 = isNormalFp(cast<ConstantFP>(M1)) ? + Value *M0 = isNormalFp(cast<Constant>(M1)) ? foldFMulConst(cast<Instruction>(Opnd0), C, &I) : - 0; + nullptr; if (M0 && M1) { if (Swap && FAddSub->getOpcode() == Instruction::FSub) std::swap(M0, M1); @@ -478,8 +514,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { // Under unsafe algebra do: // X * log2(0.5*Y) = X*log2(Y) - X if (I.hasUnsafeAlgebra()) { - Value *OpX = NULL; - Value *OpY = NULL; + Value *OpX = nullptr; + Value *OpY = nullptr; IntrinsicInst *Log2; detectLog2OfHalf(Op0, OpY, Log2); if (OpY) { @@ -515,8 +551,11 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign); // -X * -Y => X*Y - if (N1) - return BinaryOperator::CreateFMul(N0, N1); + if (N1) { + Value *FMul = Builder->CreateFMul(N0, N1); + FMul->takeName(&I); + return ReplaceInstUsesWith(I, FMul); + } if (Opnd0->hasOneUse()) { // -X * Y => -(X*Y) (Promote negation as high as possible) @@ -539,7 +578,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { Value *Opnd0_0, *Opnd0_1; if (Opnd0->hasOneUse() && match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) { - Value *Y = 0; + Value *Y = nullptr; if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1) Y = Opnd0_1; else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1) @@ -564,7 +603,8 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { if (!match(RHS, m_UIToFP(m_Value(C)))) std::swap(LHS, RHS); - if (match(RHS, m_UIToFP(m_Value(C))) && C->getType()->isIntegerTy(1)) { + if (match(RHS, m_UIToFP(m_Value(C))) && + C->getType()->getScalarType()->isIntegerTy(1)) { B = LHS; Value *Zero = ConstantFP::getNegativeZero(B->getType()); return SelectInst::Create(C, B, Zero); @@ -579,7 +619,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { std::swap(LHS, RHS); if (match(RHS, m_FSub(m_FPOne(), m_UIToFP(m_Value(C)))) && - C->getType()->isIntegerTy(1)) { + C->getType()->getScalarType()->isIntegerTy(1)) { A = LHS; Value *Zero = ConstantFP::getNegativeZero(A->getType()); return SelectInst::Create(C, Zero, A); @@ -592,7 +632,7 @@ Instruction *InstCombiner::visitFMul(BinaryOperator &I) { break; } - return Changed ? &I : 0; + return Changed ? &I : nullptr; } /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select @@ -653,12 +693,12 @@ bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) { // If we past the instruction, quit looking for it. if (&*BBI == SI) - SI = 0; + SI = nullptr; if (&*BBI == SelectCond) - SelectCond = 0; + SelectCond = nullptr; // If we ran out of things to eliminate, break out of the loop. - if (SelectCond == 0 && SI == 0) + if (!SelectCond && !SI) break; } @@ -690,7 +730,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode()) if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) { if (MultiplyOverflows(RHS, LHSRHS, - I.getOpcode()==Instruction::SDiv)) + I.getOpcode() == Instruction::SDiv)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0), ConstantExpr::getMul(RHS, LHSRHS)); @@ -706,12 +746,31 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { } } + if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) { + if (One->isOne() && !I.getType()->isIntegerTy(1)) { + bool isSigned = I.getOpcode() == Instruction::SDiv; + if (isSigned) { + // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the + // result is one, if Op1 is -1 then the result is minus one, otherwise + // it's zero. + Value *Inc = Builder->CreateAdd(Op1, One); + Value *Cmp = Builder->CreateICmpULT( + Inc, ConstantInt::get(I.getType(), 3)); + return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0)); + } else { + // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the + // result is one, otherwise it's zero. + return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType()); + } + } + } + // See if we can fold away this div instruction. if (SimplifyDemandedInstructionBits(I)) return &I; // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y - Value *X = 0, *Z = 0; + Value *X = nullptr, *Z = nullptr; if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1 bool isSigned = I.getOpcode() == Instruction::SDiv; if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) || @@ -719,7 +778,7 @@ Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) { return BinaryOperator::Create(I.getOpcode(), X, Op1); } - return 0; + return nullptr; } /// dyn_castZExtVal - Checks if V is a zext or constant that can @@ -732,7 +791,7 @@ static Value *dyn_castZExtVal(Value *V, Type *Ty) { if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth()) return ConstantExpr::getTrunc(C, Ty); } - return 0; + return nullptr; } namespace { @@ -757,7 +816,7 @@ struct UDivFoldAction { }; UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand) - : FoldAction(FA), OperandToFold(InputOperand), FoldResult(0) {} + : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {} UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS) : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {} }; @@ -836,7 +895,8 @@ static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) if (size_t LHSIdx = visitUDivOperand(Op0, SI->getOperand(1), I, Actions)) if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions)) { - Actions.push_back(UDivFoldAction((FoldUDivOperandCb)0, Op1, LHSIdx-1)); + Actions.push_back(UDivFoldAction((FoldUDivOperandCb)nullptr, Op1, + LHSIdx-1)); return Actions.size(); } @@ -846,7 +906,10 @@ static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I, Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyUDivInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifyUDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer div common cases @@ -854,13 +917,11 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { return Common; // (x lshr C1) udiv C2 --> x udiv (C2 << C1) - if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) { + if (Constant *C2 = dyn_cast<Constant>(Op1)) { Value *X; - ConstantInt *C1; - if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) { - APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1)); - return BinaryOperator::CreateUDiv(X, Builder->getInt(NC)); - } + Constant *C1; + if (match(Op0, m_LShr(m_Value(X), m_Constant(C1)))) + return BinaryOperator::CreateUDiv(X, ConstantExpr::getShl(C2, C1)); } // (zext A) udiv (zext B) --> zext (A udiv B) @@ -901,24 +962,27 @@ Instruction *InstCombiner::visitUDiv(BinaryOperator &I) { return Inst; } - return 0; + return nullptr; } Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifySDivInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifySDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer div common cases if (Instruction *Common = commonIDivTransforms(I)) return Common; - if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { - // sdiv X, -1 == -X - if (RHS->isAllOnesValue()) - return BinaryOperator::CreateNeg(Op0); + // sdiv X, -1 == -X + if (match(Op1, m_AllOnes())) + return BinaryOperator::CreateNeg(Op0); + if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) { // sdiv X, C --> ashr exact X, log2(C) if (I.isExact() && RHS->getValue().isNonNegative() && RHS->getValue().isPowerOf2()) { @@ -926,6 +990,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { RHS->getValue().exactLogBase2()); return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName()); } + } + + if (Constant *RHS = dyn_cast<Constant>(Op1)) { + // X/INT_MIN -> X == INT_MIN + if (RHS->isMinSignedValue()) + return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType()); // -X/C --> X/-C provided the negation doesn't overflow. if (SubOperator *Sub = dyn_cast<SubOperator>(Op0)) @@ -954,7 +1024,7 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { } } - return 0; + return nullptr; } /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special @@ -965,9 +1035,12 @@ Instruction *InstCombiner::visitSDiv(BinaryOperator &I) { /// returned; otherwise, NULL is returned. /// static Instruction *CvtFDivConstToReciprocal(Value *Dividend, - ConstantFP *Divisor, + Constant *Divisor, bool AllowReciprocal) { - const APFloat &FpVal = Divisor->getValueAPF(); + if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors. + return nullptr; + + const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF(); APFloat Reciprocal(FpVal.getSemantics()); bool Cvt = FpVal.getExactInverse(&Reciprocal); @@ -978,7 +1051,7 @@ static Instruction *CvtFDivConstToReciprocal(Value *Dividend, } if (!Cvt) - return 0; + return nullptr; ConstantFP *R; R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal); @@ -988,7 +1061,10 @@ static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFDivInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifyFDivInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (isa<Constant>(Op0)) @@ -999,32 +1075,29 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { bool AllowReassociate = I.hasUnsafeAlgebra(); bool AllowReciprocal = I.hasAllowReciprocal(); - if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) { if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) return R; if (AllowReassociate) { - ConstantFP *C1 = 0; - ConstantFP *C2 = Op1C; + Constant *C1 = nullptr; + Constant *C2 = Op1C; Value *X; - Instruction *Res = 0; + Instruction *Res = nullptr; - if (match(Op0, m_FMul(m_Value(X), m_ConstantFP(C1)))) { + if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) { // (X*C1)/C2 => X * (C1/C2) // Constant *C = ConstantExpr::getFDiv(C1, C2); - const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal()) + if (isNormalFp(C)) Res = BinaryOperator::CreateFMul(X, C); - } else if (match(Op0, m_FDiv(m_Value(X), m_ConstantFP(C1)))) { + } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) { // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed] // Constant *C = ConstantExpr::getFMul(C1, C2); - const APFloat &F = cast<ConstantFP>(C)->getValueAPF(); - if (F.isNormal()) { - Res = CvtFDivConstToReciprocal(X, cast<ConstantFP>(C), - AllowReciprocal); + if (isNormalFp(C)) { + Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal); if (!Res) Res = BinaryOperator::CreateFDiv(X, C); } @@ -1037,60 +1110,68 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { } // X / C => X * 1/C - if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) + if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) { + T->copyFastMathFlags(&I); return T; + } - return 0; + return nullptr; } - if (AllowReassociate && isa<ConstantFP>(Op0)) { - ConstantFP *C1 = cast<ConstantFP>(Op0), *C2; - Constant *Fold = 0; + if (AllowReassociate && isa<Constant>(Op0)) { + Constant *C1 = cast<Constant>(Op0), *C2; + Constant *Fold = nullptr; Value *X; bool CreateDiv = true; // C1 / (X*C2) => (C1/C2) / X - if (match(Op1, m_FMul(m_Value(X), m_ConstantFP(C2)))) + if (match(Op1, m_FMul(m_Value(X), m_Constant(C2)))) Fold = ConstantExpr::getFDiv(C1, C2); - else if (match(Op1, m_FDiv(m_Value(X), m_ConstantFP(C2)))) { + else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) { // C1 / (X/C2) => (C1*C2) / X Fold = ConstantExpr::getFMul(C1, C2); - } else if (match(Op1, m_FDiv(m_ConstantFP(C2), m_Value(X)))) { + } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) { // C1 / (C2/X) => (C1/C2) * X Fold = ConstantExpr::getFDiv(C1, C2); CreateDiv = false; } - if (Fold) { - const APFloat &FoldC = cast<ConstantFP>(Fold)->getValueAPF(); - if (FoldC.isNormal()) { - Instruction *R = CreateDiv ? - BinaryOperator::CreateFDiv(Fold, X) : - BinaryOperator::CreateFMul(X, Fold); - R->setFastMathFlags(I.getFastMathFlags()); - return R; - } + if (Fold && isNormalFp(Fold)) { + Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X) + : BinaryOperator::CreateFMul(X, Fold); + R->setFastMathFlags(I.getFastMathFlags()); + return R; } - return 0; + return nullptr; } if (AllowReassociate) { Value *X, *Y; - Value *NewInst = 0; - Instruction *SimpR = 0; + Value *NewInst = nullptr; + Instruction *SimpR = nullptr; if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) { // (X/Y) / Z => X / (Y*Z) // - if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op1)) { + if (!isa<Constant>(Y) || !isa<Constant>(Op1)) { NewInst = Builder->CreateFMul(Y, Op1); + if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { + FastMathFlags Flags = I.getFastMathFlags(); + Flags &= cast<Instruction>(Op0)->getFastMathFlags(); + RI->setFastMathFlags(Flags); + } SimpR = BinaryOperator::CreateFDiv(X, NewInst); } } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) { // Z / (X/Y) => Z*Y / X // - if (!isa<ConstantFP>(Y) || !isa<ConstantFP>(Op0)) { + if (!isa<Constant>(Y) || !isa<Constant>(Op0)) { NewInst = Builder->CreateFMul(Op0, Y); + if (Instruction *RI = dyn_cast<Instruction>(NewInst)) { + FastMathFlags Flags = I.getFastMathFlags(); + Flags &= cast<Instruction>(Op1)->getFastMathFlags(); + RI->setFastMathFlags(Flags); + } SimpR = BinaryOperator::CreateFDiv(NewInst, X); } } @@ -1103,7 +1184,7 @@ Instruction *InstCombiner::visitFDiv(BinaryOperator &I) { } } - return 0; + return nullptr; } /// This function implements the transforms common to both integer remainder @@ -1123,7 +1204,7 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) return &I; - if (isa<ConstantInt>(Op1)) { + if (isa<Constant>(Op1)) { if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) { if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI)) @@ -1139,13 +1220,16 @@ Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) { } } - return 0; + return nullptr; } Instruction *InstCombiner::visitURem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyURemInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifyURemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); if (Instruction *common = commonIRemTransforms(I)) @@ -1171,13 +1255,16 @@ Instruction *InstCombiner::visitURem(BinaryOperator &I) { return ReplaceInstUsesWith(I, Ext); } - return 0; + return nullptr; } Instruction *InstCombiner::visitSRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifySRemInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifySRemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle the integer rem common cases @@ -1213,7 +1300,7 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) { bool hasMissing = false; for (unsigned i = 0; i != VWidth; ++i) { Constant *Elt = C->getAggregateElement(i); - if (Elt == 0) { + if (!Elt) { hasMissing = true; break; } @@ -1242,18 +1329,21 @@ Instruction *InstCombiner::visitSRem(BinaryOperator &I) { } } - return 0; + return nullptr; } Instruction *InstCombiner::visitFRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - if (Value *V = SimplifyFRemInst(Op0, Op1, TD)) + if (Value *V = SimplifyVectorOp(I)) + return ReplaceInstUsesWith(I, V); + + if (Value *V = SimplifyFRemInst(Op0, Op1, DL)) return ReplaceInstUsesWith(I, V); // Handle cases involving: rem X, (select Cond, Y, Z) if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I)) return &I; - return 0; + return nullptr; } |