diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp | 495 |
1 files changed, 250 insertions, 245 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp index c78760b..bb1cbfa 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp @@ -13,6 +13,7 @@ #include "InstCombine.h" #include "llvm/IntrinsicInst.h" +#include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Target/TargetData.h" @@ -56,7 +57,7 @@ static bool AddWithOverflow(Constant *&Result, Constant *In1, Constant *In2, bool IsSigned = false) { Result = ConstantExpr::getAdd(In1, In2); - if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { + if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); if (HasAddOverflow(ExtractElement(Result, Idx), @@ -78,7 +79,7 @@ static bool HasSubOverflow(ConstantInt *Result, bool IsSigned) { if (!IsSigned) return Result->getValue().ugt(In1->getValue()); - + if (In2->isNegative()) return Result->getValue().slt(In1->getValue()); @@ -91,7 +92,7 @@ static bool SubWithOverflow(Constant *&Result, Constant *In1, Constant *In2, bool IsSigned = false) { Result = ConstantExpr::getSub(In1, In2); - if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { + if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) { for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i); if (HasSubOverflow(ExtractElement(Result, Idx), @@ -128,7 +129,7 @@ static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, // True if LHS u> RHS and RHS == high-bit-mask - 1 TrueIfSigned = true; return RHS->isMaxValue(true); - case ICmpInst::ICMP_UGE: + case ICmpInst::ICMP_UGE: // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc) TrueIfSigned = true; return RHS->getValue().isSignBit(); @@ -143,7 +144,7 @@ static bool isHighOnes(const ConstantInt *CI) { return (~CI->getValue() + 1).isPowerOf2(); } -/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a +/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a /// set of known zero and one bits, compute the maximum and minimum values that /// could have the specified known zero and known one bits, returning them in /// min/max. @@ -160,7 +161,7 @@ static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero, // bit if it is unknown. Min = KnownOne; Max = KnownOne|UnknownBits; - + if (UnknownBits.isNegative()) { // Sign bit is unknown Min.setBit(Min.getBitWidth()-1); Max.clearBit(Max.getBitWidth()-1); @@ -179,7 +180,7 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, KnownZero.getBitWidth() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."); APInt UnknownBits = ~(KnownZero|KnownOne); - + // The minimum value is when the unknown bits are all zeros. Min = KnownOne; // The maximum value is when the unknown bits are all ones. @@ -201,10 +202,10 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst) { // We need TD information to know the pointer size unless this is inbounds. if (!GEP->isInBounds() && TD == 0) return 0; - + ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer()); if (Init == 0 || Init->getNumOperands() > 1024) return 0; - + // There are many forms of this optimization we can handle, for now, just do // the simple index into a single-dimensional array. // @@ -219,31 +220,31 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // type they index. Collect the indices. This is typically for arrays of // structs. SmallVector<unsigned, 4> LaterIndices; - - const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType(); + + Type *EltTy = cast<ArrayType>(Init->getType())->getElementType(); for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) { ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (Idx == 0) return 0; // Variable index. - + uint64_t IdxVal = Idx->getZExtValue(); if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index. - - if (const StructType *STy = dyn_cast<StructType>(EltTy)) + + if (StructType *STy = dyn_cast<StructType>(EltTy)) EltTy = STy->getElementType(IdxVal); - else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { + else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) { if (IdxVal >= ATy->getNumElements()) return 0; EltTy = ATy->getElementType(); } else { return 0; // Unknown type. } - + LaterIndices.push_back(IdxVal); } - + enum { Overdefined = -3, Undefined = -2 }; // Variables for our state machines. - + // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form // "i == 47 | i == 87", where 47 is the first index the condition is true for, // and 87 is the second (and last) index. FirstTrueElement is -2 when @@ -254,7 +255,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the // form "i != 47 & i != 87". Same state transitions as for true elements. int FirstFalseElement = Undefined, SecondFalseElement = Undefined; - + /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these /// define a state machine that triggers for ranges of values that the index /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'. @@ -262,25 +263,25 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, /// index in the range (inclusive). We use -2 for undefined here because we /// use relative comparisons and don't want 0-1 to match -1. int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined; - + // MagicBitvector - This is a magic bitvector where we set a bit if the // comparison is true for element 'i'. If there are 64 elements or less in // the array, this will fully represent all the comparison results. uint64_t MagicBitvector = 0; - - + + // Scan the array and see if one of our patterns matches. Constant *CompareRHS = cast<Constant>(ICI.getOperand(1)); for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { Constant *Elt = Init->getOperand(i); - + // If this is indexing an array of structures, get the structure element. if (!LaterIndices.empty()) Elt = ConstantExpr::getExtractValue(Elt, LaterIndices); - + // If the element is masked, handle it. if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst); - + // Find out if the comparison would be true or false for the i'th element. Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt, CompareRHS, TD); @@ -294,15 +295,15 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, FalseRangeEnd = i; continue; } - + // If we can't compute the result for any of the elements, we have to give // up evaluating the entire conditional. if (!isa<ConstantInt>(C)) return 0; - + // Otherwise, we know if the comparison is true or false for this element, // update our state machines. bool IsTrueForElt = !cast<ConstantInt>(C)->isZero(); - + // State machine for single/double/range index comparison. if (IsTrueForElt) { // Update the TrueElement state machine. @@ -314,7 +315,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, SecondTrueElement = i; else SecondTrueElement = Overdefined; - + // Update range state machine. if (TrueRangeEnd == (int)i-1) TrueRangeEnd = i; @@ -331,7 +332,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, SecondFalseElement = i; else SecondFalseElement = Overdefined; - + // Update range state machine. if (FalseRangeEnd == (int)i-1) FalseRangeEnd = i; @@ -339,12 +340,12 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, FalseRangeEnd = Overdefined; } } - - + + // If this element is in range, update our magic bitvector. if (i < 64 && IsTrueForElt) MagicBitvector |= 1ULL << i; - + // If all of our states become overdefined, bail out early. Since the // predicate is expensive, only check it every 8 elements. This is only // really useful for really huge arrays. @@ -364,20 +365,20 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, if (!GEP->isInBounds() && Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits()) Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext())); - + // If the comparison is only true for one or two elements, emit direct // comparisons. if (SecondTrueElement != Overdefined) { // None true -> false. if (FirstTrueElement == Undefined) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext())); - + Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement); - + // True for one element -> 'i == 47'. if (SecondTrueElement == Undefined) return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx); - + // True for two elements -> 'i == 47 | i == 72'. Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx); Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement); @@ -391,36 +392,36 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, // None false -> true. if (FirstFalseElement == Undefined) return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext())); - + Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement); // False for one element -> 'i != 47'. if (SecondFalseElement == Undefined) return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx); - + // False for two elements -> 'i != 47 & i != 72'. Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx); Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement); Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx); return BinaryOperator::CreateAnd(C1, C2); } - + // If the comparison can be replaced with a range comparison for the elements // where it is true, emit the range check. if (TrueRangeEnd != Overdefined) { assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare"); - + // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1). if (FirstTrueElement) { Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement); Idx = Builder->CreateAdd(Idx, Offs); } - + Value *End = ConstantInt::get(Idx->getType(), TrueRangeEnd-FirstTrueElement+1); return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End); } - + // False range check. if (FalseRangeEnd != Overdefined) { assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare"); @@ -429,19 +430,19 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement); Idx = Builder->CreateAdd(Idx, Offs); } - + Value *End = ConstantInt::get(Idx->getType(), FalseRangeEnd-FirstFalseElement); return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End); } - - + + // If a 32-bit or 64-bit magic bitvector captures the entire comparison state // of this load, replace it with computation that does: // ((magic_cst >> i) & 1) != 0 if (Init->getNumOperands() <= 32 || (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) { - const Type *Ty; + Type *Ty; if (Init->getNumOperands() <= 32) Ty = Type::getInt32Ty(Init->getContext()); else @@ -451,7 +452,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V); return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0)); } - + return 0; } @@ -465,11 +466,11 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, /// to generate the first by knowing that pointer arithmetic doesn't overflow. /// /// If we can't emit an optimized form for this expression, this returns null. -/// +/// static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { TargetData &TD = *IC.getTargetData(); gep_type_iterator GTI = gep_type_begin(GEP); - + // Check to see if this gep only has a single variable index. If so, and if // any constant indices are a multiple of its scale, then we can compute this // in terms of the scale of the variable index. For example, if the GEP @@ -481,9 +482,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; - + // Handle a struct index, which adds its field offset to the pointer. - if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + if (StructType *STy = dyn_cast<StructType>(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); @@ -494,33 +495,33 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { break; } } - + // If there are no variable indices, we must have a constant offset, just // evaluate it the general way. if (i == e) return 0; - + Value *VariableIdx = GEP->getOperand(i); // Determine the scale factor of the variable element. For example, this is // 4 if the variable index is into an array of i32. uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType()); - + // Verify that there are no other variable indices. If so, emit the hard way. for (++i, ++GTI; i != e; ++i, ++GTI) { ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i)); if (!CI) return 0; - + // Compute the aggregate offset of constant indices. if (CI->isZero()) continue; - + // Handle a struct index, which adds its field offset to the pointer. - if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + if (StructType *STy = dyn_cast<StructType>(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue()); } else { uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); Offset += Size*CI->getSExtValue(); } } - + // Okay, we know we have a single variable index, which must be a // pointer/array/vector index. If there is no offset, life is simple, return // the index. @@ -530,19 +531,19 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { // we don't need to bother extending: the extension won't affect where the // computation crosses zero. if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) { - const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); + Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy); } return VariableIdx; } - + // Otherwise, there is an index. The computation we will do will be modulo // the pointer size, so get it. uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth); - + Offset &= PtrSizeMask; VariableScale &= PtrSizeMask; - + // To do this transformation, any constant index must be a multiple of the // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i", // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a @@ -550,9 +551,9 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) { int64_t NewOffs = Offset / (int64_t)VariableScale; if (Offset != NewOffs*(int64_t)VariableScale) return 0; - + // Okay, we can do this evaluation. Start by converting the index to intptr. - const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); + Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext()); if (VariableIdx->getType() != IntPtrTy) VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy, true /*Signed*/); @@ -576,7 +577,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, // know pointers can't overflow since the gep is inbounds. See if we can // output an optimized form. Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this); - + // If not, synthesize the offset the hard way. if (Offset == 0) Offset = EmitGEPOffset(GEPLHS); @@ -686,7 +687,7 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, bool isTrue = ICmpInst::isTrueWhenEqual(Pred); return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue)); } - + // (X+4) == X -> false. if (Pred == ICmpInst::ICMP_EQ) return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext())); @@ -698,22 +699,22 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0, // so the values can never be equal. Similarly for all other "or equals" // operators. - + // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { - Value *R = + Value *R = ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI); return new ICmpInst(ICmpInst::ICMP_UGT, X, R); } - + // (X+1) >u X --> X <u (0-1) --> X != 255 // (X+2) >u X --> X <u (0-2) --> X <u 254 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI)); - + unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits(); ConstantInt *SMax = ConstantInt::get(X->getContext(), APInt::getSignedMaxValue(BitWidth)); @@ -726,14 +727,14 @@ Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI, // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI)); - + // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128 - + assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE); Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1); return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C)); @@ -745,14 +746,14 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS) { ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1)); const APInt &CmpRHSV = CmpRHS->getValue(); - - // FIXME: If the operand types don't match the type of the divide + + // FIXME: If the operand types don't match the type of the divide // then don't attempt this transform. The code below doesn't have the // logic to deal with a signed divide and an unsigned compare (and - // vice versa). This is because (x /s C1) <s C2 produces different + // vice versa). This is because (x /s C1) <s C2 produces different // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even - // (x /u C1) <u C2. Simply casting the operands and result won't - // work. :( The if statement below tests that condition and bails + // (x /u C1) <u C2. Simply casting the operands and result won't + // work. :( The if statement below tests that condition and bails // if it finds it. bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv; if (!ICI.isEquality() && DivIsSigned != ICI.isSigned()) @@ -768,14 +769,14 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, } // Compute Prod = CI * DivRHS. We are essentially solving an equation - // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and - // C2 (CI). By solving for X we can turn this into a range check - // instead of computing a divide. + // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and + // C2 (CI). By solving for X we can turn this into a range check + // instead of computing a divide. Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS); // Determine if the product overflows by seeing if the product is // not equal to the divide. Make sure we do the same kind of divide - // as in the LHS instruction that we're folding. + // as in the LHS instruction that we're folding. bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS; @@ -785,9 +786,9 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, /// If the division is known to be exact, then there is no remainder from the /// divide, so the covered range size is unit, otherwise it is the divisor. ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS; - + // Figure out the interval that is being checked. For example, a comparison - // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). + // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). // Compute this interval based on the constants involved and the signedness of // the compare/divide. This computes a half-open interval, keeping track of // whether either value in the interval overflows. After analysis each @@ -805,7 +806,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, // to the same result value. HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false); } - + } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0. if (CmpRHSV == 0) { // (X / pos) op 0 // Can't overflow. e.g. X/2 op 0 --> [-1, 2) @@ -848,7 +849,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, if (!HiOverflow) HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true); } - + // Dividing by a negative swaps the condition. LT <-> GT Pred = ICmpInst::getSwappedPredicate(Pred); } @@ -901,7 +902,7 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, ConstantInt *ShAmt) { const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue(); - + // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. @@ -909,48 +910,48 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); if (ShAmtVal >= TypeBits || ShAmtVal == 0) return 0; - + if (!ICI.isEquality()) { // If we have an unsigned comparison and an ashr, we can't simplify this. // Similarly for signed comparisons with lshr. if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr)) return 0; - + // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv // by a power of 2. Since we already have logic to simplify these, // transform to div and then simplify the resultant comparison. if (Shr->getOpcode() == Instruction::AShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1)) return 0; - + // Revisit the shift (to delete it). Worklist.Add(Shr); - + Constant *DivCst = ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal)); - + Value *Tmp = Shr->getOpcode() == Instruction::AShr ? Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) : Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()); - + ICI.setOperand(0, Tmp); - + // If the builder folded the binop, just return it. BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp); if (TheDiv == 0) return &ICI; - + // Otherwise, fold this div/compare. assert(TheDiv->getOpcode() == Instruction::SDiv || TheDiv->getOpcode() == Instruction::UDiv); - + Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst)); assert(Res && "This div/cst should have folded!"); return Res; } - - + + // If we are comparing against bits always shifted out, the // comparison cannot succeed. APInt Comp = CmpRHSV << ShAmtVal; @@ -959,25 +960,25 @@ Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr, Comp = Comp.lshr(ShAmtVal); else Comp = Comp.ashr(ShAmtVal); - + if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero. bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } - + // Otherwise, check to see if the bits shifted out are known to be zero. // If so, we can compare against the unshifted value: // (X & 4) >> 1 == 2 --> (X & 4) == 4. if (Shr->hasOneUse() && Shr->isExact()) return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS); - + if (Shr->hasOneUse()) { // Otherwise strength reduce the shift into an and. APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal)); Constant *Mask = ConstantInt::get(ICI.getContext(), Val); - + Value *And = Builder->CreateAnd(Shr->getOperand(0), Mask, Shr->getName()+".mask"); return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS); @@ -992,7 +993,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHSI, ConstantInt *RHS) { const APInt &RHSV = RHS->getValue(); - + switch (LHSI->getOpcode()) { case Instruction::Trunc: if (ICI.isEquality() && LHSI->hasOneUse()) { @@ -1003,7 +1004,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits)); APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0); ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne); - + // If all the high bits are known, we can do this xform. if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) { // Pull in the high bits from known-ones set. @@ -1014,7 +1015,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } } break; - + case Instruction::Xor: // (icmp pred (xor X, XorCST), CI) if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) { // If this is a comparison that tests the signbit (X < 0) or (x > -1), @@ -1022,7 +1023,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) || (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) { Value *CompareVal = LHSI->getOperand(0); - + // If the sign bit of the XorCST is not set, there is no change to // the operation, just stop using the Xor. if (!XorCST->isNegative()) { @@ -1030,13 +1031,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Worklist.Add(LHSI); return &ICI; } - + // Was the old condition true if the operand is positive? bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT; - + // If so, the new one isn't. isTrueIfPositive ^= true; - + if (isTrueIfPositive) return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS)); @@ -1075,13 +1076,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1)); - + // If the LHS is an AND of a truncating cast, we can widen the // and/compare to be the input width without changing the value // produced, eliminating a cast. if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) { // We can do this transformation if either the AND constant does not - // have its sign bit set or if it is an equality comparison. + // have its sign bit set or if it is an equality comparison. // Extending a relational comparison when we're checking the sign // bit would not work. if (ICI.isEquality() || @@ -1098,7 +1099,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // If the LHS is an AND of a zext, and we have an equality compare, we can // shrink the and/compare to the smaller type, eliminating the cast. if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) { - const IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); + IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy()); // Make sure we don't compare the upper bits, SimplifyDemandedBits // should fold the icmp to true/false in that case. if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) { @@ -1118,12 +1119,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0)); if (Shift && !Shift->isShift()) Shift = 0; - + ConstantInt *ShAmt; ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0; - const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. - const Type *AndTy = AndCST->getType(); // Type of the and. - + Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. + Type *AndTy = AndCST->getType(); // Type of the and. + // We can fold this as long as we can't shift unknown bits // into the mask. This can only happen with signed shift // rights, as they sign-extend. @@ -1134,20 +1135,20 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // of the bits shifted in could be tested after the mask. uint32_t TyBits = Ty->getPrimitiveSizeInBits(); int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits); - + uint32_t BitWidth = AndTy->getPrimitiveSizeInBits(); - if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & + if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & AndCST->getValue()) == 0) CanFold = true; } - + if (CanFold) { Constant *NewCst; if (Shift->getOpcode() == Instruction::Shl) NewCst = ConstantExpr::getLShr(RHS, ShAmt); else NewCst = ConstantExpr::getShl(RHS, ShAmt); - + // Check to see if we are shifting out any of the bits being // compared. if (ConstantExpr::get(Shift->getOpcode(), @@ -1175,7 +1176,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } } } - + // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is // preferable because it allows the C<<Y expression to be hoisted out // of a loop if Y is invariant and X is not. @@ -1185,21 +1186,21 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // Compute C << Y. Value *NS; if (Shift->getOpcode() == Instruction::LShr) { - NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp"); + NS = Builder->CreateShl(AndCST, Shift->getOperand(1)); } else { // Insert a logical shift. - NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp"); + NS = Builder->CreateLShr(AndCST, Shift->getOperand(1)); } - + // Compute X & (C << Y). - Value *NewAnd = + Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName()); - + ICI.setOperand(0, NewAnd); return &ICI; } } - + // Try to optimize things like "A[i]&42 == 0" to index computations. if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) { if (GetElementPtrInst *GEP = @@ -1234,19 +1235,19 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } break; } - + case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI) ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1)); if (!ShAmt) break; - + uint32_t TypeBits = RHSV.getBitWidth(); - + // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. if (ShAmt->uge(TypeBits)) break; - + if (ICI.isEquality()) { // If we are comparing against bits always shifted out, the // comparison cannot succeed. @@ -1259,34 +1260,34 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE); return ReplaceInstUsesWith(ICI, Cst); } - + // If the shift is NUW, then it is just shifting out zeros, no need for an // AND. if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap()) return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0), ConstantExpr::getLShr(RHS, ShAmt)); - + if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits); Constant *Mask = - ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits, + ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal)); - + Value *And = Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask"); return new ICmpInst(ICI.getPredicate(), And, ConstantExpr::getLShr(RHS, ShAmt)); } } - + // Otherwise, if this is a comparison of the sign bit, simplify to and/test. bool TrueIfSigned = false; if (LHSI->hasOneUse() && isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) { // (X << 31) <s 0 --> (X&1) != 0 Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(), - APInt::getOneBitSet(TypeBits, + APInt::getOneBitSet(TypeBits, TypeBits-ShAmt->getZExtValue()-1)); Value *And = Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); @@ -1295,7 +1296,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } break; } - + case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI) case Instruction::AShr: { // Handle equality comparisons of shift-by-constant. @@ -1312,13 +1313,13 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } break; } - + case Instruction::SDiv: case Instruction::UDiv: // Fold: icmp pred ([us]div X, C1), C2 -> range test - // Fold this div into the comparison, producing a range check. - // Determine, based on the divide type, what the range is being - // checked. If there is an overflow on the low or high side, remember + // Fold this div into the comparison, producing a range check. + // Determine, based on the divide type, what the range is being + // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. // See: InsertRangeTest above for the kinds of replacements possible. if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1))) @@ -1357,12 +1358,12 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, } break; } - + // Simplify icmp_eq and icmp_ne instructions with integer constant RHS. if (ICI.isEquality()) { bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE; - - // If the first operand is (add|sub|and|or|xor|rem) with a constant, and + + // If the first operand is (add|sub|and|or|xor|rem) with a constant, and // the second operand is a constant, simplify a bit. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) { switch (BO->getOpcode()) { @@ -1389,7 +1390,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); - + if (Value *NegVal = dyn_castNegVal(BOp1)) return new ICmpInst(ICI.getPredicate(), BOp0, NegVal); if (Value *NegVal = dyn_castNegVal(BOp0)) @@ -1432,11 +1433,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Constant *NotCI = ConstantExpr::getNot(RHS); if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) return ReplaceInstUsesWith(ICI, - ConstantInt::get(Type::getInt1Ty(ICI.getContext()), + ConstantInt::get(Type::getInt1Ty(ICI.getContext()), isICMP_NE)); } break; - + case Instruction::And: if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) { // If bits are being compared against that are and'd out, then the @@ -1445,7 +1446,7 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::getInt1Ty(ICI.getContext()), isICMP_NE)); - + // If we have ((X & C) == C), turn it into ((X & C) != 0). if (RHS == BOC && RHSV.isPowerOf2()) return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : @@ -1460,16 +1461,16 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, if (BOC->getValue().isSignBit()) { Value *X = BO->getOperand(0); Constant *Zero = Constant::getNullValue(X->getType()); - ICmpInst::Predicate pred = isICMP_NE ? + ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE; return new ICmpInst(pred, X, Zero); } - + // ((X & ~7) == 0) --> X < 8 if (RHSV == 0 && isHighOnes(BOC)) { Value *X = BO->getOperand(0); Constant *NegX = ConstantExpr::getNeg(BOC); - ICmpInst::Predicate pred = isICMP_NE ? + ICmpInst::Predicate pred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT; return new ICmpInst(pred, X, NegX); } @@ -1517,11 +1518,11 @@ Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0)); Value *LHSCIOp = LHSCI->getOperand(0); - const Type *SrcTy = LHSCIOp->getType(); - const Type *DestTy = LHSCI->getType(); + Type *SrcTy = LHSCIOp->getType(); + Type *DestTy = LHSCI->getType(); Value *RHSCIOp; - // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the + // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the // integer type is the same size as the pointer type. if (TD && LHSCI->getOpcode() == Instruction::PtrToInt && TD->getPointerSizeInBits() == @@ -1539,7 +1540,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { if (RHSOp) return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp); } - + // The code below only handles extension cast instructions, so far. // Enforce this. if (LHSCI->getOpcode() != Instruction::ZExt && @@ -1552,9 +1553,9 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) { // Not an extension from the same type? RHSCIOp = CI->getOperand(0); - if (RHSCIOp->getType() != LHSCIOp->getType()) + if (RHSCIOp->getType() != LHSCIOp->getType()) return 0; - + // If the signedness of the two casts doesn't agree (i.e. one is a sext // and the other is a zext), then we can't handle this. if (CI->getOpcode() != LHSCI->getOpcode()) @@ -1599,7 +1600,7 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) { return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1); } - // The re-extended constant changed so the constant cannot be represented + // The re-extended constant changed so the constant cannot be represented // in the shorter type. Consequently, we cannot emit a simple comparison. // All the cases that fold to true or false will have already been handled // by SimplifyICmpInst, so only deal with the tricky case. @@ -1637,26 +1638,26 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, // llvm.sadd.with.overflow. To do this, we have to replace the original add // with a narrower add, and discard the add-with-constant that is part of the // range check (if we can't eliminate it, this isn't profitable). - + // In order to eliminate the add-with-constant, the compare can be its only // use. Instruction *AddWithCst = cast<Instruction>(I.getOperand(0)); if (!AddWithCst->hasOneUse()) return 0; - + // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow. if (!CI2->getValue().isPowerOf2()) return 0; unsigned NewWidth = CI2->getValue().countTrailingZeros(); if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0; - + // The width of the new add formed is 1 more than the bias. ++NewWidth; - + // Check to see that CI1 is an all-ones value with NewWidth bits. if (CI1->getBitWidth() == NewWidth || CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth)) return 0; - - // In order to replace the original add with a narrower + + // In order to replace the original add with a narrower // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant // and truncates that discard the high bits of the add. Verify that this is // the case. @@ -1664,7 +1665,7 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end(); UI != E; ++UI) { if (*UI == AddWithCst) continue; - + // Only accept truncates for now. We would really like a nice recursive // predicate like SimplifyDemandedBits, but which goes downwards the use-def // chain to see which bits of a value are actually demanded. If the @@ -1674,32 +1675,32 @@ static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, if (TI == 0 || TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0; } - + // If the pattern matches, truncate the inputs to the narrower type and // use the sadd_with_overflow intrinsic to efficiently compute both the // result and the overflow bit. Module *M = I.getParent()->getParent()->getParent(); - + Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth); Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow, NewType); InstCombiner::BuilderTy *Builder = IC.Builder; - + // Put the new code above the original add, in case there are any uses of the // add between the add and the compare. Builder->SetInsertPoint(OrigAdd); - + Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc"); Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc"); CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd"); Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result"); Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType()); - + // The inner add was the result of the narrow add, zero extended to the // wider type. Replace it with the result computed by the intrinsic. IC.ReplaceInstUsesWith(*OrigAdd, ZExt); - + // The original icmp gets replaced with the overflow value. return ExtractValueInst::Create(Call, 1, "sadd.overflow"); } @@ -1709,13 +1710,13 @@ static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV, // Don't bother doing this transformation for pointers, don't do it for // vectors. if (!isa<IntegerType>(OrigAddV->getType())) return 0; - + // If the add is a constant expr, then we don't bother transforming it. Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV); if (OrigAdd == 0) return 0; - + Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1); - + // Put the new code above the original add, in case there are any uses of the // add between the add and the compare. InstCombiner::BuilderTy *Builder = IC.Builder; @@ -1740,13 +1741,13 @@ static APInt DemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth, bool isSignCheck) { if (isSignCheck) return APInt::getSignBit(BitWidth); - + ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); if (!CI) return APInt::getAllOnesValue(BitWidth); const APInt &RHS = CI->getValue(); - + switch (I.getPredicate()) { - // For a UGT comparison, we don't care about any bits that + // For a UGT comparison, we don't care about any bits that // correspond to the trailing ones of the comparand. The value of these // bits doesn't impact the outcome of the comparison, because any value // greater than the RHS must differ in a bit higher than these due to carry. @@ -1755,7 +1756,7 @@ static APInt DemandedBitsLHSMask(ICmpInst &I, APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes); return ~lowBitsSet; } - + // Similarly, for a ULT comparison, we don't care about the trailing zeros. // Any value less than the RHS must differ in a higher bit because of carries. case ICmpInst::ICMP_ULT: { @@ -1763,17 +1764,17 @@ static APInt DemandedBitsLHSMask(ICmpInst &I, APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros); return ~lowBitsSet; } - + default: return APInt::getAllOnesValue(BitWidth); } - + } Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { bool Changed = false; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - + /// Orders the operands of the compare so that they are listed from most /// complex to least complex. This puts constants before unary operators, /// before binary operators. @@ -1782,11 +1783,11 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { std::swap(Op0, Op1); Changed = true; } - + if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); - - const Type *Ty = Op0->getType(); + + Type *Ty = Op0->getType(); // icmp's with boolean values can always be turned into bitwise operations if (Ty->isIntegerTy(1)) { @@ -1835,13 +1836,13 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { BitWidth = Ty->getScalarSizeInBits(); else if (TD) // Pointers require TD info to get their size. BitWidth = TD->getTypeSizeInBits(Ty->getScalarType()); - + bool isSignBit = false; // See if we are doing a comparison with a constant. if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { Value *A = 0, *B = 0; - + // Match the following pattern, which is a common idiom when writing // overflow-safe integer arithmetic function. The source performs an // addition in wider type, and explicitly checks for overflow using @@ -1849,9 +1850,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // sadd_with_overflow intrinsic. // // TODO: This could probably be generalized to handle other overflow-safe - // operations if we worked out the formulas to compute the appropriate + // operations if we worked out the formulas to compute the appropriate // magic constants. - // + // // sum = a + b // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8 { @@ -1861,14 +1862,14 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this)) return Res; } - + // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B) if (I.isEquality() && CI->isZero() && match(Op0, m_Sub(m_Value(A), m_Value(B)))) { // (icmp cond A B) if cond is equality return new ICmpInst(I.getPredicate(), A, B); } - + // If we have an icmp le or icmp ge instruction, turn it into the // appropriate icmp lt or icmp gt instruction. This allows us to rely on // them being folded in the code below. The SimplifyICmpInst code has @@ -1892,7 +1893,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { return new ICmpInst(ICmpInst::ICMP_SGT, Op0, ConstantInt::get(CI->getContext(), CI->getValue()-1)); } - + // If this comparison is a normal comparison, it demands all // bits, if it is a sign bit comparison, it only demands the sign bit. bool UnusedBit; @@ -1948,7 +1949,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { case ICmpInst::ICMP_EQ: { if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType())); - + // If all bits are known zero except for one, then we know at most one // bit is set. If the comparison is against zero, then this is a check // to see if *that* bit is set. @@ -1960,7 +1961,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || LHSC->getValue() != Op0KnownZeroInverted) LHS = Op0; - + // If the LHS is 1 << x, and we know the result is a power of 2 like 8, // then turn "((1 << x)&8) == 0" into "x != 3". Value *X = 0; @@ -1969,7 +1970,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { return new ICmpInst(ICmpInst::ICMP_NE, X, ConstantInt::get(X->getType(), CmpVal)); } - + // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, // then turn "((8 >>u x)&1) == 0" into "x != 3". const APInt *CI; @@ -1979,13 +1980,13 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { ConstantInt::get(X->getType(), CI->countTrailingZeros())); } - + break; } case ICmpInst::ICMP_NE: { if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType())); - + // If all bits are known zero except for one, then we know at most one // bit is set. If the comparison is against zero, then this is a check // to see if *that* bit is set. @@ -1997,7 +1998,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) || LHSC->getValue() != Op0KnownZeroInverted) LHS = Op0; - + // If the LHS is 1 << x, and we know the result is a power of 2 like 8, // then turn "((1 << x)&8) != 0" into "x == 3". Value *X = 0; @@ -2006,7 +2007,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { return new ICmpInst(ICmpInst::ICMP_EQ, X, ConstantInt::get(X->getType(), CmpVal)); } - + // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1, // then turn "((8 >>u x)&1) != 0" into "x == 3". const APInt *CI; @@ -2016,7 +2017,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { ConstantInt::get(X->getType(), CI->countTrailingZeros())); } - + break; } case ICmpInst::ICMP_ULT: @@ -2137,9 +2138,9 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // See if we are doing a comparison between a constant and an instruction that // can be folded into the comparison. if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { - // Since the RHS is a ConstantInt (CI), if the left hand side is an - // instruction, see if that instruction also has constants so that the - // instruction can be folded into the icmp + // Since the RHS is a ConstantInt (CI), if the left hand side is an + // instruction, see if that instruction also has constants so that the + // instruction can be folded into the icmp if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI)) return Res; @@ -2194,7 +2195,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { case Instruction::IntToPtr: // icmp pred inttoptr(X), null -> icmp pred X, 0 if (RHSC->isNullValue() && TD && - TD->getIntPtrType(RHSC->getContext()) == + TD->getIntPtrType(RHSC->getContext()) == LHSI->getOperand(0)->getType()) return new ICmpInst(I.getPredicate(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); @@ -2227,8 +2228,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // values. If the ptr->ptr cast can be stripped off both arguments, we do so // now. if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) { - if (Op0->getType()->isPointerTy() && - (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { + if (Op0->getType()->isPointerTy() && + (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { // We keep moving the cast from the left operand over to the right // operand, where it can often be eliminated completely. Op0 = CI->getOperand(0); @@ -2250,7 +2251,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { return new ICmpInst(I.getPredicate(), Op0, Op1); } } - + if (isa<CastInst>(Op0)) { // Handle the special case of: icmp (cast bool to X), <cst> // This comes up when you have code like @@ -2384,7 +2385,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0)); } - + if (CI->isMaxValue(true)) { ICmpInst::Predicate Pred = I.isSigned() ? I.getUnsignedPredicate() @@ -2404,7 +2405,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // Mask = -1 >> count-trailing-zeros(Cst). if (!CI->isZero() && !CI->isOne()) { const APInt &AP = CI->getValue(); - ConstantInt *Mask = ConstantInt::get(I.getContext(), + ConstantInt *Mask = ConstantInt::get(I.getContext(), APInt::getLowBitsSet(AP.getBitWidth(), AP.getBitWidth() - AP.countTrailingZeros())); @@ -2438,7 +2439,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { } } } - + { Value *A, *B; // ~x < ~y --> y < x // ~x < cst --> ~cst < x @@ -2452,11 +2453,11 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // (a+b) <u a --> llvm.uadd.with.overflow. // (a+b) <u b --> llvm.uadd.with.overflow. if (I.getPredicate() == ICmpInst::ICMP_ULT && - match(Op0, m_Add(m_Value(A), m_Value(B))) && + match(Op0, m_Add(m_Value(A), m_Value(B))) && (Op1 == A || Op1 == B)) if (Instruction *R = ProcessUAddIdiom(I, Op0, *this)) return R; - + // a >u (a+b) --> llvm.uadd.with.overflow. // b >u (a+b) --> llvm.uadd.with.overflow. if (I.getPredicate() == ICmpInst::ICMP_UGT && @@ -2465,7 +2466,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { if (Instruction *R = ProcessUAddIdiom(I, Op1, *this)) return R; } - + if (I.isEquality()) { Value *A, *B, *C, *D; @@ -2483,10 +2484,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) { Constant *NC = ConstantInt::get(I.getContext(), C1->getValue() ^ C2->getValue()); - Value *Xor = Builder->CreateXor(C, NC, "tmp"); + Value *Xor = Builder->CreateXor(C, NC); return new ICmpInst(I.getPredicate(), A, Xor); } - + // A^B == A^D -> B == D if (A == C) return new ICmpInst(I.getPredicate(), B, D); if (A == D) return new ICmpInst(I.getPredicate(), B, C); @@ -2494,7 +2495,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { if (B == D) return new ICmpInst(I.getPredicate(), A, C); } } - + if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 @@ -2504,10 +2505,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { } // (X&Z) == (Y&Z) -> (X^Y) & Z == 0 - if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && + if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) && match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) { Value *X = 0, *Y = 0, *Z = 0; - + if (A == C) { X = B; Y = D; Z = A; } else if (A == D) { @@ -2517,16 +2518,16 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { } else if (B == D) { X = A; Y = C; Z = B; } - + if (X) { // Build (X^Y) & Z - Op1 = Builder->CreateXor(X, Y, "tmp"); - Op1 = Builder->CreateAnd(Op1, Z, "tmp"); + Op1 = Builder->CreateXor(X, Y); + Op1 = Builder->CreateAnd(Op1, Z); I.setOperand(0, Op1); I.setOperand(1, Constant::getNullValue(Op1->getType())); return &I; } } - + // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to // "icmp (and X, mask), cst" uint64_t ShAmt = 0; @@ -2539,21 +2540,21 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) { // when it exposes other optimizations. !A->hasOneUse()) { unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits(); - + if (ShAmt < ASize) { APInt MaskV = APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits()); MaskV <<= ShAmt; - + APInt CmpV = Cst1->getValue().zext(ASize); CmpV <<= ShAmt; - + Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV)); return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV)); } } } - + { Value *X; ConstantInt *Cst; // icmp X+Cst, X @@ -2579,31 +2580,31 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, Constant *RHSC) { if (!isa<ConstantFP>(RHSC)) return 0; const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF(); - + // Get the width of the mantissa. We don't want to hack on conversions that // might lose information from the integer, e.g. "i64 -> float" int MantissaWidth = LHSI->getType()->getFPMantissaWidth(); if (MantissaWidth == -1) return 0; // Unknown. - + // Check to see that the input is converted from an integer type that is small // enough that preserves all bits. TODO: check here for "known" sign bits. // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e. unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits(); - + // If this is a uitofp instruction, we need an extra bit to hold the sign. bool LHSUnsigned = isa<UIToFPInst>(LHSI); if (LHSUnsigned) ++InputSize; - + // If the conversion would lose info, don't hack on this. if ((int)InputSize > MantissaWidth) return 0; - + // Otherwise, we can potentially simplify the comparison. We know that it // will always come through as an integer value and we know the constant is // not a NAN (it would have been previously simplified). assert(!RHS.isNaN() && "NaN comparison not already folded!"); - + ICmpInst::Predicate Pred; switch (I.getPredicate()) { default: llvm_unreachable("Unexpected predicate!"); @@ -2636,15 +2637,15 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, case FCmpInst::FCMP_UNO: return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); } - - const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); - + + IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType()); + // Now we know that the APFloat is a normal number, zero or inf. - + // See if the FP constant is too large for the integer. For example, // comparing an i8 to 300.0. unsigned IntWidth = IntTy->getScalarSizeInBits(); - + if (!LHSUnsigned) { // If the RHS value is > SignedMax, fold the comparison. This handles +INF // and large values. @@ -2670,7 +2671,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext())); } } - + if (!LHSUnsigned) { // See if the RHS value is < SignedMin. APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false); @@ -2766,7 +2767,7 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { bool Changed = false; - + /// Orders the operands of the compare so that they are listed from most /// complex to least complex. This puts constants before unary operators, /// before binary operators. @@ -2776,7 +2777,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { } Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); - + if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD)) return ReplaceInstUsesWith(I, V); @@ -2792,7 +2793,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { I.setPredicate(FCmpInst::FCMP_UNO); I.setOperand(1, Constant::getNullValue(Op0->getType())); return &I; - + case FCmpInst::FCMP_ORD: // True if ordered (no nans) case FCmpInst::FCMP_OEQ: // True if ordered and equal case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal @@ -2803,7 +2804,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { return &I; } } - + // Handle fcmp with constant RHS if (Constant *RHSC = dyn_cast<Constant>(Op1)) { if (Instruction *LHSI = dyn_cast<Instruction>(Op0)) @@ -2836,10 +2837,14 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) { APFloat F = RHSF->getValueAPF(); F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy); - // Avoid lossy conversions and denormals. + // Avoid lossy conversions and denormals. Zero is a special case + // that's OK to convert. + APFloat Fabs = F; + Fabs.clearSign(); if (!Lossy && - F.compare(APFloat::getSmallestNormalized(*Sem)) != - APFloat::cmpLessThan) + ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) != + APFloat::cmpLessThan) || Fabs.isZero())) + return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0), ConstantFP::get(RHSC->getContext(), F)); break; |