summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp4391
1 files changed, 2278 insertions, 2113 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
index 961497f..428f94b 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -35,17 +35,12 @@ using namespace PatternMatch;
// How many times is a select replaced by one of its operands?
STATISTIC(NumSel, "Number of select opts");
-// Initialization Routines
-static ConstantInt *getOne(Constant *C) {
- return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
-}
-
-static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
+static ConstantInt *extractElement(Constant *V, Constant *Idx) {
return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
-static bool HasAddOverflow(ConstantInt *Result,
+static bool hasAddOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
@@ -58,28 +53,28 @@ static bool HasAddOverflow(ConstantInt *Result,
/// Compute Result = In1+In2, returning true if the result overflowed for this
/// type.
-static bool AddWithOverflow(Constant *&Result, Constant *In1,
+static bool addWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
- if (HasAddOverflow(ExtractElement(Result, Idx),
- ExtractElement(In1, Idx),
- ExtractElement(In2, Idx),
+ if (hasAddOverflow(extractElement(Result, Idx),
+ extractElement(In1, Idx),
+ extractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
- return HasAddOverflow(cast<ConstantInt>(Result),
+ return hasAddOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
-static bool HasSubOverflow(ConstantInt *Result,
+static bool hasSubOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
@@ -93,23 +88,23 @@ static bool HasSubOverflow(ConstantInt *Result,
/// Compute Result = In1-In2, returning true if the result overflowed for this
/// type.
-static bool SubWithOverflow(Constant *&Result, Constant *In1,
+static bool subWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
- if (HasSubOverflow(ExtractElement(Result, Idx),
- ExtractElement(In1, Idx),
- ExtractElement(In2, Idx),
+ if (hasSubOverflow(extractElement(Result, Idx),
+ extractElement(In1, Idx),
+ extractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
- return HasSubOverflow(cast<ConstantInt>(Result),
+ return hasSubOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
@@ -126,26 +121,26 @@ static bool isBranchOnSignBitCheck(ICmpInst &I, bool isSignBit) {
/// Given an exploded icmp instruction, return true if the comparison only
/// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if the
/// result of the comparison is true when the input value is signed.
-static bool isSignBitCheck(ICmpInst::Predicate Pred, ConstantInt *RHS,
+static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS,
bool &TrueIfSigned) {
switch (Pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
- return RHS->isZero();
+ return RHS == 0;
case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
TrueIfSigned = true;
- return RHS->isAllOnesValue();
+ return RHS.isAllOnesValue();
case ICmpInst::ICMP_SGT: // True if LHS s> -1
TrueIfSigned = false;
- return RHS->isAllOnesValue();
+ return RHS.isAllOnesValue();
case ICmpInst::ICMP_UGT:
// True if LHS u> RHS and RHS == high-bit-mask - 1
TrueIfSigned = true;
- return RHS->isMaxValue(true);
+ return RHS.isMaxSignedValue();
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
- return RHS->getValue().isSignBit();
+ return RHS.isSignBit();
default:
return false;
}
@@ -154,19 +149,20 @@ static bool isSignBitCheck(ICmpInst::Predicate Pred, ConstantInt *RHS,
/// Returns true if the exploded icmp can be expressed as a signed comparison
/// to zero and updates the predicate accordingly.
/// The signedness of the comparison is preserved.
-static bool isSignTest(ICmpInst::Predicate &Pred, const ConstantInt *RHS) {
+/// TODO: Refactor with decomposeBitTestICmp()?
+static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
if (!ICmpInst::isSigned(Pred))
return false;
- if (RHS->isZero())
+ if (C == 0)
return ICmpInst::isRelational(Pred);
- if (RHS->isOne()) {
+ if (C == 1) {
if (Pred == ICmpInst::ICMP_SLT) {
Pred = ICmpInst::ICMP_SLE;
return true;
}
- } else if (RHS->isAllOnesValue()) {
+ } else if (C.isAllOnesValue()) {
if (Pred == ICmpInst::ICMP_SGT) {
Pred = ICmpInst::ICMP_SGE;
return true;
@@ -176,16 +172,10 @@ static bool isSignTest(ICmpInst::Predicate &Pred, const ConstantInt *RHS) {
return false;
}
-/// Return true if the constant is of the form 1+0+. This is the same as
-/// lowones(~X).
-static bool isHighOnes(const ConstantInt *CI) {
- return (~CI->getValue() + 1).isPowerOf2();
-}
-
/// Given a signed integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
-static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+static void computeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
@@ -208,7 +198,7 @@ static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
/// Given an unsigned integer type and a set of known zero and one bits, compute
/// the maximum and minimum values that could have the specified known zero and
/// known one bits, returning them in Min/Max.
-static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+static void computeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
@@ -231,9 +221,10 @@ static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
///
/// If AndCst is non-null, then the loaded value is masked with that constant
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
-Instruction *InstCombiner::
-FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
- CmpInst &ICI, ConstantInt *AndCst) {
+Instruction *InstCombiner::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
+ GlobalVariable *GV,
+ CmpInst &ICI,
+ ConstantInt *AndCst) {
Constant *Init = GV->getInitializer();
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
return nullptr;
@@ -319,7 +310,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
// Find out if the comparison would be true or false for the i'th element.
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
- CompareRHS, DL, TLI);
+ CompareRHS, DL, &TLI);
// If the result is undef for this element, ignore it.
if (isa<UndefValue>(C)) {
// Extend range state machines to cover this element in case there is an
@@ -509,7 +500,7 @@ FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
///
/// If we can't emit an optimized form for this expression, this returns null.
///
-static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
+static Value *evaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
const DataLayout &DL) {
gep_type_iterator GTI = gep_type_begin(GEP);
@@ -526,7 +517,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
@@ -556,7 +547,7 @@ static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
- if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
@@ -893,6 +884,10 @@ static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
if (!GEPLHS->hasAllConstantIndices())
return nullptr;
+ // Make sure the pointers have the same type.
+ if (GEPLHS->getType() != RHS->getType())
+ return nullptr;
+
Value *PtrBase, *Index;
std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
@@ -919,7 +914,7 @@ static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
/// Fold comparisons between a GEP instruction and something else. At this point
/// we know that the GEP is on the LHS of the comparison.
-Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+Instruction *InstCombiner::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
// Don't transform signed compares of GEPs into index compares. Even if the
@@ -941,7 +936,7 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
// This transformation (ignoring the base and scales) is valid because we
// know pointers can't overflow since the gep is inbounds. See if we can
// output an optimized form.
- Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
+ Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
// If not, synthesize the offset the hard way.
if (!Offset)
@@ -1003,12 +998,12 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
// If one of the GEPs has all zero indices, recurse.
if (GEPLHS->hasAllZeroIndices())
- return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+ return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
ICmpInst::getSwappedPredicate(Cond), I);
// If the other GEP has all zero indices, recurse.
if (GEPRHS->hasAllZeroIndices())
- return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+ return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
@@ -1056,8 +1051,9 @@ Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
}
-Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
- Value *Other) {
+Instruction *InstCombiner::foldAllocaCmp(ICmpInst &ICI,
+ const AllocaInst *Alloca,
+ const Value *Other) {
assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
// It would be tempting to fold away comparisons between allocas and any
@@ -1076,8 +1072,8 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
unsigned MaxIter = 32; // Break cycles and bound to constant-time.
- SmallVector<Use *, 32> Worklist;
- for (Use &U : Alloca->uses()) {
+ SmallVector<const Use *, 32> Worklist;
+ for (const Use &U : Alloca->uses()) {
if (Worklist.size() >= MaxIter)
return nullptr;
Worklist.push_back(&U);
@@ -1086,8 +1082,8 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
unsigned NumCmps = 0;
while (!Worklist.empty()) {
assert(Worklist.size() <= MaxIter);
- Use *U = Worklist.pop_back_val();
- Value *V = U->getUser();
+ const Use *U = Worklist.pop_back_val();
+ const Value *V = U->getUser();
--MaxIter;
if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
@@ -1096,7 +1092,7 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
} else if (isa<LoadInst>(V)) {
// Loading from the pointer doesn't escape it.
continue;
- } else if (auto *SI = dyn_cast<StoreInst>(V)) {
+ } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
// Storing *to* the pointer is fine, but storing the pointer escapes it.
if (SI->getValueOperand() == U->get())
return nullptr;
@@ -1105,7 +1101,7 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
if (NumCmps++)
return nullptr; // Found more than one cmp.
continue;
- } else if (auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
+ } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
switch (Intrin->getIntrinsicID()) {
// These intrinsics don't escape or compare the pointer. Memset is safe
// because we don't allow ptrtoint. Memcpy and memmove are safe because
@@ -1120,7 +1116,7 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
} else {
return nullptr;
}
- for (Use &U : V->uses()) {
+ for (const Use &U : V->uses()) {
if (Worklist.size() >= MaxIter)
return nullptr;
Worklist.push_back(&U);
@@ -1134,9 +1130,9 @@ Instruction *InstCombiner::FoldAllocaCmp(ICmpInst &ICI, AllocaInst *Alloca,
}
/// Fold "icmp pred (X+CI), X".
-Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
- Value *X, ConstantInt *CI,
- ICmpInst::Predicate Pred) {
+Instruction *InstCombiner::foldICmpAddOpConst(Instruction &ICI,
+ Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred) {
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similarly for all other "or equals"
// operators.
@@ -1181,52 +1177,995 @@ Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
}
-/// Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS and CmpRHS are
-/// both known to be integer constants.
-Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
- ConstantInt *DivRHS) {
- ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
- const APInt &CmpRHSV = CmpRHS->getValue();
+/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
+/// (icmp eq/ne A, Log2(AP2/AP1)) ->
+/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
+Instruction *InstCombiner::foldICmpShrConstConst(ICmpInst &I, Value *A,
+ const APInt &AP1,
+ const APInt &AP2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+
+ bool IsAShr = isa<AShrOperator>(I.getOperand(0));
+ if (IsAShr) {
+ if (AP2.isAllOnesValue())
+ return nullptr;
+ if (AP2.isNegative() != AP1.isNegative())
+ return nullptr;
+ if (AP2.sgt(AP1))
+ return nullptr;
+ }
+
+ if (!AP1)
+ // 'A' must be large enough to shift out the highest set bit.
+ return getICmp(I.ICMP_UGT, A,
+ ConstantInt::get(A->getType(), AP2.logBase2()));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ int Shift;
+ if (IsAShr && AP1.isNegative())
+ Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
+ else
+ Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
+
+ if (Shift > 0) {
+ if (IsAShr && AP1 == AP2.ashr(Shift)) {
+ // There are multiple solutions if we are comparing against -1 and the LHS
+ // of the ashr is not a power of two.
+ if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
+ return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ } else if (AP1 == AP2.lshr(Shift)) {
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ }
+ }
+
+ // Shifting const2 will never be equal to const1.
+ // FIXME: This should always be handled by InstSimplify?
+ auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
+ return replaceInstUsesWith(I, TorF);
+}
+
+/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
+/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
+Instruction *InstCombiner::foldICmpShlConstConst(ICmpInst &I, Value *A,
+ const APInt &AP1,
+ const APInt &AP2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+
+ unsigned AP2TrailingZeros = AP2.countTrailingZeros();
+
+ if (!AP1 && AP2TrailingZeros != 0)
+ return getICmp(
+ I.ICMP_UGE, A,
+ ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the lowest bits that are set.
+ int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
+
+ if (Shift > 0 && AP2.shl(Shift) == AP1)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+
+ // Shifting const2 will never be equal to const1.
+ // FIXME: This should always be handled by InstSimplify?
+ auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
+ return replaceInstUsesWith(I, TorF);
+}
+
+/// The caller has matched a pattern of the form:
+/// I = icmp ugt (add (add A, B), CI2), CI1
+/// If this is of the form:
+/// sum = a + b
+/// if (sum+128 >u 255)
+/// Then replace it with llvm.sadd.with.overflow.i8.
+///
+static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
+ ConstantInt *CI2, ConstantInt *CI1,
+ InstCombiner &IC) {
+ // The transformation we're trying to do here is to transform this into an
+ // llvm.sadd.with.overflow. To do this, we have to replace the original add
+ // with a narrower add, and discard the add-with-constant that is part of the
+ // range check (if we can't eliminate it, this isn't profitable).
+
+ // In order to eliminate the add-with-constant, the compare can be its only
+ // use.
+ Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
+ if (!AddWithCst->hasOneUse())
+ return nullptr;
+
+ // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
+ if (!CI2->getValue().isPowerOf2())
+ return nullptr;
+ unsigned NewWidth = CI2->getValue().countTrailingZeros();
+ if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
+ return nullptr;
+
+ // The width of the new add formed is 1 more than the bias.
+ ++NewWidth;
+
+ // Check to see that CI1 is an all-ones value with NewWidth bits.
+ if (CI1->getBitWidth() == NewWidth ||
+ CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
+ return nullptr;
+
+ // This is only really a signed overflow check if the inputs have been
+ // sign-extended; check for that condition. For example, if CI2 is 2^31 and
+ // the operands of the add are 64 bits wide, we need at least 33 sign bits.
+ unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
+ if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
+ IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
+ return nullptr;
+
+ // In order to replace the original add with a narrower
+ // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
+ // and truncates that discard the high bits of the add. Verify that this is
+ // the case.
+ Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
+ for (User *U : OrigAdd->users()) {
+ if (U == AddWithCst)
+ continue;
+
+ // Only accept truncates for now. We would really like a nice recursive
+ // predicate like SimplifyDemandedBits, but which goes downwards the use-def
+ // chain to see which bits of a value are actually demanded. If the
+ // original add had another add which was then immediately truncated, we
+ // could still do the transformation.
+ TruncInst *TI = dyn_cast<TruncInst>(U);
+ if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
+ return nullptr;
+ }
+
+ // If the pattern matches, truncate the inputs to the narrower type and
+ // use the sadd_with_overflow intrinsic to efficiently compute both the
+ // result and the overflow bit.
+ Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+ Value *F = Intrinsic::getDeclaration(I.getModule(),
+ Intrinsic::sadd_with_overflow, NewType);
+
+ InstCombiner::BuilderTy *Builder = IC.Builder;
+
+ // Put the new code above the original add, in case there are any uses of the
+ // add between the add and the compare.
+ Builder->SetInsertPoint(OrigAdd);
+
+ Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName() + ".trunc");
+ Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName() + ".trunc");
+ CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
+ Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
+ Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
+
+ // The inner add was the result of the narrow add, zero extended to the
+ // wider type. Replace it with the result computed by the intrinsic.
+ IC.replaceInstUsesWith(*OrigAdd, ZExt);
+
+ // The original icmp gets replaced with the overflow value.
+ return ExtractValueInst::Create(Call, 1, "sadd.overflow");
+}
+
+// Fold icmp Pred X, C.
+Instruction *InstCombiner::foldICmpWithConstant(ICmpInst &Cmp) {
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Cmp.getOperand(0);
+
+ const APInt *C;
+ if (!match(Cmp.getOperand(1), m_APInt(C)))
+ return nullptr;
+
+ Value *A = nullptr, *B = nullptr;
+
+ // Match the following pattern, which is a common idiom when writing
+ // overflow-safe integer arithmetic functions. The source performs an addition
+ // in wider type and explicitly checks for overflow using comparisons against
+ // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
+ //
+ // TODO: This could probably be generalized to handle other overflow-safe
+ // operations if we worked out the formulas to compute the appropriate magic
+ // constants.
+ //
+ // sum = a + b
+ // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
+ {
+ ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
+ if (Pred == ICmpInst::ICMP_UGT &&
+ match(X, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
+ if (Instruction *Res = processUGT_ADDCST_ADD(
+ Cmp, A, B, CI2, cast<ConstantInt>(Cmp.getOperand(1)), *this))
+ return Res;
+ }
+
+ // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
+ if (*C == 0 && Pred == ICmpInst::ICMP_SGT) {
+ SelectPatternResult SPR = matchSelectPattern(X, A, B);
+ if (SPR.Flavor == SPF_SMIN) {
+ if (isKnownPositive(A, DL))
+ return new ICmpInst(Pred, B, Cmp.getOperand(1));
+ if (isKnownPositive(B, DL))
+ return new ICmpInst(Pred, A, Cmp.getOperand(1));
+ }
+ }
+
+ // FIXME: Use m_APInt to allow folds for splat constants.
+ ConstantInt *CI = dyn_cast<ConstantInt>(Cmp.getOperand(1));
+ if (!CI)
+ return nullptr;
+
+ // Canonicalize icmp instructions based on dominating conditions.
+ BasicBlock *Parent = Cmp.getParent();
+ BasicBlock *Dom = Parent->getSinglePredecessor();
+ auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
+ ICmpInst::Predicate Pred2;
+ BasicBlock *TrueBB, *FalseBB;
+ ConstantInt *CI2;
+ if (BI && match(BI, m_Br(m_ICmp(Pred2, m_Specific(X), m_ConstantInt(CI2)),
+ TrueBB, FalseBB)) &&
+ TrueBB != FalseBB) {
+ ConstantRange CR =
+ ConstantRange::makeAllowedICmpRegion(Pred, CI->getValue());
+ ConstantRange DominatingCR =
+ (Parent == TrueBB)
+ ? ConstantRange::makeExactICmpRegion(Pred2, CI2->getValue())
+ : ConstantRange::makeExactICmpRegion(
+ CmpInst::getInversePredicate(Pred2), CI2->getValue());
+ ConstantRange Intersection = DominatingCR.intersectWith(CR);
+ ConstantRange Difference = DominatingCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return replaceInstUsesWith(Cmp, Builder->getFalse());
+ if (Difference.isEmptySet())
+ return replaceInstUsesWith(Cmp, Builder->getTrue());
+
+ // If this is a normal comparison, it demands all bits. If it is a sign
+ // bit comparison, it only demands the sign bit.
+ bool UnusedBit;
+ bool IsSignBit = isSignBitCheck(Pred, CI->getValue(), UnusedBit);
+
+ // Canonicalizing a sign bit comparison that gets used in a branch,
+ // pessimizes codegen by generating branch on zero instruction instead
+ // of a test and branch. So we avoid canonicalizing in such situations
+ // because test and branch instruction has better branch displacement
+ // than compare and branch instruction.
+ if (!isBranchOnSignBitCheck(Cmp, IsSignBit) && !Cmp.isEquality()) {
+ if (auto *AI = Intersection.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder->getInt(*AI));
+ if (auto *AD = Difference.getSingleElement())
+ return new ICmpInst(ICmpInst::ICMP_NE, X, Builder->getInt(*AD));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (trunc X, Y), C.
+Instruction *InstCombiner::foldICmpTruncConstant(ICmpInst &Cmp,
+ Instruction *Trunc,
+ const APInt *C) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Trunc->getOperand(0);
+ if (*C == 1 && C->getBitWidth() > 1) {
+ // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
+ Value *V = nullptr;
+ if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, V,
+ ConstantInt::get(V->getType(), 1));
+ }
+
+ if (Cmp.isEquality() && Trunc->hasOneUse()) {
+ // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
+ // of the high bits truncated out of x are known.
+ unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
+ SrcBits = X->getType()->getScalarSizeInBits();
+ APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
+ computeKnownBits(X, KnownZero, KnownOne, 0, &Cmp);
+
+ // If all the high bits are known, we can do this xform.
+ if ((KnownZero | KnownOne).countLeadingOnes() >= SrcBits - DstBits) {
+ // Pull in the high bits from known-ones set.
+ APInt NewRHS = C->zext(SrcBits);
+ NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (xor X, Y), C.
+Instruction *InstCombiner::foldICmpXorConstant(ICmpInst &Cmp,
+ BinaryOperator *Xor,
+ const APInt *C) {
+ Value *X = Xor->getOperand(0);
+ Value *Y = Xor->getOperand(1);
+ const APInt *XorC;
+ if (!match(Y, m_APInt(XorC)))
+ return nullptr;
+
+ // If this is a comparison that tests the signbit (X < 0) or (x > -1),
+ // fold the xor.
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if ((Pred == ICmpInst::ICMP_SLT && *C == 0) ||
+ (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())) {
+
+ // If the sign bit of the XorCst is not set, there is no change to
+ // the operation, just stop using the Xor.
+ if (!XorC->isNegative()) {
+ Cmp.setOperand(0, X);
+ Worklist.Add(Xor);
+ return &Cmp;
+ }
+
+ // Was the old condition true if the operand is positive?
+ bool isTrueIfPositive = Pred == ICmpInst::ICMP_SGT;
+
+ // If so, the new one isn't.
+ isTrueIfPositive ^= true;
+
+ Constant *CmpConstant = cast<Constant>(Cmp.getOperand(1));
+ if (isTrueIfPositive)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, SubOne(CmpConstant));
+ else
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, AddOne(CmpConstant));
+ }
+
+ if (Xor->hasOneUse()) {
+ // (icmp u/s (xor X SignBit), C) -> (icmp s/u X, (xor C SignBit))
+ if (!Cmp.isEquality() && XorC->isSignBit()) {
+ Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
+ : Cmp.getSignedPredicate();
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
+ }
+
+ // (icmp u/s (xor X ~SignBit), C) -> (icmp s/u X, (xor C ~SignBit))
+ if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
+ Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
+ : Cmp.getSignedPredicate();
+ Pred = Cmp.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), *C ^ *XorC));
+ }
+ }
+
+ // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
+ // iff -C is a power of 2
+ if (Pred == ICmpInst::ICMP_UGT && *XorC == ~(*C) && (*C + 1).isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
+
+ // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
+ // iff -C is a power of 2
+ if (Pred == ICmpInst::ICMP_ULT && *XorC == -(*C) && C->isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
+
+ return nullptr;
+}
+
+/// Fold icmp (and (sh X, Y), C2), C1.
+Instruction *InstCombiner::foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
+ const APInt *C1, const APInt *C2) {
+ BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
+ if (!Shift || !Shift->isShift())
+ return nullptr;
+
+ // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
+ // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
+ // code produced by the clang front-end, for bitfield access.
+ // This seemingly simple opportunity to fold away a shift turns out to be
+ // rather complicated. See PR17827 for details.
+ unsigned ShiftOpcode = Shift->getOpcode();
+ bool IsShl = ShiftOpcode == Instruction::Shl;
+ const APInt *C3;
+ if (match(Shift->getOperand(1), m_APInt(C3))) {
+ bool CanFold = false;
+ if (ShiftOpcode == Instruction::AShr) {
+ // There may be some constraints that make this possible, but nothing
+ // simple has been discovered yet.
+ CanFold = false;
+ } else if (ShiftOpcode == Instruction::Shl) {
+ // For a left shift, we can fold if the comparison is not signed. We can
+ // also fold a signed comparison if the mask value and comparison value
+ // are not negative. These constraints may not be obvious, but we can
+ // prove that they are correct using an SMT solver.
+ if (!Cmp.isSigned() || (!C2->isNegative() && !C1->isNegative()))
+ CanFold = true;
+ } else if (ShiftOpcode == Instruction::LShr) {
+ // For a logical right shift, we can fold if the comparison is not signed.
+ // We can also fold a signed comparison if the shifted mask value and the
+ // shifted comparison value are not negative. These constraints may not be
+ // obvious, but we can prove that they are correct using an SMT solver.
+ if (!Cmp.isSigned() ||
+ (!C2->shl(*C3).isNegative() && !C1->shl(*C3).isNegative()))
+ CanFold = true;
+ }
+
+ if (CanFold) {
+ APInt NewCst = IsShl ? C1->lshr(*C3) : C1->shl(*C3);
+ APInt SameAsC1 = IsShl ? NewCst.shl(*C3) : NewCst.lshr(*C3);
+ // Check to see if we are shifting out any of the bits being compared.
+ if (SameAsC1 != *C1) {
+ // If we shifted bits out, the fold is not going to work out. As a
+ // special case, check to see if this means that the result is always
+ // true or false now.
+ if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
+ return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
+ if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
+ return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
+ } else {
+ Cmp.setOperand(1, ConstantInt::get(And->getType(), NewCst));
+ APInt NewAndCst = IsShl ? C2->lshr(*C3) : C2->shl(*C3);
+ And->setOperand(1, ConstantInt::get(And->getType(), NewAndCst));
+ And->setOperand(0, Shift->getOperand(0));
+ Worklist.Add(Shift); // Shift is dead.
+ return &Cmp;
+ }
+ }
+ }
+
+ // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
+ // preferable because it allows the C2 << Y expression to be hoisted out of a
+ // loop if Y is invariant and X is not.
+ if (Shift->hasOneUse() && *C1 == 0 && Cmp.isEquality() &&
+ !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
+ // Compute C2 << Y.
+ Value *NewShift =
+ IsShl ? Builder->CreateLShr(And->getOperand(1), Shift->getOperand(1))
+ : Builder->CreateShl(And->getOperand(1), Shift->getOperand(1));
+
+ // Compute X & (C2 << Y).
+ Value *NewAnd = Builder->CreateAnd(Shift->getOperand(0), NewShift);
+ Cmp.setOperand(0, NewAnd);
+ return &Cmp;
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (and X, C2), C1.
+Instruction *InstCombiner::foldICmpAndConstConst(ICmpInst &Cmp,
+ BinaryOperator *And,
+ const APInt *C1) {
+ const APInt *C2;
+ if (!match(And->getOperand(1), m_APInt(C2)))
+ return nullptr;
+
+ if (!And->hasOneUse() || !And->getOperand(0)->hasOneUse())
+ return nullptr;
+
+ // If the LHS is an 'and' of a truncate and we can widen the and/compare to
+ // the input width without changing the value produced, eliminate the cast:
+ //
+ // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
+ //
+ // We can do this transformation if the constants do not have their sign bits
+ // set or if it is an equality comparison. Extending a relational comparison
+ // when we're checking the sign bit would not work.
+ Value *W;
+ if (match(And->getOperand(0), m_Trunc(m_Value(W))) &&
+ (Cmp.isEquality() || (!C1->isNegative() && !C2->isNegative()))) {
+ // TODO: Is this a good transform for vectors? Wider types may reduce
+ // throughput. Should this transform be limited (even for scalars) by using
+ // ShouldChangeType()?
+ if (!Cmp.getType()->isVectorTy()) {
+ Type *WideType = W->getType();
+ unsigned WideScalarBits = WideType->getScalarSizeInBits();
+ Constant *ZextC1 = ConstantInt::get(WideType, C1->zext(WideScalarBits));
+ Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
+ Value *NewAnd = Builder->CreateAnd(W, ZextC2, And->getName());
+ return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
+ }
+ }
+
+ if (Instruction *I = foldICmpAndShift(Cmp, And, C1, C2))
+ return I;
+
+ // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
+ // (icmp pred (and A, (or (shl 1, B), 1), 0))
+ //
+ // iff pred isn't signed
+ if (!Cmp.isSigned() && *C1 == 0 && match(And->getOperand(1), m_One())) {
+ Constant *One = cast<Constant>(And->getOperand(1));
+ Value *Or = And->getOperand(0);
+ Value *A, *B, *LShr;
+ if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
+ match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
+ unsigned UsesRemoved = 0;
+ if (And->hasOneUse())
+ ++UsesRemoved;
+ if (Or->hasOneUse())
+ ++UsesRemoved;
+ if (LShr->hasOneUse())
+ ++UsesRemoved;
+
+ // Compute A & ((1 << B) | 1)
+ Value *NewOr = nullptr;
+ if (auto *C = dyn_cast<Constant>(B)) {
+ if (UsesRemoved >= 1)
+ NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
+ } else {
+ if (UsesRemoved >= 3)
+ NewOr = Builder->CreateOr(Builder->CreateShl(One, B, LShr->getName(),
+ /*HasNUW=*/true),
+ One, Or->getName());
+ }
+ if (NewOr) {
+ Value *NewAnd = Builder->CreateAnd(A, NewOr, And->getName());
+ Cmp.setOperand(0, NewAnd);
+ return &Cmp;
+ }
+ }
+ }
+
+ // (X & C2) > C1 --> (X & C2) != 0, if any bit set in (X & C2) will produce a
+ // result greater than C1.
+ unsigned NumTZ = C2->countTrailingZeros();
+ if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && NumTZ < C2->getBitWidth() &&
+ APInt::getOneBitSet(C2->getBitWidth(), NumTZ).ugt(*C1)) {
+ Constant *Zero = Constant::getNullValue(And->getType());
+ return new ICmpInst(ICmpInst::ICMP_NE, And, Zero);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (and X, Y), C.
+Instruction *InstCombiner::foldICmpAndConstant(ICmpInst &Cmp,
+ BinaryOperator *And,
+ const APInt *C) {
+ if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
+ return I;
+
+ // TODO: These all require that Y is constant too, so refactor with the above.
+
+ // Try to optimize things like "A[i] & 42 == 0" to index computations.
+ Value *X = And->getOperand(0);
+ Value *Y = And->getOperand(1);
+ if (auto *LI = dyn_cast<LoadInst>(X))
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
+ if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !LI->isVolatile() && isa<ConstantInt>(Y)) {
+ ConstantInt *C2 = cast<ConstantInt>(Y);
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
+ return Res;
+ }
+
+ if (!Cmp.isEquality())
+ return nullptr;
+
+ // X & -C == -C -> X > u ~C
+ // X & -C != -C -> X <= u ~C
+ // iff C is a power of 2
+ if (Cmp.getOperand(1) == Y && (-(*C)).isPowerOf2()) {
+ auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
+ : CmpInst::ICMP_ULE;
+ return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
+ }
+
+ // (X & C2) == 0 -> (trunc X) >= 0
+ // (X & C2) != 0 -> (trunc X) < 0
+ // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
+ const APInt *C2;
+ if (And->hasOneUse() && *C == 0 && match(Y, m_APInt(C2))) {
+ int32_t ExactLogBase2 = C2->exactLogBase2();
+ if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
+ Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
+ if (And->getType()->isVectorTy())
+ NTy = VectorType::get(NTy, And->getType()->getVectorNumElements());
+ Value *Trunc = Builder->CreateTrunc(X, NTy);
+ auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
+ : CmpInst::ICMP_SLT;
+ return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (or X, Y), C.
+Instruction *InstCombiner::foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
+ const APInt *C) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (*C == 1) {
+ // icmp slt signum(V) 1 --> icmp slt V, 1
+ Value *V = nullptr;
+ if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, V,
+ ConstantInt::get(V->getType(), 1));
+ }
+
+ if (!Cmp.isEquality() || *C != 0 || !Or->hasOneUse())
+ return nullptr;
+
+ Value *P, *Q;
+ if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
+ // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
+ // -> and (icmp eq P, null), (icmp eq Q, null).
+ Value *CmpP =
+ Builder->CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
+ Value *CmpQ =
+ Builder->CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
+ auto LogicOpc = Pred == ICmpInst::Predicate::ICMP_EQ ? Instruction::And
+ : Instruction::Or;
+ return BinaryOperator::Create(LogicOpc, CmpP, CmpQ);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (mul X, Y), C.
+Instruction *InstCombiner::foldICmpMulConstant(ICmpInst &Cmp,
+ BinaryOperator *Mul,
+ const APInt *C) {
+ const APInt *MulC;
+ if (!match(Mul->getOperand(1), m_APInt(MulC)))
+ return nullptr;
+
+ // If this is a test of the sign bit and the multiply is sign-preserving with
+ // a constant operand, use the multiply LHS operand instead.
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (isSignTest(Pred, *C) && Mul->hasNoSignedWrap()) {
+ if (MulC->isNegative())
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, Mul->getOperand(0),
+ Constant::getNullValue(Mul->getType()));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (shl 1, Y), C.
+static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
+ const APInt *C) {
+ Value *Y;
+ if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
+ return nullptr;
+
+ Type *ShiftType = Shl->getType();
+ uint32_t TypeBits = C->getBitWidth();
+ bool CIsPowerOf2 = C->isPowerOf2();
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ if (Cmp.isUnsigned()) {
+ // (1 << Y) pred C -> Y pred Log2(C)
+ if (!CIsPowerOf2) {
+ // (1 << Y) < 30 -> Y <= 4
+ // (1 << Y) <= 30 -> Y <= 4
+ // (1 << Y) >= 30 -> Y > 4
+ // (1 << Y) > 30 -> Y > 4
+ if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_ULE;
+ else if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_UGT;
+ }
+
+ // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
+ // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
+ unsigned CLog2 = C->logBase2();
+ if (CLog2 == TypeBits - 1) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_EQ;
+ else if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_NE;
+ }
+ return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
+ } else if (Cmp.isSigned()) {
+ Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
+ if (C->isAllOnesValue()) {
+ // (1 << Y) <= -1 -> Y == 31
+ if (Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
+
+ // (1 << Y) > -1 -> Y != 31
+ if (Pred == ICmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
+ } else if (!(*C)) {
+ // (1 << Y) < 0 -> Y == 31
+ // (1 << Y) <= 0 -> Y == 31
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
+
+ // (1 << Y) >= 0 -> Y != 31
+ // (1 << Y) > 0 -> Y != 31
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
+ }
+ } else if (Cmp.isEquality() && CIsPowerOf2) {
+ return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C->logBase2()));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (shl X, Y), C.
+Instruction *InstCombiner::foldICmpShlConstant(ICmpInst &Cmp,
+ BinaryOperator *Shl,
+ const APInt *C) {
+ const APInt *ShiftVal;
+ if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
+ return foldICmpShlConstConst(Cmp, Shl->getOperand(1), *C, *ShiftVal);
+
+ const APInt *ShiftAmt;
+ if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
+ return foldICmpShlOne(Cmp, Shl, C);
+
+ // Check that the shift amount is in range. If not, don't perform undefined
+ // shifts. When the shift is visited, it will be simplified.
+ unsigned TypeBits = C->getBitWidth();
+ if (ShiftAmt->uge(TypeBits))
+ return nullptr;
+
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *X = Shl->getOperand(0);
+ if (Cmp.isEquality()) {
+ // If the shift is NUW, then it is just shifting out zeros, no need for an
+ // AND.
+ Constant *LShrC = ConstantInt::get(Shl->getType(), C->lshr(*ShiftAmt));
+ if (Shl->hasNoUnsignedWrap())
+ return new ICmpInst(Pred, X, LShrC);
+
+ // If the shift is NSW and we compare to 0, then it is just shifting out
+ // sign bits, no need for an AND either.
+ if (Shl->hasNoSignedWrap() && *C == 0)
+ return new ICmpInst(Pred, X, LShrC);
+
+ if (Shl->hasOneUse()) {
+ // Otherwise, strength reduce the shift into an and.
+ Constant *Mask = ConstantInt::get(Shl->getType(),
+ APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
+
+ Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
+ return new ICmpInst(Pred, And, LShrC);
+ }
+ }
+
+ // If this is a signed comparison to 0 and the shift is sign preserving,
+ // use the shift LHS operand instead; isSignTest may change 'Pred', so only
+ // do that if we're sure to not continue on in this function.
+ if (Shl->hasNoSignedWrap() && isSignTest(Pred, *C))
+ return new ICmpInst(Pred, X, Constant::getNullValue(X->getType()));
+
+ // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
+ bool TrueIfSigned = false;
+ if (Shl->hasOneUse() && isSignBitCheck(Pred, *C, TrueIfSigned)) {
+ // (X << 31) <s 0 --> (X & 1) != 0
+ Constant *Mask = ConstantInt::get(
+ X->getType(),
+ APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
+ Value *And = Builder->CreateAnd(X, Mask, Shl->getName() + ".mask");
+ return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
+ And, Constant::getNullValue(And->getType()));
+ }
+
+ // When the shift is nuw and pred is >u or <=u, comparison only really happens
+ // in the pre-shifted bits. Since InstSimplify canonicalizes <=u into <u, the
+ // <=u case can be further converted to match <u (see below).
+ if (Shl->hasNoUnsignedWrap() &&
+ (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT)) {
+ // Derivation for the ult case:
+ // (X << S) <=u C is equiv to X <=u (C >> S) for all C
+ // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
+ // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
+ assert((Pred != ICmpInst::ICMP_ULT || C->ugt(0)) &&
+ "Encountered `ult 0` that should have been eliminated by "
+ "InstSimplify.");
+ APInt ShiftedC = Pred == ICmpInst::ICMP_ULT ? (*C - 1).lshr(*ShiftAmt) + 1
+ : C->lshr(*ShiftAmt);
+ return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), ShiftedC));
+ }
+
+ // Transform (icmp pred iM (shl iM %v, N), C)
+ // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
+ // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
+ // This enables us to get rid of the shift in favor of a trunc that may be
+ // free on the target. It has the additional benefit of comparing to a
+ // smaller constant that may be more target-friendly.
+ unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
+ if (Shl->hasOneUse() && Amt != 0 && C->countTrailingZeros() >= Amt &&
+ DL.isLegalInteger(TypeBits - Amt)) {
+ Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
+ if (X->getType()->isVectorTy())
+ TruncTy = VectorType::get(TruncTy, X->getType()->getVectorNumElements());
+ Constant *NewC =
+ ConstantInt::get(TruncTy, C->ashr(*ShiftAmt).trunc(TypeBits - Amt));
+ return new ICmpInst(Pred, Builder->CreateTrunc(X, TruncTy), NewC);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp ({al}shr X, Y), C.
+Instruction *InstCombiner::foldICmpShrConstant(ICmpInst &Cmp,
+ BinaryOperator *Shr,
+ const APInt *C) {
+ // An exact shr only shifts out zero bits, so:
+ // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
+ Value *X = Shr->getOperand(0);
+ CmpInst::Predicate Pred = Cmp.getPredicate();
+ if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() && *C == 0)
+ return new ICmpInst(Pred, X, Cmp.getOperand(1));
+
+ const APInt *ShiftVal;
+ if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
+ return foldICmpShrConstConst(Cmp, Shr->getOperand(1), *C, *ShiftVal);
+
+ const APInt *ShiftAmt;
+ if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
+ return nullptr;
+
+ // Check that the shift amount is in range. If not, don't perform undefined
+ // shifts. When the shift is visited it will be simplified.
+ unsigned TypeBits = C->getBitWidth();
+ unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
+ if (ShAmtVal >= TypeBits || ShAmtVal == 0)
+ return nullptr;
+
+ bool IsAShr = Shr->getOpcode() == Instruction::AShr;
+ if (!Cmp.isEquality()) {
+ // If we have an unsigned comparison and an ashr, we can't simplify this.
+ // Similarly for signed comparisons with lshr.
+ if (Cmp.isSigned() != IsAShr)
+ return nullptr;
+
+ // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
+ // by a power of 2. Since we already have logic to simplify these,
+ // transform to div and then simplify the resultant comparison.
+ if (IsAShr && (!Shr->isExact() || ShAmtVal == TypeBits - 1))
+ return nullptr;
+
+ // Revisit the shift (to delete it).
+ Worklist.Add(Shr);
+
+ Constant *DivCst = ConstantInt::get(
+ Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
+
+ Value *Tmp = IsAShr ? Builder->CreateSDiv(X, DivCst, "", Shr->isExact())
+ : Builder->CreateUDiv(X, DivCst, "", Shr->isExact());
+
+ Cmp.setOperand(0, Tmp);
+
+ // If the builder folded the binop, just return it.
+ BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
+ if (!TheDiv)
+ return &Cmp;
+
+ // Otherwise, fold this div/compare.
+ assert(TheDiv->getOpcode() == Instruction::SDiv ||
+ TheDiv->getOpcode() == Instruction::UDiv);
+
+ Instruction *Res = foldICmpDivConstant(Cmp, TheDiv, C);
+ assert(Res && "This div/cst should have folded!");
+ return Res;
+ }
+
+ // Handle equality comparisons of shift-by-constant.
+
+ // If the comparison constant changes with the shift, the comparison cannot
+ // succeed (bits of the comparison constant cannot match the shifted value).
+ // This should be known by InstSimplify and already be folded to true/false.
+ assert(((IsAShr && C->shl(ShAmtVal).ashr(ShAmtVal) == *C) ||
+ (!IsAShr && C->shl(ShAmtVal).lshr(ShAmtVal) == *C)) &&
+ "Expected icmp+shr simplify did not occur.");
+
+ // Check if the bits shifted out are known to be zero. If so, we can compare
+ // against the unshifted value:
+ // (X & 4) >> 1 == 2 --> (X & 4) == 4.
+ Constant *ShiftedCmpRHS = ConstantInt::get(Shr->getType(), *C << ShAmtVal);
+ if (Shr->hasOneUse()) {
+ if (Shr->isExact())
+ return new ICmpInst(Pred, X, ShiftedCmpRHS);
+
+ // Otherwise strength reduce the shift into an 'and'.
+ APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+ Constant *Mask = ConstantInt::get(Shr->getType(), Val);
+ Value *And = Builder->CreateAnd(X, Mask, Shr->getName() + ".mask");
+ return new ICmpInst(Pred, And, ShiftedCmpRHS);
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp (udiv X, Y), C.
+Instruction *InstCombiner::foldICmpUDivConstant(ICmpInst &Cmp,
+ BinaryOperator *UDiv,
+ const APInt *C) {
+ const APInt *C2;
+ if (!match(UDiv->getOperand(0), m_APInt(C2)))
+ return nullptr;
+
+ assert(C2 != 0 && "udiv 0, X should have been simplified already.");
+
+ // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
+ Value *Y = UDiv->getOperand(1);
+ if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
+ assert(!C->isMaxValue() &&
+ "icmp ugt X, UINT_MAX should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_ULE, Y,
+ ConstantInt::get(Y->getType(), C2->udiv(*C + 1)));
+ }
+
+ // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
+ if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
+ assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
+ return new ICmpInst(ICmpInst::ICMP_UGT, Y,
+ ConstantInt::get(Y->getType(), C2->udiv(*C)));
+ }
+
+ return nullptr;
+}
+
+/// Fold icmp ({su}div X, Y), C.
+Instruction *InstCombiner::foldICmpDivConstant(ICmpInst &Cmp,
+ BinaryOperator *Div,
+ const APInt *C) {
+ // Fold: icmp pred ([us]div X, C2), C -> range test
+ // Fold this div into the comparison, producing a range check.
+ // Determine, based on the divide type, what the range is being
+ // checked. If there is an overflow on the low or high side, remember
+ // it, otherwise compute the range [low, hi) bounding the new value.
+ // See: InsertRangeTest above for the kinds of replacements possible.
+ const APInt *C2;
+ if (!match(Div->getOperand(1), m_APInt(C2)))
+ return nullptr;
// FIXME: If the operand types don't match the type of the divide
// then don't attempt this transform. The code below doesn't have the
// logic to deal with a signed divide and an unsigned compare (and
- // vice versa). This is because (x /s C1) <s C2 produces different
- // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
- // (x /u C1) <u C2. Simply casting the operands and result won't
+ // vice versa). This is because (x /s C2) <s C produces different
+ // results than (x /s C2) <u C or (x /u C2) <s C or even
+ // (x /u C2) <u C. Simply casting the operands and result won't
// work. :( The if statement below tests that condition and bails
// if it finds it.
- bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
- if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
+ bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
+ if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
return nullptr;
- if (DivRHS->isZero())
- return nullptr; // The ProdOV computation fails on divide by zero.
- if (DivIsSigned && DivRHS->isAllOnesValue())
- return nullptr; // The overflow computation also screws up here
- if (DivRHS->isOne()) {
- // This eliminates some funny cases with INT_MIN.
- ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
- return &ICI;
- }
-
- // Compute Prod = CI * DivRHS. We are essentially solving an equation
- // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
- // C2 (CI). By solving for X we can turn this into a range check
- // instead of computing a divide.
+
+ // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
+ // INT_MIN will also fail if the divisor is 1. Although folds of all these
+ // division-by-constant cases should be present, we can not assert that they
+ // have happened before we reach this icmp instruction.
+ if (*C2 == 0 || *C2 == 1 || (DivIsSigned && C2->isAllOnesValue()))
+ return nullptr;
+
+ // TODO: We could do all of the computations below using APInt.
+ Constant *CmpRHS = cast<Constant>(Cmp.getOperand(1));
+ Constant *DivRHS = cast<Constant>(Div->getOperand(1));
+
+ // Compute Prod = CmpRHS * DivRHS. We are essentially solving an equation of
+ // form X / C2 = C. We solve for X by multiplying C2 (DivRHS) and C (CmpRHS).
+ // By solving for X, we can turn this into a range check instead of computing
+ // a divide.
Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
- // Determine if the product overflows by seeing if the product is
- // not equal to the divide. Make sure we do the same kind of divide
- // as in the LHS instruction that we're folding.
- bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
- ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
+ // Determine if the product overflows by seeing if the product is not equal to
+ // the divide. Make sure we do the same kind of divide as in the LHS
+ // instruction that we're folding.
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS)
+ : ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
- // Get the ICmp opcode
- ICmpInst::Predicate Pred = ICI.getPredicate();
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
// If the division is known to be exact, then there is no remainder from the
// divide, so the covered range size is unit, otherwise it is the divisor.
- ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
+ Constant *RangeSize =
+ Div->isExact() ? ConstantInt::get(Div->getType(), 1) : DivRHS;
// Figure out the interval that is being checked. For example, a comparison
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
@@ -1245,1134 +2184,1094 @@ Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
if (!HiOverflow) {
// If this is not an exact divide, then many values in the range collapse
// to the same result value.
- HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
+ HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
}
- } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
- if (CmpRHSV == 0) { // (X / pos) op 0
+ } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
+ if (*C == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
HiBound = RangeSize;
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
+ } else if (C->isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
- HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
+ HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
- ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
- LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
+ Constant *DivNeg = ConstantExpr::getNeg(RangeSize);
+ LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
}
}
- } else if (DivRHS->isNegative()) { // Divisor is < 0.
- if (DivI->isExact())
- RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
- if (CmpRHSV == 0) { // (X / neg) op 0
+ } else if (C2->isNegative()) { // Divisor is < 0.
+ if (Div->isExact())
+ RangeSize = ConstantExpr::getNeg(RangeSize);
+ if (*C == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
LoBound = AddOne(RangeSize);
- HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
+ HiBound = ConstantExpr::getNeg(RangeSize);
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
}
- } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
+ } else if (C->isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
- LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
+ LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
} else { // (X / neg) op neg
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
LoOverflow = HiOverflow = ProdOV;
if (!HiOverflow)
- HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
+ HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
}
// Dividing by a negative swaps the condition. LT <-> GT
Pred = ICmpInst::getSwappedPredicate(Pred);
}
- Value *X = DivI->getOperand(0);
+ Value *X = Div->getOperand(0);
switch (Pred) {
- default: llvm_unreachable("Unhandled icmp opcode!");
- case ICmpInst::ICMP_EQ:
- if (LoOverflow && HiOverflow)
- return replaceInstUsesWith(ICI, Builder->getFalse());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, LoBound);
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, HiBound);
- return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
- DivIsSigned, true));
- case ICmpInst::ICMP_NE:
- if (LoOverflow && HiOverflow)
- return replaceInstUsesWith(ICI, Builder->getTrue());
- if (HiOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
- ICmpInst::ICMP_ULT, X, LoBound);
- if (LoOverflow)
- return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
- ICmpInst::ICMP_UGE, X, HiBound);
- return replaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
- DivIsSigned, false));
- case ICmpInst::ICMP_ULT:
- case ICmpInst::ICMP_SLT:
- if (LoOverflow == +1) // Low bound is greater than input range.
- return replaceInstUsesWith(ICI, Builder->getTrue());
- if (LoOverflow == -1) // Low bound is less than input range.
- return replaceInstUsesWith(ICI, Builder->getFalse());
- return new ICmpInst(Pred, X, LoBound);
- case ICmpInst::ICMP_UGT:
- case ICmpInst::ICMP_SGT:
- if (HiOverflow == +1) // High bound greater than input range.
- return replaceInstUsesWith(ICI, Builder->getFalse());
- if (HiOverflow == -1) // High bound less than input range.
- return replaceInstUsesWith(ICI, Builder->getTrue());
- if (Pred == ICmpInst::ICMP_UGT)
- return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
- return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+ default: llvm_unreachable("Unhandled icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ if (LoOverflow && HiOverflow)
+ return replaceInstUsesWith(Cmp, Builder->getFalse());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, LoBound);
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, HiBound);
+ return replaceInstUsesWith(
+ Cmp, insertRangeTest(X, LoBound->getUniqueInteger(),
+ HiBound->getUniqueInteger(), DivIsSigned, true));
+ case ICmpInst::ICMP_NE:
+ if (LoOverflow && HiOverflow)
+ return replaceInstUsesWith(Cmp, Builder->getTrue());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, LoBound);
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, HiBound);
+ return replaceInstUsesWith(Cmp,
+ insertRangeTest(X, LoBound->getUniqueInteger(),
+ HiBound->getUniqueInteger(),
+ DivIsSigned, false));
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ if (LoOverflow == +1) // Low bound is greater than input range.
+ return replaceInstUsesWith(Cmp, Builder->getTrue());
+ if (LoOverflow == -1) // Low bound is less than input range.
+ return replaceInstUsesWith(Cmp, Builder->getFalse());
+ return new ICmpInst(Pred, X, LoBound);
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ if (HiOverflow == +1) // High bound greater than input range.
+ return replaceInstUsesWith(Cmp, Builder->getFalse());
+ if (HiOverflow == -1) // High bound less than input range.
+ return replaceInstUsesWith(Cmp, Builder->getTrue());
+ if (Pred == ICmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
}
+
+ return nullptr;
}
-/// Handle "icmp(([al]shr X, cst1), cst2)".
-Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
- ConstantInt *ShAmt) {
- const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
+/// Fold icmp (sub X, Y), C.
+Instruction *InstCombiner::foldICmpSubConstant(ICmpInst &Cmp,
+ BinaryOperator *Sub,
+ const APInt *C) {
+ Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- uint32_t TypeBits = CmpRHSV.getBitWidth();
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
- if (ShAmtVal >= TypeBits || ShAmtVal == 0)
+ // The following transforms are only worth it if the only user of the subtract
+ // is the icmp.
+ if (!Sub->hasOneUse())
return nullptr;
- if (!ICI.isEquality()) {
- // If we have an unsigned comparison and an ashr, we can't simplify this.
- // Similarly for signed comparisons with lshr.
- if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
- return nullptr;
-
- // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
- // by a power of 2. Since we already have logic to simplify these,
- // transform to div and then simplify the resultant comparison.
- if (Shr->getOpcode() == Instruction::AShr &&
- (!Shr->isExact() || ShAmtVal == TypeBits - 1))
- return nullptr;
-
- // Revisit the shift (to delete it).
- Worklist.Add(Shr);
-
- Constant *DivCst =
- ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
+ if (Sub->hasNoSignedWrap()) {
+ // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
+ if (Pred == ICmpInst::ICMP_SGT && C->isAllOnesValue())
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
- Value *Tmp =
- Shr->getOpcode() == Instruction::AShr ?
- Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
- Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
+ // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
+ if (Pred == ICmpInst::ICMP_SGT && *C == 0)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
- ICI.setOperand(0, Tmp);
+ // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
+ if (Pred == ICmpInst::ICMP_SLT && *C == 0)
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
- // If the builder folded the binop, just return it.
- BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
- if (!TheDiv)
- return &ICI;
-
- // Otherwise, fold this div/compare.
- assert(TheDiv->getOpcode() == Instruction::SDiv ||
- TheDiv->getOpcode() == Instruction::UDiv);
-
- Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
- assert(Res && "This div/cst should have folded!");
- return Res;
+ // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
+ if (Pred == ICmpInst::ICMP_SLT && *C == 1)
+ return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
}
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- APInt Comp = CmpRHSV << ShAmtVal;
- ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
- if (Shr->getOpcode() == Instruction::LShr)
- Comp = Comp.lshr(ShAmtVal);
- else
- Comp = Comp.ashr(ShAmtVal);
+ const APInt *C2;
+ if (!match(X, m_APInt(C2)))
+ return nullptr;
- if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Builder->getInt1(IsICMP_NE);
- return replaceInstUsesWith(ICI, Cst);
- }
+ // C2 - Y <u C -> (Y | (C - 1)) == C2
+ // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
+ if (Pred == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
+ (*C2 & (*C - 1)) == (*C - 1))
+ return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateOr(Y, *C - 1), X);
- // Otherwise, check to see if the bits shifted out are known to be zero.
- // If so, we can compare against the unshifted value:
- // (X & 4) >> 1 == 2 --> (X & 4) == 4.
- if (Shr->hasOneUse() && Shr->isExact())
- return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
+ // C2 - Y >u C -> (Y | C) != C2
+ // iff C2 & C == C and C + 1 is a power of 2
+ if (Pred == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() && (*C2 & *C) == *C)
+ return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateOr(Y, *C), X);
- if (Shr->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
- Constant *Mask = Builder->getInt(Val);
-
- Value *And = Builder->CreateAnd(Shr->getOperand(0),
- Mask, Shr->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
- }
return nullptr;
}
-/// Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
-/// (icmp eq/ne A, Log2(const2/const1)) ->
-/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
-Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1,
- ConstantInt *CI2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
-
- auto getConstant = [&I, this](bool IsTrue) {
- if (I.getPredicate() == I.ICMP_NE)
- IsTrue = !IsTrue;
- return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
- };
-
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
+/// Fold icmp (add X, Y), C.
+Instruction *InstCombiner::foldICmpAddConstant(ICmpInst &Cmp,
+ BinaryOperator *Add,
+ const APInt *C) {
+ Value *Y = Add->getOperand(1);
+ const APInt *C2;
+ if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
+ return nullptr;
- const APInt &AP1 = CI1->getValue();
- const APInt &AP2 = CI2->getValue();
+ // Fold icmp pred (add X, C2), C.
+ Value *X = Add->getOperand(0);
+ Type *Ty = Add->getType();
+ auto CR =
+ ConstantRange::makeExactICmpRegion(Cmp.getPredicate(), *C).subtract(*C2);
+ const APInt &Upper = CR.getUpper();
+ const APInt &Lower = CR.getLower();
+ if (Cmp.isSigned()) {
+ if (Lower.isSignBit())
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
+ if (Upper.isSignBit())
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
+ } else {
+ if (Lower.isMinValue())
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
+ if (Upper.isMinValue())
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
+ }
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2 == 0)
+ if (!Add->hasOneUse())
return nullptr;
- bool IsAShr = isa<AShrOperator>(Op);
- if (IsAShr) {
- if (AP2.isAllOnesValue())
- return nullptr;
- if (AP2.isNegative() != AP1.isNegative())
- return nullptr;
- if (AP2.sgt(AP1))
- return nullptr;
- }
- if (!AP1)
- // 'A' must be large enough to shift out the highest set bit.
- return getICmp(I.ICMP_UGT, A,
- ConstantInt::get(A->getType(), AP2.logBase2()));
+ // X+C <u C2 -> (X & -C2) == C
+ // iff C & (C2-1) == 0
+ // C2 is a power of 2
+ if (Cmp.getPredicate() == ICmpInst::ICMP_ULT && C->isPowerOf2() &&
+ (*C2 & (*C - 1)) == 0)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Builder->CreateAnd(X, -(*C)),
+ ConstantExpr::getNeg(cast<Constant>(Y)));
+
+ // X+C >u C2 -> (X & ~C2) != C
+ // iff C & C2 == 0
+ // C2+1 is a power of 2
+ if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && (*C + 1).isPowerOf2() &&
+ (*C2 & *C) == 0)
+ return new ICmpInst(ICmpInst::ICMP_NE, Builder->CreateAnd(X, ~(*C)),
+ ConstantExpr::getNeg(cast<Constant>(Y)));
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+ return nullptr;
+}
- int Shift;
- if (IsAShr && AP1.isNegative())
- Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
- else
- Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
+/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
+/// where X is some kind of instruction.
+Instruction *InstCombiner::foldICmpInstWithConstant(ICmpInst &Cmp) {
+ const APInt *C;
+ if (!match(Cmp.getOperand(1), m_APInt(C)))
+ return nullptr;
- if (Shift > 0) {
- if (IsAShr && AP1 == AP2.ashr(Shift)) {
- // There are multiple solutions if we are comparing against -1 and the LHS
- // of the ashr is not a power of two.
- if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
- return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
- } else if (AP1 == AP2.lshr(Shift)) {
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ BinaryOperator *BO;
+ if (match(Cmp.getOperand(0), m_BinOp(BO))) {
+ switch (BO->getOpcode()) {
+ case Instruction::Xor:
+ if (Instruction *I = foldICmpXorConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::And:
+ if (Instruction *I = foldICmpAndConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::Or:
+ if (Instruction *I = foldICmpOrConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::Mul:
+ if (Instruction *I = foldICmpMulConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::Shl:
+ if (Instruction *I = foldICmpShlConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Instruction *I = foldICmpShrConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::UDiv:
+ if (Instruction *I = foldICmpUDivConstant(Cmp, BO, C))
+ return I;
+ LLVM_FALLTHROUGH;
+ case Instruction::SDiv:
+ if (Instruction *I = foldICmpDivConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::Sub:
+ if (Instruction *I = foldICmpSubConstant(Cmp, BO, C))
+ return I;
+ break;
+ case Instruction::Add:
+ if (Instruction *I = foldICmpAddConstant(Cmp, BO, C))
+ return I;
+ break;
+ default:
+ break;
}
+ // TODO: These folds could be refactored to be part of the above calls.
+ if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, C))
+ return I;
}
- // Shifting const2 will never be equal to const1.
- return getConstant(false);
-}
-/// Handle "(icmp eq/ne (shl const2, A), const1)" ->
-/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
-Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
- ConstantInt *CI1,
- ConstantInt *CI2) {
- assert(I.isEquality() && "Cannot fold icmp gt/lt");
+ Instruction *LHSI;
+ if (match(Cmp.getOperand(0), m_Instruction(LHSI)) &&
+ LHSI->getOpcode() == Instruction::Trunc)
+ if (Instruction *I = foldICmpTruncConstant(Cmp, LHSI, C))
+ return I;
- auto getConstant = [&I, this](bool IsTrue) {
- if (I.getPredicate() == I.ICMP_NE)
- IsTrue = !IsTrue;
- return replaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
- };
+ if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, C))
+ return I;
- auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
- if (I.getPredicate() == I.ICMP_NE)
- Pred = CmpInst::getInversePredicate(Pred);
- return new ICmpInst(Pred, LHS, RHS);
- };
-
- const APInt &AP1 = CI1->getValue();
- const APInt &AP2 = CI2->getValue();
+ return nullptr;
+}
- // Don't bother doing any work for cases which InstSimplify handles.
- if (AP2 == 0)
+/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
+/// icmp eq/ne BO, C.
+Instruction *InstCombiner::foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
+ BinaryOperator *BO,
+ const APInt *C) {
+ // TODO: Some of these folds could work with arbitrary constants, but this
+ // function is limited to scalar and vector splat constants.
+ if (!Cmp.isEquality())
return nullptr;
- unsigned AP2TrailingZeros = AP2.countTrailingZeros();
-
- if (!AP1 && AP2TrailingZeros != 0)
- return getICmp(I.ICMP_UGE, A,
- ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
+ Constant *RHS = cast<Constant>(Cmp.getOperand(1));
+ Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
+
+ switch (BO->getOpcode()) {
+ case Instruction::SRem:
+ // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
+ if (*C == 0 && BO->hasOneUse()) {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
+ Value *NewRem = Builder->CreateURem(BOp0, BOp1, BO->getName());
+ return new ICmpInst(Pred, NewRem,
+ Constant::getNullValue(BO->getType()));
+ }
+ }
+ break;
+ case Instruction::Add: {
+ // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC))) {
+ if (BO->hasOneUse()) {
+ Constant *SubC = ConstantExpr::getSub(RHS, cast<Constant>(BOp1));
+ return new ICmpInst(Pred, BOp0, SubC);
+ }
+ } else if (*C == 0) {
+ // Replace ((add A, B) != 0) with (A != -B) if A or B is
+ // efficiently invertible, or if the add has just this one use.
+ if (Value *NegVal = dyn_castNegVal(BOp1))
+ return new ICmpInst(Pred, BOp0, NegVal);
+ if (Value *NegVal = dyn_castNegVal(BOp0))
+ return new ICmpInst(Pred, NegVal, BOp1);
+ if (BO->hasOneUse()) {
+ Value *Neg = Builder->CreateNeg(BOp1);
+ Neg->takeName(BO);
+ return new ICmpInst(Pred, BOp0, Neg);
+ }
+ }
+ break;
+ }
+ case Instruction::Xor:
+ if (BO->hasOneUse()) {
+ if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
+ // For the xor case, we can xor two constants together, eliminating
+ // the explicit xor.
+ return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
+ } else if (*C == 0) {
+ // Replace ((xor A, B) != 0) with (A != B)
+ return new ICmpInst(Pred, BOp0, BOp1);
+ }
+ }
+ break;
+ case Instruction::Sub:
+ if (BO->hasOneUse()) {
+ const APInt *BOC;
+ if (match(BOp0, m_APInt(BOC))) {
+ // Replace ((sub BOC, B) != C) with (B != BOC-C).
+ Constant *SubC = ConstantExpr::getSub(cast<Constant>(BOp0), RHS);
+ return new ICmpInst(Pred, BOp1, SubC);
+ } else if (*C == 0) {
+ // Replace ((sub A, B) != 0) with (A != B).
+ return new ICmpInst(Pred, BOp0, BOp1);
+ }
+ }
+ break;
+ case Instruction::Or: {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
+ // Comparing if all bits outside of a constant mask are set?
+ // Replace (X | C) == -1 with (X & ~C) == ~C.
+ // This removes the -1 constant.
+ Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
+ Value *And = Builder->CreateAnd(BOp0, NotBOC);
+ return new ICmpInst(Pred, And, NotBOC);
+ }
+ break;
+ }
+ case Instruction::And: {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC))) {
+ // If we have ((X & C) == C), turn it into ((X & C) != 0).
+ if (C == BOC && C->isPowerOf2())
+ return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
+ BO, Constant::getNullValue(RHS->getType()));
+
+ // Don't perform the following transforms if the AND has multiple uses
+ if (!BO->hasOneUse())
+ break;
- if (AP1 == AP2)
- return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+ // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
+ if (BOC->isSignBit()) {
+ Constant *Zero = Constant::getNullValue(BOp0->getType());
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
+ return new ICmpInst(NewPred, BOp0, Zero);
+ }
- // Get the distance between the lowest bits that are set.
- int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
+ // ((X & ~7) == 0) --> X < 8
+ if (*C == 0 && (~(*BOC) + 1).isPowerOf2()) {
+ Constant *NegBOC = ConstantExpr::getNeg(cast<Constant>(BOp1));
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+ return new ICmpInst(NewPred, BOp0, NegBOC);
+ }
+ }
+ break;
+ }
+ case Instruction::Mul:
+ if (*C == 0 && BO->hasNoSignedWrap()) {
+ const APInt *BOC;
+ if (match(BOp1, m_APInt(BOC)) && *BOC != 0) {
+ // The trivial case (mul X, 0) is handled by InstSimplify.
+ // General case : (mul X, C) != 0 iff X != 0
+ // (mul X, C) == 0 iff X == 0
+ return new ICmpInst(Pred, BOp0, Constant::getNullValue(RHS->getType()));
+ }
+ }
+ break;
+ case Instruction::UDiv:
+ if (*C == 0) {
+ // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
+ auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
+ return new ICmpInst(NewPred, BOp1, BOp0);
+ }
+ break;
+ default:
+ break;
+ }
+ return nullptr;
+}
- if (Shift > 0 && AP2.shl(Shift) == AP1)
- return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
+Instruction *InstCombiner::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
+ const APInt *C) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0));
+ if (!II || !Cmp.isEquality())
+ return nullptr;
- // Shifting const2 will never be equal to const1.
- return getConstant(false);
+ // Handle icmp {eq|ne} <intrinsic>, intcst.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::bswap:
+ Worklist.Add(II);
+ Cmp.setOperand(0, II->getArgOperand(0));
+ Cmp.setOperand(1, Builder->getInt(C->byteSwap()));
+ return &Cmp;
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
+ if (*C == C->getBitWidth()) {
+ Worklist.Add(II);
+ Cmp.setOperand(0, II->getArgOperand(0));
+ Cmp.setOperand(1, ConstantInt::getNullValue(II->getType()));
+ return &Cmp;
+ }
+ break;
+ case Intrinsic::ctpop: {
+ // popcount(A) == 0 -> A == 0 and likewise for !=
+ // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
+ bool IsZero = *C == 0;
+ if (IsZero || *C == C->getBitWidth()) {
+ Worklist.Add(II);
+ Cmp.setOperand(0, II->getArgOperand(0));
+ auto *NewOp = IsZero ? Constant::getNullValue(II->getType())
+ : Constant::getAllOnesValue(II->getType());
+ Cmp.setOperand(1, NewOp);
+ return &Cmp;
+ }
+ break;
+ }
+ default:
+ break;
+ }
+ return nullptr;
}
-/// Handle "icmp (instr, intcst)".
-Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
- Instruction *LHSI,
- ConstantInt *RHS) {
- const APInt &RHSV = RHS->getValue();
+/// Handle icmp with constant (but not simple integer constant) RHS.
+Instruction *InstCombiner::foldICmpInstWithConstantNotInt(ICmpInst &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Constant *RHSC = dyn_cast<Constant>(Op1);
+ Instruction *LHSI = dyn_cast<Instruction>(Op0);
+ if (!RHSC || !LHSI)
+ return nullptr;
switch (LHSI->getOpcode()) {
- case Instruction::Trunc:
- if (RHS->isOne() && RHSV.getBitWidth() > 1) {
- // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
- Value *V = nullptr;
- if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
- match(LHSI->getOperand(0), m_Signum(m_Value(V))))
- return new ICmpInst(ICmpInst::ICMP_SLT, V,
- ConstantInt::get(V->getType(), 1));
+ case Instruction::GetElementPtr:
+ // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
+ if (RHSC->isNullValue() &&
+ cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
+ return new ICmpInst(
+ I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+ case Instruction::PHI:
+ // Only fold icmp into the PHI if the phi and icmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ break;
+ case Instruction::Select: {
+ // If either operand of the select is a constant, we can fold the
+ // comparison into the select arms, which will cause one to be
+ // constant folded and the select turned into a bitwise or.
+ Value *Op1 = nullptr, *Op2 = nullptr;
+ ConstantInt *CI = nullptr;
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op1);
}
- if (ICI.isEquality() && LHSI->hasOneUse()) {
- // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
- // of the high bits truncated out of x are known.
- unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
- SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
- APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
- computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
-
- // If all the high bits are known, we can do this xform.
- if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
- // Pull in the high bits from known-ones set.
- APInt NewRHS = RHS->getValue().zext(SrcBits);
- NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- Builder->getInt(NewRHS));
- }
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op2);
+ }
+
+ // We only want to perform this transformation if it will not lead to
+ // additional code. This is true if either both sides of the select
+ // fold to a constant (in which case the icmp is replaced with a select
+ // which will usually simplify) or this is the only user of the
+ // select (in which case we are trading a select+icmp for a simpler
+ // select+icmp) or all uses of the select can be replaced based on
+ // dominance information ("Global cases").
+ bool Transform = false;
+ if (Op1 && Op2)
+ Transform = true;
+ else if (Op1 || Op2) {
+ // Local case
+ if (LHSI->hasOneUse())
+ Transform = true;
+ // Global cases
+ else if (CI && !CI->isZero())
+ // When Op1 is constant try replacing select with second operand.
+ // Otherwise Op2 is constant and try replacing select with first
+ // operand.
+ Transform =
+ replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
+ }
+ if (Transform) {
+ if (!Op1)
+ Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
+ I.getName());
+ if (!Op2)
+ Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
+ I.getName());
+ return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
}
break;
+ }
+ case Instruction::IntToPtr:
+ // icmp pred inttoptr(X), null -> icmp pred X, 0
+ if (RHSC->isNullValue() &&
+ DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
+ return new ICmpInst(
+ I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
- case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
- if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- // If this is a comparison that tests the signbit (X < 0) or (x > -1),
- // fold the xor.
- if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
- (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
- Value *CompareVal = LHSI->getOperand(0);
-
- // If the sign bit of the XorCst is not set, there is no change to
- // the operation, just stop using the Xor.
- if (!XorCst->isNegative()) {
- ICI.setOperand(0, CompareVal);
- Worklist.Add(LHSI);
- return &ICI;
- }
+ case Instruction::Load:
+ // Try to optimize things like "A[i] > 4" to index computations.
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ }
- // Was the old condition true if the operand is positive?
- bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
+ return nullptr;
+}
- // If so, the new one isn't.
- isTrueIfPositive ^= true;
+/// Try to fold icmp (binop), X or icmp X, (binop).
+Instruction *InstCombiner::foldICmpBinOp(ICmpInst &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isTrueIfPositive)
- return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
- SubOne(RHS));
- else
- return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
- AddOne(RHS));
- }
+ // Special logic for binary operators.
+ BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
+ BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
+ if (!BO0 && !BO1)
+ return nullptr;
- if (LHSI->hasOneUse()) {
- // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
- if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
- const APInt &SignBit = XorCst->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- return new ICmpInst(Pred, LHSI->getOperand(0),
- Builder->getInt(RHSV ^ SignBit));
- }
+ CmpInst::Predicate Pred = I.getPredicate();
+ bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
+ if (BO0 && isa<OverflowingBinaryOperator>(BO0))
+ NoOp0WrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
+ if (BO1 && isa<OverflowingBinaryOperator>(BO1))
+ NoOp1WrapProblem =
+ ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
- // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
- if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
- const APInt &NotSignBit = XorCst->getValue();
- ICmpInst::Predicate Pred = ICI.isSigned()
- ? ICI.getUnsignedPredicate()
- : ICI.getSignedPredicate();
- Pred = ICI.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, LHSI->getOperand(0),
- Builder->getInt(RHSV ^ NotSignBit));
- }
- }
+ // Analyze the case when either Op0 or Op1 is an add instruction.
+ // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Add) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Add) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
- // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
- // iff -C is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
- XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
-
- // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
- // iff -C is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
- XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
- return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
+ // icmp (X+cst) < 0 --> X < -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
+ if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
+ if (!RHSC->isMinValue(/*isSigned=*/true))
+ return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
+
+ // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
+ if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
+ return new ICmpInst(Pred, A == Op1 ? B : A,
+ Constant::getNullValue(Op1->getType()));
+
+ // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
+ if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
+ C == Op0 ? D : C);
+
+ // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
+ if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
+ NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse()) {
+ // Determine Y and Z in the form icmp (X+Y), (X+Z).
+ Value *Y, *Z;
+ if (A == C) {
+ // C + B == C + D -> B == D
+ Y = B;
+ Z = D;
+ } else if (A == D) {
+ // D + B == C + D -> B == C
+ Y = B;
+ Z = C;
+ } else if (B == C) {
+ // A + C == C + D -> A == D
+ Y = A;
+ Z = D;
+ } else {
+ assert(B == D);
+ // A + D == C + D -> A == C
+ Y = A;
+ Z = C;
}
- break;
- case Instruction::And: // (icmp pred (and X, AndCst), RHS)
- if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
- LHSI->getOperand(0)->hasOneUse()) {
- ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
-
- // If the LHS is an AND of a truncating cast, we can widen the
- // and/compare to be the input width without changing the value
- // produced, eliminating a cast.
- if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
- // We can do this transformation if either the AND constant does not
- // have its sign bit set or if it is an equality comparison.
- // Extending a relational comparison when we're checking the sign
- // bit would not work.
- if (ICI.isEquality() ||
- (!AndCst->isNegative() && RHSV.isNonNegative())) {
- Value *NewAnd =
- Builder->CreateAnd(Cast->getOperand(0),
- ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
- NewAnd->takeName(LHSI);
- return new ICmpInst(ICI.getPredicate(), NewAnd,
- ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
- }
- }
-
- // If the LHS is an AND of a zext, and we have an equality compare, we can
- // shrink the and/compare to the smaller type, eliminating the cast.
- if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
- IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
- // Make sure we don't compare the upper bits, SimplifyDemandedBits
- // should fold the icmp to true/false in that case.
- if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
- Value *NewAnd =
- Builder->CreateAnd(Cast->getOperand(0),
- ConstantExpr::getTrunc(AndCst, Ty));
- NewAnd->takeName(LHSI);
- return new ICmpInst(ICI.getPredicate(), NewAnd,
- ConstantExpr::getTrunc(RHS, Ty));
- }
- }
-
- // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
- // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
- // happens a LOT in code produced by the C front-end, for bitfield
- // access.
- BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
- if (Shift && !Shift->isShift())
- Shift = nullptr;
-
- ConstantInt *ShAmt;
- ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
-
- // This seemingly simple opportunity to fold away a shift turns out to
- // be rather complicated. See PR17827
- // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
- if (ShAmt) {
- bool CanFold = false;
- unsigned ShiftOpcode = Shift->getOpcode();
- if (ShiftOpcode == Instruction::AShr) {
- // There may be some constraints that make this possible,
- // but nothing simple has been discovered yet.
- CanFold = false;
- } else if (ShiftOpcode == Instruction::Shl) {
- // For a left shift, we can fold if the comparison is not signed.
- // We can also fold a signed comparison if the mask value and
- // comparison value are not negative. These constraints may not be
- // obvious, but we can prove that they are correct using an SMT
- // solver.
- if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
- CanFold = true;
- } else if (ShiftOpcode == Instruction::LShr) {
- // For a logical right shift, we can fold if the comparison is not
- // signed. We can also fold a signed comparison if the shifted mask
- // value and the shifted comparison value are not negative.
- // These constraints may not be obvious, but we can prove that they
- // are correct using an SMT solver.
- if (!ICI.isSigned())
- CanFold = true;
- else {
- ConstantInt *ShiftedAndCst =
- cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
- ConstantInt *ShiftedRHSCst =
- cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
-
- if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
- CanFold = true;
- }
- }
+ return new ICmpInst(Pred, Y, Z);
+ }
- if (CanFold) {
- Constant *NewCst;
- if (ShiftOpcode == Instruction::Shl)
- NewCst = ConstantExpr::getLShr(RHS, ShAmt);
- else
- NewCst = ConstantExpr::getShl(RHS, ShAmt);
-
- // Check to see if we are shifting out any of the bits being
- // compared.
- if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
- // If we shifted bits out, the fold is not going to work out.
- // As a special case, check to see if this means that the
- // result is always true or false now.
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- return replaceInstUsesWith(ICI, Builder->getFalse());
- if (ICI.getPredicate() == ICmpInst::ICMP_NE)
- return replaceInstUsesWith(ICI, Builder->getTrue());
+ // icmp slt (X + -1), Y -> icmp sle X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
+
+ // icmp sge (X + -1), Y -> icmp sgt X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
+
+ // icmp sle (X + 1), Y -> icmp slt X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
+
+ // icmp sgt (X + 1), Y -> icmp sge X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
+
+ // icmp sgt X, (Y + -1) -> icmp sge X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
+ match(D, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
+
+ // icmp sle X, (Y + -1) -> icmp slt X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
+ match(D, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
+
+ // icmp sge X, (Y + 1) -> icmp sgt X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
+
+ // icmp slt X, (Y + 1) -> icmp sle X, Y
+ if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
+
+ // if C1 has greater magnitude than C2:
+ // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
+ // s.t. C3 = C1 - C2
+ //
+ // if C2 has greater magnitude than C1:
+ // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
+ // s.t. C3 = C2 - C1
+ if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
+ if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
+ if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
+ const APInt &AP1 = C1->getValue();
+ const APInt &AP2 = C2->getValue();
+ if (AP1.isNegative() == AP2.isNegative()) {
+ APInt AP1Abs = C1->getValue().abs();
+ APInt AP2Abs = C2->getValue().abs();
+ if (AP1Abs.uge(AP2Abs)) {
+ ConstantInt *C3 = Builder->getInt(AP1 - AP2);
+ Value *NewAdd = Builder->CreateNSWAdd(A, C3);
+ return new ICmpInst(Pred, NewAdd, C);
} else {
- ICI.setOperand(1, NewCst);
- Constant *NewAndCst;
- if (ShiftOpcode == Instruction::Shl)
- NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
- else
- NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
- LHSI->setOperand(1, NewAndCst);
- LHSI->setOperand(0, Shift->getOperand(0));
- Worklist.Add(Shift); // Shift is dead.
- return &ICI;
+ ConstantInt *C3 = Builder->getInt(AP2 - AP1);
+ Value *NewAdd = Builder->CreateNSWAdd(C, C3);
+ return new ICmpInst(Pred, A, NewAdd);
}
}
}
- // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
- // preferable because it allows the C<<Y expression to be hoisted out
- // of a loop if Y is invariant and X is not.
- if (Shift && Shift->hasOneUse() && RHSV == 0 &&
- ICI.isEquality() && !Shift->isArithmeticShift() &&
- !isa<Constant>(Shift->getOperand(0))) {
- // Compute C << Y.
- Value *NS;
- if (Shift->getOpcode() == Instruction::LShr) {
- NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
- } else {
- // Insert a logical shift.
- NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
- }
+ // Analyze the case when either Op0 or Op1 is a sub instruction.
+ // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
+ A = nullptr;
+ B = nullptr;
+ C = nullptr;
+ D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Sub) {
+ A = BO0->getOperand(0);
+ B = BO0->getOperand(1);
+ }
+ if (BO1 && BO1->getOpcode() == Instruction::Sub) {
+ C = BO1->getOperand(0);
+ D = BO1->getOperand(1);
+ }
- // Compute X & (C << Y).
- Value *NewAnd =
- Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
+ // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
+ if (A == Op1 && NoOp0WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
+
+ // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
+ if (C == Op0 && NoOp1WrapProblem)
+ return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
+
+ // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
+ if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, A, C);
+
+ // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
+ if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, D, B);
+
+ // icmp (0-X) < cst --> x > -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
+ Value *X;
+ if (match(BO0, m_Neg(m_Value(X))))
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
+ if (!RHSC->isMinValue(/*isSigned=*/true))
+ return new ICmpInst(I.getSwappedPredicate(), X,
+ ConstantExpr::getNeg(RHSC));
+ }
- ICI.setOperand(0, NewAnd);
- return &ICI;
- }
+ BinaryOperator *SRem = nullptr;
+ // icmp (srem X, Y), Y
+ if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
+ SRem = BO0;
+ // icmp Y, (srem X, Y)
+ else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
+ Op0 == BO1->getOperand(1))
+ SRem = BO1;
+ if (SRem) {
+ // We don't check hasOneUse to avoid increasing register pressure because
+ // the value we use is the same value this instruction was already using.
+ switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
+ default:
+ break;
+ case ICmpInst::ICMP_EQ:
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ case ICmpInst::ICMP_NE:
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
+ Constant::getAllOnesValue(SRem->getType()));
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
+ Constant::getNullValue(SRem->getType()));
+ }
+ }
- // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
- // (icmp pred (and X, (or (shl 1, Y), 1), 0))
- //
- // iff pred isn't signed
- {
- Value *X, *Y, *LShr;
- if (!ICI.isSigned() && RHSV == 0) {
- if (match(LHSI->getOperand(1), m_One())) {
- Constant *One = cast<Constant>(LHSI->getOperand(1));
- Value *Or = LHSI->getOperand(0);
- if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
- match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
- unsigned UsesRemoved = 0;
- if (LHSI->hasOneUse())
- ++UsesRemoved;
- if (Or->hasOneUse())
- ++UsesRemoved;
- if (LShr->hasOneUse())
- ++UsesRemoved;
- Value *NewOr = nullptr;
- // Compute X & ((1 << Y) | 1)
- if (auto *C = dyn_cast<Constant>(Y)) {
- if (UsesRemoved >= 1)
- NewOr =
- ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
- } else {
- if (UsesRemoved >= 3)
- NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
- LShr->getName(),
- /*HasNUW=*/true),
- One, Or->getName());
- }
- if (NewOr) {
- Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
- ICI.setOperand(0, NewAnd);
- return &ICI;
- }
- }
- }
+ if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
+ BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
+ switch (BO0->getOpcode()) {
+ default:
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ if (CI->getValue().isSignBit()) {
+ ICmpInst::Predicate Pred =
+ I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
}
- }
- // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
- // bit set in (X & AndCst) will produce a result greater than RHSV.
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
- unsigned NTZ = AndCst->getValue().countTrailingZeros();
- if ((NTZ < AndCst->getBitWidth()) &&
- APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
- return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
- Constant::getNullValue(RHS->getType()));
+ if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
+ ICmpInst::Predicate Pred =
+ I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
+ Pred = I.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
+ }
}
- }
-
- // Try to optimize things like "A[i]&42 == 0" to index computations.
- if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
- !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
- ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
- return Res;
- }
- }
+ break;
+ case Instruction::Mul:
+ if (!I.isEquality())
+ break;
- // X & -C == -C -> X > u ~C
- // X & -C != -C -> X <= u ~C
- // iff C is a power of 2
- if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
- return new ICmpInst(
- ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
- : ICmpInst::ICMP_ULE,
- LHSI->getOperand(0), SubOne(RHS));
-
- // (icmp eq (and %A, C), 0) -> (icmp sgt (trunc %A), -1)
- // iff C is a power of 2
- if (ICI.isEquality() && LHSI->hasOneUse() && match(RHS, m_Zero())) {
- if (auto *CI = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- const APInt &AI = CI->getValue();
- int32_t ExactLogBase2 = AI.exactLogBase2();
- if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
- Type *NTy = IntegerType::get(ICI.getContext(), ExactLogBase2 + 1);
- Value *Trunc = Builder->CreateTrunc(LHSI->getOperand(0), NTy);
- return new ICmpInst(ICI.getPredicate() == ICmpInst::ICMP_EQ
- ? ICmpInst::ICMP_SGE
- : ICmpInst::ICMP_SLT,
- Trunc, Constant::getNullValue(NTy));
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
+ // Mask = -1 >> count-trailing-zeros(Cst).
+ if (!CI->isZero() && !CI->isOne()) {
+ const APInt &AP = CI->getValue();
+ ConstantInt *Mask = ConstantInt::get(
+ I.getContext(),
+ APInt::getLowBitsSet(AP.getBitWidth(),
+ AP.getBitWidth() - AP.countTrailingZeros()));
+ Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
+ return new ICmpInst(I.getPredicate(), And1, And2);
}
}
+ break;
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ if (I.isSigned())
+ break;
+ LLVM_FALLTHROUGH;
+ case Instruction::SDiv:
+ case Instruction::AShr:
+ if (!BO0->isExact() || !BO1->isExact())
+ break;
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ case Instruction::Shl: {
+ bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
+ bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
+ if (!NUW && !NSW)
+ break;
+ if (!NSW && I.isSigned())
+ break;
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
}
- break;
-
- case Instruction::Or: {
- if (RHS->isOne()) {
- // icmp slt signum(V) 1 --> icmp slt V, 1
- Value *V = nullptr;
- if (ICI.getPredicate() == ICmpInst::ICMP_SLT &&
- match(LHSI, m_Signum(m_Value(V))))
- return new ICmpInst(ICmpInst::ICMP_SLT, V,
- ConstantInt::get(V->getType(), 1));
}
+ }
- if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
- break;
- Value *P, *Q;
- if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
- // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
- // -> and (icmp eq P, null), (icmp eq Q, null).
- Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
- Constant::getNullValue(P->getType()));
- Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
- Constant::getNullValue(Q->getType()));
- Instruction *Op;
- if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
- Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
- else
- Op = BinaryOperator::CreateOr(ICIP, ICIQ);
- return Op;
+ if (BO0) {
+ // Transform A & (L - 1) `ult` L --> L != 0
+ auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
+ auto BitwiseAnd =
+ m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
+
+ if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
+ auto *Zero = Constant::getNullValue(BO0->getType());
+ return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
}
- break;
}
- case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
- ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!Val) break;
+ return nullptr;
+}
- // If this is a signed comparison to 0 and the mul is sign preserving,
- // use the mul LHS operand instead.
- ICmpInst::Predicate pred = ICI.getPredicate();
- if (isSignTest(pred, RHS) && !Val->isZero() &&
- cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
- return new ICmpInst(Val->isNegative() ?
- ICmpInst::getSwappedPredicate(pred) : pred,
- LHSI->getOperand(0),
- Constant::getNullValue(RHS->getType()));
+/// Fold icmp Pred min|max(X, Y), X.
+static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
+ ICmpInst::Predicate Pred = Cmp.getPredicate();
+ Value *Op0 = Cmp.getOperand(0);
+ Value *X = Cmp.getOperand(1);
+
+ // Canonicalize minimum or maximum operand to LHS of the icmp.
+ if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
+ match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
+ std::swap(Op0, X);
+ Pred = Cmp.getSwappedPredicate();
+ }
- break;
+ Value *Y;
+ if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
+ // smin(X, Y) == X --> X s<= Y
+ // smin(X, Y) s>= X --> X s<= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
+ return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
+
+ // smin(X, Y) != X --> X s> Y
+ // smin(X, Y) s< X --> X s> Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // smin(X, Y) s<= X --> true
+ // smin(X, Y) s> X --> false
+ return nullptr;
}
- case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
- uint32_t TypeBits = RHSV.getBitWidth();
- ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!ShAmt) {
- Value *X;
- // (1 << X) pred P2 -> X pred Log2(P2)
- if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
- bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
- ICmpInst::Predicate Pred = ICI.getPredicate();
- if (ICI.isUnsigned()) {
- if (!RHSVIsPowerOf2) {
- // (1 << X) < 30 -> X <= 4
- // (1 << X) <= 30 -> X <= 4
- // (1 << X) >= 30 -> X > 4
- // (1 << X) > 30 -> X > 4
- if (Pred == ICmpInst::ICMP_ULT)
- Pred = ICmpInst::ICMP_ULE;
- else if (Pred == ICmpInst::ICMP_UGE)
- Pred = ICmpInst::ICMP_UGT;
- }
- unsigned RHSLog2 = RHSV.logBase2();
-
- // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
- // (1 << X) < 2147483648 -> X < 31 -> X != 31
- if (RHSLog2 == TypeBits-1) {
- if (Pred == ICmpInst::ICMP_UGE)
- Pred = ICmpInst::ICMP_EQ;
- else if (Pred == ICmpInst::ICMP_ULT)
- Pred = ICmpInst::ICMP_NE;
- }
+ if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
+ // smax(X, Y) == X --> X s>= Y
+ // smax(X, Y) s<= X --> X s>= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
- return new ICmpInst(Pred, X,
- ConstantInt::get(RHS->getType(), RHSLog2));
- } else if (ICI.isSigned()) {
- if (RHSV.isAllOnesValue()) {
- // (1 << X) <= -1 -> X == 31
- if (Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
-
- // (1 << X) > -1 -> X != 31
- if (Pred == ICmpInst::ICMP_SGT)
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- } else if (!RHSV) {
- // (1 << X) < 0 -> X == 31
- // (1 << X) <= 0 -> X == 31
- if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
-
- // (1 << X) >= 0 -> X != 31
- // (1 << X) > 0 -> X != 31
- if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(RHS->getType(), TypeBits-1));
- }
- } else if (ICI.isEquality()) {
- if (RHSVIsPowerOf2)
- return new ICmpInst(
- Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
- }
- }
- break;
- }
+ // smax(X, Y) != X --> X s< Y
+ // smax(X, Y) s> X --> X s< Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
- // Check that the shift amount is in range. If not, don't perform
- // undefined shifts. When the shift is visited it will be
- // simplified.
- if (ShAmt->uge(TypeBits))
- break;
+ // These cases should be handled in InstSimplify:
+ // smax(X, Y) s>= X --> true
+ // smax(X, Y) s< X --> false
+ return nullptr;
+ }
- if (ICI.isEquality()) {
- // If we are comparing against bits always shifted out, the
- // comparison cannot succeed.
- Constant *Comp =
- ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
- ShAmt);
- if (Comp != RHS) {// Comparing against a bit that we know is zero.
- bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
- Constant *Cst = Builder->getInt1(IsICMP_NE);
- return replaceInstUsesWith(ICI, Cst);
- }
+ if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
+ // umin(X, Y) == X --> X u<= Y
+ // umin(X, Y) u>= X --> X u<= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
+ return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
- // If the shift is NUW, then it is just shifting out zeros, no need for an
- // AND.
- if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getLShr(RHS, ShAmt));
-
- // If the shift is NSW and we compare to 0, then it is just shifting out
- // sign bits, no need for an AND either.
- if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
- return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
- ConstantExpr::getLShr(RHS, ShAmt));
-
- if (LHSI->hasOneUse()) {
- // Otherwise strength reduce the shift into an and.
- uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
- Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
- TypeBits - ShAmtVal));
-
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
- return new ICmpInst(ICI.getPredicate(), And,
- ConstantExpr::getLShr(RHS, ShAmt));
- }
- }
+ // umin(X, Y) != X --> X u> Y
+ // umin(X, Y) u< X --> X u> Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
- // If this is a signed comparison to 0 and the shift is sign preserving,
- // use the shift LHS operand instead.
- ICmpInst::Predicate pred = ICI.getPredicate();
- if (isSignTest(pred, RHS) &&
- cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
- return new ICmpInst(pred,
- LHSI->getOperand(0),
- Constant::getNullValue(RHS->getType()));
-
- // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
- bool TrueIfSigned = false;
- if (LHSI->hasOneUse() &&
- isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
- // (X << 31) <s 0 --> (X&1) != 0
- Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
- APInt::getOneBitSet(TypeBits,
- TypeBits-ShAmt->getZExtValue()-1));
- Value *And =
- Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
- return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
- And, Constant::getNullValue(And->getType()));
- }
+ // These cases should be handled in InstSimplify:
+ // umin(X, Y) u<= X --> true
+ // umin(X, Y) u> X --> false
+ return nullptr;
+ }
- // Transform (icmp pred iM (shl iM %v, N), CI)
- // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
- // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
- // This enables to get rid of the shift in favor of a trunc which can be
- // free on the target. It has the additional benefit of comparing to a
- // smaller constant, which will be target friendly.
- unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
- if (LHSI->hasOneUse() &&
- Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
- Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
- Constant *NCI = ConstantExpr::getTrunc(
- ConstantExpr::getAShr(RHS,
- ConstantInt::get(RHS->getType(), Amt)),
- NTy);
- return new ICmpInst(ICI.getPredicate(),
- Builder->CreateTrunc(LHSI->getOperand(0), NTy),
- NCI);
- }
+ if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
+ // umax(X, Y) == X --> X u>= Y
+ // umax(X, Y) u<= X --> X u>= Y
+ if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
- break;
+ // umax(X, Y) != X --> X u< Y
+ // umax(X, Y) u> X --> X u< Y
+ if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
+
+ // These cases should be handled in InstSimplify:
+ // umax(X, Y) u>= X --> true
+ // umax(X, Y) u< X --> false
+ return nullptr;
}
- case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
- case Instruction::AShr: {
- // Handle equality comparisons of shift-by-constant.
- BinaryOperator *BO = cast<BinaryOperator>(LHSI);
- if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
- if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
- return Res;
- }
+ return nullptr;
+}
+
+Instruction *InstCombiner::foldICmpEquality(ICmpInst &I) {
+ if (!I.isEquality())
+ return nullptr;
- // Handle exact shr's.
- if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
- if (RHSV.isMinValue())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *A, *B, *C, *D;
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+ if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
+ Value *OtherVal = A == Op1 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
}
- break;
- }
- case Instruction::UDiv:
- if (ConstantInt *DivLHS = dyn_cast<ConstantInt>(LHSI->getOperand(0))) {
- Value *X = LHSI->getOperand(1);
- const APInt &C1 = RHS->getValue();
- const APInt &C2 = DivLHS->getValue();
- assert(C2 != 0 && "udiv 0, X should have been simplified already.");
- // (icmp ugt (udiv C2, X), C1) -> (icmp ule X, C2/(C1+1))
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
- assert(!C1.isMaxValue() &&
- "icmp ugt X, UINT_MAX should have been simplified already.");
- return new ICmpInst(ICmpInst::ICMP_ULE, X,
- ConstantInt::get(X->getType(), C2.udiv(C1 + 1)));
- }
- // (icmp ult (udiv C2, X), C1) -> (icmp ugt X, C2/C1)
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT) {
- assert(C1 != 0 && "icmp ult X, 0 should have been simplified already.");
- return new ICmpInst(ICmpInst::ICMP_UGT, X,
- ConstantInt::get(X->getType(), C2.udiv(C1)));
+ if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
+ // A^c1 == C^c2 --> A == C^(c1^c2)
+ ConstantInt *C1, *C2;
+ if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
+ Op1->hasOneUse()) {
+ Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder->CreateXor(C, NC);
+ return new ICmpInst(I.getPredicate(), A, Xor);
}
+
+ // A^B == A^D -> B == D
+ if (A == C)
+ return new ICmpInst(I.getPredicate(), B, D);
+ if (A == D)
+ return new ICmpInst(I.getPredicate(), B, C);
+ if (B == C)
+ return new ICmpInst(I.getPredicate(), A, D);
+ if (B == D)
+ return new ICmpInst(I.getPredicate(), A, C);
}
- // fall-through
- case Instruction::SDiv:
- // Fold: icmp pred ([us]div X, C1), C2 -> range test
- // Fold this div into the comparison, producing a range check.
- // Determine, based on the divide type, what the range is being
- // checked. If there is an overflow on the low or high side, remember
- // it, otherwise compute the range [low, hi) bounding the new value.
- // See: InsertRangeTest above for the kinds of replacements possible.
- if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
- if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
- DivRHS))
- return R;
- break;
+ }
- case Instruction::Sub: {
- ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
- if (!LHSC) break;
- const APInt &LHSV = LHSC->getValue();
-
- // C1-X <u C2 -> (X|(C2-1)) == C1
- // iff C1 & (C2-1) == C2-1
- // C2 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
- RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
- return new ICmpInst(ICmpInst::ICMP_EQ,
- Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
- LHSC);
-
- // C1-X >u C2 -> (X|C2) != C1
- // iff C1 & C2 == C2
- // C2+1 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
- (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
- return new ICmpInst(ICmpInst::ICMP_NE,
- Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
- break;
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
+ // A == (A^B) -> B == 0
+ Value *OtherVal = A == Op0 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
}
- case Instruction::Add:
- // Fold: icmp pred (add X, C1), C2
- if (!ICI.isEquality()) {
- ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
- if (!LHSC) break;
- const APInt &LHSV = LHSC->getValue();
+ // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
+ if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
+ match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
+ Value *X = nullptr, *Y = nullptr, *Z = nullptr;
+
+ if (A == C) {
+ X = B;
+ Y = D;
+ Z = A;
+ } else if (A == D) {
+ X = B;
+ Y = C;
+ Z = A;
+ } else if (B == C) {
+ X = A;
+ Y = D;
+ Z = B;
+ } else if (B == D) {
+ X = A;
+ Y = C;
+ Z = B;
+ }
- ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
- .subtract(LHSV);
+ if (X) { // Build (X^Y) & Z
+ Op1 = Builder->CreateXor(X, Y);
+ Op1 = Builder->CreateAnd(Op1, Z);
+ I.setOperand(0, Op1);
+ I.setOperand(1, Constant::getNullValue(Op1->getType()));
+ return &I;
+ }
+ }
- if (ICI.isSigned()) {
- if (CR.getLower().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
- Builder->getInt(CR.getUpper()));
- } else if (CR.getUpper().isSignBit()) {
- return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
- Builder->getInt(CR.getLower()));
- }
- } else {
- if (CR.getLower().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
- Builder->getInt(CR.getUpper()));
- } else if (CR.getUpper().isMinValue()) {
- return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
- Builder->getInt(CR.getLower()));
- }
- }
+ // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
+ // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
+ ConstantInt *Cst1;
+ if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
+ match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
+ (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
+ match(Op1, m_ZExt(m_Value(A))))) {
+ APInt Pow2 = Cst1->getValue() + 1;
+ if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
+ Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
+ return new ICmpInst(I.getPredicate(), A,
+ Builder->CreateTrunc(B, A->getType()));
+ }
- // X-C1 <u C2 -> (X & -C2) == C1
- // iff C1 & (C2-1) == 0
- // C2 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
- RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
- return new ICmpInst(ICmpInst::ICMP_EQ,
- Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
- ConstantExpr::getNeg(LHSC));
-
- // X-C1 >u C2 -> (X & ~C2) != C1
- // iff C1 & C2 == 0
- // C2+1 is a power of 2
- if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
- (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
- return new ICmpInst(ICmpInst::ICMP_NE,
- Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
- ConstantExpr::getNeg(LHSC));
+ // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
+ // For lshr and ashr pairs.
+ if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
+ (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
+ ? ICmpInst::ICMP_UGE
+ : ICmpInst::ICMP_ULT;
+ Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
+ APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
+ return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
}
- break;
}
- // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
- if (ICI.isEquality()) {
- bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
-
- // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
- // the second operand is a constant, simplify a bit.
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
- switch (BO->getOpcode()) {
- case Instruction::SRem:
- // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
- if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
- const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
- if (V.sgt(1) && V.isPowerOf2()) {
- Value *NewRem =
- Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
- BO->getName());
- return new ICmpInst(ICI.getPredicate(), NewRem,
- Constant::getNullValue(BO->getType()));
- }
- }
- break;
- case Instruction::Add:
- // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
- if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- if (BO->hasOneUse())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getSub(RHS, BOp1C));
- } else if (RHSV == 0) {
- // Replace ((add A, B) != 0) with (A != -B) if A or B is
- // efficiently invertible, or if the add has just this one use.
- Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
-
- if (Value *NegVal = dyn_castNegVal(BOp1))
- return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
- if (Value *NegVal = dyn_castNegVal(BOp0))
- return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
- if (BO->hasOneUse()) {
- Value *Neg = Builder->CreateNeg(BOp1);
- Neg->takeName(BO);
- return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
- }
- }
- break;
- case Instruction::Xor:
- if (BO->hasOneUse()) {
- if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
- // For the xor case, we can xor two constants together, eliminating
- // the explicit xor.
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- ConstantExpr::getXor(RHS, BOC));
- } else if (RHSV == 0) {
- // Replace ((xor A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
- }
- }
- break;
- case Instruction::Sub:
- if (BO->hasOneUse()) {
- if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
- // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
- ConstantExpr::getSub(BOp0C, RHS));
- } else if (RHSV == 0) {
- // Replace ((sub A, B) != 0) with (A != B)
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- BO->getOperand(1));
- }
- }
- break;
- case Instruction::Or:
- // If bits are being or'd in that are not present in the constant we
- // are comparing against, then the comparison could never succeed!
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- Constant *NotCI = ConstantExpr::getNot(RHS);
- if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
- return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
-
- // Comparing if all bits outside of a constant mask are set?
- // Replace (X | C) == -1 with (X & ~C) == ~C.
- // This removes the -1 constant.
- if (BO->hasOneUse() && RHS->isAllOnesValue()) {
- Constant *NotBOC = ConstantExpr::getNot(BOC);
- Value *And = Builder->CreateAnd(BO->getOperand(0), NotBOC);
- return new ICmpInst(ICI.getPredicate(), And, NotBOC);
- }
- }
- break;
+ // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
+ if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
+ APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
+ Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
+ I.getName() + ".mask");
+ return new ICmpInst(I.getPredicate(), And,
+ Constant::getNullValue(Cst1->getType()));
+ }
+ }
- case Instruction::And:
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- // If bits are being compared against that are and'd out, then the
- // comparison can never succeed!
- if ((RHSV & ~BOC->getValue()) != 0)
- return replaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
-
- // If we have ((X & C) == C), turn it into ((X & C) != 0).
- if (RHS == BOC && RHSV.isPowerOf2())
- return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
- ICmpInst::ICMP_NE, LHSI,
- Constant::getNullValue(RHS->getType()));
-
- // Don't perform the following transforms if the AND has multiple uses
- if (!BO->hasOneUse())
- break;
+ // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
+ // "icmp (and X, mask), cst"
+ uint64_t ShAmt = 0;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
+ match(Op1, m_ConstantInt(Cst1)) &&
+ // Only do this when A has multiple uses. This is most important to do
+ // when it exposes other optimizations.
+ !A->hasOneUse()) {
+ unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
+
+ if (ShAmt < ASize) {
+ APInt MaskV =
+ APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
+ MaskV <<= ShAmt;
- // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
- if (BOC->getValue().isSignBit()) {
- Value *X = BO->getOperand(0);
- Constant *Zero = Constant::getNullValue(X->getType());
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
- return new ICmpInst(pred, X, Zero);
- }
+ APInt CmpV = Cst1->getValue().zext(ASize);
+ CmpV <<= ShAmt;
- // ((X & ~7) == 0) --> X < 8
- if (RHSV == 0 && isHighOnes(BOC)) {
- Value *X = BO->getOperand(0);
- Constant *NegX = ConstantExpr::getNeg(BOC);
- ICmpInst::Predicate pred = isICMP_NE ?
- ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
- return new ICmpInst(pred, X, NegX);
- }
- }
- break;
- case Instruction::Mul:
- if (RHSV == 0 && BO->hasNoSignedWrap()) {
- if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
- // The trivial case (mul X, 0) is handled by InstSimplify
- // General case : (mul X, C) != 0 iff X != 0
- // (mul X, C) == 0 iff X == 0
- if (!BOC->isZero())
- return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
- Constant::getNullValue(RHS->getType()));
- }
- }
- break;
- default: break;
- }
- } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
- // Handle icmp {eq|ne} <intrinsic>, intcst.
- switch (II->getIntrinsicID()) {
- case Intrinsic::bswap:
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
- return &ICI;
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
- if (RHSV == RHS->getType()->getBitWidth()) {
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
- return &ICI;
- }
- break;
- case Intrinsic::ctpop:
- // popcount(A) == 0 -> A == 0 and likewise for !=
- if (RHS->isZero()) {
- Worklist.Add(II);
- ICI.setOperand(0, II->getArgOperand(0));
- ICI.setOperand(1, RHS);
- return &ICI;
- }
- break;
- default:
- break;
- }
+ Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
+ return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
}
}
+
return nullptr;
}
/// Handle icmp (cast x to y), (cast/cst). We only handle extending casts so
/// far.
-Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICmp) {
+Instruction *InstCombiner::foldICmpWithCastAndCast(ICmpInst &ICmp) {
const CastInst *LHSCI = cast<CastInst>(ICmp.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
Type *SrcTy = LHSCIOp->getType();
@@ -2485,92 +3384,6 @@ Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICmp) {
return BinaryOperator::CreateNot(Result);
}
-/// The caller has matched a pattern of the form:
-/// I = icmp ugt (add (add A, B), CI2), CI1
-/// If this is of the form:
-/// sum = a + b
-/// if (sum+128 >u 255)
-/// Then replace it with llvm.sadd.with.overflow.i8.
-///
-static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
- ConstantInt *CI2, ConstantInt *CI1,
- InstCombiner &IC) {
- // The transformation we're trying to do here is to transform this into an
- // llvm.sadd.with.overflow. To do this, we have to replace the original add
- // with a narrower add, and discard the add-with-constant that is part of the
- // range check (if we can't eliminate it, this isn't profitable).
-
- // In order to eliminate the add-with-constant, the compare can be its only
- // use.
- Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
- if (!AddWithCst->hasOneUse()) return nullptr;
-
- // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
- if (!CI2->getValue().isPowerOf2()) return nullptr;
- unsigned NewWidth = CI2->getValue().countTrailingZeros();
- if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
-
- // The width of the new add formed is 1 more than the bias.
- ++NewWidth;
-
- // Check to see that CI1 is an all-ones value with NewWidth bits.
- if (CI1->getBitWidth() == NewWidth ||
- CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
- return nullptr;
-
- // This is only really a signed overflow check if the inputs have been
- // sign-extended; check for that condition. For example, if CI2 is 2^31 and
- // the operands of the add are 64 bits wide, we need at least 33 sign bits.
- unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
- if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
- IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
- return nullptr;
-
- // In order to replace the original add with a narrower
- // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
- // and truncates that discard the high bits of the add. Verify that this is
- // the case.
- Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
- for (User *U : OrigAdd->users()) {
- if (U == AddWithCst) continue;
-
- // Only accept truncates for now. We would really like a nice recursive
- // predicate like SimplifyDemandedBits, but which goes downwards the use-def
- // chain to see which bits of a value are actually demanded. If the
- // original add had another add which was then immediately truncated, we
- // could still do the transformation.
- TruncInst *TI = dyn_cast<TruncInst>(U);
- if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
- return nullptr;
- }
-
- // If the pattern matches, truncate the inputs to the narrower type and
- // use the sadd_with_overflow intrinsic to efficiently compute both the
- // result and the overflow bit.
- Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
- Value *F = Intrinsic::getDeclaration(I.getModule(),
- Intrinsic::sadd_with_overflow, NewType);
-
- InstCombiner::BuilderTy *Builder = IC.Builder;
-
- // Put the new code above the original add, in case there are any uses of the
- // add between the add and the compare.
- Builder->SetInsertPoint(OrigAdd);
-
- Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
- Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
- CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
- Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
- Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
-
- // The inner add was the result of the narrow add, zero extended to the
- // wider type. Replace it with the result computed by the intrinsic.
- IC.replaceInstUsesWith(*OrigAdd, ZExt);
-
- // The original icmp gets replaced with the overflow value.
- return ExtractValueInst::Create(Call, 1, "sadd.overflow");
-}
-
bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
Value *RHS, Instruction &OrigI,
Value *&Result, Constant *&Overflow) {
@@ -2603,8 +3416,10 @@ bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
if (OR == OverflowResult::AlwaysOverflows)
return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
+
+ // Fall through uadd into sadd
+ LLVM_FALLTHROUGH;
}
- // FALL THROUGH uadd into sadd
case OCF_SIGNED_ADD: {
// X + 0 -> {X, false}
if (match(RHS, m_Zero()))
@@ -2644,7 +3459,8 @@ bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
true);
if (OR == OverflowResult::AlwaysOverflows)
return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
- } // FALL THROUGH
+ LLVM_FALLTHROUGH;
+ }
case OCF_SIGNED_MUL:
// X * undef -> undef
if (isa<UndefValue>(RHS))
@@ -2682,7 +3498,7 @@ bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
/// \param OtherVal The other argument of compare instruction.
/// \returns Instruction which must replace the compare instruction, NULL if no
/// replacement required.
-static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
+static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
Value *OtherVal, InstCombiner &IC) {
// Don't bother doing this transformation for pointers, don't do it for
// vectors.
@@ -2906,8 +3722,8 @@ static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
/// When performing a comparison against a constant, it is possible that not all
/// the bits in the LHS are demanded. This helper method computes the mask that
/// IS demanded.
-static APInt DemandedBitsLHSMask(ICmpInst &I,
- unsigned BitWidth, bool isSignCheck) {
+static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth,
+ bool isSignCheck) {
if (isSignCheck)
return APInt::getSignBit(BitWidth);
@@ -2981,7 +3797,7 @@ static bool swapMayExposeCSEOpportunities(const Value * Op0,
}
/// \brief Check that one use is in the same block as the definition and all
-/// other uses are in blocks dominated by a given block
+/// other uses are in blocks dominated by a given block.
///
/// \param DI Definition
/// \param UI Use
@@ -2994,21 +3810,18 @@ bool InstCombiner::dominatesAllUses(const Instruction *DI,
const Instruction *UI,
const BasicBlock *DB) const {
assert(DI && UI && "Instruction not defined\n");
- // ignore incomplete definitions
+ // Ignore incomplete definitions.
if (!DI->getParent())
return false;
- // DI and UI must be in the same block
+ // DI and UI must be in the same block.
if (DI->getParent() != UI->getParent())
return false;
- // Protect from self-referencing blocks
+ // Protect from self-referencing blocks.
if (DI->getParent() == DB)
return false;
- // DominatorTree available?
- if (!DT)
- return false;
for (const User *U : DI->users()) {
auto *Usr = cast<Instruction>(U);
- if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
+ if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
return false;
}
return true;
@@ -3067,8 +3880,7 @@ static bool isChainSelectCmpBranch(const SelectInst *SI) {
/// are equal, the optimization can work only for EQ predicates. This is not a
/// major restriction since a NE compare should be 'normalized' to an equal
/// compare, which usually happens in the combiner and test case
-/// select-cmp-br.ll
-/// checks for it.
+/// select-cmp-br.ll checks for it.
bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
const ICmpInst *Icmp,
const unsigned SIOpd) {
@@ -3076,7 +3888,7 @@ bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
// The check for the unique predecessor is not the best that can be
- // done. But it protects efficiently against cases like when SI's
+ // done. But it protects efficiently against cases like when SI's
// home block has two successors, Succ and Succ1, and Succ1 predecessor
// of Succ. Then SI can't be replaced by SIOpd because the use that gets
// replaced can be reached on either path. So the uniqueness check
@@ -3093,6 +3905,229 @@ bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
return false;
}
+/// Try to fold the comparison based on range information we can get by checking
+/// whether bits are known to be zero or one in the inputs.
+Instruction *InstCombiner::foldICmpUsingKnownBits(ICmpInst &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = Op0->getType();
+ ICmpInst::Predicate Pred = I.getPredicate();
+
+ // Get scalar or pointer size.
+ unsigned BitWidth = Ty->isIntOrIntVectorTy()
+ ? Ty->getScalarSizeInBits()
+ : DL.getTypeSizeInBits(Ty->getScalarType());
+
+ if (!BitWidth)
+ return nullptr;
+
+ // If this is a normal comparison, it demands all bits. If it is a sign bit
+ // comparison, it only demands the sign bit.
+ bool IsSignBit = false;
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ bool UnusedBit;
+ IsSignBit = isSignBitCheck(Pred, *CmpC, UnusedBit);
+ }
+
+ APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
+ APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
+
+ if (SimplifyDemandedBits(I.getOperandUse(0),
+ getDemandedBitsLHSMask(I, BitWidth, IsSignBit),
+ Op0KnownZero, Op0KnownOne, 0))
+ return &I;
+
+ if (SimplifyDemandedBits(I.getOperandUse(1), APInt::getAllOnesValue(BitWidth),
+ Op1KnownZero, Op1KnownOne, 0))
+ return &I;
+
+ // Given the known and unknown bits, compute a range that the LHS could be
+ // in. Compute the Min, Max and RHS values based on the known bits. For the
+ // EQ and NE we use unsigned values.
+ APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
+ APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
+ if (I.isSigned()) {
+ computeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
+ Op0Max);
+ computeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
+ Op1Max);
+ } else {
+ computeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne, Op0Min,
+ Op0Max);
+ computeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne, Op1Min,
+ Op1Max);
+ }
+
+ // If Min and Max are known to be the same, then SimplifyDemandedBits
+ // figured out that the LHS is a constant. Constant fold this now, so that
+ // code below can assume that Min != Max.
+ if (!isa<Constant>(Op0) && Op0Min == Op0Max)
+ return new ICmpInst(Pred, ConstantInt::get(Op0->getType(), Op0Min), Op1);
+ if (!isa<Constant>(Op1) && Op1Min == Op1Max)
+ return new ICmpInst(Pred, Op0, ConstantInt::get(Op1->getType(), Op1Min));
+
+ // Based on the range information we know about the LHS, see if we can
+ // simplify this comparison. For example, (x&4) < 8 is always true.
+ switch (Pred) {
+ default:
+ llvm_unreachable("Unknown icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE: {
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
+ return Pred == CmpInst::ICMP_EQ
+ ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
+ : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ }
+
+ // If all bits are known zero except for one, then we know at most one bit
+ // is set. If the comparison is against zero, then this is a check to see if
+ // *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0KnownZero;
+ if (~Op1KnownZero == 0) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = nullptr;
+ const APInt *LHSC;
+ if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
+ *LHSC != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ Value *X;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ APInt ValToCheck = Op0KnownZeroInverted;
+ Type *XTy = X->getType();
+ if (ValToCheck.isPowerOf2()) {
+ // ((1 << X) & 8) == 0 -> X != 3
+ // ((1 << X) & 8) != 0 -> X == 3
+ auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
+ auto NewPred = ICmpInst::getInversePredicate(Pred);
+ return new ICmpInst(NewPred, X, CmpC);
+ } else if ((++ValToCheck).isPowerOf2()) {
+ // ((1 << X) & 7) == 0 -> X >= 3
+ // ((1 << X) & 7) != 0 -> X < 3
+ auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
+ auto NewPred =
+ Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
+ return new ICmpInst(NewPred, X, CmpC);
+ }
+ }
+
+ // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
+ const APInt *CI;
+ if (Op0KnownZeroInverted == 1 &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
+ // ((8 >>u X) & 1) == 0 -> X != 3
+ // ((8 >>u X) & 1) != 0 -> X == 3
+ unsigned CmpVal = CI->countTrailingZeros();
+ auto NewPred = ICmpInst::getInversePredicate(Pred);
+ return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
+ }
+ }
+ break;
+ }
+ case ICmpInst::ICMP_ULT: {
+ if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ // A <u C -> A == C-1 if min(A)+1 == C
+ if (Op1Max == Op0Min + 1) {
+ Constant *CMinus1 = ConstantInt::get(Op0->getType(), *CmpC - 1);
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0, CMinus1);
+ }
+ }
+ break;
+ }
+ case ICmpInst::ICMP_UGT: {
+ if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+
+ if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+
+ if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+
+ const APInt *CmpC;
+ if (match(Op1, m_APInt(CmpC))) {
+ // A >u C -> A == C+1 if max(a)-1 == C
+ if (*CmpC == Op0Max - 1)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ ConstantInt::get(Op1->getType(), *CmpC + 1));
+ }
+ break;
+ }
+ case ICmpInst::ICMP_SLT:
+ if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Max == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue() - 1));
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+
+ if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Min == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue() + 1));
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
+ if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_SLE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
+ if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_UGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
+ if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_ULE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
+ if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
+ return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
+ return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ }
+
+ // Turn a signed comparison into an unsigned one if both operands are known to
+ // have the same sign.
+ if (I.isSigned() &&
+ ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
+ (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
+ return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
+
+ return nullptr;
+}
+
/// If we have an icmp le or icmp ge instruction with a constant operand, turn
/// it into the appropriate icmp lt or icmp gt instruction. This transform
/// allows them to be folded in visitICmpInst.
@@ -3131,6 +4166,7 @@ static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
if (isa<UndefValue>(Elt))
continue;
+
// Bail out if we can't determine if this constant is min/max or if we
// know that this constant is min/max.
auto *CI = dyn_cast<ConstantInt>(Elt);
@@ -3167,7 +4203,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
}
if (Value *V =
- SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC, &I))
+ SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, &TLI, &DT, &AC, &I))
return replaceInstUsesWith(I, V);
// comparing -val or val with non-zero is the same as just comparing val
@@ -3202,28 +4238,28 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
case ICmpInst::ICMP_UGT:
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Value *Not = Builder->CreateNot(Op0, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
- // FALL THROUGH
+ LLVM_FALLTHROUGH;
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
Value *Not = Builder->CreateNot(Op1, I.getName() + "tmp");
return BinaryOperator::CreateOr(Not, Op0);
@@ -3234,372 +4270,11 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (ICmpInst *NewICmp = canonicalizeCmpWithConstant(I))
return NewICmp;
- unsigned BitWidth = 0;
- if (Ty->isIntOrIntVectorTy())
- BitWidth = Ty->getScalarSizeInBits();
- else // Get pointer size.
- BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
-
- bool isSignBit = false;
-
- // See if we are doing a comparison with a constant.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- Value *A = nullptr, *B = nullptr;
-
- // Match the following pattern, which is a common idiom when writing
- // overflow-safe integer arithmetic function. The source performs an
- // addition in wider type, and explicitly checks for overflow using
- // comparisons against INT_MIN and INT_MAX. Simplify this by using the
- // sadd_with_overflow intrinsic.
- //
- // TODO: This could probably be generalized to handle other overflow-safe
- // operations if we worked out the formulas to compute the appropriate
- // magic constants.
- //
- // sum = a + b
- // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
- {
- ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
- if (I.getPredicate() == ICmpInst::ICMP_UGT &&
- match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
- if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
- return Res;
- }
-
- // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
- if (CI->isZero() && I.getPredicate() == ICmpInst::ICMP_SGT)
- if (auto *SI = dyn_cast<SelectInst>(Op0)) {
- SelectPatternResult SPR = matchSelectPattern(SI, A, B);
- if (SPR.Flavor == SPF_SMIN) {
- if (isKnownPositive(A, DL))
- return new ICmpInst(I.getPredicate(), B, CI);
- if (isKnownPositive(B, DL))
- return new ICmpInst(I.getPredicate(), A, CI);
- }
- }
-
-
- // The following transforms are only 'worth it' if the only user of the
- // subtraction is the icmp.
- if (Op0->hasOneUse()) {
- // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
- if (I.isEquality() && CI->isZero() &&
- match(Op0, m_Sub(m_Value(A), m_Value(B))))
- return new ICmpInst(I.getPredicate(), A, B);
-
- // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
-
- // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
-
- // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
-
- // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
- if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
- match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
- return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
- }
-
- if (I.isEquality()) {
- ConstantInt *CI2;
- if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
- match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
- // (icmp eq/ne (ashr/lshr const2, A), const1)
- if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
- return Inst;
- }
- if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
- // (icmp eq/ne (shl const2, A), const1)
- if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
- return Inst;
- }
- }
-
- // If this comparison is a normal comparison, it demands all
- // bits, if it is a sign bit comparison, it only demands the sign bit.
- bool UnusedBit;
- isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
-
- // Canonicalize icmp instructions based on dominating conditions.
- BasicBlock *Parent = I.getParent();
- BasicBlock *Dom = Parent->getSinglePredecessor();
- auto *BI = Dom ? dyn_cast<BranchInst>(Dom->getTerminator()) : nullptr;
- ICmpInst::Predicate Pred;
- BasicBlock *TrueBB, *FalseBB;
- ConstantInt *CI2;
- if (BI && match(BI, m_Br(m_ICmp(Pred, m_Specific(Op0), m_ConstantInt(CI2)),
- TrueBB, FalseBB)) &&
- TrueBB != FalseBB) {
- ConstantRange CR = ConstantRange::makeAllowedICmpRegion(I.getPredicate(),
- CI->getValue());
- ConstantRange DominatingCR =
- (Parent == TrueBB)
- ? ConstantRange::makeExactICmpRegion(Pred, CI2->getValue())
- : ConstantRange::makeExactICmpRegion(
- CmpInst::getInversePredicate(Pred), CI2->getValue());
- ConstantRange Intersection = DominatingCR.intersectWith(CR);
- ConstantRange Difference = DominatingCR.difference(CR);
- if (Intersection.isEmptySet())
- return replaceInstUsesWith(I, Builder->getFalse());
- if (Difference.isEmptySet())
- return replaceInstUsesWith(I, Builder->getTrue());
- // Canonicalizing a sign bit comparison that gets used in a branch,
- // pessimizes codegen by generating branch on zero instruction instead
- // of a test and branch. So we avoid canonicalizing in such situations
- // because test and branch instruction has better branch displacement
- // than compare and branch instruction.
- if (!isBranchOnSignBitCheck(I, isSignBit) && !I.isEquality()) {
- if (auto *AI = Intersection.getSingleElement())
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Builder->getInt(*AI));
- if (auto *AD = Difference.getSingleElement())
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Builder->getInt(*AD));
- }
- }
- }
-
- // See if we can fold the comparison based on range information we can get
- // by checking whether bits are known to be zero or one in the input.
- if (BitWidth != 0) {
- APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
- APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
-
- if (SimplifyDemandedBits(I.getOperandUse(0),
- DemandedBitsLHSMask(I, BitWidth, isSignBit),
- Op0KnownZero, Op0KnownOne, 0))
- return &I;
- if (SimplifyDemandedBits(I.getOperandUse(1),
- APInt::getAllOnesValue(BitWidth), Op1KnownZero,
- Op1KnownOne, 0))
- return &I;
-
- // Given the known and unknown bits, compute a range that the LHS could be
- // in. Compute the Min, Max and RHS values based on the known bits. For the
- // EQ and NE we use unsigned values.
- APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
- APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
- if (I.isSigned()) {
- ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- } else {
- ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
- Op0Min, Op0Max);
- ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
- Op1Min, Op1Max);
- }
-
- // If Min and Max are known to be the same, then SimplifyDemandedBits
- // figured out that the LHS is a constant. Just constant fold this now so
- // that code below can assume that Min != Max.
- if (!isa<Constant>(Op0) && Op0Min == Op0Max)
- return new ICmpInst(I.getPredicate(),
- ConstantInt::get(Op0->getType(), Op0Min), Op1);
- if (!isa<Constant>(Op1) && Op1Min == Op1Max)
- return new ICmpInst(I.getPredicate(), Op0,
- ConstantInt::get(Op1->getType(), Op1Min));
-
- // Based on the range information we know about the LHS, see if we can
- // simplify this comparison. For example, (x&4) < 8 is always true.
- switch (I.getPredicate()) {
- default: llvm_unreachable("Unknown icmp opcode!");
- case ICmpInst::ICMP_EQ: {
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
-
- // If all bits are known zero except for one, then we know at most one
- // bit is set. If the comparison is against zero, then this is a check
- // to see if *that* bit is set.
- APInt Op0KnownZeroInverted = ~Op0KnownZero;
- if (~Op1KnownZero == 0) {
- // If the LHS is an AND with the same constant, look through it.
- Value *LHS = nullptr;
- ConstantInt *LHSC = nullptr;
- if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
- LHSC->getValue() != Op0KnownZeroInverted)
- LHS = Op0;
-
- // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
- // then turn "((1 << x)&8) == 0" into "x != 3".
- // or turn "((1 << x)&7) == 0" into "x > 2".
- Value *X = nullptr;
- if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
- APInt ValToCheck = Op0KnownZeroInverted;
- if (ValToCheck.isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(X->getType(), CmpVal));
- } else if ((++ValToCheck).isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
- return new ICmpInst(ICmpInst::ICMP_UGT, X,
- ConstantInt::get(X->getType(), CmpVal));
- }
- }
-
- // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
- // then turn "((8 >>u x)&1) == 0" into "x != 3".
- const APInt *CI;
- if (Op0KnownZeroInverted == 1 &&
- match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
- return new ICmpInst(ICmpInst::ICMP_NE, X,
- ConstantInt::get(X->getType(),
- CI->countTrailingZeros()));
- }
- break;
- }
- case ICmpInst::ICMP_NE: {
- if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
-
- // If all bits are known zero except for one, then we know at most one
- // bit is set. If the comparison is against zero, then this is a check
- // to see if *that* bit is set.
- APInt Op0KnownZeroInverted = ~Op0KnownZero;
- if (~Op1KnownZero == 0) {
- // If the LHS is an AND with the same constant, look through it.
- Value *LHS = nullptr;
- ConstantInt *LHSC = nullptr;
- if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
- LHSC->getValue() != Op0KnownZeroInverted)
- LHS = Op0;
-
- // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
- // then turn "((1 << x)&8) != 0" into "x == 3".
- // or turn "((1 << x)&7) != 0" into "x < 3".
- Value *X = nullptr;
- if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
- APInt ValToCheck = Op0KnownZeroInverted;
- if (ValToCheck.isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(X->getType(), CmpVal));
- } else if ((++ValToCheck).isPowerOf2()) {
- unsigned CmpVal = ValToCheck.countTrailingZeros();
- return new ICmpInst(ICmpInst::ICMP_ULT, X,
- ConstantInt::get(X->getType(), CmpVal));
- }
- }
-
- // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
- // then turn "((8 >>u x)&1) != 0" into "x == 3".
- const APInt *CI;
- if (Op0KnownZeroInverted == 1 &&
- match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
- return new ICmpInst(ICmpInst::ICMP_EQ, X,
- ConstantInt::get(X->getType(),
- CI->countTrailingZeros()));
- }
- break;
- }
- case ICmpInst::ICMP_ULT:
- if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()-1));
-
- // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
- if (CI->isMinValue(true))
- return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
- Constant::getAllOnesValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_UGT:
- if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
-
- if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()+1));
-
- // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
- if (CI->isMaxValue(true))
- return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
- Constant::getNullValue(Op0->getType()));
- }
- break;
- case ICmpInst::ICMP_SLT:
- if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()-1));
- }
- break;
- case ICmpInst::ICMP_SGT:
- if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
-
- if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
- return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
- return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
- Builder->getInt(CI->getValue()+1));
- }
- break;
- case ICmpInst::ICMP_SGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
- if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_SLE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
- if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_UGE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
- if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- case ICmpInst::ICMP_ULE:
- assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
- if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- break;
- }
+ if (Instruction *Res = foldICmpWithConstant(I))
+ return Res;
- // Turn a signed comparison into an unsigned one if both operands
- // are known to have the same sign.
- if (I.isSigned() &&
- ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
- (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
- return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
- }
+ if (Instruction *Res = foldICmpUsingKnownBits(I))
+ return Res;
// Test if the ICmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
@@ -3614,122 +4289,39 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
return nullptr;
- // See if we are doing a comparison between a constant and an instruction that
- // can be folded into the comparison.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
- Value *A = nullptr, *B = nullptr;
- // Since the RHS is a ConstantInt (CI), if the left hand side is an
- // instruction, see if that instruction also has constants so that the
- // instruction can be folded into the icmp
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
- return Res;
+ // FIXME: We only do this after checking for min/max to prevent infinite
+ // looping caused by a reverse canonicalization of these patterns for min/max.
+ // FIXME: The organization of folds is a mess. These would naturally go into
+ // canonicalizeCmpWithConstant(), but we can't move all of the above folds
+ // down here after the min/max restriction.
+ ICmpInst::Predicate Pred = I.getPredicate();
+ const APInt *C;
+ if (match(Op1, m_APInt(C))) {
+ // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
+ if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
+ Constant *Zero = Constant::getNullValue(Op0->getType());
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
+ }
- // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
- if (I.isEquality() && CI->isZero() &&
- match(Op0, m_UDiv(m_Value(A), m_Value(B)))) {
- ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_EQ
- ? ICmpInst::ICMP_UGT
- : ICmpInst::ICMP_ULE;
- return new ICmpInst(Pred, B, A);
+ // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
+ if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
+ Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
}
}
- // Handle icmp with constant (but not simple integer constant) RHS
- if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
- if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
- switch (LHSI->getOpcode()) {
- case Instruction::GetElementPtr:
- // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
- if (RHSC->isNullValue() &&
- cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
- return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
- case Instruction::PHI:
- // Only fold icmp into the PHI if the phi and icmp are in the same
- // block. If in the same block, we're encouraging jump threading. If
- // not, we are just pessimizing the code by making an i1 phi.
- if (LHSI->getParent() == I.getParent())
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
- break;
- case Instruction::Select: {
- // If either operand of the select is a constant, we can fold the
- // comparison into the select arms, which will cause one to be
- // constant folded and the select turned into a bitwise or.
- Value *Op1 = nullptr, *Op2 = nullptr;
- ConstantInt *CI = nullptr;
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
- Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- CI = dyn_cast<ConstantInt>(Op1);
- }
- if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
- Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
- CI = dyn_cast<ConstantInt>(Op2);
- }
-
- // We only want to perform this transformation if it will not lead to
- // additional code. This is true if either both sides of the select
- // fold to a constant (in which case the icmp is replaced with a select
- // which will usually simplify) or this is the only user of the
- // select (in which case we are trading a select+icmp for a simpler
- // select+icmp) or all uses of the select can be replaced based on
- // dominance information ("Global cases").
- bool Transform = false;
- if (Op1 && Op2)
- Transform = true;
- else if (Op1 || Op2) {
- // Local case
- if (LHSI->hasOneUse())
- Transform = true;
- // Global cases
- else if (CI && !CI->isZero())
- // When Op1 is constant try replacing select with second operand.
- // Otherwise Op2 is constant and try replacing select with first
- // operand.
- Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
- Op1 ? 2 : 1);
- }
- if (Transform) {
- if (!Op1)
- Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
- RHSC, I.getName());
- if (!Op2)
- Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
- RHSC, I.getName());
- return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
- }
- break;
- }
- case Instruction::IntToPtr:
- // icmp pred inttoptr(X), null -> icmp pred X, 0
- if (RHSC->isNullValue() &&
- DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
- return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
- Constant::getNullValue(LHSI->getOperand(0)->getType()));
- break;
+ if (Instruction *Res = foldICmpInstWithConstant(I))
+ return Res;
- case Instruction::Load:
- // Try to optimize things like "A[i] > 4" to index computations.
- if (GetElementPtrInst *GEP =
- dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
- if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
- !cast<LoadInst>(LHSI)->isVolatile())
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
- return Res;
- }
- break;
- }
- }
+ if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
+ return Res;
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
- if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
+ if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
- if (Instruction *NI = FoldGEPICmp(GEP, Op0,
+ if (Instruction *NI = foldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
@@ -3737,10 +4329,10 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Op0->getType()->isPointerTy() && I.isEquality()) {
assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op0, DL)))
- if (Instruction *New = FoldAllocaCmp(I, Alloca, Op1))
+ if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
return New;
if (auto *Alloca = dyn_cast<AllocaInst>(GetUnderlyingObject(Op1, DL)))
- if (Instruction *New = FoldAllocaCmp(I, Alloca, Op0))
+ if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
return New;
}
@@ -3780,318 +4372,24 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// For generality, we handle any zero-extension of any operand comparison
// with a constant or another cast from the same type.
if (isa<Constant>(Op1) || isa<CastInst>(Op1))
- if (Instruction *R = visitICmpInstWithCastAndCast(I))
+ if (Instruction *R = foldICmpWithCastAndCast(I))
return R;
}
- // Special logic for binary operators.
- BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
- BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
- if (BO0 || BO1) {
- CmpInst::Predicate Pred = I.getPredicate();
- bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
- if (BO0 && isa<OverflowingBinaryOperator>(BO0))
- NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
- if (BO1 && isa<OverflowingBinaryOperator>(BO1))
- NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
- (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
- (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
-
- // Analyze the case when either Op0 or Op1 is an add instruction.
- // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Add) {
- A = BO0->getOperand(0);
- B = BO0->getOperand(1);
- }
- if (BO1 && BO1->getOpcode() == Instruction::Add) {
- C = BO1->getOperand(0);
- D = BO1->getOperand(1);
- }
-
- // icmp (X+cst) < 0 --> X < -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
- if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
- if (!RHSC->isMinValue(/*isSigned=*/true))
- return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
-
- // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
- if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
- return new ICmpInst(Pred, A == Op1 ? B : A,
- Constant::getNullValue(Op1->getType()));
-
- // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
- if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
- C == Op0 ? D : C);
-
- // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
- if (A && C && (A == C || A == D || B == C || B == D) &&
- NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse()) {
- // Determine Y and Z in the form icmp (X+Y), (X+Z).
- Value *Y, *Z;
- if (A == C) {
- // C + B == C + D -> B == D
- Y = B;
- Z = D;
- } else if (A == D) {
- // D + B == C + D -> B == C
- Y = B;
- Z = C;
- } else if (B == C) {
- // A + C == C + D -> A == D
- Y = A;
- Z = D;
- } else {
- assert(B == D);
- // A + D == C + D -> A == C
- Y = A;
- Z = C;
- }
- return new ICmpInst(Pred, Y, Z);
- }
-
- // icmp slt (X + -1), Y -> icmp sle X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
-
- // icmp sge (X + -1), Y -> icmp sgt X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
- match(B, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
-
- // icmp sle (X + 1), Y -> icmp slt X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
- match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
-
- // icmp sgt (X + 1), Y -> icmp sge X, Y
- if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
- match(B, m_One()))
- return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
-
- // icmp sgt X, (Y + -1) -> icmp sge X, Y
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
- match(D, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
-
- // icmp sle X, (Y + -1) -> icmp slt X, Y
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
- match(D, m_AllOnes()))
- return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
-
- // icmp sge X, (Y + 1) -> icmp sgt X, Y
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE &&
- match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
-
- // icmp slt X, (Y + 1) -> icmp sle X, Y
- if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT &&
- match(D, m_One()))
- return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
-
- // if C1 has greater magnitude than C2:
- // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
- // s.t. C3 = C1 - C2
- //
- // if C2 has greater magnitude than C1:
- // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
- // s.t. C3 = C2 - C1
- if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
- (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
- if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
- if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
- const APInt &AP1 = C1->getValue();
- const APInt &AP2 = C2->getValue();
- if (AP1.isNegative() == AP2.isNegative()) {
- APInt AP1Abs = C1->getValue().abs();
- APInt AP2Abs = C2->getValue().abs();
- if (AP1Abs.uge(AP2Abs)) {
- ConstantInt *C3 = Builder->getInt(AP1 - AP2);
- Value *NewAdd = Builder->CreateNSWAdd(A, C3);
- return new ICmpInst(Pred, NewAdd, C);
- } else {
- ConstantInt *C3 = Builder->getInt(AP2 - AP1);
- Value *NewAdd = Builder->CreateNSWAdd(C, C3);
- return new ICmpInst(Pred, A, NewAdd);
- }
- }
- }
-
-
- // Analyze the case when either Op0 or Op1 is a sub instruction.
- // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
- A = nullptr;
- B = nullptr;
- C = nullptr;
- D = nullptr;
- if (BO0 && BO0->getOpcode() == Instruction::Sub) {
- A = BO0->getOperand(0);
- B = BO0->getOperand(1);
- }
- if (BO1 && BO1->getOpcode() == Instruction::Sub) {
- C = BO1->getOperand(0);
- D = BO1->getOperand(1);
- }
-
- // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
- if (A == Op1 && NoOp0WrapProblem)
- return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
-
- // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
- if (C == Op0 && NoOp1WrapProblem)
- return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
-
- // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
- if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse())
- return new ICmpInst(Pred, A, C);
-
- // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
- if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
- // Try not to increase register pressure.
- BO0->hasOneUse() && BO1->hasOneUse())
- return new ICmpInst(Pred, D, B);
-
- // icmp (0-X) < cst --> x > -cst
- if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
- Value *X;
- if (match(BO0, m_Neg(m_Value(X))))
- if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
- if (!RHSC->isMinValue(/*isSigned=*/true))
- return new ICmpInst(I.getSwappedPredicate(), X,
- ConstantExpr::getNeg(RHSC));
- }
-
- BinaryOperator *SRem = nullptr;
- // icmp (srem X, Y), Y
- if (BO0 && BO0->getOpcode() == Instruction::SRem &&
- Op1 == BO0->getOperand(1))
- SRem = BO0;
- // icmp Y, (srem X, Y)
- else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
- Op0 == BO1->getOperand(1))
- SRem = BO1;
- if (SRem) {
- // We don't check hasOneUse to avoid increasing register pressure because
- // the value we use is the same value this instruction was already using.
- switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
- default: break;
- case ICmpInst::ICMP_EQ:
- return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
- case ICmpInst::ICMP_NE:
- return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
- case ICmpInst::ICMP_SGT:
- case ICmpInst::ICMP_SGE:
- return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
- Constant::getAllOnesValue(SRem->getType()));
- case ICmpInst::ICMP_SLT:
- case ICmpInst::ICMP_SLE:
- return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
- Constant::getNullValue(SRem->getType()));
- }
- }
-
- if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
- BO0->hasOneUse() && BO1->hasOneUse() &&
- BO0->getOperand(1) == BO1->getOperand(1)) {
- switch (BO0->getOpcode()) {
- default: break;
- case Instruction::Add:
- case Instruction::Sub:
- case Instruction::Xor:
- if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
- if (CI->getValue().isSignBit()) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- return new ICmpInst(Pred, BO0->getOperand(0),
- BO1->getOperand(0));
- }
-
- if (BO0->getOpcode() == Instruction::Xor && CI->isMaxValue(true)) {
- ICmpInst::Predicate Pred = I.isSigned()
- ? I.getUnsignedPredicate()
- : I.getSignedPredicate();
- Pred = I.getSwappedPredicate(Pred);
- return new ICmpInst(Pred, BO0->getOperand(0),
- BO1->getOperand(0));
- }
- }
- break;
- case Instruction::Mul:
- if (!I.isEquality())
- break;
-
- if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
- // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
- // Mask = -1 >> count-trailing-zeros(Cst).
- if (!CI->isZero() && !CI->isOne()) {
- const APInt &AP = CI->getValue();
- ConstantInt *Mask = ConstantInt::get(I.getContext(),
- APInt::getLowBitsSet(AP.getBitWidth(),
- AP.getBitWidth() -
- AP.countTrailingZeros()));
- Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
- Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
- return new ICmpInst(I.getPredicate(), And1, And2);
- }
- }
- break;
- case Instruction::UDiv:
- case Instruction::LShr:
- if (I.isSigned())
- break;
- // fall-through
- case Instruction::SDiv:
- case Instruction::AShr:
- if (!BO0->isExact() || !BO1->isExact())
- break;
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- case Instruction::Shl: {
- bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
- bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
- if (!NUW && !NSW)
- break;
- if (!NSW && I.isSigned())
- break;
- return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
- BO1->getOperand(0));
- }
- }
- }
-
- if (BO0) {
- // Transform A & (L - 1) `ult` L --> L != 0
- auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
- auto BitwiseAnd =
- m_CombineOr(m_And(m_Value(), LSubOne), m_And(LSubOne, m_Value()));
+ if (Instruction *Res = foldICmpBinOp(I))
+ return Res;
- if (match(BO0, BitwiseAnd) && I.getPredicate() == ICmpInst::ICMP_ULT) {
- auto *Zero = Constant::getNullValue(BO0->getType());
- return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
- }
- }
- }
+ if (Instruction *Res = foldICmpWithMinMax(I))
+ return Res;
- { Value *A, *B;
+ {
+ Value *A, *B;
// Transform (A & ~B) == 0 --> (A & B) != 0
// and (A & ~B) != 0 --> (A & B) == 0
// if A is a power of 2.
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
match(Op1, m_Zero()) &&
- isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
+ isKnownToBeAPowerOfTwo(A, DL, false, 0, &AC, &I, &DT) && I.isEquality())
return new ICmpInst(I.getInversePredicate(),
Builder->CreateAnd(A, B),
Op1);
@@ -4120,149 +4418,17 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// (zext a) * (zext b) --> llvm.umul.with.overflow.
if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
+ if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
return R;
}
if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
- if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
+ if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
return R;
}
}
- if (I.isEquality()) {
- Value *A, *B, *C, *D;
-
- if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
- if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
- Value *OtherVal = A == Op1 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
-
- if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
- // A^c1 == C^c2 --> A == C^(c1^c2)
- ConstantInt *C1, *C2;
- if (match(B, m_ConstantInt(C1)) &&
- match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
- Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
- Value *Xor = Builder->CreateXor(C, NC);
- return new ICmpInst(I.getPredicate(), A, Xor);
- }
-
- // A^B == A^D -> B == D
- if (A == C) return new ICmpInst(I.getPredicate(), B, D);
- if (A == D) return new ICmpInst(I.getPredicate(), B, C);
- if (B == C) return new ICmpInst(I.getPredicate(), A, D);
- if (B == D) return new ICmpInst(I.getPredicate(), A, C);
- }
- }
-
- if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
- (A == Op0 || B == Op0)) {
- // A == (A^B) -> B == 0
- Value *OtherVal = A == Op0 ? B : A;
- return new ICmpInst(I.getPredicate(), OtherVal,
- Constant::getNullValue(A->getType()));
- }
-
- // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
- if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
- match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
- Value *X = nullptr, *Y = nullptr, *Z = nullptr;
-
- if (A == C) {
- X = B; Y = D; Z = A;
- } else if (A == D) {
- X = B; Y = C; Z = A;
- } else if (B == C) {
- X = A; Y = D; Z = B;
- } else if (B == D) {
- X = A; Y = C; Z = B;
- }
-
- if (X) { // Build (X^Y) & Z
- Op1 = Builder->CreateXor(X, Y);
- Op1 = Builder->CreateAnd(Op1, Z);
- I.setOperand(0, Op1);
- I.setOperand(1, Constant::getNullValue(Op1->getType()));
- return &I;
- }
- }
-
- // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
- // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
- ConstantInt *Cst1;
- if ((Op0->hasOneUse() &&
- match(Op0, m_ZExt(m_Value(A))) &&
- match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
- (Op1->hasOneUse() &&
- match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
- match(Op1, m_ZExt(m_Value(A))))) {
- APInt Pow2 = Cst1->getValue() + 1;
- if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
- Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
- return new ICmpInst(I.getPredicate(), A,
- Builder->CreateTrunc(B, A->getType()));
- }
-
- // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
- // For lshr and ashr pairs.
- if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
- (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
- unsigned TypeBits = Cst1->getBitWidth();
- unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
- ? ICmpInst::ICMP_UGE
- : ICmpInst::ICMP_ULT;
- Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
- APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
- return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
- }
- }
-
- // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
- if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
- match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
- unsigned TypeBits = Cst1->getBitWidth();
- unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
- if (ShAmt < TypeBits && ShAmt != 0) {
- Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
- APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
- Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
- I.getName() + ".mask");
- return new ICmpInst(I.getPredicate(), And,
- Constant::getNullValue(Cst1->getType()));
- }
- }
-
- // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
- // "icmp (and X, mask), cst"
- uint64_t ShAmt = 0;
- if (Op0->hasOneUse() &&
- match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
- m_ConstantInt(ShAmt))))) &&
- match(Op1, m_ConstantInt(Cst1)) &&
- // Only do this when A has multiple uses. This is most important to do
- // when it exposes other optimizations.
- !A->hasOneUse()) {
- unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
-
- if (ShAmt < ASize) {
- APInt MaskV =
- APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
- MaskV <<= ShAmt;
-
- APInt CmpV = Cst1->getValue().zext(ASize);
- CmpV <<= ShAmt;
-
- Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
- return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
- }
- }
- }
+ if (Instruction *Res = foldICmpEquality(I))
+ return Res;
// The 'cmpxchg' instruction returns an aggregate containing the old value and
// an i1 which indicates whether or not we successfully did the swap.
@@ -4284,18 +4450,17 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
Value *X; ConstantInt *Cst;
// icmp X+Cst, X
if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
+ return foldICmpAddOpConst(I, X, Cst, I.getPredicate());
// icmp X, X+Cst
if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
- return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
+ return foldICmpAddOpConst(I, X, Cst, I.getSwappedPredicate());
}
return Changed ? &I : nullptr;
}
/// Fold fcmp ([us]itofp x, cst) if possible.
-Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
- Instruction *LHSI,
+Instruction *InstCombiner::foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
Constant *RHSC) {
if (!isa<ConstantFP>(RHSC)) return nullptr;
const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
@@ -4339,21 +4504,21 @@ Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
unsigned InputSize = IntTy->getScalarSizeInBits();
- // Following test does NOT adjust InputSize downwards for signed inputs,
- // because the most negative value still requires all the mantissa bits
+ // Following test does NOT adjust InputSize downwards for signed inputs,
+ // because the most negative value still requires all the mantissa bits
// to distinguish it from one less than that value.
if ((int)InputSize > MantissaWidth) {
// Conversion would lose accuracy. Check if loss can impact comparison.
int Exp = ilogb(RHS);
if (Exp == APFloat::IEK_Inf) {
int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
- if (MaxExponent < (int)InputSize - !LHSUnsigned)
+ if (MaxExponent < (int)InputSize - !LHSUnsigned)
// Conversion could create infinity.
return nullptr;
} else {
- // Note that if RHS is zero or NaN, then Exp is negative
+ // Note that if RHS is zero or NaN, then Exp is negative
// and first condition is trivially false.
- if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
+ if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
// Conversion could affect comparison.
return nullptr;
}
@@ -4547,7 +4712,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1,
- I.getFastMathFlags(), DL, TLI, DT, AC, &I))
+ I.getFastMathFlags(), DL, &TLI, &DT, &AC, &I))
return replaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
@@ -4601,17 +4766,17 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
const fltSemantics *Sem;
// FIXME: This shouldn't be here.
if (LHSExt->getSrcTy()->isHalfTy())
- Sem = &APFloat::IEEEhalf;
+ Sem = &APFloat::IEEEhalf();
else if (LHSExt->getSrcTy()->isFloatTy())
- Sem = &APFloat::IEEEsingle;
+ Sem = &APFloat::IEEEsingle();
else if (LHSExt->getSrcTy()->isDoubleTy())
- Sem = &APFloat::IEEEdouble;
+ Sem = &APFloat::IEEEdouble();
else if (LHSExt->getSrcTy()->isFP128Ty())
- Sem = &APFloat::IEEEquad;
+ Sem = &APFloat::IEEEquad();
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
- Sem = &APFloat::x87DoubleExtended;
+ Sem = &APFloat::x87DoubleExtended();
else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
- Sem = &APFloat::PPCDoubleDouble;
+ Sem = &APFloat::PPCDoubleDouble();
else
break;
@@ -4641,7 +4806,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
break;
case Instruction::SIToFP:
case Instruction::UIToFP:
- if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
+ if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
return NV;
break;
case Instruction::FSub: {
@@ -4658,7 +4823,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
- if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
@@ -4667,7 +4832,7 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
break;
CallInst *CI = cast<CallInst>(LHSI);
- Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
+ Intrinsic::ID IID = getIntrinsicForCallSite(CI, &TLI);
if (IID != Intrinsic::fabs)
break;
OpenPOWER on IntegriCloud