summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp4099
1 files changed, 4099 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
new file mode 100644
index 0000000..2dafa58
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
@@ -0,0 +1,4099 @@
+//===- InstCombineCompares.cpp --------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitICmp and visitFCmp functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+// How many times is a select replaced by one of its operands?
+STATISTIC(NumSel, "Number of select opts");
+
+// Initialization Routines
+
+static ConstantInt *getOne(Constant *C) {
+ return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
+}
+
+static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
+ return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
+}
+
+static bool HasAddOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (!IsSigned)
+ return Result->getValue().ult(In1->getValue());
+
+ if (In2->isNegative())
+ return Result->getValue().sgt(In1->getValue());
+ return Result->getValue().slt(In1->getValue());
+}
+
+/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
+/// overflowed for this type.
+static bool AddWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getAdd(In1, In2);
+
+ if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasAddOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasAddOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+static bool HasSubOverflow(ConstantInt *Result,
+ ConstantInt *In1, ConstantInt *In2,
+ bool IsSigned) {
+ if (!IsSigned)
+ return Result->getValue().ugt(In1->getValue());
+
+ if (In2->isNegative())
+ return Result->getValue().slt(In1->getValue());
+
+ return Result->getValue().sgt(In1->getValue());
+}
+
+/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
+/// overflowed for this type.
+static bool SubWithOverflow(Constant *&Result, Constant *In1,
+ Constant *In2, bool IsSigned = false) {
+ Result = ConstantExpr::getSub(In1, In2);
+
+ if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
+ Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
+ if (HasSubOverflow(ExtractElement(Result, Idx),
+ ExtractElement(In1, Idx),
+ ExtractElement(In2, Idx),
+ IsSigned))
+ return true;
+ }
+ return false;
+ }
+
+ return HasSubOverflow(cast<ConstantInt>(Result),
+ cast<ConstantInt>(In1), cast<ConstantInt>(In2),
+ IsSigned);
+}
+
+/// isSignBitCheck - Given an exploded icmp instruction, return true if the
+/// comparison only checks the sign bit. If it only checks the sign bit, set
+/// TrueIfSigned if the result of the comparison is true when the input value is
+/// signed.
+static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
+ bool &TrueIfSigned) {
+ switch (pred) {
+ case ICmpInst::ICMP_SLT: // True if LHS s< 0
+ TrueIfSigned = true;
+ return RHS->isZero();
+ case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
+ TrueIfSigned = true;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_SGT: // True if LHS s> -1
+ TrueIfSigned = false;
+ return RHS->isAllOnesValue();
+ case ICmpInst::ICMP_UGT:
+ // True if LHS u> RHS and RHS == high-bit-mask - 1
+ TrueIfSigned = true;
+ return RHS->isMaxValue(true);
+ case ICmpInst::ICMP_UGE:
+ // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
+ TrueIfSigned = true;
+ return RHS->getValue().isSignBit();
+ default:
+ return false;
+ }
+}
+
+/// Returns true if the exploded icmp can be expressed as a signed comparison
+/// to zero and updates the predicate accordingly.
+/// The signedness of the comparison is preserved.
+static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
+ if (!ICmpInst::isSigned(pred))
+ return false;
+
+ if (RHS->isZero())
+ return ICmpInst::isRelational(pred);
+
+ if (RHS->isOne()) {
+ if (pred == ICmpInst::ICMP_SLT) {
+ pred = ICmpInst::ICMP_SLE;
+ return true;
+ }
+ } else if (RHS->isAllOnesValue()) {
+ if (pred == ICmpInst::ICMP_SGT) {
+ pred = ICmpInst::ICMP_SGE;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// isHighOnes - Return true if the constant is of the form 1+0+.
+// This is the same as lowones(~X).
+static bool isHighOnes(const ConstantInt *CI) {
+ return (~CI->getValue() + 1).isPowerOf2();
+}
+
+/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
+/// set of known zero and one bits, compute the maximum and minimum values that
+/// could have the specified known zero and known one bits, returning them in
+/// min/max.
+static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
+ const APInt& KnownOne,
+ APInt& Min, APInt& Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
+ // bit if it is unknown.
+ Min = KnownOne;
+ Max = KnownOne|UnknownBits;
+
+ if (UnknownBits.isNegative()) { // Sign bit is unknown
+ Min.setBit(Min.getBitWidth()-1);
+ Max.clearBit(Max.getBitWidth()-1);
+ }
+}
+
+// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
+// a set of known zero and one bits, compute the maximum and minimum values that
+// could have the specified known zero and known one bits, returning them in
+// min/max.
+static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
+ const APInt &KnownOne,
+ APInt &Min, APInt &Max) {
+ assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
+ KnownZero.getBitWidth() == Min.getBitWidth() &&
+ KnownZero.getBitWidth() == Max.getBitWidth() &&
+ "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
+ APInt UnknownBits = ~(KnownZero|KnownOne);
+
+ // The minimum value is when the unknown bits are all zeros.
+ Min = KnownOne;
+ // The maximum value is when the unknown bits are all ones.
+ Max = KnownOne|UnknownBits;
+}
+
+
+
+/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
+/// cmp pred (load (gep GV, ...)), cmpcst
+/// where GV is a global variable with a constant initializer. Try to simplify
+/// this into some simple computation that does not need the load. For example
+/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
+///
+/// If AndCst is non-null, then the loaded value is masked with that constant
+/// before doing the comparison. This handles cases like "A[i]&4 == 0".
+Instruction *InstCombiner::
+FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
+ CmpInst &ICI, ConstantInt *AndCst) {
+ Constant *Init = GV->getInitializer();
+ if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
+ return nullptr;
+
+ uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
+ if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
+
+ // There are many forms of this optimization we can handle, for now, just do
+ // the simple index into a single-dimensional array.
+ //
+ // Require: GEP GV, 0, i {{, constant indices}}
+ if (GEP->getNumOperands() < 3 ||
+ !isa<ConstantInt>(GEP->getOperand(1)) ||
+ !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
+ isa<Constant>(GEP->getOperand(2)))
+ return nullptr;
+
+ // Check that indices after the variable are constants and in-range for the
+ // type they index. Collect the indices. This is typically for arrays of
+ // structs.
+ SmallVector<unsigned, 4> LaterIndices;
+
+ Type *EltTy = Init->getType()->getArrayElementType();
+ for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
+ ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!Idx) return nullptr; // Variable index.
+
+ uint64_t IdxVal = Idx->getZExtValue();
+ if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
+
+ if (StructType *STy = dyn_cast<StructType>(EltTy))
+ EltTy = STy->getElementType(IdxVal);
+ else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
+ if (IdxVal >= ATy->getNumElements()) return nullptr;
+ EltTy = ATy->getElementType();
+ } else {
+ return nullptr; // Unknown type.
+ }
+
+ LaterIndices.push_back(IdxVal);
+ }
+
+ enum { Overdefined = -3, Undefined = -2 };
+
+ // Variables for our state machines.
+
+ // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
+ // "i == 47 | i == 87", where 47 is the first index the condition is true for,
+ // and 87 is the second (and last) index. FirstTrueElement is -2 when
+ // undefined, otherwise set to the first true element. SecondTrueElement is
+ // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
+ int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
+
+ // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
+ // form "i != 47 & i != 87". Same state transitions as for true elements.
+ int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
+
+ /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
+ /// define a state machine that triggers for ranges of values that the index
+ /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
+ /// This is -2 when undefined, -3 when overdefined, and otherwise the last
+ /// index in the range (inclusive). We use -2 for undefined here because we
+ /// use relative comparisons and don't want 0-1 to match -1.
+ int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
+
+ // MagicBitvector - This is a magic bitvector where we set a bit if the
+ // comparison is true for element 'i'. If there are 64 elements or less in
+ // the array, this will fully represent all the comparison results.
+ uint64_t MagicBitvector = 0;
+
+ // Scan the array and see if one of our patterns matches.
+ Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
+ for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
+ Constant *Elt = Init->getAggregateElement(i);
+ if (!Elt) return nullptr;
+
+ // If this is indexing an array of structures, get the structure element.
+ if (!LaterIndices.empty())
+ Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
+
+ // If the element is masked, handle it.
+ if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
+
+ // Find out if the comparison would be true or false for the i'th element.
+ Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
+ CompareRHS, DL, TLI);
+ // If the result is undef for this element, ignore it.
+ if (isa<UndefValue>(C)) {
+ // Extend range state machines to cover this element in case there is an
+ // undef in the middle of the range.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ continue;
+ }
+
+ // If we can't compute the result for any of the elements, we have to give
+ // up evaluating the entire conditional.
+ if (!isa<ConstantInt>(C)) return nullptr;
+
+ // Otherwise, we know if the comparison is true or false for this element,
+ // update our state machines.
+ bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
+
+ // State machine for single/double/range index comparison.
+ if (IsTrueForElt) {
+ // Update the TrueElement state machine.
+ if (FirstTrueElement == Undefined)
+ FirstTrueElement = TrueRangeEnd = i; // First true element.
+ else {
+ // Update double-compare state machine.
+ if (SecondTrueElement == Undefined)
+ SecondTrueElement = i;
+ else
+ SecondTrueElement = Overdefined;
+
+ // Update range state machine.
+ if (TrueRangeEnd == (int)i-1)
+ TrueRangeEnd = i;
+ else
+ TrueRangeEnd = Overdefined;
+ }
+ } else {
+ // Update the FalseElement state machine.
+ if (FirstFalseElement == Undefined)
+ FirstFalseElement = FalseRangeEnd = i; // First false element.
+ else {
+ // Update double-compare state machine.
+ if (SecondFalseElement == Undefined)
+ SecondFalseElement = i;
+ else
+ SecondFalseElement = Overdefined;
+
+ // Update range state machine.
+ if (FalseRangeEnd == (int)i-1)
+ FalseRangeEnd = i;
+ else
+ FalseRangeEnd = Overdefined;
+ }
+ }
+
+
+ // If this element is in range, update our magic bitvector.
+ if (i < 64 && IsTrueForElt)
+ MagicBitvector |= 1ULL << i;
+
+ // If all of our states become overdefined, bail out early. Since the
+ // predicate is expensive, only check it every 8 elements. This is only
+ // really useful for really huge arrays.
+ if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
+ SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
+ FalseRangeEnd == Overdefined)
+ return nullptr;
+ }
+
+ // Now that we've scanned the entire array, emit our new comparison(s). We
+ // order the state machines in complexity of the generated code.
+ Value *Idx = GEP->getOperand(2);
+
+ // If the index is larger than the pointer size of the target, truncate the
+ // index down like the GEP would do implicitly. We don't have to do this for
+ // an inbounds GEP because the index can't be out of range.
+ if (!GEP->isInBounds()) {
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
+ unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
+ if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
+ Idx = Builder->CreateTrunc(Idx, IntPtrTy);
+ }
+
+ // If the comparison is only true for one or two elements, emit direct
+ // comparisons.
+ if (SecondTrueElement != Overdefined) {
+ // None true -> false.
+ if (FirstTrueElement == Undefined)
+ return ReplaceInstUsesWith(ICI, Builder->getFalse());
+
+ Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
+
+ // True for one element -> 'i == 47'.
+ if (SecondTrueElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
+
+ // True for two elements -> 'i == 47 | i == 72'.
+ Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
+ Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
+ Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
+ return BinaryOperator::CreateOr(C1, C2);
+ }
+
+ // If the comparison is only false for one or two elements, emit direct
+ // comparisons.
+ if (SecondFalseElement != Overdefined) {
+ // None false -> true.
+ if (FirstFalseElement == Undefined)
+ return ReplaceInstUsesWith(ICI, Builder->getTrue());
+
+ Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
+
+ // False for one element -> 'i != 47'.
+ if (SecondFalseElement == Undefined)
+ return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
+
+ // False for two elements -> 'i != 47 & i != 72'.
+ Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
+ Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
+ Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
+ return BinaryOperator::CreateAnd(C1, C2);
+ }
+
+ // If the comparison can be replaced with a range comparison for the elements
+ // where it is true, emit the range check.
+ if (TrueRangeEnd != Overdefined) {
+ assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
+
+ // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
+ if (FirstTrueElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ TrueRangeEnd-FirstTrueElement+1);
+ return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
+ }
+
+ // False range check.
+ if (FalseRangeEnd != Overdefined) {
+ assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
+ // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
+ if (FirstFalseElement) {
+ Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
+ Idx = Builder->CreateAdd(Idx, Offs);
+ }
+
+ Value *End = ConstantInt::get(Idx->getType(),
+ FalseRangeEnd-FirstFalseElement);
+ return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
+ }
+
+
+ // If a magic bitvector captures the entire comparison state
+ // of this load, replace it with computation that does:
+ // ((magic_cst >> i) & 1) != 0
+ {
+ Type *Ty = nullptr;
+
+ // Look for an appropriate type:
+ // - The type of Idx if the magic fits
+ // - The smallest fitting legal type if we have a DataLayout
+ // - Default to i32
+ if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
+ Ty = Idx->getType();
+ else
+ Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
+
+ if (Ty) {
+ Value *V = Builder->CreateIntCast(Idx, Ty, false);
+ V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
+ V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
+ return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
+ }
+ }
+
+ return nullptr;
+}
+
+
+/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
+/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
+/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
+/// be complex, and scales are involved. The above expression would also be
+/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
+/// This later form is less amenable to optimization though, and we are allowed
+/// to generate the first by knowing that pointer arithmetic doesn't overflow.
+///
+/// If we can't emit an optimized form for this expression, this returns null.
+///
+static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
+ const DataLayout &DL) {
+ gep_type_iterator GTI = gep_type_begin(GEP);
+
+ // Check to see if this gep only has a single variable index. If so, and if
+ // any constant indices are a multiple of its scale, then we can compute this
+ // in terms of the scale of the variable index. For example, if the GEP
+ // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
+ // because the expression will cross zero at the same point.
+ unsigned i, e = GEP->getNumOperands();
+ int64_t Offset = 0;
+ for (i = 1; i != e; ++i, ++GTI) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ } else {
+ // Found our variable index.
+ break;
+ }
+ }
+
+ // If there are no variable indices, we must have a constant offset, just
+ // evaluate it the general way.
+ if (i == e) return nullptr;
+
+ Value *VariableIdx = GEP->getOperand(i);
+ // Determine the scale factor of the variable element. For example, this is
+ // 4 if the variable index is into an array of i32.
+ uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
+
+ // Verify that there are no other variable indices. If so, emit the hard way.
+ for (++i, ++GTI; i != e; ++i, ++GTI) {
+ ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
+ if (!CI) return nullptr;
+
+ // Compute the aggregate offset of constant indices.
+ if (CI->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
+ } else {
+ uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
+ Offset += Size*CI->getSExtValue();
+ }
+ }
+
+
+
+ // Okay, we know we have a single variable index, which must be a
+ // pointer/array/vector index. If there is no offset, life is simple, return
+ // the index.
+ Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
+ unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
+ if (Offset == 0) {
+ // Cast to intptrty in case a truncation occurs. If an extension is needed,
+ // we don't need to bother extending: the extension won't affect where the
+ // computation crosses zero.
+ if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
+ VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
+ }
+ return VariableIdx;
+ }
+
+ // Otherwise, there is an index. The computation we will do will be modulo
+ // the pointer size, so get it.
+ uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+ Offset &= PtrSizeMask;
+ VariableScale &= PtrSizeMask;
+
+ // To do this transformation, any constant index must be a multiple of the
+ // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
+ // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
+ // multiple of the variable scale.
+ int64_t NewOffs = Offset / (int64_t)VariableScale;
+ if (Offset != NewOffs*(int64_t)VariableScale)
+ return nullptr;
+
+ // Okay, we can do this evaluation. Start by converting the index to intptr.
+ if (VariableIdx->getType() != IntPtrTy)
+ VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
+ true /*Signed*/);
+ Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
+ return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
+}
+
+/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
+/// else. At this point we know that the GEP is on the LHS of the comparison.
+Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
+ ICmpInst::Predicate Cond,
+ Instruction &I) {
+ // Don't transform signed compares of GEPs into index compares. Even if the
+ // GEP is inbounds, the final add of the base pointer can have signed overflow
+ // and would change the result of the icmp.
+ // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
+ // the maximum signed value for the pointer type.
+ if (ICmpInst::isSigned(Cond))
+ return nullptr;
+
+ // Look through bitcasts and addrspacecasts. We do not however want to remove
+ // 0 GEPs.
+ if (!isa<GetElementPtrInst>(RHS))
+ RHS = RHS->stripPointerCasts();
+
+ Value *PtrBase = GEPLHS->getOperand(0);
+ if (PtrBase == RHS && GEPLHS->isInBounds()) {
+ // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
+ // This transformation (ignoring the base and scales) is valid because we
+ // know pointers can't overflow since the gep is inbounds. See if we can
+ // output an optimized form.
+ Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
+
+ // If not, synthesize the offset the hard way.
+ if (!Offset)
+ Offset = EmitGEPOffset(GEPLHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
+ Constant::getNullValue(Offset->getType()));
+ } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
+ // If the base pointers are different, but the indices are the same, just
+ // compare the base pointer.
+ if (PtrBase != GEPRHS->getOperand(0)) {
+ bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
+ IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
+ GEPRHS->getOperand(0)->getType();
+ if (IndicesTheSame)
+ for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ IndicesTheSame = false;
+ break;
+ }
+
+ // If all indices are the same, just compare the base pointers.
+ if (IndicesTheSame)
+ return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
+
+ // If we're comparing GEPs with two base pointers that only differ in type
+ // and both GEPs have only constant indices or just one use, then fold
+ // the compare with the adjusted indices.
+ if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
+ (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
+ (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
+ PtrBase->stripPointerCasts() ==
+ GEPRHS->getOperand(0)->stripPointerCasts()) {
+ Value *LOffset = EmitGEPOffset(GEPLHS);
+ Value *ROffset = EmitGEPOffset(GEPRHS);
+
+ // If we looked through an addrspacecast between different sized address
+ // spaces, the LHS and RHS pointers are different sized
+ // integers. Truncate to the smaller one.
+ Type *LHSIndexTy = LOffset->getType();
+ Type *RHSIndexTy = ROffset->getType();
+ if (LHSIndexTy != RHSIndexTy) {
+ if (LHSIndexTy->getPrimitiveSizeInBits() <
+ RHSIndexTy->getPrimitiveSizeInBits()) {
+ ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
+ } else
+ LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
+ }
+
+ Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
+ LOffset, ROffset);
+ return ReplaceInstUsesWith(I, Cmp);
+ }
+
+ // Otherwise, the base pointers are different and the indices are
+ // different, bail out.
+ return nullptr;
+ }
+
+ // If one of the GEPs has all zero indices, recurse.
+ if (GEPLHS->hasAllZeroIndices())
+ return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
+ ICmpInst::getSwappedPredicate(Cond), I);
+
+ // If the other GEP has all zero indices, recurse.
+ if (GEPRHS->hasAllZeroIndices())
+ return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
+
+ bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
+ if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
+ // If the GEPs only differ by one index, compare it.
+ unsigned NumDifferences = 0; // Keep track of # differences.
+ unsigned DiffOperand = 0; // The operand that differs.
+ for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
+ if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
+ if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
+ GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
+ // Irreconcilable differences.
+ NumDifferences = 2;
+ break;
+ } else {
+ if (NumDifferences++) break;
+ DiffOperand = i;
+ }
+ }
+
+ if (NumDifferences == 0) // SAME GEP?
+ return ReplaceInstUsesWith(I, // No comparison is needed here.
+ Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
+
+ else if (NumDifferences == 1 && GEPsInBounds) {
+ Value *LHSV = GEPLHS->getOperand(DiffOperand);
+ Value *RHSV = GEPRHS->getOperand(DiffOperand);
+ // Make sure we do a signed comparison here.
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
+ }
+ }
+
+ // Only lower this if the icmp is the only user of the GEP or if we expect
+ // the result to fold to a constant!
+ if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
+ (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
+ // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
+ Value *L = EmitGEPOffset(GEPLHS);
+ Value *R = EmitGEPOffset(GEPRHS);
+ return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
+ }
+ }
+ return nullptr;
+}
+
+/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
+Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
+ Value *X, ConstantInt *CI,
+ ICmpInst::Predicate Pred) {
+ // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
+ // so the values can never be equal. Similarly for all other "or equals"
+ // operators.
+
+ // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
+ // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
+ // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ Value *R =
+ ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
+ return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
+ }
+
+ // (X+1) >u X --> X <u (0-1) --> X != 255
+ // (X+2) >u X --> X <u (0-2) --> X <u 254
+ // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
+ return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
+
+ unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
+ ConstantInt *SMax = ConstantInt::get(X->getContext(),
+ APInt::getSignedMaxValue(BitWidth));
+
+ // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
+ // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
+ // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
+ // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
+ // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
+ // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
+
+ // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
+ // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
+ // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
+ // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
+ // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
+ // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
+
+ assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
+ Constant *C = Builder->getInt(CI->getValue()-1);
+ return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
+}
+
+/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
+/// and CmpRHS are both known to be integer constants.
+Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
+ ConstantInt *DivRHS) {
+ ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
+ const APInt &CmpRHSV = CmpRHS->getValue();
+
+ // FIXME: If the operand types don't match the type of the divide
+ // then don't attempt this transform. The code below doesn't have the
+ // logic to deal with a signed divide and an unsigned compare (and
+ // vice versa). This is because (x /s C1) <s C2 produces different
+ // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
+ // (x /u C1) <u C2. Simply casting the operands and result won't
+ // work. :( The if statement below tests that condition and bails
+ // if it finds it.
+ bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
+ if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
+ return nullptr;
+ if (DivRHS->isZero())
+ return nullptr; // The ProdOV computation fails on divide by zero.
+ if (DivIsSigned && DivRHS->isAllOnesValue())
+ return nullptr; // The overflow computation also screws up here
+ if (DivRHS->isOne()) {
+ // This eliminates some funny cases with INT_MIN.
+ ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
+ return &ICI;
+ }
+
+ // Compute Prod = CI * DivRHS. We are essentially solving an equation
+ // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
+ // C2 (CI). By solving for X we can turn this into a range check
+ // instead of computing a divide.
+ Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
+
+ // Determine if the product overflows by seeing if the product is
+ // not equal to the divide. Make sure we do the same kind of divide
+ // as in the LHS instruction that we're folding.
+ bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
+ ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
+
+ // Get the ICmp opcode
+ ICmpInst::Predicate Pred = ICI.getPredicate();
+
+ /// If the division is known to be exact, then there is no remainder from the
+ /// divide, so the covered range size is unit, otherwise it is the divisor.
+ ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
+
+ // Figure out the interval that is being checked. For example, a comparison
+ // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
+ // Compute this interval based on the constants involved and the signedness of
+ // the compare/divide. This computes a half-open interval, keeping track of
+ // whether either value in the interval overflows. After analysis each
+ // overflow variable is set to 0 if it's corresponding bound variable is valid
+ // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
+ int LoOverflow = 0, HiOverflow = 0;
+ Constant *LoBound = nullptr, *HiBound = nullptr;
+
+ if (!DivIsSigned) { // udiv
+ // e.g. X/5 op 3 --> [15, 20)
+ LoBound = Prod;
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow) {
+ // If this is not an exact divide, then many values in the range collapse
+ // to the same result value.
+ HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
+ }
+
+ } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
+ if (CmpRHSV == 0) { // (X / pos) op 0
+ // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
+ LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
+ HiBound = RangeSize;
+ } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
+ LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
+ HiOverflow = LoOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
+ } else { // (X / pos) op neg
+ // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
+ HiBound = AddOne(Prod);
+ LoOverflow = HiOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow) {
+ ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
+ LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
+ }
+ }
+ } else if (DivRHS->isNegative()) { // Divisor is < 0.
+ if (DivI->isExact())
+ RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
+ if (CmpRHSV == 0) { // (X / neg) op 0
+ // e.g. X/-5 op 0 --> [-4, 5)
+ LoBound = AddOne(RangeSize);
+ HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
+ if (HiBound == DivRHS) { // -INTMIN = INTMIN
+ HiOverflow = 1; // [INTMIN+1, overflow)
+ HiBound = nullptr; // e.g. X/INTMIN = 0 --> X > INTMIN
+ }
+ } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
+ // e.g. X/-5 op 3 --> [-19, -14)
+ HiBound = AddOne(Prod);
+ HiOverflow = LoOverflow = ProdOV ? -1 : 0;
+ if (!LoOverflow)
+ LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
+ } else { // (X / neg) op neg
+ LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
+ LoOverflow = HiOverflow = ProdOV;
+ if (!HiOverflow)
+ HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
+ }
+
+ // Dividing by a negative swaps the condition. LT <-> GT
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ }
+
+ Value *X = DivI->getOperand(0);
+ switch (Pred) {
+ default: llvm_unreachable("Unhandled icmp opcode!");
+ case ICmpInst::ICMP_EQ:
+ if (LoOverflow && HiOverflow)
+ return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, LoBound);
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, HiBound);
+ return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ DivIsSigned, true));
+ case ICmpInst::ICMP_NE:
+ if (LoOverflow && HiOverflow)
+ return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ if (HiOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
+ ICmpInst::ICMP_ULT, X, LoBound);
+ if (LoOverflow)
+ return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
+ ICmpInst::ICMP_UGE, X, HiBound);
+ return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
+ DivIsSigned, false));
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_SLT:
+ if (LoOverflow == +1) // Low bound is greater than input range.
+ return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ if (LoOverflow == -1) // Low bound is less than input range.
+ return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ return new ICmpInst(Pred, X, LoBound);
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_SGT:
+ if (HiOverflow == +1) // High bound greater than input range.
+ return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ if (HiOverflow == -1) // High bound less than input range.
+ return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ if (Pred == ICmpInst::ICMP_UGT)
+ return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
+ return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
+ }
+}
+
+/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
+Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
+ ConstantInt *ShAmt) {
+ const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
+
+ // Check that the shift amount is in range. If not, don't perform
+ // undefined shifts. When the shift is visited it will be
+ // simplified.
+ uint32_t TypeBits = CmpRHSV.getBitWidth();
+ uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+ if (ShAmtVal >= TypeBits || ShAmtVal == 0)
+ return nullptr;
+
+ if (!ICI.isEquality()) {
+ // If we have an unsigned comparison and an ashr, we can't simplify this.
+ // Similarly for signed comparisons with lshr.
+ if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
+ return nullptr;
+
+ // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
+ // by a power of 2. Since we already have logic to simplify these,
+ // transform to div and then simplify the resultant comparison.
+ if (Shr->getOpcode() == Instruction::AShr &&
+ (!Shr->isExact() || ShAmtVal == TypeBits - 1))
+ return nullptr;
+
+ // Revisit the shift (to delete it).
+ Worklist.Add(Shr);
+
+ Constant *DivCst =
+ ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
+
+ Value *Tmp =
+ Shr->getOpcode() == Instruction::AShr ?
+ Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
+ Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
+
+ ICI.setOperand(0, Tmp);
+
+ // If the builder folded the binop, just return it.
+ BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
+ if (!TheDiv)
+ return &ICI;
+
+ // Otherwise, fold this div/compare.
+ assert(TheDiv->getOpcode() == Instruction::SDiv ||
+ TheDiv->getOpcode() == Instruction::UDiv);
+
+ Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
+ assert(Res && "This div/cst should have folded!");
+ return Res;
+ }
+
+
+ // If we are comparing against bits always shifted out, the
+ // comparison cannot succeed.
+ APInt Comp = CmpRHSV << ShAmtVal;
+ ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
+ if (Shr->getOpcode() == Instruction::LShr)
+ Comp = Comp.lshr(ShAmtVal);
+ else
+ Comp = Comp.ashr(ShAmtVal);
+
+ if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
+ bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+ Constant *Cst = Builder->getInt1(IsICMP_NE);
+ return ReplaceInstUsesWith(ICI, Cst);
+ }
+
+ // Otherwise, check to see if the bits shifted out are known to be zero.
+ // If so, we can compare against the unshifted value:
+ // (X & 4) >> 1 == 2 --> (X & 4) == 4.
+ if (Shr->hasOneUse() && Shr->isExact())
+ return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
+
+ if (Shr->hasOneUse()) {
+ // Otherwise strength reduce the shift into an and.
+ APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
+ Constant *Mask = Builder->getInt(Val);
+
+ Value *And = Builder->CreateAnd(Shr->getOperand(0),
+ Mask, Shr->getName()+".mask");
+ return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
+ }
+ return nullptr;
+}
+
+/// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
+/// (icmp eq/ne A, Log2(const2/const1)) ->
+/// (icmp eq/ne A, Log2(const2) - Log2(const1)).
+Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1,
+ ConstantInt *CI2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getConstant = [&I, this](bool IsTrue) {
+ if (I.getPredicate() == I.ICMP_NE)
+ IsTrue = !IsTrue;
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ };
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ APInt AP1 = CI1->getValue();
+ APInt AP2 = CI2->getValue();
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+ bool IsAShr = isa<AShrOperator>(Op);
+ if (IsAShr) {
+ if (AP2.isAllOnesValue())
+ return nullptr;
+ if (AP2.isNegative() != AP1.isNegative())
+ return nullptr;
+ if (AP2.sgt(AP1))
+ return nullptr;
+ }
+
+ if (!AP1)
+ // 'A' must be large enough to shift out the highest set bit.
+ return getICmp(I.ICMP_UGT, A,
+ ConstantInt::get(A->getType(), AP2.logBase2()));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the highest bit that's set.
+ int Shift;
+ // Both the constants are negative, take their positive to calculate log.
+ if (IsAShr && AP1.isNegative())
+ // Get the ones' complement of AP2 and AP1 when computing the distance.
+ Shift = (~AP2).logBase2() - (~AP1).logBase2();
+ else
+ Shift = AP2.logBase2() - AP1.logBase2();
+
+ if (Shift > 0) {
+ if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+ }
+ // Shifting const2 will never be equal to const1.
+ return getConstant(false);
+}
+
+/// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
+/// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
+Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
+ ConstantInt *CI1,
+ ConstantInt *CI2) {
+ assert(I.isEquality() && "Cannot fold icmp gt/lt");
+
+ auto getConstant = [&I, this](bool IsTrue) {
+ if (I.getPredicate() == I.ICMP_NE)
+ IsTrue = !IsTrue;
+ return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
+ };
+
+ auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
+ if (I.getPredicate() == I.ICMP_NE)
+ Pred = CmpInst::getInversePredicate(Pred);
+ return new ICmpInst(Pred, LHS, RHS);
+ };
+
+ APInt AP1 = CI1->getValue();
+ APInt AP2 = CI2->getValue();
+
+ // Don't bother doing any work for cases which InstSimplify handles.
+ if (AP2 == 0)
+ return nullptr;
+
+ unsigned AP2TrailingZeros = AP2.countTrailingZeros();
+
+ if (!AP1 && AP2TrailingZeros != 0)
+ return getICmp(I.ICMP_UGE, A,
+ ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
+
+ if (AP1 == AP2)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
+
+ // Get the distance between the lowest bits that are set.
+ int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
+
+ if (Shift > 0 && AP2.shl(Shift) == AP1)
+ return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
+
+ // Shifting const2 will never be equal to const1.
+ return getConstant(false);
+}
+
+/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
+///
+Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
+ Instruction *LHSI,
+ ConstantInt *RHS) {
+ const APInt &RHSV = RHS->getValue();
+
+ switch (LHSI->getOpcode()) {
+ case Instruction::Trunc:
+ if (ICI.isEquality() && LHSI->hasOneUse()) {
+ // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
+ // of the high bits truncated out of x are known.
+ unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
+ SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
+ APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
+ computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
+
+ // If all the high bits are known, we can do this xform.
+ if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
+ // Pull in the high bits from known-ones set.
+ APInt NewRHS = RHS->getValue().zext(SrcBits);
+ NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ Builder->getInt(NewRHS));
+ }
+ }
+ break;
+
+ case Instruction::Xor: // (icmp pred (xor X, XorCst), CI)
+ if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
+ // If this is a comparison that tests the signbit (X < 0) or (x > -1),
+ // fold the xor.
+ if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
+ (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
+ Value *CompareVal = LHSI->getOperand(0);
+
+ // If the sign bit of the XorCst is not set, there is no change to
+ // the operation, just stop using the Xor.
+ if (!XorCst->isNegative()) {
+ ICI.setOperand(0, CompareVal);
+ Worklist.Add(LHSI);
+ return &ICI;
+ }
+
+ // Was the old condition true if the operand is positive?
+ bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
+
+ // If so, the new one isn't.
+ isTrueIfPositive ^= true;
+
+ if (isTrueIfPositive)
+ return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
+ SubOne(RHS));
+ else
+ return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
+ AddOne(RHS));
+ }
+
+ if (LHSI->hasOneUse()) {
+ // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
+ if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
+ const APInt &SignBit = XorCst->getValue();
+ ICmpInst::Predicate Pred = ICI.isSigned()
+ ? ICI.getUnsignedPredicate()
+ : ICI.getSignedPredicate();
+ return new ICmpInst(Pred, LHSI->getOperand(0),
+ Builder->getInt(RHSV ^ SignBit));
+ }
+
+ // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
+ if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
+ const APInt &NotSignBit = XorCst->getValue();
+ ICmpInst::Predicate Pred = ICI.isSigned()
+ ? ICI.getUnsignedPredicate()
+ : ICI.getSignedPredicate();
+ Pred = ICI.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, LHSI->getOperand(0),
+ Builder->getInt(RHSV ^ NotSignBit));
+ }
+ }
+
+ // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
+ // iff -C is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
+ XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
+
+ // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
+ // iff -C is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
+ XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
+ return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
+ }
+ break;
+ case Instruction::And: // (icmp pred (and X, AndCst), RHS)
+ if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
+ LHSI->getOperand(0)->hasOneUse()) {
+ ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
+
+ // If the LHS is an AND of a truncating cast, we can widen the
+ // and/compare to be the input width without changing the value
+ // produced, eliminating a cast.
+ if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
+ // We can do this transformation if either the AND constant does not
+ // have its sign bit set or if it is an equality comparison.
+ // Extending a relational comparison when we're checking the sign
+ // bit would not work.
+ if (ICI.isEquality() ||
+ (!AndCst->isNegative() && RHSV.isNonNegative())) {
+ Value *NewAnd =
+ Builder->CreateAnd(Cast->getOperand(0),
+ ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
+ NewAnd->takeName(LHSI);
+ return new ICmpInst(ICI.getPredicate(), NewAnd,
+ ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
+ }
+ }
+
+ // If the LHS is an AND of a zext, and we have an equality compare, we can
+ // shrink the and/compare to the smaller type, eliminating the cast.
+ if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
+ IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
+ // Make sure we don't compare the upper bits, SimplifyDemandedBits
+ // should fold the icmp to true/false in that case.
+ if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
+ Value *NewAnd =
+ Builder->CreateAnd(Cast->getOperand(0),
+ ConstantExpr::getTrunc(AndCst, Ty));
+ NewAnd->takeName(LHSI);
+ return new ICmpInst(ICI.getPredicate(), NewAnd,
+ ConstantExpr::getTrunc(RHS, Ty));
+ }
+ }
+
+ // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
+ // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
+ // happens a LOT in code produced by the C front-end, for bitfield
+ // access.
+ BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
+ if (Shift && !Shift->isShift())
+ Shift = nullptr;
+
+ ConstantInt *ShAmt;
+ ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
+
+ // This seemingly simple opportunity to fold away a shift turns out to
+ // be rather complicated. See PR17827
+ // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
+ if (ShAmt) {
+ bool CanFold = false;
+ unsigned ShiftOpcode = Shift->getOpcode();
+ if (ShiftOpcode == Instruction::AShr) {
+ // There may be some constraints that make this possible,
+ // but nothing simple has been discovered yet.
+ CanFold = false;
+ } else if (ShiftOpcode == Instruction::Shl) {
+ // For a left shift, we can fold if the comparison is not signed.
+ // We can also fold a signed comparison if the mask value and
+ // comparison value are not negative. These constraints may not be
+ // obvious, but we can prove that they are correct using an SMT
+ // solver.
+ if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
+ CanFold = true;
+ } else if (ShiftOpcode == Instruction::LShr) {
+ // For a logical right shift, we can fold if the comparison is not
+ // signed. We can also fold a signed comparison if the shifted mask
+ // value and the shifted comparison value are not negative.
+ // These constraints may not be obvious, but we can prove that they
+ // are correct using an SMT solver.
+ if (!ICI.isSigned())
+ CanFold = true;
+ else {
+ ConstantInt *ShiftedAndCst =
+ cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
+ ConstantInt *ShiftedRHSCst =
+ cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
+
+ if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
+ CanFold = true;
+ }
+ }
+
+ if (CanFold) {
+ Constant *NewCst;
+ if (ShiftOpcode == Instruction::Shl)
+ NewCst = ConstantExpr::getLShr(RHS, ShAmt);
+ else
+ NewCst = ConstantExpr::getShl(RHS, ShAmt);
+
+ // Check to see if we are shifting out any of the bits being
+ // compared.
+ if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
+ // If we shifted bits out, the fold is not going to work out.
+ // As a special case, check to see if this means that the
+ // result is always true or false now.
+ if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+ return ReplaceInstUsesWith(ICI, Builder->getFalse());
+ if (ICI.getPredicate() == ICmpInst::ICMP_NE)
+ return ReplaceInstUsesWith(ICI, Builder->getTrue());
+ } else {
+ ICI.setOperand(1, NewCst);
+ Constant *NewAndCst;
+ if (ShiftOpcode == Instruction::Shl)
+ NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
+ else
+ NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
+ LHSI->setOperand(1, NewAndCst);
+ LHSI->setOperand(0, Shift->getOperand(0));
+ Worklist.Add(Shift); // Shift is dead.
+ return &ICI;
+ }
+ }
+ }
+
+ // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
+ // preferable because it allows the C<<Y expression to be hoisted out
+ // of a loop if Y is invariant and X is not.
+ if (Shift && Shift->hasOneUse() && RHSV == 0 &&
+ ICI.isEquality() && !Shift->isArithmeticShift() &&
+ !isa<Constant>(Shift->getOperand(0))) {
+ // Compute C << Y.
+ Value *NS;
+ if (Shift->getOpcode() == Instruction::LShr) {
+ NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
+ } else {
+ // Insert a logical shift.
+ NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
+ }
+
+ // Compute X & (C << Y).
+ Value *NewAnd =
+ Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
+
+ ICI.setOperand(0, NewAnd);
+ return &ICI;
+ }
+
+ // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
+ // (icmp pred (and X, (or (shl 1, Y), 1), 0))
+ //
+ // iff pred isn't signed
+ {
+ Value *X, *Y, *LShr;
+ if (!ICI.isSigned() && RHSV == 0) {
+ if (match(LHSI->getOperand(1), m_One())) {
+ Constant *One = cast<Constant>(LHSI->getOperand(1));
+ Value *Or = LHSI->getOperand(0);
+ if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
+ match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
+ unsigned UsesRemoved = 0;
+ if (LHSI->hasOneUse())
+ ++UsesRemoved;
+ if (Or->hasOneUse())
+ ++UsesRemoved;
+ if (LShr->hasOneUse())
+ ++UsesRemoved;
+ Value *NewOr = nullptr;
+ // Compute X & ((1 << Y) | 1)
+ if (auto *C = dyn_cast<Constant>(Y)) {
+ if (UsesRemoved >= 1)
+ NewOr =
+ ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
+ } else {
+ if (UsesRemoved >= 3)
+ NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
+ LShr->getName(),
+ /*HasNUW=*/true),
+ One, Or->getName());
+ }
+ if (NewOr) {
+ Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
+ ICI.setOperand(0, NewAnd);
+ return &ICI;
+ }
+ }
+ }
+ }
+ }
+
+ // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
+ // bit set in (X & AndCst) will produce a result greater than RHSV.
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
+ unsigned NTZ = AndCst->getValue().countTrailingZeros();
+ if ((NTZ < AndCst->getBitWidth()) &&
+ APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
+ return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+ }
+ }
+
+ // Try to optimize things like "A[i]&42 == 0" to index computations.
+ if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
+ ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
+ return Res;
+ }
+ }
+
+ // X & -C == -C -> X > u ~C
+ // X & -C != -C -> X <= u ~C
+ // iff C is a power of 2
+ if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
+ return new ICmpInst(
+ ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
+ : ICmpInst::ICMP_ULE,
+ LHSI->getOperand(0), SubOne(RHS));
+ break;
+
+ case Instruction::Or: {
+ if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
+ break;
+ Value *P, *Q;
+ if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
+ // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
+ // -> and (icmp eq P, null), (icmp eq Q, null).
+ Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
+ Constant::getNullValue(P->getType()));
+ Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
+ Constant::getNullValue(Q->getType()));
+ Instruction *Op;
+ if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
+ Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
+ else
+ Op = BinaryOperator::CreateOr(ICIP, ICIQ);
+ return Op;
+ }
+ break;
+ }
+
+ case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
+ ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!Val) break;
+
+ // If this is a signed comparison to 0 and the mul is sign preserving,
+ // use the mul LHS operand instead.
+ ICmpInst::Predicate pred = ICI.getPredicate();
+ if (isSignTest(pred, RHS) && !Val->isZero() &&
+ cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
+ return new ICmpInst(Val->isNegative() ?
+ ICmpInst::getSwappedPredicate(pred) : pred,
+ LHSI->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+
+ break;
+ }
+
+ case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
+ uint32_t TypeBits = RHSV.getBitWidth();
+ ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!ShAmt) {
+ Value *X;
+ // (1 << X) pred P2 -> X pred Log2(P2)
+ if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
+ bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
+ ICmpInst::Predicate Pred = ICI.getPredicate();
+ if (ICI.isUnsigned()) {
+ if (!RHSVIsPowerOf2) {
+ // (1 << X) < 30 -> X <= 4
+ // (1 << X) <= 30 -> X <= 4
+ // (1 << X) >= 30 -> X > 4
+ // (1 << X) > 30 -> X > 4
+ if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_ULE;
+ else if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_UGT;
+ }
+ unsigned RHSLog2 = RHSV.logBase2();
+
+ // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
+ // (1 << X) < 2147483648 -> X < 31 -> X != 31
+ if (RHSLog2 == TypeBits-1) {
+ if (Pred == ICmpInst::ICMP_UGE)
+ Pred = ICmpInst::ICMP_EQ;
+ else if (Pred == ICmpInst::ICMP_ULT)
+ Pred = ICmpInst::ICMP_NE;
+ }
+
+ return new ICmpInst(Pred, X,
+ ConstantInt::get(RHS->getType(), RHSLog2));
+ } else if (ICI.isSigned()) {
+ if (RHSV.isAllOnesValue()) {
+ // (1 << X) <= -1 -> X == 31
+ if (Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(RHS->getType(), TypeBits-1));
+
+ // (1 << X) > -1 -> X != 31
+ if (Pred == ICmpInst::ICMP_SGT)
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(RHS->getType(), TypeBits-1));
+ } else if (!RHSV) {
+ // (1 << X) < 0 -> X == 31
+ // (1 << X) <= 0 -> X == 31
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(RHS->getType(), TypeBits-1));
+
+ // (1 << X) >= 0 -> X != 31
+ // (1 << X) > 0 -> X != 31
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(RHS->getType(), TypeBits-1));
+ }
+ } else if (ICI.isEquality()) {
+ if (RHSVIsPowerOf2)
+ return new ICmpInst(
+ Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
+ }
+ }
+ break;
+ }
+
+ // Check that the shift amount is in range. If not, don't perform
+ // undefined shifts. When the shift is visited it will be
+ // simplified.
+ if (ShAmt->uge(TypeBits))
+ break;
+
+ if (ICI.isEquality()) {
+ // If we are comparing against bits always shifted out, the
+ // comparison cannot succeed.
+ Constant *Comp =
+ ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
+ ShAmt);
+ if (Comp != RHS) {// Comparing against a bit that we know is zero.
+ bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+ Constant *Cst = Builder->getInt1(IsICMP_NE);
+ return ReplaceInstUsesWith(ICI, Cst);
+ }
+
+ // If the shift is NUW, then it is just shifting out zeros, no need for an
+ // AND.
+ if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantExpr::getLShr(RHS, ShAmt));
+
+ // If the shift is NSW and we compare to 0, then it is just shifting out
+ // sign bits, no need for an AND either.
+ if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
+ return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
+ ConstantExpr::getLShr(RHS, ShAmt));
+
+ if (LHSI->hasOneUse()) {
+ // Otherwise strength reduce the shift into an and.
+ uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
+ Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
+ TypeBits - ShAmtVal));
+
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
+ return new ICmpInst(ICI.getPredicate(), And,
+ ConstantExpr::getLShr(RHS, ShAmt));
+ }
+ }
+
+ // If this is a signed comparison to 0 and the shift is sign preserving,
+ // use the shift LHS operand instead.
+ ICmpInst::Predicate pred = ICI.getPredicate();
+ if (isSignTest(pred, RHS) &&
+ cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
+ return new ICmpInst(pred,
+ LHSI->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+
+ // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
+ bool TrueIfSigned = false;
+ if (LHSI->hasOneUse() &&
+ isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
+ // (X << 31) <s 0 --> (X&1) != 0
+ Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
+ APInt::getOneBitSet(TypeBits,
+ TypeBits-ShAmt->getZExtValue()-1));
+ Value *And =
+ Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
+ return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
+ And, Constant::getNullValue(And->getType()));
+ }
+
+ // Transform (icmp pred iM (shl iM %v, N), CI)
+ // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
+ // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
+ // This enables to get rid of the shift in favor of a trunc which can be
+ // free on the target. It has the additional benefit of comparing to a
+ // smaller constant, which will be target friendly.
+ unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
+ if (LHSI->hasOneUse() &&
+ Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
+ Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
+ Constant *NCI = ConstantExpr::getTrunc(
+ ConstantExpr::getAShr(RHS,
+ ConstantInt::get(RHS->getType(), Amt)),
+ NTy);
+ return new ICmpInst(ICI.getPredicate(),
+ Builder->CreateTrunc(LHSI->getOperand(0), NTy),
+ NCI);
+ }
+
+ break;
+ }
+
+ case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
+ case Instruction::AShr: {
+ // Handle equality comparisons of shift-by-constant.
+ BinaryOperator *BO = cast<BinaryOperator>(LHSI);
+ if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
+ if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
+ return Res;
+ }
+
+ // Handle exact shr's.
+ if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
+ if (RHSV.isMinValue())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
+ }
+ break;
+ }
+
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ // Fold: icmp pred ([us]div X, C1), C2 -> range test
+ // Fold this div into the comparison, producing a range check.
+ // Determine, based on the divide type, what the range is being
+ // checked. If there is an overflow on the low or high side, remember
+ // it, otherwise compute the range [low, hi) bounding the new value.
+ // See: InsertRangeTest above for the kinds of replacements possible.
+ if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
+ if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
+ DivRHS))
+ return R;
+ break;
+
+ case Instruction::Sub: {
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
+ if (!LHSC) break;
+ const APInt &LHSV = LHSC->getValue();
+
+ // C1-X <u C2 -> (X|(C2-1)) == C1
+ // iff C1 & (C2-1) == C2-1
+ // C2 is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
+ RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
+ return new ICmpInst(ICmpInst::ICMP_EQ,
+ Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
+ LHSC);
+
+ // C1-X >u C2 -> (X|C2) != C1
+ // iff C1 & C2 == C2
+ // C2+1 is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
+ (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
+ return new ICmpInst(ICmpInst::ICMP_NE,
+ Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
+ break;
+ }
+
+ case Instruction::Add:
+ // Fold: icmp pred (add X, C1), C2
+ if (!ICI.isEquality()) {
+ ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
+ if (!LHSC) break;
+ const APInt &LHSV = LHSC->getValue();
+
+ ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
+ .subtract(LHSV);
+
+ if (ICI.isSigned()) {
+ if (CR.getLower().isSignBit()) {
+ return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
+ Builder->getInt(CR.getUpper()));
+ } else if (CR.getUpper().isSignBit()) {
+ return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
+ Builder->getInt(CR.getLower()));
+ }
+ } else {
+ if (CR.getLower().isMinValue()) {
+ return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
+ Builder->getInt(CR.getUpper()));
+ } else if (CR.getUpper().isMinValue()) {
+ return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
+ Builder->getInt(CR.getLower()));
+ }
+ }
+
+ // X-C1 <u C2 -> (X & -C2) == C1
+ // iff C1 & (C2-1) == 0
+ // C2 is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
+ RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
+ return new ICmpInst(ICmpInst::ICMP_EQ,
+ Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
+ ConstantExpr::getNeg(LHSC));
+
+ // X-C1 >u C2 -> (X & ~C2) != C1
+ // iff C1 & C2 == 0
+ // C2+1 is a power of 2
+ if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
+ (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
+ return new ICmpInst(ICmpInst::ICMP_NE,
+ Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
+ ConstantExpr::getNeg(LHSC));
+ }
+ break;
+ }
+
+ // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
+ if (ICI.isEquality()) {
+ bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
+
+ // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
+ // the second operand is a constant, simplify a bit.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
+ switch (BO->getOpcode()) {
+ case Instruction::SRem:
+ // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
+ if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
+ const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
+ if (V.sgt(1) && V.isPowerOf2()) {
+ Value *NewRem =
+ Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
+ BO->getName());
+ return new ICmpInst(ICI.getPredicate(), NewRem,
+ Constant::getNullValue(BO->getType()));
+ }
+ }
+ break;
+ case Instruction::Add:
+ // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
+ if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ if (BO->hasOneUse())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ ConstantExpr::getSub(RHS, BOp1C));
+ } else if (RHSV == 0) {
+ // Replace ((add A, B) != 0) with (A != -B) if A or B is
+ // efficiently invertible, or if the add has just this one use.
+ Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
+
+ if (Value *NegVal = dyn_castNegVal(BOp1))
+ return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
+ if (Value *NegVal = dyn_castNegVal(BOp0))
+ return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
+ if (BO->hasOneUse()) {
+ Value *Neg = Builder->CreateNeg(BOp1);
+ Neg->takeName(BO);
+ return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
+ }
+ }
+ break;
+ case Instruction::Xor:
+ // For the xor case, we can xor two constants together, eliminating
+ // the explicit xor.
+ if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ ConstantExpr::getXor(RHS, BOC));
+ } else if (RHSV == 0) {
+ // Replace ((xor A, B) != 0) with (A != B)
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ BO->getOperand(1));
+ }
+ break;
+ case Instruction::Sub:
+ // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
+ if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
+ if (BO->hasOneUse())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
+ ConstantExpr::getSub(BOp0C, RHS));
+ } else if (RHSV == 0) {
+ // Replace ((sub A, B) != 0) with (A != B)
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ BO->getOperand(1));
+ }
+ break;
+ case Instruction::Or:
+ // If bits are being or'd in that are not present in the constant we
+ // are comparing against, then the comparison could never succeed!
+ if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ Constant *NotCI = ConstantExpr::getNot(RHS);
+ if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
+ return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
+ }
+ break;
+
+ case Instruction::And:
+ if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ // If bits are being compared against that are and'd out, then the
+ // comparison can never succeed!
+ if ((RHSV & ~BOC->getValue()) != 0)
+ return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
+
+ // If we have ((X & C) == C), turn it into ((X & C) != 0).
+ if (RHS == BOC && RHSV.isPowerOf2())
+ return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
+ ICmpInst::ICMP_NE, LHSI,
+ Constant::getNullValue(RHS->getType()));
+
+ // Don't perform the following transforms if the AND has multiple uses
+ if (!BO->hasOneUse())
+ break;
+
+ // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
+ if (BOC->getValue().isSignBit()) {
+ Value *X = BO->getOperand(0);
+ Constant *Zero = Constant::getNullValue(X->getType());
+ ICmpInst::Predicate pred = isICMP_NE ?
+ ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
+ return new ICmpInst(pred, X, Zero);
+ }
+
+ // ((X & ~7) == 0) --> X < 8
+ if (RHSV == 0 && isHighOnes(BOC)) {
+ Value *X = BO->getOperand(0);
+ Constant *NegX = ConstantExpr::getNeg(BOC);
+ ICmpInst::Predicate pred = isICMP_NE ?
+ ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
+ return new ICmpInst(pred, X, NegX);
+ }
+ }
+ break;
+ case Instruction::Mul:
+ if (RHSV == 0 && BO->hasNoSignedWrap()) {
+ if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ // The trivial case (mul X, 0) is handled by InstSimplify
+ // General case : (mul X, C) != 0 iff X != 0
+ // (mul X, C) == 0 iff X == 0
+ if (!BOC->isZero())
+ return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
+ Constant::getNullValue(RHS->getType()));
+ }
+ }
+ break;
+ default: break;
+ }
+ } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
+ // Handle icmp {eq|ne} <intrinsic>, intcst.
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::bswap:
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getArgOperand(0));
+ ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
+ return &ICI;
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
+ if (RHSV == RHS->getType()->getBitWidth()) {
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getArgOperand(0));
+ ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
+ return &ICI;
+ }
+ break;
+ case Intrinsic::ctpop:
+ // popcount(A) == 0 -> A == 0 and likewise for !=
+ if (RHS->isZero()) {
+ Worklist.Add(II);
+ ICI.setOperand(0, II->getArgOperand(0));
+ ICI.setOperand(1, RHS);
+ return &ICI;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+ return nullptr;
+}
+
+/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
+/// We only handle extending casts so far.
+///
+Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
+ const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
+ Value *LHSCIOp = LHSCI->getOperand(0);
+ Type *SrcTy = LHSCIOp->getType();
+ Type *DestTy = LHSCI->getType();
+ Value *RHSCIOp;
+
+ // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
+ // integer type is the same size as the pointer type.
+ if (LHSCI->getOpcode() == Instruction::PtrToInt &&
+ DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
+ Value *RHSOp = nullptr;
+ if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
+ Value *RHSCIOp = RHSC->getOperand(0);
+ if (RHSCIOp->getType()->getPointerAddressSpace() ==
+ LHSCIOp->getType()->getPointerAddressSpace()) {
+ RHSOp = RHSC->getOperand(0);
+ // If the pointer types don't match, insert a bitcast.
+ if (LHSCIOp->getType() != RHSOp->getType())
+ RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
+ }
+ } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
+ RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
+
+ if (RHSOp)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
+ }
+
+ // The code below only handles extension cast instructions, so far.
+ // Enforce this.
+ if (LHSCI->getOpcode() != Instruction::ZExt &&
+ LHSCI->getOpcode() != Instruction::SExt)
+ return nullptr;
+
+ bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
+ bool isSignedCmp = ICI.isSigned();
+
+ if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
+ // Not an extension from the same type?
+ RHSCIOp = CI->getOperand(0);
+ if (RHSCIOp->getType() != LHSCIOp->getType())
+ return nullptr;
+
+ // If the signedness of the two casts doesn't agree (i.e. one is a sext
+ // and the other is a zext), then we can't handle this.
+ if (CI->getOpcode() != LHSCI->getOpcode())
+ return nullptr;
+
+ // Deal with equality cases early.
+ if (ICI.isEquality())
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (isSignedCmp && isSignedExt)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
+ }
+
+ // If we aren't dealing with a constant on the RHS, exit early
+ ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
+ if (!CI)
+ return nullptr;
+
+ // Compute the constant that would happen if we truncated to SrcTy then
+ // reextended to DestTy.
+ Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
+ Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
+ Res1, DestTy);
+
+ // If the re-extended constant didn't change...
+ if (Res2 == CI) {
+ // Deal with equality cases early.
+ if (ICI.isEquality())
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+ // A signed comparison of sign extended values simplifies into a
+ // signed comparison.
+ if (isSignedExt && isSignedCmp)
+ return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
+
+ // The other three cases all fold into an unsigned comparison.
+ return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
+ }
+
+ // The re-extended constant changed so the constant cannot be represented
+ // in the shorter type. Consequently, we cannot emit a simple comparison.
+ // All the cases that fold to true or false will have already been handled
+ // by SimplifyICmpInst, so only deal with the tricky case.
+
+ if (isSignedCmp || !isSignedExt)
+ return nullptr;
+
+ // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
+ // should have been folded away previously and not enter in here.
+
+ // We're performing an unsigned comp with a sign extended value.
+ // This is true if the input is >= 0. [aka >s -1]
+ Constant *NegOne = Constant::getAllOnesValue(SrcTy);
+ Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
+
+ // Finally, return the value computed.
+ if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
+ return ReplaceInstUsesWith(ICI, Result);
+
+ assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
+ return BinaryOperator::CreateNot(Result);
+}
+
+/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
+/// I = icmp ugt (add (add A, B), CI2), CI1
+/// If this is of the form:
+/// sum = a + b
+/// if (sum+128 >u 255)
+/// Then replace it with llvm.sadd.with.overflow.i8.
+///
+static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
+ ConstantInt *CI2, ConstantInt *CI1,
+ InstCombiner &IC) {
+ // The transformation we're trying to do here is to transform this into an
+ // llvm.sadd.with.overflow. To do this, we have to replace the original add
+ // with a narrower add, and discard the add-with-constant that is part of the
+ // range check (if we can't eliminate it, this isn't profitable).
+
+ // In order to eliminate the add-with-constant, the compare can be its only
+ // use.
+ Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
+ if (!AddWithCst->hasOneUse()) return nullptr;
+
+ // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
+ if (!CI2->getValue().isPowerOf2()) return nullptr;
+ unsigned NewWidth = CI2->getValue().countTrailingZeros();
+ if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
+
+ // The width of the new add formed is 1 more than the bias.
+ ++NewWidth;
+
+ // Check to see that CI1 is an all-ones value with NewWidth bits.
+ if (CI1->getBitWidth() == NewWidth ||
+ CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
+ return nullptr;
+
+ // This is only really a signed overflow check if the inputs have been
+ // sign-extended; check for that condition. For example, if CI2 is 2^31 and
+ // the operands of the add are 64 bits wide, we need at least 33 sign bits.
+ unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
+ if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
+ IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
+ return nullptr;
+
+ // In order to replace the original add with a narrower
+ // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
+ // and truncates that discard the high bits of the add. Verify that this is
+ // the case.
+ Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
+ for (User *U : OrigAdd->users()) {
+ if (U == AddWithCst) continue;
+
+ // Only accept truncates for now. We would really like a nice recursive
+ // predicate like SimplifyDemandedBits, but which goes downwards the use-def
+ // chain to see which bits of a value are actually demanded. If the
+ // original add had another add which was then immediately truncated, we
+ // could still do the transformation.
+ TruncInst *TI = dyn_cast<TruncInst>(U);
+ if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
+ return nullptr;
+ }
+
+ // If the pattern matches, truncate the inputs to the narrower type and
+ // use the sadd_with_overflow intrinsic to efficiently compute both the
+ // result and the overflow bit.
+ Module *M = I.getParent()->getParent()->getParent();
+
+ Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
+ Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
+ NewType);
+
+ InstCombiner::BuilderTy *Builder = IC.Builder;
+
+ // Put the new code above the original add, in case there are any uses of the
+ // add between the add and the compare.
+ Builder->SetInsertPoint(OrigAdd);
+
+ Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
+ Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
+ CallInst *Call = Builder->CreateCall(F, {TruncA, TruncB}, "sadd");
+ Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
+ Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
+
+ // The inner add was the result of the narrow add, zero extended to the
+ // wider type. Replace it with the result computed by the intrinsic.
+ IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
+
+ // The original icmp gets replaced with the overflow value.
+ return ExtractValueInst::Create(Call, 1, "sadd.overflow");
+}
+
+bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
+ Value *RHS, Instruction &OrigI,
+ Value *&Result, Constant *&Overflow) {
+ assert((!OrigI.isCommutative() ||
+ !(isa<Constant>(LHS) && !isa<Constant>(RHS))) &&
+ "call with a constant RHS if possible!");
+
+ auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
+ Result = OpResult;
+ Overflow = OverflowVal;
+ if (ReuseName)
+ Result->takeName(&OrigI);
+ return true;
+ };
+
+ switch (OCF) {
+ case OCF_INVALID:
+ llvm_unreachable("bad overflow check kind!");
+
+ case OCF_UNSIGNED_ADD: {
+ OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
+ if (OR == OverflowResult::NeverOverflows)
+ return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
+ true);
+
+ if (OR == OverflowResult::AlwaysOverflows)
+ return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
+ }
+ // FALL THROUGH uadd into sadd
+ case OCF_SIGNED_ADD: {
+ // X + 0 -> {X, false}
+ if (match(RHS, m_Zero()))
+ return SetResult(LHS, Builder->getFalse(), false);
+
+ // We can strength reduce this signed add into a regular add if we can prove
+ // that it will never overflow.
+ if (OCF == OCF_SIGNED_ADD)
+ if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
+ return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
+ true);
+ }
+
+ case OCF_UNSIGNED_SUB:
+ case OCF_SIGNED_SUB: {
+ // X - 0 -> {X, false}
+ if (match(RHS, m_Zero()))
+ return SetResult(LHS, Builder->getFalse(), false);
+
+ if (OCF == OCF_SIGNED_SUB) {
+ if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
+ return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
+ true);
+ } else {
+ if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
+ return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
+ true);
+ }
+ break;
+ }
+
+ case OCF_UNSIGNED_MUL: {
+ OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
+ if (OR == OverflowResult::NeverOverflows)
+ return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
+ true);
+ if (OR == OverflowResult::AlwaysOverflows)
+ return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
+ } // FALL THROUGH
+ case OCF_SIGNED_MUL:
+ // X * undef -> undef
+ if (isa<UndefValue>(RHS))
+ return SetResult(RHS, UndefValue::get(Builder->getInt1Ty()), false);
+
+ // X * 0 -> {0, false}
+ if (match(RHS, m_Zero()))
+ return SetResult(RHS, Builder->getFalse(), false);
+
+ // X * 1 -> {X, false}
+ if (match(RHS, m_One()))
+ return SetResult(LHS, Builder->getFalse(), false);
+
+ if (OCF == OCF_SIGNED_MUL)
+ if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
+ return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
+ true);
+ }
+
+ return false;
+}
+
+/// \brief Recognize and process idiom involving test for multiplication
+/// overflow.
+///
+/// The caller has matched a pattern of the form:
+/// I = cmp u (mul(zext A, zext B), V
+/// The function checks if this is a test for overflow and if so replaces
+/// multiplication with call to 'mul.with.overflow' intrinsic.
+///
+/// \param I Compare instruction.
+/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
+/// the compare instruction. Must be of integer type.
+/// \param OtherVal The other argument of compare instruction.
+/// \returns Instruction which must replace the compare instruction, NULL if no
+/// replacement required.
+static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
+ Value *OtherVal, InstCombiner &IC) {
+ // Don't bother doing this transformation for pointers, don't do it for
+ // vectors.
+ if (!isa<IntegerType>(MulVal->getType()))
+ return nullptr;
+
+ assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
+ assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
+ Instruction *MulInstr = cast<Instruction>(MulVal);
+ assert(MulInstr->getOpcode() == Instruction::Mul);
+
+ auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
+ *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
+ assert(LHS->getOpcode() == Instruction::ZExt);
+ assert(RHS->getOpcode() == Instruction::ZExt);
+ Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
+
+ // Calculate type and width of the result produced by mul.with.overflow.
+ Type *TyA = A->getType(), *TyB = B->getType();
+ unsigned WidthA = TyA->getPrimitiveSizeInBits(),
+ WidthB = TyB->getPrimitiveSizeInBits();
+ unsigned MulWidth;
+ Type *MulType;
+ if (WidthB > WidthA) {
+ MulWidth = WidthB;
+ MulType = TyB;
+ } else {
+ MulWidth = WidthA;
+ MulType = TyA;
+ }
+
+ // In order to replace the original mul with a narrower mul.with.overflow,
+ // all uses must ignore upper bits of the product. The number of used low
+ // bits must be not greater than the width of mul.with.overflow.
+ if (MulVal->hasNUsesOrMore(2))
+ for (User *U : MulVal->users()) {
+ if (U == &I)
+ continue;
+ if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
+ // Check if truncation ignores bits above MulWidth.
+ unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
+ if (TruncWidth > MulWidth)
+ return nullptr;
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
+ // Check if AND ignores bits above MulWidth.
+ if (BO->getOpcode() != Instruction::And)
+ return nullptr;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
+ const APInt &CVal = CI->getValue();
+ if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
+ return nullptr;
+ }
+ } else {
+ // Other uses prohibit this transformation.
+ return nullptr;
+ }
+ }
+
+ // Recognize patterns
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_EQ:
+ case ICmpInst::ICMP_NE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp eq/neq mulval, zext trunc mulval
+ if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
+ if (Zext->hasOneUse()) {
+ Value *ZextArg = Zext->getOperand(0);
+ if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
+ if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
+ break; //Recognized
+ }
+
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
+ ConstantInt *CI;
+ Value *ValToMask;
+ if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
+ if (ValToMask != MulVal)
+ return nullptr;
+ const APInt &CVal = CI->getValue() + 1;
+ if (CVal.isPowerOf2()) {
+ unsigned MaskWidth = CVal.logBase2();
+ if (MaskWidth == MulWidth)
+ break; // Recognized
+ }
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_UGT:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ugt mulval, max
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getMaxValue(MulWidth);
+ MaxVal = MaxVal.zext(CI->getBitWidth());
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_UGE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp uge mulval, max+1
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_ULE:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ule mulval, max
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getMaxValue(MulWidth);
+ MaxVal = MaxVal.zext(CI->getBitWidth());
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ case ICmpInst::ICMP_ULT:
+ // Recognize pattern:
+ // mulval = mul(zext A, zext B)
+ // cmp ule mulval, max + 1
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
+ APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
+ if (MaxVal.eq(CI->getValue()))
+ break; // Recognized
+ }
+ return nullptr;
+
+ default:
+ return nullptr;
+ }
+
+ InstCombiner::BuilderTy *Builder = IC.Builder;
+ Builder->SetInsertPoint(MulInstr);
+ Module *M = I.getParent()->getParent()->getParent();
+
+ // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
+ Value *MulA = A, *MulB = B;
+ if (WidthA < MulWidth)
+ MulA = Builder->CreateZExt(A, MulType);
+ if (WidthB < MulWidth)
+ MulB = Builder->CreateZExt(B, MulType);
+ Value *F =
+ Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
+ CallInst *Call = Builder->CreateCall(F, {MulA, MulB}, "umul");
+ IC.Worklist.Add(MulInstr);
+
+ // If there are uses of mul result other than the comparison, we know that
+ // they are truncation or binary AND. Change them to use result of
+ // mul.with.overflow and adjust properly mask/size.
+ if (MulVal->hasNUsesOrMore(2)) {
+ Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
+ for (User *U : MulVal->users()) {
+ if (U == &I || U == OtherVal)
+ continue;
+ if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
+ if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
+ IC.ReplaceInstUsesWith(*TI, Mul);
+ else
+ TI->setOperand(0, Mul);
+ } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
+ assert(BO->getOpcode() == Instruction::And);
+ // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
+ ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
+ APInt ShortMask = CI->getValue().trunc(MulWidth);
+ Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
+ Instruction *Zext =
+ cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
+ IC.Worklist.Add(Zext);
+ IC.ReplaceInstUsesWith(*BO, Zext);
+ } else {
+ llvm_unreachable("Unexpected Binary operation");
+ }
+ IC.Worklist.Add(cast<Instruction>(U));
+ }
+ }
+ if (isa<Instruction>(OtherVal))
+ IC.Worklist.Add(cast<Instruction>(OtherVal));
+
+ // The original icmp gets replaced with the overflow value, maybe inverted
+ // depending on predicate.
+ bool Inverse = false;
+ switch (I.getPredicate()) {
+ case ICmpInst::ICMP_NE:
+ break;
+ case ICmpInst::ICMP_EQ:
+ Inverse = true;
+ break;
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE:
+ if (I.getOperand(0) == MulVal)
+ break;
+ Inverse = true;
+ break;
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE:
+ if (I.getOperand(1) == MulVal)
+ break;
+ Inverse = true;
+ break;
+ default:
+ llvm_unreachable("Unexpected predicate");
+ }
+ if (Inverse) {
+ Value *Res = Builder->CreateExtractValue(Call, 1);
+ return BinaryOperator::CreateNot(Res);
+ }
+
+ return ExtractValueInst::Create(Call, 1);
+}
+
+// DemandedBitsLHSMask - When performing a comparison against a constant,
+// it is possible that not all the bits in the LHS are demanded. This helper
+// method computes the mask that IS demanded.
+static APInt DemandedBitsLHSMask(ICmpInst &I,
+ unsigned BitWidth, bool isSignCheck) {
+ if (isSignCheck)
+ return APInt::getSignBit(BitWidth);
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
+ if (!CI) return APInt::getAllOnesValue(BitWidth);
+ const APInt &RHS = CI->getValue();
+
+ switch (I.getPredicate()) {
+ // For a UGT comparison, we don't care about any bits that
+ // correspond to the trailing ones of the comparand. The value of these
+ // bits doesn't impact the outcome of the comparison, because any value
+ // greater than the RHS must differ in a bit higher than these due to carry.
+ case ICmpInst::ICMP_UGT: {
+ unsigned trailingOnes = RHS.countTrailingOnes();
+ APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
+ return ~lowBitsSet;
+ }
+
+ // Similarly, for a ULT comparison, we don't care about the trailing zeros.
+ // Any value less than the RHS must differ in a higher bit because of carries.
+ case ICmpInst::ICMP_ULT: {
+ unsigned trailingZeros = RHS.countTrailingZeros();
+ APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
+ return ~lowBitsSet;
+ }
+
+ default:
+ return APInt::getAllOnesValue(BitWidth);
+ }
+
+}
+
+/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
+/// should be swapped.
+/// The decision is based on how many times these two operands are reused
+/// as subtract operands and their positions in those instructions.
+/// The rational is that several architectures use the same instruction for
+/// both subtract and cmp, thus it is better if the order of those operands
+/// match.
+/// \return true if Op0 and Op1 should be swapped.
+static bool swapMayExposeCSEOpportunities(const Value * Op0,
+ const Value * Op1) {
+ // Filter out pointer value as those cannot appears directly in subtract.
+ // FIXME: we may want to go through inttoptrs or bitcasts.
+ if (Op0->getType()->isPointerTy())
+ return false;
+ // Count every uses of both Op0 and Op1 in a subtract.
+ // Each time Op0 is the first operand, count -1: swapping is bad, the
+ // subtract has already the same layout as the compare.
+ // Each time Op0 is the second operand, count +1: swapping is good, the
+ // subtract has a different layout as the compare.
+ // At the end, if the benefit is greater than 0, Op0 should come second to
+ // expose more CSE opportunities.
+ int GlobalSwapBenefits = 0;
+ for (const User *U : Op0->users()) {
+ const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
+ if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
+ continue;
+ // If Op0 is the first argument, this is not beneficial to swap the
+ // arguments.
+ int LocalSwapBenefits = -1;
+ unsigned Op1Idx = 1;
+ if (BinOp->getOperand(Op1Idx) == Op0) {
+ Op1Idx = 0;
+ LocalSwapBenefits = 1;
+ }
+ if (BinOp->getOperand(Op1Idx) != Op1)
+ continue;
+ GlobalSwapBenefits += LocalSwapBenefits;
+ }
+ return GlobalSwapBenefits > 0;
+}
+
+/// \brief Check that one use is in the same block as the definition and all
+/// other uses are in blocks dominated by a given block
+///
+/// \param DI Definition
+/// \param UI Use
+/// \param DB Block that must dominate all uses of \p DI outside
+/// the parent block
+/// \return true when \p UI is the only use of \p DI in the parent block
+/// and all other uses of \p DI are in blocks dominated by \p DB.
+///
+bool InstCombiner::dominatesAllUses(const Instruction *DI,
+ const Instruction *UI,
+ const BasicBlock *DB) const {
+ assert(DI && UI && "Instruction not defined\n");
+ // ignore incomplete definitions
+ if (!DI->getParent())
+ return false;
+ // DI and UI must be in the same block
+ if (DI->getParent() != UI->getParent())
+ return false;
+ // Protect from self-referencing blocks
+ if (DI->getParent() == DB)
+ return false;
+ // DominatorTree available?
+ if (!DT)
+ return false;
+ for (const User *U : DI->users()) {
+ auto *Usr = cast<Instruction>(U);
+ if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
+ return false;
+ }
+ return true;
+}
+
+///
+/// true when the instruction sequence within a block is select-cmp-br.
+///
+static bool isChainSelectCmpBranch(const SelectInst *SI) {
+ const BasicBlock *BB = SI->getParent();
+ if (!BB)
+ return false;
+ auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
+ if (!BI || BI->getNumSuccessors() != 2)
+ return false;
+ auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
+ return false;
+ return true;
+}
+
+///
+/// \brief True when a select result is replaced by one of its operands
+/// in select-icmp sequence. This will eventually result in the elimination
+/// of the select.
+///
+/// \param SI Select instruction
+/// \param Icmp Compare instruction
+/// \param SIOpd Operand that replaces the select
+///
+/// Notes:
+/// - The replacement is global and requires dominator information
+/// - The caller is responsible for the actual replacement
+///
+/// Example:
+///
+/// entry:
+/// %4 = select i1 %3, %C* %0, %C* null
+/// %5 = icmp eq %C* %4, null
+/// br i1 %5, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
+/// ...
+///
+/// can be transformed to
+///
+/// %5 = icmp eq %C* %0, null
+/// %6 = select i1 %3, i1 %5, i1 true
+/// br i1 %6, label %9, label %7
+/// ...
+/// ; <label>:7 ; preds = %entry
+/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
+///
+/// Similar when the first operand of the select is a constant or/and
+/// the compare is for not equal rather than equal.
+///
+/// NOTE: The function is only called when the select and compare constants
+/// are equal, the optimization can work only for EQ predicates. This is not a
+/// major restriction since a NE compare should be 'normalized' to an equal
+/// compare, which usually happens in the combiner and test case
+/// select-cmp-br.ll
+/// checks for it.
+bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
+ const ICmpInst *Icmp,
+ const unsigned SIOpd) {
+ assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
+ if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
+ BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
+ // The check for the unique predecessor is not the best that can be
+ // done. But it protects efficiently against cases like when SI's
+ // home block has two successors, Succ and Succ1, and Succ1 predecessor
+ // of Succ. Then SI can't be replaced by SIOpd because the use that gets
+ // replaced can be reached on either path. So the uniqueness check
+ // guarantees that the path all uses of SI (outside SI's parent) are on
+ // is disjoint from all other paths out of SI. But that information
+ // is more expensive to compute, and the trade-off here is in favor
+ // of compile-time.
+ if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
+ NumSel++;
+ SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
+ return true;
+ }
+ }
+ return false;
+}
+
+Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
+ bool Changed = false;
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ unsigned Op0Cplxity = getComplexity(Op0);
+ unsigned Op1Cplxity = getComplexity(Op1);
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (Op0Cplxity < Op1Cplxity ||
+ (Op0Cplxity == Op1Cplxity &&
+ swapMayExposeCSEOpportunities(Op0, Op1))) {
+ I.swapOperands();
+ std::swap(Op0, Op1);
+ Changed = true;
+ }
+
+ if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
+ return ReplaceInstUsesWith(I, V);
+
+ // comparing -val or val with non-zero is the same as just comparing val
+ // ie, abs(val) != 0 -> val != 0
+ if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
+ {
+ Value *Cond, *SelectTrue, *SelectFalse;
+ if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
+ m_Value(SelectFalse)))) {
+ if (Value *V = dyn_castNegVal(SelectTrue)) {
+ if (V == SelectFalse)
+ return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
+ }
+ else if (Value *V = dyn_castNegVal(SelectFalse)) {
+ if (V == SelectTrue)
+ return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
+ }
+ }
+ }
+
+ Type *Ty = Op0->getType();
+
+ // icmp's with boolean values can always be turned into bitwise operations
+ if (Ty->isIntegerTy(1)) {
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Invalid icmp instruction!");
+ case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
+ Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateNot(Xor);
+ }
+ case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
+ return BinaryOperator::CreateXor(Op0, Op1);
+
+ case ICmpInst::ICMP_UGT:
+ std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
+ // FALL THROUGH
+ case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ return BinaryOperator::CreateAnd(Not, Op1);
+ }
+ case ICmpInst::ICMP_SGT:
+ std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
+ // FALL THROUGH
+ case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateAnd(Not, Op0);
+ }
+ case ICmpInst::ICMP_UGE:
+ std::swap(Op0, Op1); // Change icmp uge -> icmp ule
+ // FALL THROUGH
+ case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
+ Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
+ return BinaryOperator::CreateOr(Not, Op1);
+ }
+ case ICmpInst::ICMP_SGE:
+ std::swap(Op0, Op1); // Change icmp sge -> icmp sle
+ // FALL THROUGH
+ case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
+ Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
+ return BinaryOperator::CreateOr(Not, Op0);
+ }
+ }
+ }
+
+ unsigned BitWidth = 0;
+ if (Ty->isIntOrIntVectorTy())
+ BitWidth = Ty->getScalarSizeInBits();
+ else // Get pointer size.
+ BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
+
+ bool isSignBit = false;
+
+ // See if we are doing a comparison with a constant.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ Value *A = nullptr, *B = nullptr;
+
+ // Match the following pattern, which is a common idiom when writing
+ // overflow-safe integer arithmetic function. The source performs an
+ // addition in wider type, and explicitly checks for overflow using
+ // comparisons against INT_MIN and INT_MAX. Simplify this by using the
+ // sadd_with_overflow intrinsic.
+ //
+ // TODO: This could probably be generalized to handle other overflow-safe
+ // operations if we worked out the formulas to compute the appropriate
+ // magic constants.
+ //
+ // sum = a + b
+ // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
+ {
+ ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
+ if (I.getPredicate() == ICmpInst::ICMP_UGT &&
+ match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
+ if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
+ return Res;
+ }
+
+ // The following transforms are only 'worth it' if the only user of the
+ // subtraction is the icmp.
+ if (Op0->hasOneUse()) {
+ // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
+ if (I.isEquality() && CI->isZero() &&
+ match(Op0, m_Sub(m_Value(A), m_Value(B))))
+ return new ICmpInst(I.getPredicate(), A, B);
+
+ // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
+
+ // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
+
+ // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
+
+ // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
+ if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
+ match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
+ return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
+ }
+
+ // If we have an icmp le or icmp ge instruction, turn it into the
+ // appropriate icmp lt or icmp gt instruction. This allows us to rely on
+ // them being folded in the code below. The SimplifyICmpInst code has
+ // already handled the edge cases for us, so we just assert on them.
+ switch (I.getPredicate()) {
+ default: break;
+ case ICmpInst::ICMP_ULE:
+ assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
+ Builder->getInt(CI->getValue()+1));
+ case ICmpInst::ICMP_SLE:
+ assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ Builder->getInt(CI->getValue()+1));
+ case ICmpInst::ICMP_UGE:
+ assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
+ Builder->getInt(CI->getValue()-1));
+ case ICmpInst::ICMP_SGE:
+ assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ Builder->getInt(CI->getValue()-1));
+ }
+
+ if (I.isEquality()) {
+ ConstantInt *CI2;
+ if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
+ match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
+ // (icmp eq/ne (ashr/lshr const2, A), const1)
+ if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
+ return Inst;
+ }
+ if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
+ // (icmp eq/ne (shl const2, A), const1)
+ if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
+ return Inst;
+ }
+ }
+
+ // If this comparison is a normal comparison, it demands all
+ // bits, if it is a sign bit comparison, it only demands the sign bit.
+ bool UnusedBit;
+ isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
+ }
+
+ // See if we can fold the comparison based on range information we can get
+ // by checking whether bits are known to be zero or one in the input.
+ if (BitWidth != 0) {
+ APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
+ APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
+
+ if (SimplifyDemandedBits(I.getOperandUse(0),
+ DemandedBitsLHSMask(I, BitWidth, isSignBit),
+ Op0KnownZero, Op0KnownOne, 0))
+ return &I;
+ if (SimplifyDemandedBits(I.getOperandUse(1),
+ APInt::getAllOnesValue(BitWidth), Op1KnownZero,
+ Op1KnownOne, 0))
+ return &I;
+
+ // Given the known and unknown bits, compute a range that the LHS could be
+ // in. Compute the Min, Max and RHS values based on the known bits. For the
+ // EQ and NE we use unsigned values.
+ APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
+ APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
+ if (I.isSigned()) {
+ ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+ Op0Min, Op0Max);
+ ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+ Op1Min, Op1Max);
+ } else {
+ ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
+ Op0Min, Op0Max);
+ ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
+ Op1Min, Op1Max);
+ }
+
+ // If Min and Max are known to be the same, then SimplifyDemandedBits
+ // figured out that the LHS is a constant. Just constant fold this now so
+ // that code below can assume that Min != Max.
+ if (!isa<Constant>(Op0) && Op0Min == Op0Max)
+ return new ICmpInst(I.getPredicate(),
+ ConstantInt::get(Op0->getType(), Op0Min), Op1);
+ if (!isa<Constant>(Op1) && Op1Min == Op1Max)
+ return new ICmpInst(I.getPredicate(), Op0,
+ ConstantInt::get(Op1->getType(), Op1Min));
+
+ // Based on the range information we know about the LHS, see if we can
+ // simplify this comparison. For example, (x&4) < 8 is always true.
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unknown icmp opcode!");
+ case ICmpInst::ICMP_EQ: {
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+
+ // If all bits are known zero except for one, then we know at most one
+ // bit is set. If the comparison is against zero, then this is a check
+ // to see if *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0KnownZero;
+ if (~Op1KnownZero == 0) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = nullptr;
+ ConstantInt *LHSC = nullptr;
+ if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
+ LHSC->getValue() != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
+ // then turn "((1 << x)&8) == 0" into "x != 3".
+ // or turn "((1 << x)&7) == 0" into "x > 2".
+ Value *X = nullptr;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ APInt ValToCheck = Op0KnownZeroInverted;
+ if (ValToCheck.isPowerOf2()) {
+ unsigned CmpVal = ValToCheck.countTrailingZeros();
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ } else if ((++ValToCheck).isPowerOf2()) {
+ unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
+ return new ICmpInst(ICmpInst::ICMP_UGT, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ }
+ }
+
+ // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
+ // then turn "((8 >>u x)&1) == 0" into "x != 3".
+ const APInt *CI;
+ if (Op0KnownZeroInverted == 1 &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
+ return new ICmpInst(ICmpInst::ICMP_NE, X,
+ ConstantInt::get(X->getType(),
+ CI->countTrailingZeros()));
+ }
+
+ break;
+ }
+ case ICmpInst::ICMP_NE: {
+ if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+
+ // If all bits are known zero except for one, then we know at most one
+ // bit is set. If the comparison is against zero, then this is a check
+ // to see if *that* bit is set.
+ APInt Op0KnownZeroInverted = ~Op0KnownZero;
+ if (~Op1KnownZero == 0) {
+ // If the LHS is an AND with the same constant, look through it.
+ Value *LHS = nullptr;
+ ConstantInt *LHSC = nullptr;
+ if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
+ LHSC->getValue() != Op0KnownZeroInverted)
+ LHS = Op0;
+
+ // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
+ // then turn "((1 << x)&8) != 0" into "x == 3".
+ // or turn "((1 << x)&7) != 0" into "x < 3".
+ Value *X = nullptr;
+ if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
+ APInt ValToCheck = Op0KnownZeroInverted;
+ if (ValToCheck.isPowerOf2()) {
+ unsigned CmpVal = ValToCheck.countTrailingZeros();
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ } else if ((++ValToCheck).isPowerOf2()) {
+ unsigned CmpVal = ValToCheck.countTrailingZeros();
+ return new ICmpInst(ICmpInst::ICMP_ULT, X,
+ ConstantInt::get(X->getType(), CmpVal));
+ }
+ }
+
+ // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
+ // then turn "((8 >>u x)&1) != 0" into "x == 3".
+ const APInt *CI;
+ if (Op0KnownZeroInverted == 1 &&
+ match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
+ return new ICmpInst(ICmpInst::ICMP_EQ, X,
+ ConstantInt::get(X->getType(),
+ CI->countTrailingZeros()));
+ }
+
+ break;
+ }
+ case ICmpInst::ICMP_ULT:
+ if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue()-1));
+
+ // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
+ if (CI->isMinValue(true))
+ return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
+ Constant::getAllOnesValue(Op0->getType()));
+ }
+ break;
+ case ICmpInst::ICMP_UGT:
+ if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+
+ if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue()+1));
+
+ // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
+ if (CI->isMaxValue(true))
+ return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
+ Constant::getNullValue(Op0->getType()));
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue()-1));
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+
+ if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
+ return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
+ return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
+ Builder->getInt(CI->getValue()+1));
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
+ if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_SLE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
+ if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_UGE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
+ if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ case ICmpInst::ICMP_ULE:
+ assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
+ if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ break;
+ }
+
+ // Turn a signed comparison into an unsigned one if both operands
+ // are known to have the same sign.
+ if (I.isSigned() &&
+ ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
+ (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
+ return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
+ }
+
+ // Test if the ICmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (I.hasOneUse())
+ if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
+ if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+ (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+ return nullptr;
+
+ // See if we are doing a comparison between a constant and an instruction that
+ // can be folded into the comparison.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // Since the RHS is a ConstantInt (CI), if the left hand side is an
+ // instruction, see if that instruction also has constants so that the
+ // instruction can be folded into the icmp
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
+ return Res;
+ }
+
+ // Handle icmp with constant (but not simple integer constant) RHS
+ if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ switch (LHSI->getOpcode()) {
+ case Instruction::GetElementPtr:
+ // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
+ if (RHSC->isNullValue() &&
+ cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
+ return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+ case Instruction::PHI:
+ // Only fold icmp into the PHI if the phi and icmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ break;
+ case Instruction::Select: {
+ // If either operand of the select is a constant, we can fold the
+ // comparison into the select arms, which will cause one to be
+ // constant folded and the select turned into a bitwise or.
+ Value *Op1 = nullptr, *Op2 = nullptr;
+ ConstantInt *CI = 0;
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
+ Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op1);
+ }
+ if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
+ Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
+ CI = dyn_cast<ConstantInt>(Op2);
+ }
+
+ // We only want to perform this transformation if it will not lead to
+ // additional code. This is true if either both sides of the select
+ // fold to a constant (in which case the icmp is replaced with a select
+ // which will usually simplify) or this is the only user of the
+ // select (in which case we are trading a select+icmp for a simpler
+ // select+icmp) or all uses of the select can be replaced based on
+ // dominance information ("Global cases").
+ bool Transform = false;
+ if (Op1 && Op2)
+ Transform = true;
+ else if (Op1 || Op2) {
+ // Local case
+ if (LHSI->hasOneUse())
+ Transform = true;
+ // Global cases
+ else if (CI && !CI->isZero())
+ // When Op1 is constant try replacing select with second operand.
+ // Otherwise Op2 is constant and try replacing select with first
+ // operand.
+ Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
+ Op1 ? 2 : 1);
+ }
+ if (Transform) {
+ if (!Op1)
+ Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
+ RHSC, I.getName());
+ if (!Op2)
+ Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
+ RHSC, I.getName());
+ return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
+ }
+ break;
+ }
+ case Instruction::IntToPtr:
+ // icmp pred inttoptr(X), null -> icmp pred X, 0
+ if (RHSC->isNullValue() &&
+ DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
+ return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
+ Constant::getNullValue(LHSI->getOperand(0)->getType()));
+ break;
+
+ case Instruction::Load:
+ // Try to optimize things like "A[i] > 4" to index computations.
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ }
+ }
+
+ // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
+ if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
+ return NI;
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
+ if (Instruction *NI = FoldGEPICmp(GEP, Op0,
+ ICmpInst::getSwappedPredicate(I.getPredicate()), I))
+ return NI;
+
+ // Test to see if the operands of the icmp are casted versions of other
+ // values. If the ptr->ptr cast can be stripped off both arguments, we do so
+ // now.
+ if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
+ if (Op0->getType()->isPointerTy() &&
+ (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
+ // We keep moving the cast from the left operand over to the right
+ // operand, where it can often be eliminated completely.
+ Op0 = CI->getOperand(0);
+
+ // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
+ // so eliminate it as well.
+ if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
+ Op1 = CI2->getOperand(0);
+
+ // If Op1 is a constant, we can fold the cast into the constant.
+ if (Op0->getType() != Op1->getType()) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
+ Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
+ } else {
+ // Otherwise, cast the RHS right before the icmp
+ Op1 = Builder->CreateBitCast(Op1, Op0->getType());
+ }
+ }
+ return new ICmpInst(I.getPredicate(), Op0, Op1);
+ }
+ }
+
+ if (isa<CastInst>(Op0)) {
+ // Handle the special case of: icmp (cast bool to X), <cst>
+ // This comes up when you have code like
+ // int X = A < B;
+ // if (X) ...
+ // For generality, we handle any zero-extension of any operand comparison
+ // with a constant or another cast from the same type.
+ if (isa<Constant>(Op1) || isa<CastInst>(Op1))
+ if (Instruction *R = visitICmpInstWithCastAndCast(I))
+ return R;
+ }
+
+ // Special logic for binary operators.
+ BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
+ BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
+ if (BO0 || BO1) {
+ CmpInst::Predicate Pred = I.getPredicate();
+ bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
+ if (BO0 && isa<OverflowingBinaryOperator>(BO0))
+ NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
+ if (BO1 && isa<OverflowingBinaryOperator>(BO1))
+ NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
+ (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
+ (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
+
+ // Analyze the case when either Op0 or Op1 is an add instruction.
+ // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
+ Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Add)
+ A = BO0->getOperand(0), B = BO0->getOperand(1);
+ if (BO1 && BO1->getOpcode() == Instruction::Add)
+ C = BO1->getOperand(0), D = BO1->getOperand(1);
+
+ // icmp (X+cst) < 0 --> X < -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
+ if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
+ if (!RHSC->isMinValue(/*isSigned=*/true))
+ return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
+
+ // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
+ if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
+ return new ICmpInst(Pred, A == Op1 ? B : A,
+ Constant::getNullValue(Op1->getType()));
+
+ // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
+ if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
+ C == Op0 ? D : C);
+
+ // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
+ if (A && C && (A == C || A == D || B == C || B == D) &&
+ NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse()) {
+ // Determine Y and Z in the form icmp (X+Y), (X+Z).
+ Value *Y, *Z;
+ if (A == C) {
+ // C + B == C + D -> B == D
+ Y = B;
+ Z = D;
+ } else if (A == D) {
+ // D + B == C + D -> B == C
+ Y = B;
+ Z = C;
+ } else if (B == C) {
+ // A + C == C + D -> A == D
+ Y = A;
+ Z = D;
+ } else {
+ assert(B == D);
+ // A + D == C + D -> A == C
+ Y = A;
+ Z = C;
+ }
+ return new ICmpInst(Pred, Y, Z);
+ }
+
+ // icmp slt (X + -1), Y -> icmp sle X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
+
+ // icmp sge (X + -1), Y -> icmp sgt X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
+ match(B, m_AllOnes()))
+ return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
+
+ // icmp sle (X + 1), Y -> icmp slt X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
+ match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
+
+ // icmp sgt (X + 1), Y -> icmp sge X, Y
+ if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
+ match(B, m_One()))
+ return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
+
+ // if C1 has greater magnitude than C2:
+ // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
+ // s.t. C3 = C1 - C2
+ //
+ // if C2 has greater magnitude than C1:
+ // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
+ // s.t. C3 = C2 - C1
+ if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
+ if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
+ if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
+ const APInt &AP1 = C1->getValue();
+ const APInt &AP2 = C2->getValue();
+ if (AP1.isNegative() == AP2.isNegative()) {
+ APInt AP1Abs = C1->getValue().abs();
+ APInt AP2Abs = C2->getValue().abs();
+ if (AP1Abs.uge(AP2Abs)) {
+ ConstantInt *C3 = Builder->getInt(AP1 - AP2);
+ Value *NewAdd = Builder->CreateNSWAdd(A, C3);
+ return new ICmpInst(Pred, NewAdd, C);
+ } else {
+ ConstantInt *C3 = Builder->getInt(AP2 - AP1);
+ Value *NewAdd = Builder->CreateNSWAdd(C, C3);
+ return new ICmpInst(Pred, A, NewAdd);
+ }
+ }
+ }
+
+
+ // Analyze the case when either Op0 or Op1 is a sub instruction.
+ // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
+ A = nullptr; B = nullptr; C = nullptr; D = nullptr;
+ if (BO0 && BO0->getOpcode() == Instruction::Sub)
+ A = BO0->getOperand(0), B = BO0->getOperand(1);
+ if (BO1 && BO1->getOpcode() == Instruction::Sub)
+ C = BO1->getOperand(0), D = BO1->getOperand(1);
+
+ // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
+ if (A == Op1 && NoOp0WrapProblem)
+ return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
+
+ // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
+ if (C == Op0 && NoOp1WrapProblem)
+ return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
+
+ // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
+ if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, A, C);
+
+ // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
+ if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
+ // Try not to increase register pressure.
+ BO0->hasOneUse() && BO1->hasOneUse())
+ return new ICmpInst(Pred, D, B);
+
+ // icmp (0-X) < cst --> x > -cst
+ if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
+ Value *X;
+ if (match(BO0, m_Neg(m_Value(X))))
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
+ if (!RHSC->isMinValue(/*isSigned=*/true))
+ return new ICmpInst(I.getSwappedPredicate(), X,
+ ConstantExpr::getNeg(RHSC));
+ }
+
+ BinaryOperator *SRem = nullptr;
+ // icmp (srem X, Y), Y
+ if (BO0 && BO0->getOpcode() == Instruction::SRem &&
+ Op1 == BO0->getOperand(1))
+ SRem = BO0;
+ // icmp Y, (srem X, Y)
+ else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
+ Op0 == BO1->getOperand(1))
+ SRem = BO1;
+ if (SRem) {
+ // We don't check hasOneUse to avoid increasing register pressure because
+ // the value we use is the same value this instruction was already using.
+ switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
+ default: break;
+ case ICmpInst::ICMP_EQ:
+ return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
+ case ICmpInst::ICMP_NE:
+ return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE:
+ return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
+ Constant::getAllOnesValue(SRem->getType()));
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE:
+ return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
+ Constant::getNullValue(SRem->getType()));
+ }
+ }
+
+ if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
+ BO0->hasOneUse() && BO1->hasOneUse() &&
+ BO0->getOperand(1) == BO1->getOperand(1)) {
+ switch (BO0->getOpcode()) {
+ default: break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ if (CI->getValue().isSignBit()) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ return new ICmpInst(Pred, BO0->getOperand(0),
+ BO1->getOperand(0));
+ }
+
+ if (CI->isMaxValue(true)) {
+ ICmpInst::Predicate Pred = I.isSigned()
+ ? I.getUnsignedPredicate()
+ : I.getSignedPredicate();
+ Pred = I.getSwappedPredicate(Pred);
+ return new ICmpInst(Pred, BO0->getOperand(0),
+ BO1->getOperand(0));
+ }
+ }
+ break;
+ case Instruction::Mul:
+ if (!I.isEquality())
+ break;
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
+ // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
+ // Mask = -1 >> count-trailing-zeros(Cst).
+ if (!CI->isZero() && !CI->isOne()) {
+ const APInt &AP = CI->getValue();
+ ConstantInt *Mask = ConstantInt::get(I.getContext(),
+ APInt::getLowBitsSet(AP.getBitWidth(),
+ AP.getBitWidth() -
+ AP.countTrailingZeros()));
+ Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
+ Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
+ return new ICmpInst(I.getPredicate(), And1, And2);
+ }
+ }
+ break;
+ case Instruction::UDiv:
+ case Instruction::LShr:
+ if (I.isSigned())
+ break;
+ // fall-through
+ case Instruction::SDiv:
+ case Instruction::AShr:
+ if (!BO0->isExact() || !BO1->isExact())
+ break;
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ case Instruction::Shl: {
+ bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
+ bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
+ if (!NUW && !NSW)
+ break;
+ if (!NSW && I.isSigned())
+ break;
+ return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
+ BO1->getOperand(0));
+ }
+ }
+ }
+ }
+
+ { Value *A, *B;
+ // Transform (A & ~B) == 0 --> (A & B) != 0
+ // and (A & ~B) != 0 --> (A & B) == 0
+ // if A is a power of 2.
+ if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
+ match(Op1, m_Zero()) &&
+ isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
+ return new ICmpInst(I.getInversePredicate(),
+ Builder->CreateAnd(A, B),
+ Op1);
+
+ // ~x < ~y --> y < x
+ // ~x < cst --> ~cst < x
+ if (match(Op0, m_Not(m_Value(A)))) {
+ if (match(Op1, m_Not(m_Value(B))))
+ return new ICmpInst(I.getPredicate(), B, A);
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
+ return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
+ }
+
+ Instruction *AddI = nullptr;
+ if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
+ m_Instruction(AddI))) &&
+ isa<IntegerType>(A->getType())) {
+ Value *Result;
+ Constant *Overflow;
+ if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
+ Overflow)) {
+ ReplaceInstUsesWith(*AddI, Result);
+ return ReplaceInstUsesWith(I, Overflow);
+ }
+ }
+
+ // (zext a) * (zext b) --> llvm.umul.with.overflow.
+ if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
+ if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
+ return R;
+ }
+ if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
+ if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
+ return R;
+ }
+ }
+
+ if (I.isEquality()) {
+ Value *A, *B, *C, *D;
+
+ if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
+ if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
+ Value *OtherVal = A == Op1 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
+ }
+
+ if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
+ // A^c1 == C^c2 --> A == C^(c1^c2)
+ ConstantInt *C1, *C2;
+ if (match(B, m_ConstantInt(C1)) &&
+ match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
+ Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
+ Value *Xor = Builder->CreateXor(C, NC);
+ return new ICmpInst(I.getPredicate(), A, Xor);
+ }
+
+ // A^B == A^D -> B == D
+ if (A == C) return new ICmpInst(I.getPredicate(), B, D);
+ if (A == D) return new ICmpInst(I.getPredicate(), B, C);
+ if (B == C) return new ICmpInst(I.getPredicate(), A, D);
+ if (B == D) return new ICmpInst(I.getPredicate(), A, C);
+ }
+ }
+
+ if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
+ (A == Op0 || B == Op0)) {
+ // A == (A^B) -> B == 0
+ Value *OtherVal = A == Op0 ? B : A;
+ return new ICmpInst(I.getPredicate(), OtherVal,
+ Constant::getNullValue(A->getType()));
+ }
+
+ // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
+ if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
+ match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
+ Value *X = nullptr, *Y = nullptr, *Z = nullptr;
+
+ if (A == C) {
+ X = B; Y = D; Z = A;
+ } else if (A == D) {
+ X = B; Y = C; Z = A;
+ } else if (B == C) {
+ X = A; Y = D; Z = B;
+ } else if (B == D) {
+ X = A; Y = C; Z = B;
+ }
+
+ if (X) { // Build (X^Y) & Z
+ Op1 = Builder->CreateXor(X, Y);
+ Op1 = Builder->CreateAnd(Op1, Z);
+ I.setOperand(0, Op1);
+ I.setOperand(1, Constant::getNullValue(Op1->getType()));
+ return &I;
+ }
+ }
+
+ // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
+ // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
+ ConstantInt *Cst1;
+ if ((Op0->hasOneUse() &&
+ match(Op0, m_ZExt(m_Value(A))) &&
+ match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
+ (Op1->hasOneUse() &&
+ match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
+ match(Op1, m_ZExt(m_Value(A))))) {
+ APInt Pow2 = Cst1->getValue() + 1;
+ if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
+ Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
+ return new ICmpInst(I.getPredicate(), A,
+ Builder->CreateTrunc(B, A->getType()));
+ }
+
+ // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
+ // For lshr and ashr pairs.
+ if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
+ (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
+ ? ICmpInst::ICMP_UGE
+ : ICmpInst::ICMP_ULT;
+ Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
+ APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
+ return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
+ }
+ }
+
+ // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
+ if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
+ match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
+ unsigned TypeBits = Cst1->getBitWidth();
+ unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
+ if (ShAmt < TypeBits && ShAmt != 0) {
+ Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
+ APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
+ Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
+ I.getName() + ".mask");
+ return new ICmpInst(I.getPredicate(), And,
+ Constant::getNullValue(Cst1->getType()));
+ }
+ }
+
+ // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
+ // "icmp (and X, mask), cst"
+ uint64_t ShAmt = 0;
+ if (Op0->hasOneUse() &&
+ match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
+ m_ConstantInt(ShAmt))))) &&
+ match(Op1, m_ConstantInt(Cst1)) &&
+ // Only do this when A has multiple uses. This is most important to do
+ // when it exposes other optimizations.
+ !A->hasOneUse()) {
+ unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
+
+ if (ShAmt < ASize) {
+ APInt MaskV =
+ APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
+ MaskV <<= ShAmt;
+
+ APInt CmpV = Cst1->getValue().zext(ASize);
+ CmpV <<= ShAmt;
+
+ Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
+ return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
+ }
+ }
+ }
+
+ // The 'cmpxchg' instruction returns an aggregate containing the old value and
+ // an i1 which indicates whether or not we successfully did the swap.
+ //
+ // Replace comparisons between the old value and the expected value with the
+ // indicator that 'cmpxchg' returns.
+ //
+ // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
+ // spuriously fail. In those cases, the old value may equal the expected
+ // value but it is possible for the swap to not occur.
+ if (I.getPredicate() == ICmpInst::ICMP_EQ)
+ if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
+ if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
+ if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
+ !ACXI->isWeak())
+ return ExtractValueInst::Create(ACXI, 1);
+
+ {
+ Value *X; ConstantInt *Cst;
+ // icmp X+Cst, X
+ if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
+ return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
+
+ // icmp X, X+Cst
+ if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
+ return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
+ }
+ return Changed ? &I : nullptr;
+}
+
+/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
+Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
+ Instruction *LHSI,
+ Constant *RHSC) {
+ if (!isa<ConstantFP>(RHSC)) return nullptr;
+ const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
+
+ // Get the width of the mantissa. We don't want to hack on conversions that
+ // might lose information from the integer, e.g. "i64 -> float"
+ int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
+ if (MantissaWidth == -1) return nullptr; // Unknown.
+
+ IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
+
+ // Check to see that the input is converted from an integer type that is small
+ // enough that preserves all bits. TODO: check here for "known" sign bits.
+ // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
+ unsigned InputSize = IntTy->getScalarSizeInBits();
+
+ // If this is a uitofp instruction, we need an extra bit to hold the sign.
+ bool LHSUnsigned = isa<UIToFPInst>(LHSI);
+ if (LHSUnsigned)
+ ++InputSize;
+
+ if (I.isEquality()) {
+ FCmpInst::Predicate P = I.getPredicate();
+ bool IsExact = false;
+ APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
+ RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
+
+ // If the floating point constant isn't an integer value, we know if we will
+ // ever compare equal / not equal to it.
+ if (!IsExact) {
+ // TODO: Can never be -0.0 and other non-representable values
+ APFloat RHSRoundInt(RHS);
+ RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
+ if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
+ if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+
+ assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ }
+ }
+
+ // TODO: If the constant is exactly representable, is it always OK to do
+ // equality compares as integer?
+ }
+
+ // Comparisons with zero are a special case where we know we won't lose
+ // information.
+ bool IsCmpZero = RHS.isPosZero();
+
+ // If the conversion would lose info, don't hack on this.
+ if ((int)InputSize > MantissaWidth && !IsCmpZero)
+ return nullptr;
+
+ // Otherwise, we can potentially simplify the comparison. We know that it
+ // will always come through as an integer value and we know the constant is
+ // not a NAN (it would have been previously simplified).
+ assert(!RHS.isNaN() && "NaN comparison not already folded!");
+
+ ICmpInst::Predicate Pred;
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unexpected predicate!");
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_OEQ:
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_OGT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
+ break;
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
+ break;
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_OLT:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
+ break;
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLE:
+ Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
+ break;
+ case FCmpInst::FCMP_UNE:
+ case FCmpInst::FCMP_ONE:
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ case FCmpInst::FCMP_ORD:
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ case FCmpInst::FCMP_UNO:
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ }
+
+ // Now we know that the APFloat is a normal number, zero or inf.
+
+ // See if the FP constant is too large for the integer. For example,
+ // comparing an i8 to 300.0.
+ unsigned IntWidth = IntTy->getScalarSizeInBits();
+
+ if (!LHSUnsigned) {
+ // If the RHS value is > SignedMax, fold the comparison. This handles +INF
+ // and large values.
+ APFloat SMax(RHS.getSemantics());
+ SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
+ Pred == ICmpInst::ICMP_SLE)
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ }
+ } else {
+ // If the RHS value is > UnsignedMax, fold the comparison. This handles
+ // +INF and large values.
+ APFloat UMax(RHS.getSemantics());
+ UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
+ APFloat::rmNearestTiesToEven);
+ if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
+ Pred == ICmpInst::ICMP_ULE)
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ }
+ }
+
+ if (!LHSUnsigned) {
+ // See if the RHS value is < SignedMin.
+ APFloat SMin(RHS.getSemantics());
+ SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
+ Pred == ICmpInst::ICMP_SGE)
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ }
+ } else {
+ // See if the RHS value is < UnsignedMin.
+ APFloat SMin(RHS.getSemantics());
+ SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
+ APFloat::rmNearestTiesToEven);
+ if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
+ if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
+ Pred == ICmpInst::ICMP_UGE)
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ }
+ }
+
+ // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
+ // [0, UMAX], but it may still be fractional. See if it is fractional by
+ // casting the FP value to the integer value and back, checking for equality.
+ // Don't do this for zero, because -0.0 is not fractional.
+ Constant *RHSInt = LHSUnsigned
+ ? ConstantExpr::getFPToUI(RHSC, IntTy)
+ : ConstantExpr::getFPToSI(RHSC, IntTy);
+ if (!RHS.isZero()) {
+ bool Equal = LHSUnsigned
+ ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
+ : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
+ if (!Equal) {
+ // If we had a comparison against a fractional value, we have to adjust
+ // the compare predicate and sometimes the value. RHSC is rounded towards
+ // zero at this point.
+ switch (Pred) {
+ default: llvm_unreachable("Unexpected integer comparison!");
+ case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ case ICmpInst::ICMP_ULE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> false
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ break;
+ case ICmpInst::ICMP_SLE:
+ // (float)int <= 4.4 --> int <= 4
+ // (float)int <= -4.4 --> int < -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLT;
+ break;
+ case ICmpInst::ICMP_ULT:
+ // (float)int < -4.4 --> false
+ // (float)int < 4.4 --> int <= 4
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ Pred = ICmpInst::ICMP_ULE;
+ break;
+ case ICmpInst::ICMP_SLT:
+ // (float)int < -4.4 --> int < -4
+ // (float)int < 4.4 --> int <= 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SLE;
+ break;
+ case ICmpInst::ICMP_UGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> true
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ break;
+ case ICmpInst::ICMP_SGT:
+ // (float)int > 4.4 --> int > 4
+ // (float)int > -4.4 --> int >= -4
+ if (RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGE;
+ break;
+ case ICmpInst::ICMP_UGE:
+ // (float)int >= -4.4 --> true
+ // (float)int >= 4.4 --> int > 4
+ if (RHS.isNegative())
+ return ReplaceInstUsesWith(I, Builder->getTrue());
+ Pred = ICmpInst::ICMP_UGT;
+ break;
+ case ICmpInst::ICMP_SGE:
+ // (float)int >= -4.4 --> int >= -4
+ // (float)int >= 4.4 --> int > 4
+ if (!RHS.isNegative())
+ Pred = ICmpInst::ICMP_SGT;
+ break;
+ }
+ }
+ }
+
+ // Lower this FP comparison into an appropriate integer version of the
+ // comparison.
+ return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
+}
+
+Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
+ bool Changed = false;
+
+ /// Orders the operands of the compare so that they are listed from most
+ /// complex to least complex. This puts constants before unary operators,
+ /// before binary operators.
+ if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
+ I.swapOperands();
+ Changed = true;
+ }
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
+ return ReplaceInstUsesWith(I, V);
+
+ // Simplify 'fcmp pred X, X'
+ if (Op0 == Op1) {
+ switch (I.getPredicate()) {
+ default: llvm_unreachable("Unknown predicate!");
+ case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
+ case FCmpInst::FCMP_ULT: // True if unordered or less than
+ case FCmpInst::FCMP_UGT: // True if unordered or greater than
+ case FCmpInst::FCMP_UNE: // True if unordered or not equal
+ // Canonicalize these to be 'fcmp uno %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_UNO);
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
+ return &I;
+
+ case FCmpInst::FCMP_ORD: // True if ordered (no nans)
+ case FCmpInst::FCMP_OEQ: // True if ordered and equal
+ case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
+ case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
+ // Canonicalize these to be 'fcmp ord %X, 0.0'.
+ I.setPredicate(FCmpInst::FCMP_ORD);
+ I.setOperand(1, Constant::getNullValue(Op0->getType()));
+ return &I;
+ }
+ }
+
+ // Test if the FCmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (I.hasOneUse())
+ if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
+ if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+ (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+ return nullptr;
+
+ // Handle fcmp with constant RHS
+ if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
+ if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
+ switch (LHSI->getOpcode()) {
+ case Instruction::FPExt: {
+ // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
+ FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
+ ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
+ if (!RHSF)
+ break;
+
+ const fltSemantics *Sem;
+ // FIXME: This shouldn't be here.
+ if (LHSExt->getSrcTy()->isHalfTy())
+ Sem = &APFloat::IEEEhalf;
+ else if (LHSExt->getSrcTy()->isFloatTy())
+ Sem = &APFloat::IEEEsingle;
+ else if (LHSExt->getSrcTy()->isDoubleTy())
+ Sem = &APFloat::IEEEdouble;
+ else if (LHSExt->getSrcTy()->isFP128Ty())
+ Sem = &APFloat::IEEEquad;
+ else if (LHSExt->getSrcTy()->isX86_FP80Ty())
+ Sem = &APFloat::x87DoubleExtended;
+ else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
+ Sem = &APFloat::PPCDoubleDouble;
+ else
+ break;
+
+ bool Lossy;
+ APFloat F = RHSF->getValueAPF();
+ F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
+
+ // Avoid lossy conversions and denormals. Zero is a special case
+ // that's OK to convert.
+ APFloat Fabs = F;
+ Fabs.clearSign();
+ if (!Lossy &&
+ ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
+ APFloat::cmpLessThan) || Fabs.isZero()))
+
+ return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
+ ConstantFP::get(RHSC->getContext(), F));
+ break;
+ }
+ case Instruction::PHI:
+ // Only fold fcmp into the PHI if the phi and fcmp are in the same
+ // block. If in the same block, we're encouraging jump threading. If
+ // not, we are just pessimizing the code by making an i1 phi.
+ if (LHSI->getParent() == I.getParent())
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ break;
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
+ return NV;
+ break;
+ case Instruction::FSub: {
+ // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
+ Value *Op;
+ if (match(LHSI, m_FNeg(m_Value(Op))))
+ return new FCmpInst(I.getSwappedPredicate(), Op,
+ ConstantExpr::getFNeg(RHSC));
+ break;
+ }
+ case Instruction::Load:
+ if (GetElementPtrInst *GEP =
+ dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
+ if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
+ !cast<LoadInst>(LHSI)->isVolatile())
+ if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
+ return Res;
+ }
+ break;
+ case Instruction::Call: {
+ if (!RHSC->isNullValue())
+ break;
+
+ CallInst *CI = cast<CallInst>(LHSI);
+ const Function *F = CI->getCalledFunction();
+ if (!F)
+ break;
+
+ // Various optimization for fabs compared with zero.
+ LibFunc::Func Func;
+ if (F->getIntrinsicID() == Intrinsic::fabs ||
+ (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
+ (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
+ Func == LibFunc::fabsl))) {
+ switch (I.getPredicate()) {
+ default:
+ break;
+ // fabs(x) < 0 --> false
+ case FCmpInst::FCMP_OLT:
+ return ReplaceInstUsesWith(I, Builder->getFalse());
+ // fabs(x) > 0 --> x != 0
+ case FCmpInst::FCMP_OGT:
+ return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
+ // fabs(x) <= 0 --> x == 0
+ case FCmpInst::FCMP_OLE:
+ return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
+ // fabs(x) >= 0 --> !isnan(x)
+ case FCmpInst::FCMP_OGE:
+ return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
+ // fabs(x) == 0 --> x == 0
+ // fabs(x) != 0 --> x != 0
+ case FCmpInst::FCMP_OEQ:
+ case FCmpInst::FCMP_UEQ:
+ case FCmpInst::FCMP_ONE:
+ case FCmpInst::FCMP_UNE:
+ return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
+ }
+ }
+ }
+ }
+ }
+
+ // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+ return new FCmpInst(I.getSwappedPredicate(), X, Y);
+
+ // fcmp (fpext x), (fpext y) -> fcmp x, y
+ if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
+ if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
+ if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
+ return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
+ RHSExt->getOperand(0));
+
+ return Changed ? &I : nullptr;
+}
OpenPOWER on IntegriCloud