diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp | 125 |
1 files changed, 51 insertions, 74 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp index b9c3d0f..5415726 100644 --- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp @@ -335,7 +335,8 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { /// /// This function works on both vectors and scalars. /// -static bool CanEvaluateTruncated(Value *V, Type *Ty) { +static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC, + Instruction *CxtI) { // We can always evaluate constants in another type. if (isa<Constant>(V)) return true; @@ -364,8 +365,8 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { case Instruction::Or: case Instruction::Xor: // These operators can all arbitrarily be extended or truncated. - return CanEvaluateTruncated(I->getOperand(0), Ty) && - CanEvaluateTruncated(I->getOperand(1), Ty); + return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && + CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); case Instruction::UDiv: case Instruction::URem: { @@ -374,10 +375,10 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { uint32_t BitWidth = Ty->getScalarSizeInBits(); if (BitWidth < OrigBitWidth) { APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); - if (MaskedValueIsZero(I->getOperand(0), Mask) && - MaskedValueIsZero(I->getOperand(1), Mask)) { - return CanEvaluateTruncated(I->getOperand(0), Ty) && - CanEvaluateTruncated(I->getOperand(1), Ty); + if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) && + IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) { + return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) && + CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI); } } break; @@ -388,7 +389,7 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { uint32_t BitWidth = Ty->getScalarSizeInBits(); if (CI->getLimitedValue(BitWidth) < BitWidth) - return CanEvaluateTruncated(I->getOperand(0), Ty); + return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); } break; case Instruction::LShr: @@ -398,10 +399,10 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); uint32_t BitWidth = Ty->getScalarSizeInBits(); - if (MaskedValueIsZero(I->getOperand(0), - APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && + if (IC.MaskedValueIsZero(I->getOperand(0), + APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) && CI->getLimitedValue(BitWidth) < BitWidth) { - return CanEvaluateTruncated(I->getOperand(0), Ty); + return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI); } } break; @@ -415,8 +416,8 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { return true; case Instruction::Select: { SelectInst *SI = cast<SelectInst>(I); - return CanEvaluateTruncated(SI->getTrueValue(), Ty) && - CanEvaluateTruncated(SI->getFalseValue(), Ty); + return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) && + CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI); } case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never @@ -424,7 +425,7 @@ static bool CanEvaluateTruncated(Value *V, Type *Ty) { // instructions with a single use. PHINode *PN = cast<PHINode>(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) + if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI)) return false; return true; } @@ -453,7 +454,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) { // expression tree to something weird like i93 unless the source is also // strange. if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && - CanEvaluateTruncated(Src, DestTy)) { + CanEvaluateTruncated(Src, DestTy, *this, &CI)) { // If this cast is a truncate, evaluting in a different type always // eliminates the cast, so it is always a win. @@ -553,7 +554,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, // If Op1C some other power of two, convert: uint32_t BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); - computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne); + computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI); APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? @@ -601,8 +602,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); - computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS); - computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS); + computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI); + computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI); if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { APInt KnownBits = KnownZeroLHS | KnownOneLHS; @@ -651,7 +652,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, /// clear the top bits anyway, doing this has no extra cost. /// /// This function works on both vectors and scalars. -static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { +static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear, + InstCombiner &IC, Instruction *CxtI) { BitsToClear = 0; if (isa<Constant>(V)) return true; @@ -680,8 +682,8 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: - if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || - !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) + if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) || + !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI)) return false; // These can all be promoted if neither operand has 'bits to clear'. if (BitsToClear == 0 && Tmp == 0) @@ -695,8 +697,9 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // We use MaskedValueIsZero here for generality, but the case we care // about the most is constant RHS. unsigned VSize = V->getType()->getScalarSizeInBits(); - if (MaskedValueIsZero(I->getOperand(1), - APInt::getHighBitsSet(VSize, BitsToClear))) + if (IC.MaskedValueIsZero(I->getOperand(1), + APInt::getHighBitsSet(VSize, BitsToClear), + 0, CxtI)) return true; } @@ -707,7 +710,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // We can promote shl(x, cst) if we can promote x. Since shl overwrites the // upper bits we can reduce BitsToClear by the shift amount. if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { - if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) + if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) return false; uint64_t ShiftAmt = Amt->getZExtValue(); BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; @@ -718,7 +721,7 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // We can promote lshr(x, cst) if we can promote x. This requires the // ultimate 'and' to clear out the high zero bits we're clearing out though. if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { - if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) + if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI)) return false; BitsToClear += Amt->getZExtValue(); if (BitsToClear > V->getType()->getScalarSizeInBits()) @@ -728,8 +731,8 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // Cannot promote variable LSHR. return false; case Instruction::Select: - if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || - !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || + if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) || + !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) || // TODO: If important, we could handle the case when the BitsToClear are // known zero in the disagreeing side. Tmp != BitsToClear) @@ -741,10 +744,10 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { // get into trouble with cyclic PHIs here because we only consider // instructions with a single use. PHINode *PN = cast<PHINode>(I); - if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) + if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI)) return false; for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) - if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || + if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) || // TODO: If important, we could handle the case when the BitsToClear // are known zero in the disagreeing input. Tmp != BitsToClear) @@ -781,7 +784,7 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // strange. unsigned BitsToClear; if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && - CanEvaluateZExtd(Src, DestTy, BitsToClear)) { + CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) { assert(BitsToClear < SrcTy->getScalarSizeInBits() && "Unreasonable BitsToClear"); @@ -796,8 +799,10 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) { // If the high bits are already filled with zeros, just replace this // cast with the result. - if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, - DestBitSize-SrcBitsKept))) + if (MaskedValueIsZero(Res, + APInt::getHighBitsSet(DestBitSize, + DestBitSize-SrcBitsKept), + 0, &CI)) return ReplaceInstUsesWith(CI, Res); // We need to emit an AND to clear the high bits. @@ -895,6 +900,10 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); ICmpInst::Predicate Pred = ICI->getPredicate(); + // Don't bother if Op1 isn't of vector or integer type. + if (!Op1->getType()->isIntOrIntVectorTy()) + return nullptr; + if (Constant *Op1C = dyn_cast<Constant>(Op1)) { // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive @@ -921,7 +930,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ unsigned BitWidth = Op1C->getType()->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); - computeKnownBits(Op0, KnownZero, KnownOne); + computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI); APInt KnownZeroMask(~KnownZero); if (KnownZeroMask.isPowerOf2()) { @@ -1072,7 +1081,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) { // If the high bits are already filled with sign bit, just replace this // cast with the result. - if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) + if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize) return ReplaceInstUsesWith(CI, Res); // We need to emit a shl + ashr to do the sign extend. @@ -1260,14 +1269,18 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { // type of OpI doesn't enter into things at all. We simply evaluate // in whichever source type is larger, then convert to the // destination type. + if (SrcWidth == OpWidth) + break; if (LHSWidth < SrcWidth) LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); else if (RHSWidth <= SrcWidth) RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); - Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); - if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) - RI->copyFastMathFlags(OpI); - return CastInst::CreateFPCast(ExactResult, CI.getType()); + if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) { + Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); + if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) + RI->copyFastMathFlags(OpI); + return CastInst::CreateFPCast(ExactResult, CI.getType()); + } } // (fptrunc (fneg x)) -> (fneg (fptrunc x)) @@ -1312,42 +1325,6 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { } } - // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) - // Note that we restrict this transformation based on - // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because - // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the - // single-precision intrinsic can be expanded in the backend. - CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); - if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && - (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) || - Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) && - Call->getNumArgOperands() == 1 && - Call->hasOneUse()) { - CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); - if (Arg && Arg->getOpcode() == Instruction::FPExt && - CI.getType()->isFloatTy() && - Call->getType()->isDoubleTy() && - Arg->getType()->isDoubleTy() && - Arg->getOperand(0)->getType()->isFloatTy()) { - Function *Callee = Call->getCalledFunction(); - Module *M = CI.getParent()->getParent()->getParent(); - Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ? - Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) : - M->getOrInsertFunction("sqrtf", Callee->getAttributes(), - Builder->getFloatTy(), Builder->getFloatTy(), - NULL); - CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), - "sqrtfcall"); - ret->setAttributes(Callee->getAttributes()); - - - // Remove the old Call. With -fmath-errno, it won't get marked readnone. - ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); - EraseInstFromFunction(*Call); - return ret; - } - } - return nullptr; } |