summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp364
1 files changed, 217 insertions, 147 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
index 72377dc..b9c3d0f 100644
--- a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp
@@ -14,11 +14,13 @@
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/IR/DataLayout.h"
-#include "llvm/Support/PatternMatch.h"
+#include "llvm/IR/PatternMatch.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
+#define DEBUG_TYPE "instcombine"
+
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
/// expression. If so, decompose it, returning some value X, such that Val is
/// X*Scale+Offset.
@@ -79,7 +81,7 @@ static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst &AI) {
// This requires DataLayout to get the alloca alignment and size information.
- if (!TD) return 0;
+ if (!DL) return nullptr;
PointerType *PTy = cast<PointerType>(CI.getType());
@@ -89,26 +91,26 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// Get the type really allocated and the type casted to.
Type *AllocElTy = AI.getAllocatedType();
Type *CastElTy = PTy->getElementType();
- if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
+ if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
- unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
- unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
- if (CastElTyAlign < AllocElTyAlign) return 0;
+ unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
+ unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
+ if (CastElTyAlign < AllocElTyAlign) return nullptr;
// If the allocation has multiple uses, only promote it if we are strictly
// increasing the alignment of the resultant allocation. If we keep it the
// same, we open the door to infinite loops of various kinds.
- if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
+ if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
- uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
- uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
- if (CastElTySize == 0 || AllocElTySize == 0) return 0;
+ uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
+ if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
// If the allocation has multiple uses, only promote it if we're not
// shrinking the amount of memory being allocated.
- uint64_t AllocElTyStoreSize = TD->getTypeStoreSize(AllocElTy);
- uint64_t CastElTyStoreSize = TD->getTypeStoreSize(CastElTy);
- if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return 0;
+ uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
+ uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
+ if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
// See if we can satisfy the modulus by pulling a scale out of the array
// size argument.
@@ -120,10 +122,10 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
// If we can now satisfy the modulus, by using a non-1 scale, we really can
// do the xform.
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
- (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
+ (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
- Value *Amt = 0;
+ Value *Amt = nullptr;
if (Scale == 1) {
Amt = NumElements;
} else {
@@ -141,6 +143,7 @@ Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
New->setAlignment(AI.getAlignment());
New->takeName(&AI);
+ New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
// If the allocation has multiple real uses, insert a cast and change all
// things that used it to use the new cast. This will also hack on CI, but it
@@ -161,15 +164,15 @@ Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
bool isSigned) {
if (Constant *C = dyn_cast<Constant>(V)) {
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
- // If we got a constantexpr back, try to simplify it with TD info.
+ // If we got a constantexpr back, try to simplify it with DL info.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
- C = ConstantFoldConstantExpression(CE, TD, TLI);
+ C = ConstantFoldConstantExpression(CE, DL, TLI);
return C;
}
// Otherwise, it must be an instruction.
Instruction *I = cast<Instruction>(V);
- Instruction *Res = 0;
+ Instruction *Res = nullptr;
unsigned Opc = I->getOpcode();
switch (Opc) {
case Instruction::Add:
@@ -235,7 +238,7 @@ isEliminableCastPair(
const CastInst *CI, ///< The first cast instruction
unsigned opcode, ///< The opcode of the second cast instruction
Type *DstTy, ///< The target type for the second cast instruction
- DataLayout *TD ///< The target data for pointer size
+ const DataLayout *DL ///< The target data for pointer size
) {
Type *SrcTy = CI->getOperand(0)->getType(); // A from above
@@ -244,12 +247,12 @@ isEliminableCastPair(
// Get the opcodes of the two Cast instructions
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
- Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
- TD->getIntPtrType(SrcTy) : 0;
- Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
- TD->getIntPtrType(MidTy) : 0;
- Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
- TD->getIntPtrType(DstTy) : 0;
+ Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
+ DL->getIntPtrType(SrcTy) : nullptr;
+ Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
+ DL->getIntPtrType(MidTy) : nullptr;
+ Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
+ DL->getIntPtrType(DstTy) : nullptr;
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
DstTy, SrcIntPtrTy, MidIntPtrTy,
DstIntPtrTy);
@@ -275,7 +278,7 @@ bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
// If this is another cast that can be eliminated, we prefer to have it
// eliminated.
if (const CastInst *CI = dyn_cast<CastInst>(V))
- if (isEliminableCastPair(CI, opc, Ty, TD))
+ if (isEliminableCastPair(CI, opc, Ty, DL))
return false;
// If this is a vector sext from a compare, then we don't want to break the
@@ -295,7 +298,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
// eliminate it now.
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
if (Instruction::CastOps opc =
- isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
+ isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
// The first cast (CSrc) is eliminable so we need to fix up or replace
// the second cast (CI). CSrc will then have a good chance of being dead.
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
@@ -318,7 +321,7 @@ Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
return NV;
}
- return 0;
+ return nullptr;
}
/// CanEvaluateTruncated - Return true if we can evaluate the specified
@@ -470,7 +473,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
}
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
- Value *A = 0; ConstantInt *Cst = 0;
+ Value *A = nullptr; ConstantInt *Cst = nullptr;
if (Src->hasOneUse() &&
match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
// We have three types to worry about here, the type of A, the source of
@@ -502,7 +505,7 @@ Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
ConstantExpr::getTrunc(Cst, CI.getType()));
}
- return 0;
+ return nullptr;
}
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
@@ -550,7 +553,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
// If Op1C some other power of two, convert:
uint32_t BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
+ computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
@@ -598,8 +601,8 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
- ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
- ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
+ computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS);
+ computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS);
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
@@ -627,7 +630,7 @@ Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
}
}
- return 0;
+ return nullptr;
}
/// CanEvaluateZExtd - Determine if the specified value can be computed in the
@@ -757,8 +760,8 @@ static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
// If this zero extend is only used by a truncate, let the truncate be
// eliminated before we try to optimize this zext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
- return 0;
+ if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
+ return nullptr;
// If one of the common conversion will work, do it.
if (Instruction *Result = commonCastTransforms(CI))
@@ -858,42 +861,32 @@ Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
}
}
- // zext(trunc(t) & C) -> (t & zext(C)).
- if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
- if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
- if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
- Value *TI0 = TI->getOperand(0);
- if (TI0->getType() == CI.getType())
- return
- BinaryOperator::CreateAnd(TI0,
- ConstantExpr::getZExt(C, CI.getType()));
- }
-
- // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
- if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
- if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
- if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
- if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
- And->getOperand(1) == C)
- if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
- Value *TI0 = TI->getOperand(0);
- if (TI0->getType() == CI.getType()) {
- Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
- Value *NewAnd = Builder->CreateAnd(TI0, ZC);
- return BinaryOperator::CreateXor(NewAnd, ZC);
- }
- }
+ // zext(trunc(X) & C) -> (X & zext(C)).
+ Constant *C;
+ Value *X;
+ if (SrcI &&
+ match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
+ X->getType() == CI.getType())
+ return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
+
+ // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
+ Value *And;
+ if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
+ match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
+ X->getType() == CI.getType()) {
+ Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
+ return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
+ }
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
- Value *X;
- if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
- match(SrcI, m_Not(m_Value(X))) &&
- (!X->hasOneUse() || !isa<CmpInst>(X))) {
+ if (SrcI && SrcI->hasOneUse() &&
+ SrcI->getType()->getScalarType()->isIntegerTy(1) &&
+ match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
Value *New = Builder->CreateZExt(X, CI.getType());
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
}
- return 0;
+ return nullptr;
}
/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
@@ -902,10 +895,10 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
ICmpInst::Predicate Pred = ICI->getPredicate();
- if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
// (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
- if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
+ if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
(Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
Value *Sh = ConstantInt::get(Op0->getType(),
@@ -918,7 +911,9 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
In = Builder->CreateNot(In, In->getName()+".not");
return ReplaceInstUsesWith(CI, In);
}
+ }
+ if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
// If we know that only one bit of the LHS of the icmp can be set and we
// have an equality comparison with zero or a power of 2, we can transform
// the icmp and sext into bitwise/integer operations.
@@ -926,7 +921,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
unsigned BitWidth = Op1C->getType()->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- ComputeMaskedBits(Op0, KnownZero, KnownOne);
+ computeKnownBits(Op0, KnownZero, KnownOne);
APInt KnownZeroMask(~KnownZero);
if (KnownZeroMask.isPowerOf2()) {
@@ -975,20 +970,7 @@ Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
}
}
- // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
- if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
- if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
- Op0->getType() == CI.getType()) {
- Type *EltTy = VTy->getElementType();
-
- // splat the shift constant to a constant vector.
- Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
- Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
- return ReplaceInstUsesWith(CI, In);
- }
- }
-
- return 0;
+ return nullptr;
}
/// CanEvaluateSExtd - Return true if we can take the specified value
@@ -1059,8 +1041,8 @@ static bool CanEvaluateSExtd(Value *V, Type *Ty) {
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// If this sign extend is only used by a truncate, let the truncate be
// eliminated before we try to optimize this sext.
- if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
- return 0;
+ if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
+ return nullptr;
if (Instruction *I = commonCastTransforms(CI))
return I;
@@ -1128,9 +1110,9 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
// into:
// %a = shl i32 %i, 30
// %d = ashr i32 %a, 30
- Value *A = 0;
+ Value *A = nullptr;
// TODO: Eventually this could be subsumed by EvaluateInDifferentType.
- ConstantInt *BA = 0, *CA = 0;
+ ConstantInt *BA = nullptr, *CA = nullptr;
if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
m_ConstantInt(CA))) &&
BA == CA && A->getType() == CI.getType()) {
@@ -1142,7 +1124,7 @@ Instruction *InstCombiner::visitSExt(SExtInst &CI) {
return BinaryOperator::CreateAShr(A, ShAmtV);
}
- return 0;
+ return nullptr;
}
@@ -1154,7 +1136,7 @@ static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
if (!losesInfo)
return ConstantFP::get(CFP->getContext(), F);
- return 0;
+ return nullptr;
}
/// LookThroughFPExtensions - If this is an fp extension instruction, look
@@ -1189,43 +1171,112 @@ static Value *LookThroughFPExtensions(Value *V) {
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
-
- // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
- // smaller than the destination type, we can eliminate the truncate by doing
- // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
- // as many builtins (sqrt, etc).
+ // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
+ // simpilify this expression to avoid one or more of the trunc/extend
+ // operations if we can do so without changing the numerical results.
+ //
+ // The exact manner in which the widths of the operands interact to limit
+ // what we can and cannot do safely varies from operation to operation, and
+ // is explained below in the various case statements.
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
if (OpI && OpI->hasOneUse()) {
+ Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
+ Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
+ unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
+ unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
+ unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
+ unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
+ unsigned DstWidth = CI.getType()->getFPMantissaWidth();
switch (OpI->getOpcode()) {
- default: break;
- case Instruction::FAdd:
- case Instruction::FSub:
- case Instruction::FMul:
- case Instruction::FDiv:
- case Instruction::FRem:
- Type *SrcTy = OpI->getType();
- Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
- Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
- if (LHSTrunc->getType() != SrcTy &&
- RHSTrunc->getType() != SrcTy) {
- unsigned DstSize = CI.getType()->getScalarSizeInBits();
- // If the source types were both smaller than the destination type of
- // the cast, do this xform.
- if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
- RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
- LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
- RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
- return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
+ default: break;
+ case Instruction::FAdd:
+ case Instruction::FSub:
+ // For addition and subtraction, the infinitely precise result can
+ // essentially be arbitrarily wide; proving that double rounding
+ // will not occur because the result of OpI is exact (as we will for
+ // FMul, for example) is hopeless. However, we *can* nonetheless
+ // frequently know that double rounding cannot occur (or that it is
+ // innocuous) by taking advantage of the specific structure of
+ // infinitely-precise results that admit double rounding.
+ //
+ // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
+ // to represent both sources, we can guarantee that the double
+ // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
+ // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
+ // for proof of this fact).
+ //
+ // Note: Figueroa does not consider the case where DstFormat !=
+ // SrcFormat. It's possible (likely even!) that this analysis
+ // could be tightened for those cases, but they are rare (the main
+ // case of interest here is (float)((double)float + float)).
+ if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
+ if (LHSOrig->getType() != CI.getType())
+ LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ if (RHSOrig->getType() != CI.getType())
+ RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ Instruction *RI =
+ BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
+ RI->copyFastMathFlags(OpI);
+ return RI;
}
- }
- break;
+ break;
+ case Instruction::FMul:
+ // For multiplication, the infinitely precise result has at most
+ // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
+ // that such a value can be exactly represented, then no double
+ // rounding can possibly occur; we can safely perform the operation
+ // in the destination format if it can represent both sources.
+ if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
+ if (LHSOrig->getType() != CI.getType())
+ LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ if (RHSOrig->getType() != CI.getType())
+ RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ Instruction *RI =
+ BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
+ RI->copyFastMathFlags(OpI);
+ return RI;
+ }
+ break;
+ case Instruction::FDiv:
+ // For division, we use again use the bound from Figueroa's
+ // dissertation. I am entirely certain that this bound can be
+ // tightened in the unbalanced operand case by an analysis based on
+ // the diophantine rational approximation bound, but the well-known
+ // condition used here is a good conservative first pass.
+ // TODO: Tighten bound via rigorous analysis of the unbalanced case.
+ if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
+ if (LHSOrig->getType() != CI.getType())
+ LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
+ if (RHSOrig->getType() != CI.getType())
+ RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
+ Instruction *RI =
+ BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
+ RI->copyFastMathFlags(OpI);
+ return RI;
+ }
+ break;
+ case Instruction::FRem:
+ // Remainder is straightforward. Remainder is always exact, so the
+ // type of OpI doesn't enter into things at all. We simply evaluate
+ // in whichever source type is larger, then convert to the
+ // destination type.
+ if (LHSWidth < SrcWidth)
+ LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
+ else if (RHSWidth <= SrcWidth)
+ RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
+ Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
+ if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
+ RI->copyFastMathFlags(OpI);
+ return CastInst::CreateFPCast(ExactResult, CI.getType());
}
// (fptrunc (fneg x)) -> (fneg (fptrunc x))
if (BinaryOperator::isFNeg(OpI)) {
Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
CI.getType());
- return BinaryOperator::CreateFNeg(InnerTrunc);
+ Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
+ RI->copyFastMathFlags(OpI);
+ return RI;
}
}
@@ -1297,7 +1348,7 @@ Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
}
}
- return 0;
+ return nullptr;
}
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
@@ -1306,7 +1357,7 @@ Instruction *InstCombiner::visitFPExt(CastInst &CI) {
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (OpI == 0)
+ if (!OpI)
return commonCastTransforms(FI);
// fptoui(uitofp(X)) --> X
@@ -1326,7 +1377,7 @@ Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
- if (OpI == 0)
+ if (!OpI)
return commonCastTransforms(FI);
// fptosi(sitofp(X)) --> X
@@ -1357,11 +1408,11 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
// cast to be exposed to other transforms.
- if (TD) {
+ if (DL) {
unsigned AS = CI.getAddressSpace();
if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
- TD->getPointerSizeInBits(AS)) {
- Type *Ty = TD->getIntPtrType(CI.getContext(), AS);
+ DL->getPointerSizeInBits(AS)) {
+ Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
@@ -1373,7 +1424,7 @@ Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
if (Instruction *I = commonCastTransforms(CI))
return I;
- return 0;
+ return nullptr;
}
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
@@ -1383,7 +1434,12 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
// If casting the result of a getelementptr instruction with no offset, turn
// this into a cast of the original pointer!
- if (GEP->hasAllZeroIndices()) {
+ if (GEP->hasAllZeroIndices() &&
+ // If CI is an addrspacecast and GEP changes the poiner type, merging
+ // GEP into CI would undo canonicalizing addrspacecast with different
+ // pointer types, causing infinite loops.
+ (!isa<AddrSpaceCastInst>(CI) ||
+ GEP->getType() == GEP->getPointerOperand()->getType())) {
// Changing the cast operand is usually not a good idea but it is safe
// here because the pointer operand is being replaced with another
// pointer operand so the opcode doesn't need to change.
@@ -1392,7 +1448,7 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
return &CI;
}
- if (!TD)
+ if (!DL)
return commonCastTransforms(CI);
// If the GEP has a single use, and the base pointer is a bitcast, and the
@@ -1400,12 +1456,12 @@ Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
// instructions into fewer. This typically happens with unions and other
// non-type-safe code.
unsigned AS = GEP->getPointerAddressSpace();
- unsigned OffsetBits = TD->getPointerSizeInBits(AS);
+ unsigned OffsetBits = DL->getPointerSizeInBits(AS);
APInt Offset(OffsetBits, 0);
BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
if (GEP->hasOneUse() &&
BCI &&
- GEP->accumulateConstantOffset(*TD, Offset)) {
+ GEP->accumulateConstantOffset(*DL, Offset)) {
// Get the base pointer input of the bitcast, and the type it points to.
Value *OrigBase = BCI->getOperand(0);
SmallVector<Value*, 8> NewIndices;
@@ -1436,16 +1492,16 @@ Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
// to be exposed to other transforms.
- if (!TD)
+ if (!DL)
return commonPointerCastTransforms(CI);
Type *Ty = CI.getType();
unsigned AS = CI.getPointerAddressSpace();
- if (Ty->getScalarSizeInBits() == TD->getPointerSizeInBits(AS))
+ if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
return commonPointerCastTransforms(CI);
- Type *PtrTy = TD->getIntPtrType(CI.getContext(), AS);
+ Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
if (Ty->isVectorTy()) // Handle vectors of pointers.
PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
@@ -1472,7 +1528,7 @@ static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
// there yet.
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
DestTy->getElementType()->getPrimitiveSizeInBits())
- return 0;
+ return nullptr;
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
@@ -1550,7 +1606,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
ElementIndex = Elements.size() - ElementIndex - 1;
// Fail if multiple elements are inserted into this slot.
- if (Elements[ElementIndex] != 0)
+ if (Elements[ElementIndex])
return false;
Elements[ElementIndex] = V;
@@ -1590,7 +1646,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
if (!V->hasOneUse()) return false;
Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0) return false;
+ if (!I) return false;
switch (I->getOpcode()) {
default: return false; // Unhandled case.
case Instruction::BitCast:
@@ -1611,7 +1667,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
case Instruction::Shl: {
// Must be shifting by a constant that is a multiple of the element size.
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
- if (CI == 0) return false;
+ if (!CI) return false;
Shift += CI->getZExtValue();
if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
return CollectInsertionElements(I->getOperand(0), Shift,
@@ -1639,7 +1695,7 @@ static bool CollectInsertionElements(Value *V, unsigned Shift,
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
InstCombiner &IC) {
// We need to know the target byte order to perform this optimization.
- if (!IC.getDataLayout()) return 0;
+ if (!IC.getDataLayout()) return nullptr;
VectorType *DestVecTy = cast<VectorType>(CI.getType());
Value *IntInput = CI.getOperand(0);
@@ -1647,14 +1703,14 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
if (!CollectInsertionElements(IntInput, 0, Elements,
DestVecTy->getElementType(), IC))
- return 0;
+ return nullptr;
// If we succeeded, we know that all of the element are specified by Elements
// or are zero if Elements has a null entry. Recast this as a set of
// insertions.
Value *Result = Constant::getNullValue(CI.getType());
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
- if (Elements[i] == 0) continue; // Unset element.
+ if (!Elements[i]) continue; // Unset element.
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
IC.Builder->getInt32(i));
@@ -1668,14 +1724,14 @@ static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
/// bitcast. The various long double bitcasts can't get in here.
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
// We need to know the target byte order to perform this optimization.
- if (!IC.getDataLayout()) return 0;
+ if (!IC.getDataLayout()) return nullptr;
Value *Src = CI.getOperand(0);
Type *DestTy = CI.getType();
// If this is a bitcast from int to float, check to see if the int is an
// extraction from a vector.
- Value *VecInput = 0;
+ Value *VecInput = nullptr;
// bitcast(trunc(bitcast(somevector)))
if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
isa<VectorType>(VecInput->getType())) {
@@ -1699,7 +1755,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
}
// bitcast(trunc(lshr(bitcast(somevector), cst))
- ConstantInt *ShAmt = 0;
+ ConstantInt *ShAmt = nullptr;
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
m_ConstantInt(ShAmt)))) &&
isa<VectorType>(VecInput->getType())) {
@@ -1721,7 +1777,7 @@ static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
}
}
- return 0;
+ return nullptr;
}
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
@@ -1741,11 +1797,6 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
Type *DstElTy = DstPTy->getElementType();
Type *SrcElTy = SrcPTy->getElementType();
- // If the address spaces don't match, don't eliminate the bitcast, which is
- // required for changing types.
- if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
- return 0;
-
// If we are casting a alloca to a pointer to a type of the same
// size, rewrite the allocation instruction to allocate the "right" type.
// There is no need to modify malloc calls because it is their bitcast that
@@ -1858,5 +1909,24 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
}
Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
- return commonCastTransforms(CI);
+ // If the destination pointer element type is not the same as the source's
+ // first do a bitcast to the destination type, and then the addrspacecast.
+ // This allows the cast to be exposed to other transforms.
+ Value *Src = CI.getOperand(0);
+ PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
+ PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
+
+ Type *DestElemTy = DestTy->getElementType();
+ if (SrcTy->getElementType() != DestElemTy) {
+ Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
+ if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
+ // Handle vectors of pointers.
+ MidTy = VectorType::get(MidTy, VT->getNumElements());
+ }
+
+ Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
+ return new AddrSpaceCastInst(NewBitCast, CI.getType());
+ }
+
+ return commonPointerCastTransforms(CI);
}
OpenPOWER on IntegriCloud