summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp1401
1 files changed, 1401 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
new file mode 100644
index 0000000..77e4727
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp
@@ -0,0 +1,1401 @@
+//===- InstCombineCalls.cpp -----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visitCall and visitInvoke functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/Local.h"
+using namespace llvm;
+
+/// getPromotedType - Return the specified type promoted as it would be to pass
+/// though a va_arg area.
+static Type *getPromotedType(Type *Ty) {
+ if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
+ if (ITy->getBitWidth() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+ }
+ return Ty;
+}
+
+
+Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
+ unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), TD);
+ unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), TD);
+ unsigned MinAlign = std::min(DstAlign, SrcAlign);
+ unsigned CopyAlign = MI->getAlignment();
+
+ if (CopyAlign < MinAlign) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ MinAlign, false));
+ return MI;
+ }
+
+ // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
+ // load/store.
+ ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
+ if (MemOpLength == 0) return 0;
+
+ // Source and destination pointer types are always "i8*" for intrinsic. See
+ // if the size is something we can handle with a single primitive load/store.
+ // A single load+store correctly handles overlapping memory in the memmove
+ // case.
+ unsigned Size = MemOpLength->getZExtValue();
+ if (Size == 0) return MI; // Delete this mem transfer.
+
+ if (Size > 8 || (Size&(Size-1)))
+ return 0; // If not 1/2/4/8 bytes, exit.
+
+ // Use an integer load+store unless we can find something better.
+ unsigned SrcAddrSp =
+ cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
+ unsigned DstAddrSp =
+ cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
+
+ IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
+ Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
+ Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
+
+ // Memcpy forces the use of i8* for the source and destination. That means
+ // that if you're using memcpy to move one double around, you'll get a cast
+ // from double* to i8*. We'd much rather use a double load+store rather than
+ // an i64 load+store, here because this improves the odds that the source or
+ // dest address will be promotable. See if we can find a better type than the
+ // integer datatype.
+ Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
+ if (StrippedDest != MI->getArgOperand(0)) {
+ Type *SrcETy = cast<PointerType>(StrippedDest->getType())
+ ->getElementType();
+ if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
+ // The SrcETy might be something like {{{double}}} or [1 x double]. Rip
+ // down through these levels if so.
+ while (!SrcETy->isSingleValueType()) {
+ if (StructType *STy = dyn_cast<StructType>(SrcETy)) {
+ if (STy->getNumElements() == 1)
+ SrcETy = STy->getElementType(0);
+ else
+ break;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
+ if (ATy->getNumElements() == 1)
+ SrcETy = ATy->getElementType();
+ else
+ break;
+ } else
+ break;
+ }
+
+ if (SrcETy->isSingleValueType()) {
+ NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
+ NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
+ }
+ }
+ }
+
+
+ // If the memcpy/memmove provides better alignment info than we can
+ // infer, use it.
+ SrcAlign = std::max(SrcAlign, CopyAlign);
+ DstAlign = std::max(DstAlign, CopyAlign);
+
+ Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
+ Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
+ LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
+ L->setAlignment(SrcAlign);
+ StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
+ S->setAlignment(DstAlign);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
+ return MI;
+}
+
+Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
+ unsigned Alignment = getKnownAlignment(MI->getDest(), TD);
+ if (MI->getAlignment() < Alignment) {
+ MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
+ Alignment, false));
+ return MI;
+ }
+
+ // Extract the length and alignment and fill if they are constant.
+ ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
+ ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
+ if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
+ return 0;
+ uint64_t Len = LenC->getZExtValue();
+ Alignment = MI->getAlignment();
+
+ // If the length is zero, this is a no-op
+ if (Len == 0) return MI; // memset(d,c,0,a) -> noop
+
+ // memset(s,c,n) -> store s, c (for n=1,2,4,8)
+ if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
+ Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
+
+ Value *Dest = MI->getDest();
+ unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
+ Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
+ Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
+
+ // Alignment 0 is identity for alignment 1 for memset, but not store.
+ if (Alignment == 0) Alignment = 1;
+
+ // Extract the fill value and store.
+ uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
+ StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
+ MI->isVolatile());
+ S->setAlignment(Alignment);
+
+ // Set the size of the copy to 0, it will be deleted on the next iteration.
+ MI->setLength(Constant::getNullValue(LenC->getType()));
+ return MI;
+ }
+
+ return 0;
+}
+
+/// visitCallInst - CallInst simplification. This mostly only handles folding
+/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
+/// the heavy lifting.
+///
+Instruction *InstCombiner::visitCallInst(CallInst &CI) {
+ if (isFreeCall(&CI))
+ return visitFree(CI);
+ if (isMalloc(&CI))
+ return visitMalloc(CI);
+
+ // If the caller function is nounwind, mark the call as nounwind, even if the
+ // callee isn't.
+ if (CI.getParent()->getParent()->doesNotThrow() &&
+ !CI.doesNotThrow()) {
+ CI.setDoesNotThrow();
+ return &CI;
+ }
+
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
+ if (!II) return visitCallSite(&CI);
+
+ // Intrinsics cannot occur in an invoke, so handle them here instead of in
+ // visitCallSite.
+ if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
+ bool Changed = false;
+
+ // memmove/cpy/set of zero bytes is a noop.
+ if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
+ if (NumBytes->isNullValue())
+ return EraseInstFromFunction(CI);
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
+ if (CI->getZExtValue() == 1) {
+ // Replace the instruction with just byte operations. We would
+ // transform other cases to loads/stores, but we don't know if
+ // alignment is sufficient.
+ }
+ }
+
+ // No other transformations apply to volatile transfers.
+ if (MI->isVolatile())
+ return 0;
+
+ // If we have a memmove and the source operation is a constant global,
+ // then the source and dest pointers can't alias, so we can change this
+ // into a call to memcpy.
+ if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
+ if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
+ if (GVSrc->isConstant()) {
+ Module *M = CI.getParent()->getParent()->getParent();
+ Intrinsic::ID MemCpyID = Intrinsic::memcpy;
+ Type *Tys[3] = { CI.getArgOperand(0)->getType(),
+ CI.getArgOperand(1)->getType(),
+ CI.getArgOperand(2)->getType() };
+ CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
+ Changed = true;
+ }
+ }
+
+ if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
+ // memmove(x,x,size) -> noop.
+ if (MTI->getSource() == MTI->getDest())
+ return EraseInstFromFunction(CI);
+ }
+
+ // If we can determine a pointer alignment that is bigger than currently
+ // set, update the alignment.
+ if (isa<MemTransferInst>(MI)) {
+ if (Instruction *I = SimplifyMemTransfer(MI))
+ return I;
+ } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
+ if (Instruction *I = SimplifyMemSet(MSI))
+ return I;
+ }
+
+ if (Changed) return II;
+ }
+
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::objectsize: {
+ // We need target data for just about everything so depend on it.
+ if (!TD) break;
+
+ Type *ReturnTy = CI.getType();
+ uint64_t DontKnow = II->getArgOperand(1) == Builder->getTrue() ? 0 : -1ULL;
+
+ // Get to the real allocated thing and offset as fast as possible.
+ Value *Op1 = II->getArgOperand(0)->stripPointerCasts();
+
+ uint64_t Offset = 0;
+ uint64_t Size = -1ULL;
+
+ // Try to look through constant GEPs.
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1)) {
+ if (!GEP->hasAllConstantIndices()) break;
+
+ // Get the current byte offset into the thing. Use the original
+ // operand in case we're looking through a bitcast.
+ SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
+ if (!GEP->getPointerOperandType()->isPointerTy())
+ return 0;
+ Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
+
+ Op1 = GEP->getPointerOperand()->stripPointerCasts();
+
+ // Make sure we're not a constant offset from an external
+ // global.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1))
+ if (!GV->hasDefinitiveInitializer()) break;
+ }
+
+ // If we've stripped down to a single global variable that we
+ // can know the size of then just return that.
+ if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
+ if (GV->hasDefinitiveInitializer()) {
+ Constant *C = GV->getInitializer();
+ Size = TD->getTypeAllocSize(C->getType());
+ } else {
+ // Can't determine size of the GV.
+ Constant *RetVal = ConstantInt::get(ReturnTy, DontKnow);
+ return ReplaceInstUsesWith(CI, RetVal);
+ }
+ } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
+ // Get alloca size.
+ if (AI->getAllocatedType()->isSized()) {
+ Size = TD->getTypeAllocSize(AI->getAllocatedType());
+ if (AI->isArrayAllocation()) {
+ const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
+ if (!C) break;
+ Size *= C->getZExtValue();
+ }
+ }
+ } else if (CallInst *MI = extractMallocCall(Op1)) {
+ // Get allocation size.
+ Type* MallocType = getMallocAllocatedType(MI);
+ if (MallocType && MallocType->isSized())
+ if (Value *NElems = getMallocArraySize(MI, TD, true))
+ if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
+ Size = NElements->getZExtValue() * TD->getTypeAllocSize(MallocType);
+ }
+
+ // Do not return "I don't know" here. Later optimization passes could
+ // make it possible to evaluate objectsize to a constant.
+ if (Size == -1ULL)
+ break;
+
+ if (Size < Offset) {
+ // Out of bound reference? Negative index normalized to large
+ // index? Just return "I don't know".
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, DontKnow));
+ }
+ return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, Size-Offset));
+ }
+ case Intrinsic::bswap:
+ // bswap(bswap(x)) -> x
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getArgOperand(0)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap)
+ return ReplaceInstUsesWith(CI, Operand->getArgOperand(0));
+
+ // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
+ if (TruncInst *TI = dyn_cast<TruncInst>(II->getArgOperand(0))) {
+ if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
+ if (Operand->getIntrinsicID() == Intrinsic::bswap) {
+ unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
+ TI->getType()->getPrimitiveSizeInBits();
+ Value *CV = ConstantInt::get(Operand->getType(), C);
+ Value *V = Builder->CreateLShr(Operand->getArgOperand(0), CV);
+ return new TruncInst(V, TI->getType());
+ }
+ }
+
+ break;
+ case Intrinsic::powi:
+ if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ // powi(x, 0) -> 1.0
+ if (Power->isZero())
+ return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
+ // powi(x, 1) -> x
+ if (Power->isOne())
+ return ReplaceInstUsesWith(CI, II->getArgOperand(0));
+ // powi(x, -1) -> 1/x
+ if (Power->isAllOnesValue())
+ return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
+ II->getArgOperand(0));
+ }
+ break;
+ case Intrinsic::cttz: {
+ // If all bits below the first known one are known zero,
+ // this value is constant.
+ IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
+ // FIXME: Try to simplify vectors of integers.
+ if (!IT) break;
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
+ unsigned TrailingZeros = KnownOne.countTrailingZeros();
+ APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, TrailingZeros)));
+
+ }
+ break;
+ case Intrinsic::ctlz: {
+ // If all bits above the first known one are known zero,
+ // this value is constant.
+ IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
+ // FIXME: Try to simplify vectors of integers.
+ if (!IT) break;
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt KnownZero(BitWidth, 0);
+ APInt KnownOne(BitWidth, 0);
+ ComputeMaskedBits(II->getArgOperand(0), KnownZero, KnownOne);
+ unsigned LeadingZeros = KnownOne.countLeadingZeros();
+ APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
+ if ((Mask & KnownZero) == Mask)
+ return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
+ APInt(BitWidth, LeadingZeros)));
+
+ }
+ break;
+ case Intrinsic::uadd_with_overflow: {
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
+ uint32_t BitWidth = IT->getBitWidth();
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
+ bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
+ bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
+
+ if (LHSKnownNegative || LHSKnownPositive) {
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
+ bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
+ bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
+ if (LHSKnownNegative && RHSKnownNegative) {
+ // The sign bit is set in both cases: this MUST overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Value *Add = Builder->CreateAdd(LHS, RHS);
+ Add->takeName(&CI);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),
+ ConstantInt::getTrue(II->getContext())
+ };
+ StructType *ST = cast<StructType>(II->getType());
+ Constant *Struct = ConstantStruct::get(ST, V);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+
+ if (LHSKnownPositive && RHSKnownPositive) {
+ // The sign bit is clear in both cases: this CANNOT overflow.
+ // Create a simple add instruction, and insert it into the struct.
+ Value *Add = Builder->CreateNUWAdd(LHS, RHS);
+ Add->takeName(&CI);
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ StructType *ST = cast<StructType>(II->getType());
+ Constant *Struct = ConstantStruct::get(ST, V);
+ return InsertValueInst::Create(Struct, Add, 0);
+ }
+ }
+ }
+ // FALL THROUGH uadd into sadd
+ case Intrinsic::sadd_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getArgOperand(0)) &&
+ !isa<Constant>(II->getArgOperand(1))) {
+ Value *LHS = II->getArgOperand(0);
+ II->setArgOperand(0, II->getArgOperand(1));
+ II->setArgOperand(1, LHS);
+ return II;
+ }
+
+ // X + undef -> undef
+ if (isa<UndefValue>(II->getArgOperand(1)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ // X + 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getArgOperand(0)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct =
+ ConstantStruct::get(cast<StructType>(II->getType()), V);
+ return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ }
+ }
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ // undef - X -> undef
+ // X - undef -> undef
+ if (isa<UndefValue>(II->getArgOperand(0)) ||
+ isa<UndefValue>(II->getArgOperand(1)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ // X - 0 -> {X, false}
+ if (RHS->isZero()) {
+ Constant *V[] = {
+ UndefValue::get(II->getArgOperand(0)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct =
+ ConstantStruct::get(cast<StructType>(II->getType()), V);
+ return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ }
+ }
+ break;
+ case Intrinsic::umul_with_overflow: {
+ Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
+ unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
+
+ APInt LHSKnownZero(BitWidth, 0);
+ APInt LHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
+ APInt RHSKnownZero(BitWidth, 0);
+ APInt RHSKnownOne(BitWidth, 0);
+ ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
+
+ // Get the largest possible values for each operand.
+ APInt LHSMax = ~LHSKnownZero;
+ APInt RHSMax = ~RHSKnownZero;
+
+ // If multiplying the maximum values does not overflow then we can turn
+ // this into a plain NUW mul.
+ bool Overflow;
+ LHSMax.umul_ov(RHSMax, Overflow);
+ if (!Overflow) {
+ Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
+ Constant *V[] = {
+ UndefValue::get(LHS->getType()),
+ Builder->getFalse()
+ };
+ Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
+ return InsertValueInst::Create(Struct, Mul, 0);
+ }
+ } // FALL THROUGH
+ case Intrinsic::smul_with_overflow:
+ // Canonicalize constants into the RHS.
+ if (isa<Constant>(II->getArgOperand(0)) &&
+ !isa<Constant>(II->getArgOperand(1))) {
+ Value *LHS = II->getArgOperand(0);
+ II->setArgOperand(0, II->getArgOperand(1));
+ II->setArgOperand(1, LHS);
+ return II;
+ }
+
+ // X * undef -> undef
+ if (isa<UndefValue>(II->getArgOperand(1)))
+ return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
+
+ if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
+ // X*0 -> {0, false}
+ if (RHSI->isZero())
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
+
+ // X * 1 -> {X, false}
+ if (RHSI->equalsInt(1)) {
+ Constant *V[] = {
+ UndefValue::get(II->getArgOperand(0)->getType()),
+ ConstantInt::getFalse(II->getContext())
+ };
+ Constant *Struct =
+ ConstantStruct::get(cast<StructType>(II->getType()), V);
+ return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
+ }
+ }
+ break;
+ case Intrinsic::ppc_altivec_lvx:
+ case Intrinsic::ppc_altivec_lvxl:
+ // Turn PPC lvx -> load if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
+ Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
+ PointerType::getUnqual(II->getType()));
+ return new LoadInst(Ptr);
+ }
+ break;
+ case Intrinsic::ppc_altivec_stvx:
+ case Intrinsic::ppc_altivec_stvxl:
+ // Turn stvx -> store if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, TD) >= 16) {
+ Type *OpPtrTy =
+ PointerType::getUnqual(II->getArgOperand(0)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
+ return new StoreInst(II->getArgOperand(0), Ptr);
+ }
+ break;
+ case Intrinsic::x86_sse_storeu_ps:
+ case Intrinsic::x86_sse2_storeu_pd:
+ case Intrinsic::x86_sse2_storeu_dq:
+ // Turn X86 storeu -> store if the pointer is known aligned.
+ if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, TD) >= 16) {
+ Type *OpPtrTy =
+ PointerType::getUnqual(II->getArgOperand(1)->getType());
+ Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
+ return new StoreInst(II->getArgOperand(1), Ptr);
+ }
+ break;
+
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64: {
+ // These intrinsics only demand the 0th element of their input vectors. If
+ // we can simplify the input based on that, do so now.
+ unsigned VWidth =
+ cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
+ APInt DemandedElts(VWidth, 1);
+ APInt UndefElts(VWidth, 0);
+ if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
+ DemandedElts, UndefElts)) {
+ II->setArgOperand(0, V);
+ return II;
+ }
+ break;
+ }
+
+
+ case Intrinsic::x86_sse41_pmovsxbw:
+ case Intrinsic::x86_sse41_pmovsxwd:
+ case Intrinsic::x86_sse41_pmovsxdq:
+ case Intrinsic::x86_sse41_pmovzxbw:
+ case Intrinsic::x86_sse41_pmovzxwd:
+ case Intrinsic::x86_sse41_pmovzxdq: {
+ // pmov{s|z}x ignores the upper half of their input vectors.
+ unsigned VWidth =
+ cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
+ unsigned LowHalfElts = VWidth / 2;
+ APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
+ APInt UndefElts(VWidth, 0);
+ if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
+ InputDemandedElts,
+ UndefElts)) {
+ II->setArgOperand(0, TmpV);
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::ppc_altivec_vperm:
+ // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
+ if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
+ assert(Mask->getType()->getVectorNumElements() == 16 &&
+ "Bad type for intrinsic!");
+
+ // Check that all of the elements are integer constants or undefs.
+ bool AllEltsOk = true;
+ for (unsigned i = 0; i != 16; ++i) {
+ Constant *Elt = Mask->getAggregateElement(i);
+ if (Elt == 0 ||
+ !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
+ AllEltsOk = false;
+ break;
+ }
+ }
+
+ if (AllEltsOk) {
+ // Cast the input vectors to byte vectors.
+ Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
+ Mask->getType());
+ Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
+ Mask->getType());
+ Value *Result = UndefValue::get(Op0->getType());
+
+ // Only extract each element once.
+ Value *ExtractedElts[32];
+ memset(ExtractedElts, 0, sizeof(ExtractedElts));
+
+ for (unsigned i = 0; i != 16; ++i) {
+ if (isa<UndefValue>(Mask->getAggregateElement(i)))
+ continue;
+ unsigned Idx =
+ cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
+ Idx &= 31; // Match the hardware behavior.
+
+ if (ExtractedElts[Idx] == 0) {
+ ExtractedElts[Idx] =
+ Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
+ Builder->getInt32(Idx&15));
+ }
+
+ // Insert this value into the result vector.
+ Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
+ Builder->getInt32(i));
+ }
+ return CastInst::Create(Instruction::BitCast, Result, CI.getType());
+ }
+ }
+ break;
+
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), TD);
+ unsigned AlignArg = II->getNumArgOperands() - 1;
+ ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
+ if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
+ II->setArgOperand(AlignArg,
+ ConstantInt::get(Type::getInt32Ty(II->getContext()),
+ MemAlign, false));
+ return II;
+ }
+ break;
+ }
+
+ case Intrinsic::stackrestore: {
+ // If the save is right next to the restore, remove the restore. This can
+ // happen when variable allocas are DCE'd.
+ if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
+ if (SS->getIntrinsicID() == Intrinsic::stacksave) {
+ BasicBlock::iterator BI = SS;
+ if (&*++BI == II)
+ return EraseInstFromFunction(CI);
+ }
+ }
+
+ // Scan down this block to see if there is another stack restore in the
+ // same block without an intervening call/alloca.
+ BasicBlock::iterator BI = II;
+ TerminatorInst *TI = II->getParent()->getTerminator();
+ bool CannotRemove = false;
+ for (++BI; &*BI != TI; ++BI) {
+ if (isa<AllocaInst>(BI) || isMalloc(BI)) {
+ CannotRemove = true;
+ break;
+ }
+ if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
+ // If there is a stackrestore below this one, remove this one.
+ if (II->getIntrinsicID() == Intrinsic::stackrestore)
+ return EraseInstFromFunction(CI);
+ // Otherwise, ignore the intrinsic.
+ } else {
+ // If we found a non-intrinsic call, we can't remove the stack
+ // restore.
+ CannotRemove = true;
+ break;
+ }
+ }
+ }
+
+ // If the stack restore is in a return, resume, or unwind block and if there
+ // are no allocas or calls between the restore and the return, nuke the
+ // restore.
+ if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
+ return EraseInstFromFunction(CI);
+ break;
+ }
+ }
+
+ return visitCallSite(II);
+}
+
+// InvokeInst simplification
+//
+Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
+ return visitCallSite(&II);
+}
+
+/// isSafeToEliminateVarargsCast - If this cast does not affect the value
+/// passed through the varargs area, we can eliminate the use of the cast.
+static bool isSafeToEliminateVarargsCast(const CallSite CS,
+ const CastInst * const CI,
+ const TargetData * const TD,
+ const int ix) {
+ if (!CI->isLosslessCast())
+ return false;
+
+ // The size of ByVal arguments is derived from the type, so we
+ // can't change to a type with a different size. If the size were
+ // passed explicitly we could avoid this check.
+ if (!CS.isByValArgument(ix))
+ return true;
+
+ Type* SrcTy =
+ cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
+ Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
+ if (!SrcTy->isSized() || !DstTy->isSized())
+ return false;
+ if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
+ return false;
+ return true;
+}
+
+namespace {
+class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
+ InstCombiner *IC;
+protected:
+ void replaceCall(Value *With) {
+ NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
+ }
+ bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
+ if (CI->getArgOperand(SizeCIOp) == CI->getArgOperand(SizeArgOp))
+ return true;
+ if (ConstantInt *SizeCI =
+ dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) {
+ if (SizeCI->isAllOnesValue())
+ return true;
+ if (isString) {
+ uint64_t Len = GetStringLength(CI->getArgOperand(SizeArgOp));
+ // If the length is 0 we don't know how long it is and so we can't
+ // remove the check.
+ if (Len == 0) return false;
+ return SizeCI->getZExtValue() >= Len;
+ }
+ if (ConstantInt *Arg = dyn_cast<ConstantInt>(
+ CI->getArgOperand(SizeArgOp)))
+ return SizeCI->getZExtValue() >= Arg->getZExtValue();
+ }
+ return false;
+ }
+public:
+ InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
+ Instruction *NewInstruction;
+};
+} // end anonymous namespace
+
+// Try to fold some different type of calls here.
+// Currently we're only working with the checking functions, memcpy_chk,
+// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
+// strcat_chk and strncat_chk.
+Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
+ if (CI->getCalledFunction() == 0) return 0;
+
+ InstCombineFortifiedLibCalls Simplifier(this);
+ Simplifier.fold(CI, TD);
+ return Simplifier.NewInstruction;
+}
+
+static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
+ // Strip off at most one level of pointer casts, looking for an alloca. This
+ // is good enough in practice and simpler than handling any number of casts.
+ Value *Underlying = TrampMem->stripPointerCasts();
+ if (Underlying != TrampMem &&
+ (!Underlying->hasOneUse() || *Underlying->use_begin() != TrampMem))
+ return 0;
+ if (!isa<AllocaInst>(Underlying))
+ return 0;
+
+ IntrinsicInst *InitTrampoline = 0;
+ for (Value::use_iterator I = TrampMem->use_begin(), E = TrampMem->use_end();
+ I != E; I++) {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(*I);
+ if (!II)
+ return 0;
+ if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
+ if (InitTrampoline)
+ // More than one init_trampoline writes to this value. Give up.
+ return 0;
+ InitTrampoline = II;
+ continue;
+ }
+ if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
+ // Allow any number of calls to adjust.trampoline.
+ continue;
+ return 0;
+ }
+
+ // No call to init.trampoline found.
+ if (!InitTrampoline)
+ return 0;
+
+ // Check that the alloca is being used in the expected way.
+ if (InitTrampoline->getOperand(0) != TrampMem)
+ return 0;
+
+ return InitTrampoline;
+}
+
+static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
+ Value *TrampMem) {
+ // Visit all the previous instructions in the basic block, and try to find a
+ // init.trampoline which has a direct path to the adjust.trampoline.
+ for (BasicBlock::iterator I = AdjustTramp,
+ E = AdjustTramp->getParent()->begin(); I != E; ) {
+ Instruction *Inst = --I;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
+ II->getOperand(0) == TrampMem)
+ return II;
+ if (Inst->mayWriteToMemory())
+ return 0;
+ }
+ return 0;
+}
+
+// Given a call to llvm.adjust.trampoline, find and return the corresponding
+// call to llvm.init.trampoline if the call to the trampoline can be optimized
+// to a direct call to a function. Otherwise return NULL.
+//
+static IntrinsicInst *FindInitTrampoline(Value *Callee) {
+ Callee = Callee->stripPointerCasts();
+ IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
+ if (!AdjustTramp ||
+ AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
+ return 0;
+
+ Value *TrampMem = AdjustTramp->getOperand(0);
+
+ if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
+ return IT;
+ if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
+ return IT;
+ return 0;
+}
+
+// visitCallSite - Improvements for call and invoke instructions.
+//
+Instruction *InstCombiner::visitCallSite(CallSite CS) {
+ bool Changed = false;
+
+ // If the callee is a pointer to a function, attempt to move any casts to the
+ // arguments of the call/invoke.
+ Value *Callee = CS.getCalledValue();
+ if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
+ return 0;
+
+ if (Function *CalleeF = dyn_cast<Function>(Callee))
+ // If the call and callee calling conventions don't match, this call must
+ // be unreachable, as the call is undefined.
+ if (CalleeF->getCallingConv() != CS.getCallingConv() &&
+ // Only do this for calls to a function with a body. A prototype may
+ // not actually end up matching the implementation's calling conv for a
+ // variety of reasons (e.g. it may be written in assembly).
+ !CalleeF->isDeclaration()) {
+ Instruction *OldCall = CS.getInstruction();
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ OldCall);
+ // If OldCall dues not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!OldCall->getType()->isVoidTy())
+ ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
+ if (isa<CallInst>(OldCall))
+ return EraseInstFromFunction(*OldCall);
+
+ // We cannot remove an invoke, because it would change the CFG, just
+ // change the callee to a null pointer.
+ cast<InvokeInst>(OldCall)->setCalledFunction(
+ Constant::getNullValue(CalleeF->getType()));
+ return 0;
+ }
+
+ if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
+ // This instruction is not reachable, just remove it. We insert a store to
+ // undef so that we know that this code is not reachable, despite the fact
+ // that we can't modify the CFG here.
+ new StoreInst(ConstantInt::getTrue(Callee->getContext()),
+ UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
+ CS.getInstruction());
+
+ // If CS does not return void then replaceAllUsesWith undef.
+ // This allows ValueHandlers and custom metadata to adjust itself.
+ if (!CS.getInstruction()->getType()->isVoidTy())
+ ReplaceInstUsesWith(*CS.getInstruction(),
+ UndefValue::get(CS.getInstruction()->getType()));
+
+ if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
+ // Don't break the CFG, insert a dummy cond branch.
+ BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
+ ConstantInt::getTrue(Callee->getContext()), II);
+ }
+ return EraseInstFromFunction(*CS.getInstruction());
+ }
+
+ if (IntrinsicInst *II = FindInitTrampoline(Callee))
+ return transformCallThroughTrampoline(CS, II);
+
+ PointerType *PTy = cast<PointerType>(Callee->getType());
+ FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ if (FTy->isVarArg()) {
+ int ix = FTy->getNumParams();
+ // See if we can optimize any arguments passed through the varargs area of
+ // the call.
+ for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
+ E = CS.arg_end(); I != E; ++I, ++ix) {
+ CastInst *CI = dyn_cast<CastInst>(*I);
+ if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
+ *I = CI->getOperand(0);
+ Changed = true;
+ }
+ }
+ }
+
+ if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
+ // Inline asm calls cannot throw - mark them 'nounwind'.
+ CS.setDoesNotThrow();
+ Changed = true;
+ }
+
+ // Try to optimize the call if possible, we require TargetData for most of
+ // this. None of these calls are seen as possibly dead so go ahead and
+ // delete the instruction now.
+ if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
+ Instruction *I = tryOptimizeCall(CI, TD);
+ // If we changed something return the result, etc. Otherwise let
+ // the fallthrough check.
+ if (I) return EraseInstFromFunction(*I);
+ }
+
+ return Changed ? CS.getInstruction() : 0;
+}
+
+// transformConstExprCastCall - If the callee is a constexpr cast of a function,
+// attempt to move the cast to the arguments of the call/invoke.
+//
+bool InstCombiner::transformConstExprCastCall(CallSite CS) {
+ Function *Callee =
+ dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
+ if (Callee == 0)
+ return false;
+ Instruction *Caller = CS.getInstruction();
+ const AttrListPtr &CallerPAL = CS.getAttributes();
+
+ // Okay, this is a cast from a function to a different type. Unless doing so
+ // would cause a type conversion of one of our arguments, change this call to
+ // be a direct call with arguments casted to the appropriate types.
+ //
+ FunctionType *FT = Callee->getFunctionType();
+ Type *OldRetTy = Caller->getType();
+ Type *NewRetTy = FT->getReturnType();
+
+ if (NewRetTy->isStructTy())
+ return false; // TODO: Handle multiple return values.
+
+ // Check to see if we are changing the return type...
+ if (OldRetTy != NewRetTy) {
+ if (Callee->isDeclaration() &&
+ // Conversion is ok if changing from one pointer type to another or from
+ // a pointer to an integer of the same size.
+ !((OldRetTy->isPointerTy() || !TD ||
+ OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
+ (NewRetTy->isPointerTy() || !TD ||
+ NewRetTy == TD->getIntPtrType(Caller->getContext()))))
+ return false; // Cannot transform this return value.
+
+ if (!Caller->use_empty() &&
+ // void -> non-void is handled specially
+ !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
+ return false; // Cannot transform this return value.
+
+ if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+ if (RAttrs & Attribute::typeIncompatible(NewRetTy))
+ return false; // Attribute not compatible with transformed value.
+ }
+
+ // If the callsite is an invoke instruction, and the return value is used by
+ // a PHI node in a successor, we cannot change the return type of the call
+ // because there is no place to put the cast instruction (without breaking
+ // the critical edge). Bail out in this case.
+ if (!Caller->use_empty())
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
+ for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
+ UI != E; ++UI)
+ if (PHINode *PN = dyn_cast<PHINode>(*UI))
+ if (PN->getParent() == II->getNormalDest() ||
+ PN->getParent() == II->getUnwindDest())
+ return false;
+ }
+
+ unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
+ unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
+
+ CallSite::arg_iterator AI = CS.arg_begin();
+ for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
+ Type *ParamTy = FT->getParamType(i);
+ Type *ActTy = (*AI)->getType();
+
+ if (!CastInst::isCastable(ActTy, ParamTy))
+ return false; // Cannot transform this parameter value.
+
+ Attributes Attrs = CallerPAL.getParamAttributes(i + 1);
+ if (Attrs & Attribute::typeIncompatible(ParamTy))
+ return false; // Attribute not compatible with transformed value.
+
+ // If the parameter is passed as a byval argument, then we have to have a
+ // sized type and the sized type has to have the same size as the old type.
+ if (ParamTy != ActTy && (Attrs & Attribute::ByVal)) {
+ PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
+ if (ParamPTy == 0 || !ParamPTy->getElementType()->isSized() || TD == 0)
+ return false;
+
+ Type *CurElTy = cast<PointerType>(ActTy)->getElementType();
+ if (TD->getTypeAllocSize(CurElTy) !=
+ TD->getTypeAllocSize(ParamPTy->getElementType()))
+ return false;
+ }
+
+ // Converting from one pointer type to another or between a pointer and an
+ // integer of the same size is safe even if we do not have a body.
+ bool isConvertible = ActTy == ParamTy ||
+ (TD && ((ParamTy->isPointerTy() ||
+ ParamTy == TD->getIntPtrType(Caller->getContext())) &&
+ (ActTy->isPointerTy() ||
+ ActTy == TD->getIntPtrType(Caller->getContext()))));
+ if (Callee->isDeclaration() && !isConvertible) return false;
+ }
+
+ if (Callee->isDeclaration()) {
+ // Do not delete arguments unless we have a function body.
+ if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
+ return false;
+
+ // If the callee is just a declaration, don't change the varargsness of the
+ // call. We don't want to introduce a varargs call where one doesn't
+ // already exist.
+ PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
+ if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
+ return false;
+
+ // If both the callee and the cast type are varargs, we still have to make
+ // sure the number of fixed parameters are the same or we have the same
+ // ABI issues as if we introduce a varargs call.
+ if (FT->isVarArg() &&
+ cast<FunctionType>(APTy->getElementType())->isVarArg() &&
+ FT->getNumParams() !=
+ cast<FunctionType>(APTy->getElementType())->getNumParams())
+ return false;
+ }
+
+ if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
+ !CallerPAL.isEmpty())
+ // In this case we have more arguments than the new function type, but we
+ // won't be dropping them. Check that these extra arguments have attributes
+ // that are compatible with being a vararg call argument.
+ for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
+ if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
+ break;
+ Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
+ if (PAttrs & Attribute::VarArgsIncompatible)
+ return false;
+ }
+
+
+ // Okay, we decided that this is a safe thing to do: go ahead and start
+ // inserting cast instructions as necessary.
+ std::vector<Value*> Args;
+ Args.reserve(NumActualArgs);
+ SmallVector<AttributeWithIndex, 8> attrVec;
+ attrVec.reserve(NumCommonArgs);
+
+ // Get any return attributes.
+ Attributes RAttrs = CallerPAL.getRetAttributes();
+
+ // If the return value is not being used, the type may not be compatible
+ // with the existing attributes. Wipe out any problematic attributes.
+ RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
+
+ // Add the new return attributes.
+ if (RAttrs)
+ attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
+
+ AI = CS.arg_begin();
+ for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
+ Type *ParamTy = FT->getParamType(i);
+ if ((*AI)->getType() == ParamTy) {
+ Args.push_back(*AI);
+ } else {
+ Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
+ false, ParamTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy));
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+
+ // If the function takes more arguments than the call was taking, add them
+ // now.
+ for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
+ Args.push_back(Constant::getNullValue(FT->getParamType(i)));
+
+ // If we are removing arguments to the function, emit an obnoxious warning.
+ if (FT->getNumParams() < NumActualArgs) {
+ if (!FT->isVarArg()) {
+ errs() << "WARNING: While resolving call to function '"
+ << Callee->getName() << "' arguments were dropped!\n";
+ } else {
+ // Add all of the arguments in their promoted form to the arg list.
+ for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
+ Type *PTy = getPromotedType((*AI)->getType());
+ if (PTy != (*AI)->getType()) {
+ // Must promote to pass through va_arg area!
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(*AI, false, PTy, false);
+ Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
+ } else {
+ Args.push_back(*AI);
+ }
+
+ // Add any parameter attributes.
+ if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
+ attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
+ }
+ }
+ }
+
+ if (Attributes FnAttrs = CallerPAL.getFnAttributes())
+ attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
+
+ if (NewRetTy->isVoidTy())
+ Caller->setName(""); // Void type should not have a name.
+
+ const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
+ attrVec.end());
+
+ Instruction *NC;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
+ II->getUnwindDest(), Args);
+ NC->takeName(II);
+ cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
+ } else {
+ CallInst *CI = cast<CallInst>(Caller);
+ NC = Builder->CreateCall(Callee, Args);
+ NC->takeName(CI);
+ if (CI->isTailCall())
+ cast<CallInst>(NC)->setTailCall();
+ cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
+ cast<CallInst>(NC)->setAttributes(NewCallerPAL);
+ }
+
+ // Insert a cast of the return type as necessary.
+ Value *NV = NC;
+ if (OldRetTy != NV->getType() && !Caller->use_empty()) {
+ if (!NV->getType()->isVoidTy()) {
+ Instruction::CastOps opcode =
+ CastInst::getCastOpcode(NC, false, OldRetTy, false);
+ NV = NC = CastInst::Create(opcode, NC, OldRetTy);
+ NC->setDebugLoc(Caller->getDebugLoc());
+
+ // If this is an invoke instruction, we should insert it after the first
+ // non-phi, instruction in the normal successor block.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
+ InsertNewInstBefore(NC, *I);
+ } else {
+ // Otherwise, it's a call, just insert cast right after the call.
+ InsertNewInstBefore(NC, *Caller);
+ }
+ Worklist.AddUsersToWorkList(*Caller);
+ } else {
+ NV = UndefValue::get(Caller->getType());
+ }
+ }
+
+ if (!Caller->use_empty())
+ ReplaceInstUsesWith(*Caller, NV);
+
+ EraseInstFromFunction(*Caller);
+ return true;
+}
+
+// transformCallThroughTrampoline - Turn a call to a function created by
+// init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
+// underlying function.
+//
+Instruction *
+InstCombiner::transformCallThroughTrampoline(CallSite CS,
+ IntrinsicInst *Tramp) {
+ Value *Callee = CS.getCalledValue();
+ PointerType *PTy = cast<PointerType>(Callee->getType());
+ FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
+ const AttrListPtr &Attrs = CS.getAttributes();
+
+ // If the call already has the 'nest' attribute somewhere then give up -
+ // otherwise 'nest' would occur twice after splicing in the chain.
+ if (Attrs.hasAttrSomewhere(Attribute::Nest))
+ return 0;
+
+ assert(Tramp &&
+ "transformCallThroughTrampoline called with incorrect CallSite.");
+
+ Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
+ PointerType *NestFPTy = cast<PointerType>(NestF->getType());
+ FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
+
+ const AttrListPtr &NestAttrs = NestF->getAttributes();
+ if (!NestAttrs.isEmpty()) {
+ unsigned NestIdx = 1;
+ Type *NestTy = 0;
+ Attributes NestAttr = Attribute::None;
+
+ // Look for a parameter marked with the 'nest' attribute.
+ for (FunctionType::param_iterator I = NestFTy->param_begin(),
+ E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
+ if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
+ // Record the parameter type and any other attributes.
+ NestTy = *I;
+ NestAttr = NestAttrs.getParamAttributes(NestIdx);
+ break;
+ }
+
+ if (NestTy) {
+ Instruction *Caller = CS.getInstruction();
+ std::vector<Value*> NewArgs;
+ NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
+
+ SmallVector<AttributeWithIndex, 8> NewAttrs;
+ NewAttrs.reserve(Attrs.getNumSlots() + 1);
+
+ // Insert the nest argument into the call argument list, which may
+ // mean appending it. Likewise for attributes.
+
+ // Add any result attributes.
+ if (Attributes Attr = Attrs.getRetAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
+
+ {
+ unsigned Idx = 1;
+ CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
+ do {
+ if (Idx == NestIdx) {
+ // Add the chain argument and attributes.
+ Value *NestVal = Tramp->getArgOperand(2);
+ if (NestVal->getType() != NestTy)
+ NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
+ NewArgs.push_back(NestVal);
+ NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
+ }
+
+ if (I == E)
+ break;
+
+ // Add the original argument and attributes.
+ NewArgs.push_back(*I);
+ if (Attributes Attr = Attrs.getParamAttributes(Idx))
+ NewAttrs.push_back
+ (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Add any function attributes.
+ if (Attributes Attr = Attrs.getFnAttributes())
+ NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
+
+ // The trampoline may have been bitcast to a bogus type (FTy).
+ // Handle this by synthesizing a new function type, equal to FTy
+ // with the chain parameter inserted.
+
+ std::vector<Type*> NewTypes;
+ NewTypes.reserve(FTy->getNumParams()+1);
+
+ // Insert the chain's type into the list of parameter types, which may
+ // mean appending it.
+ {
+ unsigned Idx = 1;
+ FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end();
+
+ do {
+ if (Idx == NestIdx)
+ // Add the chain's type.
+ NewTypes.push_back(NestTy);
+
+ if (I == E)
+ break;
+
+ // Add the original type.
+ NewTypes.push_back(*I);
+
+ ++Idx, ++I;
+ } while (1);
+ }
+
+ // Replace the trampoline call with a direct call. Let the generic
+ // code sort out any function type mismatches.
+ FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
+ FTy->isVarArg());
+ Constant *NewCallee =
+ NestF->getType() == PointerType::getUnqual(NewFTy) ?
+ NestF : ConstantExpr::getBitCast(NestF,
+ PointerType::getUnqual(NewFTy));
+ const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
+ NewAttrs.end());
+
+ Instruction *NewCaller;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
+ NewCaller = InvokeInst::Create(NewCallee,
+ II->getNormalDest(), II->getUnwindDest(),
+ NewArgs);
+ cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
+ cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
+ } else {
+ NewCaller = CallInst::Create(NewCallee, NewArgs);
+ if (cast<CallInst>(Caller)->isTailCall())
+ cast<CallInst>(NewCaller)->setTailCall();
+ cast<CallInst>(NewCaller)->
+ setCallingConv(cast<CallInst>(Caller)->getCallingConv());
+ cast<CallInst>(NewCaller)->setAttributes(NewPAL);
+ }
+
+ return NewCaller;
+ }
+ }
+
+ // Replace the trampoline call with a direct call. Since there is no 'nest'
+ // parameter, there is no need to adjust the argument list. Let the generic
+ // code sort out any function type mismatches.
+ Constant *NewCallee =
+ NestF->getType() == PTy ? NestF :
+ ConstantExpr::getBitCast(NestF, PTy);
+ CS.setCalledFunction(NewCallee);
+ return CS.getInstruction();
+}
OpenPOWER on IntegriCloud