diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp | 1282 |
1 files changed, 1282 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp new file mode 100644 index 0000000..38e7b6e --- /dev/null +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp @@ -0,0 +1,1282 @@ +//===- InstCombineCalls.cpp -----------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visitCall and visitInvoke functions. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Transforms/Utils/BuildLibCalls.h" +using namespace llvm; + +/// getPromotedType - Return the specified type promoted as it would be to pass +/// though a va_arg area. +static const Type *getPromotedType(const Type *Ty) { + if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) { + if (ITy->getBitWidth() < 32) + return Type::getInt32Ty(Ty->getContext()); + } + return Ty; +} + +/// EnforceKnownAlignment - If the specified pointer points to an object that +/// we control, modify the object's alignment to PrefAlign. This isn't +/// often possible though. If alignment is important, a more reliable approach +/// is to simply align all global variables and allocation instructions to +/// their preferred alignment from the beginning. +/// +static unsigned EnforceKnownAlignment(Value *V, + unsigned Align, unsigned PrefAlign) { + + User *U = dyn_cast<User>(V); + if (!U) return Align; + + switch (Operator::getOpcode(U)) { + default: break; + case Instruction::BitCast: + return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); + case Instruction::GetElementPtr: { + // If all indexes are zero, it is just the alignment of the base pointer. + bool AllZeroOperands = true; + for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i) + if (!isa<Constant>(*i) || + !cast<Constant>(*i)->isNullValue()) { + AllZeroOperands = false; + break; + } + + if (AllZeroOperands) { + // Treat this like a bitcast. + return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign); + } + return Align; + } + case Instruction::Alloca: { + AllocaInst *AI = cast<AllocaInst>(V); + // If there is a requested alignment and if this is an alloca, round up. + if (AI->getAlignment() >= PrefAlign) + return AI->getAlignment(); + AI->setAlignment(PrefAlign); + return PrefAlign; + } + } + + if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // If there is a large requested alignment and we can, bump up the alignment + // of the global. + if (GV->isDeclaration()) return Align; + + if (GV->getAlignment() >= PrefAlign) + return GV->getAlignment(); + // We can only increase the alignment of the global if it has no alignment + // specified or if it is not assigned a section. If it is assigned a + // section, the global could be densely packed with other objects in the + // section, increasing the alignment could cause padding issues. + if (!GV->hasSection() || GV->getAlignment() == 0) + GV->setAlignment(PrefAlign); + return GV->getAlignment(); + } + + return Align; +} + +/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that +/// we can determine, return it, otherwise return 0. If PrefAlign is specified, +/// and it is more than the alignment of the ultimate object, see if we can +/// increase the alignment of the ultimate object, making this check succeed. +unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V, + unsigned PrefAlign) { + unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) : + sizeof(PrefAlign) * CHAR_BIT; + APInt Mask = APInt::getAllOnesValue(BitWidth); + APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + ComputeMaskedBits(V, Mask, KnownZero, KnownOne); + unsigned TrailZ = KnownZero.countTrailingOnes(); + unsigned Align = 1u << std::min(BitWidth - 1, TrailZ); + + if (PrefAlign > Align) + Align = EnforceKnownAlignment(V, Align, PrefAlign); + + // We don't need to make any adjustment. + return Align; +} + +Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) { + unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1)); + unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2)); + unsigned MinAlign = std::min(DstAlign, SrcAlign); + unsigned CopyAlign = MI->getAlignment(); + + if (CopyAlign < MinAlign) { + MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), + MinAlign, false)); + return MI; + } + + // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with + // load/store. + ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3)); + if (MemOpLength == 0) return 0; + + // Source and destination pointer types are always "i8*" for intrinsic. See + // if the size is something we can handle with a single primitive load/store. + // A single load+store correctly handles overlapping memory in the memmove + // case. + unsigned Size = MemOpLength->getZExtValue(); + if (Size == 0) return MI; // Delete this mem transfer. + + if (Size > 8 || (Size&(Size-1))) + return 0; // If not 1/2/4/8 bytes, exit. + + // Use an integer load+store unless we can find something better. + unsigned SrcAddrSp = + cast<PointerType>(MI->getOperand(2)->getType())->getAddressSpace(); + unsigned DstAddrSp = + cast<PointerType>(MI->getOperand(1)->getType())->getAddressSpace(); + + const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3); + Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp); + Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp); + + // Memcpy forces the use of i8* for the source and destination. That means + // that if you're using memcpy to move one double around, you'll get a cast + // from double* to i8*. We'd much rather use a double load+store rather than + // an i64 load+store, here because this improves the odds that the source or + // dest address will be promotable. See if we can find a better type than the + // integer datatype. + Value *StrippedDest = MI->getOperand(1)->stripPointerCasts(); + if (StrippedDest != MI->getOperand(1)) { + const Type *SrcETy = cast<PointerType>(StrippedDest->getType()) + ->getElementType(); + if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) { + // The SrcETy might be something like {{{double}}} or [1 x double]. Rip + // down through these levels if so. + while (!SrcETy->isSingleValueType()) { + if (const StructType *STy = dyn_cast<StructType>(SrcETy)) { + if (STy->getNumElements() == 1) + SrcETy = STy->getElementType(0); + else + break; + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) { + if (ATy->getNumElements() == 1) + SrcETy = ATy->getElementType(); + else + break; + } else + break; + } + + if (SrcETy->isSingleValueType()) { + NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp); + NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp); + } + } + } + + + // If the memcpy/memmove provides better alignment info than we can + // infer, use it. + SrcAlign = std::max(SrcAlign, CopyAlign); + DstAlign = std::max(DstAlign, CopyAlign); + + Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewSrcPtrTy); + Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewDstPtrTy); + Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign); + InsertNewInstBefore(L, *MI); + InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign), + *MI); + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setOperand(3, Constant::getNullValue(MemOpLength->getType())); + return MI; +} + +Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) { + unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest()); + if (MI->getAlignment() < Alignment) { + MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), + Alignment, false)); + return MI; + } + + // Extract the length and alignment and fill if they are constant. + ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength()); + ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue()); + if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8)) + return 0; + uint64_t Len = LenC->getZExtValue(); + Alignment = MI->getAlignment(); + + // If the length is zero, this is a no-op + if (Len == 0) return MI; // memset(d,c,0,a) -> noop + + // memset(s,c,n) -> store s, c (for n=1,2,4,8) + if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) { + const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8. + + Value *Dest = MI->getDest(); + Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy)); + + // Alignment 0 is identity for alignment 1 for memset, but not store. + if (Alignment == 0) Alignment = 1; + + // Extract the fill value and store. + uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL; + InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill), + Dest, false, Alignment), *MI); + + // Set the size of the copy to 0, it will be deleted on the next iteration. + MI->setLength(Constant::getNullValue(LenC->getType())); + return MI; + } + + return 0; +} + +/// visitCallInst - CallInst simplification. This mostly only handles folding +/// of intrinsic instructions. For normal calls, it allows visitCallSite to do +/// the heavy lifting. +/// +Instruction *InstCombiner::visitCallInst(CallInst &CI) { + if (isFreeCall(&CI)) + return visitFree(CI); + + // If the caller function is nounwind, mark the call as nounwind, even if the + // callee isn't. + if (CI.getParent()->getParent()->doesNotThrow() && + !CI.doesNotThrow()) { + CI.setDoesNotThrow(); + return &CI; + } + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI); + if (!II) return visitCallSite(&CI); + + // Intrinsics cannot occur in an invoke, so handle them here instead of in + // visitCallSite. + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) { + bool Changed = false; + + // memmove/cpy/set of zero bytes is a noop. + if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) { + if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes)) + if (CI->getZExtValue() == 1) { + // Replace the instruction with just byte operations. We would + // transform other cases to loads/stores, but we don't know if + // alignment is sufficient. + } + } + + // If we have a memmove and the source operation is a constant global, + // then the source and dest pointers can't alias, so we can change this + // into a call to memcpy. + if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) { + if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource())) + if (GVSrc->isConstant()) { + Module *M = CI.getParent()->getParent()->getParent(); + Intrinsic::ID MemCpyID = Intrinsic::memcpy; + const Type *Tys[3] = { CI.getOperand(1)->getType(), + CI.getOperand(2)->getType(), + CI.getOperand(3)->getType() }; + CI.setCalledFunction( + Intrinsic::getDeclaration(M, MemCpyID, Tys, 3)); + Changed = true; + } + } + + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { + // memmove(x,x,size) -> noop. + if (MTI->getSource() == MTI->getDest()) + return EraseInstFromFunction(CI); + } + + // If we can determine a pointer alignment that is bigger than currently + // set, update the alignment. + if (isa<MemTransferInst>(MI)) { + if (Instruction *I = SimplifyMemTransfer(MI)) + return I; + } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) { + if (Instruction *I = SimplifyMemSet(MSI)) + return I; + } + + if (Changed) return II; + } + + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::objectsize: { + // We need target data for just about everything so depend on it. + if (!TD) break; + + const Type *ReturnTy = CI.getType(); + bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1); + + // Get to the real allocated thing and offset as fast as possible. + Value *Op1 = II->getOperand(1)->stripPointerCasts(); + + // If we've stripped down to a single global variable that we + // can know the size of then just return that. + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) { + if (GV->hasDefinitiveInitializer()) { + Constant *C = GV->getInitializer(); + uint64_t GlobalSize = TD->getTypeAllocSize(C->getType()); + return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize)); + } else { + // Can't determine size of the GV. + Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); + return ReplaceInstUsesWith(CI, RetVal); + } + } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) { + // Get alloca size. + if (AI->getAllocatedType()->isSized()) { + uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType()); + if (AI->isArrayAllocation()) { + const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()); + if (!C) break; + AllocaSize *= C->getZExtValue(); + } + return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize)); + } + } else if (CallInst *MI = extractMallocCall(Op1)) { + const Type* MallocType = getMallocAllocatedType(MI); + // Get alloca size. + if (MallocType && MallocType->isSized()) { + if (Value *NElems = getMallocArraySize(MI, TD, true)) { + if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems)) + return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, + (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType)))); + } + } + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) { + // Only handle constant GEPs here. + if (CE->getOpcode() != Instruction::GetElementPtr) break; + GEPOperator *GEP = cast<GEPOperator>(CE); + + // Make sure we're not a constant offset from an external + // global. + Value *Operand = GEP->getPointerOperand(); + Operand = Operand->stripPointerCasts(); + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand)) + if (!GV->hasDefinitiveInitializer()) break; + + // Get what we're pointing to and its size. + const PointerType *BaseType = + cast<PointerType>(Operand->getType()); + uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType()); + + // Get the current byte offset into the thing. Use the original + // operand in case we're looking through a bitcast. + SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end()); + const PointerType *OffsetType = + cast<PointerType>(GEP->getPointerOperand()->getType()); + uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size()); + + if (Size < Offset) { + // Out of bound reference? Negative index normalized to large + // index? Just return "I don't know". + Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); + return ReplaceInstUsesWith(CI, RetVal); + } + + Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset); + return ReplaceInstUsesWith(CI, RetVal); + + } + + // Do not return "I don't know" here. Later optimization passes could + // make it possible to evaluate objectsize to a constant. + break; + } + case Intrinsic::bswap: + // bswap(bswap(x)) -> x + if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1))) + if (Operand->getIntrinsicID() == Intrinsic::bswap) + return ReplaceInstUsesWith(CI, Operand->getOperand(1)); + + // bswap(trunc(bswap(x))) -> trunc(lshr(x, c)) + if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) { + if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0))) + if (Operand->getIntrinsicID() == Intrinsic::bswap) { + unsigned C = Operand->getType()->getPrimitiveSizeInBits() - + TI->getType()->getPrimitiveSizeInBits(); + Value *CV = ConstantInt::get(Operand->getType(), C); + Value *V = Builder->CreateLShr(Operand->getOperand(1), CV); + return new TruncInst(V, TI->getType()); + } + } + + break; + case Intrinsic::powi: + if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) { + // powi(x, 0) -> 1.0 + if (Power->isZero()) + return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0)); + // powi(x, 1) -> x + if (Power->isOne()) + return ReplaceInstUsesWith(CI, II->getOperand(1)); + // powi(x, -1) -> 1/x + if (Power->isAllOnesValue()) + return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0), + II->getOperand(1)); + } + break; + case Intrinsic::cttz: { + // If all bits below the first known one are known zero, + // this value is constant. + const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); + uint32_t BitWidth = IT->getBitWidth(); + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), + KnownZero, KnownOne); + unsigned TrailingZeros = KnownOne.countTrailingZeros(); + APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros)); + if ((Mask & KnownZero) == Mask) + return ReplaceInstUsesWith(CI, ConstantInt::get(IT, + APInt(BitWidth, TrailingZeros))); + + } + break; + case Intrinsic::ctlz: { + // If all bits above the first known one are known zero, + // this value is constant. + const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); + uint32_t BitWidth = IT->getBitWidth(); + APInt KnownZero(BitWidth, 0); + APInt KnownOne(BitWidth, 0); + ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth), + KnownZero, KnownOne); + unsigned LeadingZeros = KnownOne.countLeadingZeros(); + APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros)); + if ((Mask & KnownZero) == Mask) + return ReplaceInstUsesWith(CI, ConstantInt::get(IT, + APInt(BitWidth, LeadingZeros))); + + } + break; + case Intrinsic::uadd_with_overflow: { + Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); + const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType()); + uint32_t BitWidth = IT->getBitWidth(); + APInt Mask = APInt::getSignBit(BitWidth); + APInt LHSKnownZero(BitWidth, 0); + APInt LHSKnownOne(BitWidth, 0); + ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne); + bool LHSKnownNegative = LHSKnownOne[BitWidth - 1]; + bool LHSKnownPositive = LHSKnownZero[BitWidth - 1]; + + if (LHSKnownNegative || LHSKnownPositive) { + APInt RHSKnownZero(BitWidth, 0); + APInt RHSKnownOne(BitWidth, 0); + ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne); + bool RHSKnownNegative = RHSKnownOne[BitWidth - 1]; + bool RHSKnownPositive = RHSKnownZero[BitWidth - 1]; + if (LHSKnownNegative && RHSKnownNegative) { + // The sign bit is set in both cases: this MUST overflow. + // Create a simple add instruction, and insert it into the struct. + Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI); + Worklist.Add(Add); + Constant *V[] = { + UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext()) + }; + Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); + return InsertValueInst::Create(Struct, Add, 0); + } + + if (LHSKnownPositive && RHSKnownPositive) { + // The sign bit is clear in both cases: this CANNOT overflow. + // Create a simple add instruction, and insert it into the struct. + Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI); + Worklist.Add(Add); + Constant *V[] = { + UndefValue::get(LHS->getType()), + ConstantInt::getFalse(II->getContext()) + }; + Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); + return InsertValueInst::Create(Struct, Add, 0); + } + } + } + // FALL THROUGH uadd into sadd + case Intrinsic::sadd_with_overflow: + // Canonicalize constants into the RHS. + if (isa<Constant>(II->getOperand(1)) && + !isa<Constant>(II->getOperand(2))) { + Value *LHS = II->getOperand(1); + II->setOperand(1, II->getOperand(2)); + II->setOperand(2, LHS); + return II; + } + + // X + undef -> undef + if (isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X + 0 -> {X, false} + if (RHS->isZero()) { + Constant *V[] = { + UndefValue::get(II->getCalledValue()->getType()), + ConstantInt::getFalse(II->getContext()) + }; + Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + // undef - X -> undef + // X - undef -> undef + if (isa<UndefValue>(II->getOperand(1)) || + isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X - 0 -> {X, false} + if (RHS->isZero()) { + Constant *V[] = { + UndefValue::get(II->getOperand(1)->getType()), + ConstantInt::getFalse(II->getContext()) + }; + Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + // Canonicalize constants into the RHS. + if (isa<Constant>(II->getOperand(1)) && + !isa<Constant>(II->getOperand(2))) { + Value *LHS = II->getOperand(1); + II->setOperand(1, II->getOperand(2)); + II->setOperand(2, LHS); + return II; + } + + // X * undef -> undef + if (isa<UndefValue>(II->getOperand(2))) + return ReplaceInstUsesWith(CI, UndefValue::get(II->getType())); + + if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) { + // X*0 -> {0, false} + if (RHSI->isZero()) + return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType())); + + // X * 1 -> {X, false} + if (RHSI->equalsInt(1)) { + Constant *V[] = { + UndefValue::get(II->getOperand(1)->getType()), + ConstantInt::getFalse(II->getContext()) + }; + Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false); + return InsertValueInst::Create(Struct, II->getOperand(1), 0); + } + } + break; + case Intrinsic::ppc_altivec_lvx: + case Intrinsic::ppc_altivec_lvxl: + case Intrinsic::x86_sse_loadu_ps: + case Intrinsic::x86_sse2_loadu_pd: + case Intrinsic::x86_sse2_loadu_dq: + // Turn PPC lvx -> load if the pointer is known aligned. + // Turn X86 loadups -> load if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { + Value *Ptr = Builder->CreateBitCast(II->getOperand(1), + PointerType::getUnqual(II->getType())); + return new LoadInst(Ptr); + } + break; + case Intrinsic::ppc_altivec_stvx: + case Intrinsic::ppc_altivec_stvxl: + // Turn stvx -> store if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) { + const Type *OpPtrTy = + PointerType::getUnqual(II->getOperand(1)->getType()); + Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy); + return new StoreInst(II->getOperand(1), Ptr); + } + break; + case Intrinsic::x86_sse_storeu_ps: + case Intrinsic::x86_sse2_storeu_pd: + case Intrinsic::x86_sse2_storeu_dq: + // Turn X86 storeu -> store if the pointer is known aligned. + if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) { + const Type *OpPtrTy = + PointerType::getUnqual(II->getOperand(2)->getType()); + Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy); + return new StoreInst(II->getOperand(2), Ptr); + } + break; + + case Intrinsic::x86_sse_cvttss2si: { + // These intrinsics only demands the 0th element of its input vector. If + // we can simplify the input based on that, do so now. + unsigned VWidth = + cast<VectorType>(II->getOperand(1)->getType())->getNumElements(); + APInt DemandedElts(VWidth, 1); + APInt UndefElts(VWidth, 0); + if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts, + UndefElts)) { + II->setOperand(1, V); + return II; + } + break; + } + + case Intrinsic::ppc_altivec_vperm: + // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant. + if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) { + assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!"); + + // Check that all of the elements are integer constants or undefs. + bool AllEltsOk = true; + for (unsigned i = 0; i != 16; ++i) { + if (!isa<ConstantInt>(Mask->getOperand(i)) && + !isa<UndefValue>(Mask->getOperand(i))) { + AllEltsOk = false; + break; + } + } + + if (AllEltsOk) { + // Cast the input vectors to byte vectors. + Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType()); + Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType()); + Value *Result = UndefValue::get(Op0->getType()); + + // Only extract each element once. + Value *ExtractedElts[32]; + memset(ExtractedElts, 0, sizeof(ExtractedElts)); + + for (unsigned i = 0; i != 16; ++i) { + if (isa<UndefValue>(Mask->getOperand(i))) + continue; + unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue(); + Idx &= 31; // Match the hardware behavior. + + if (ExtractedElts[Idx] == 0) { + ExtractedElts[Idx] = + Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, + ConstantInt::get(Type::getInt32Ty(II->getContext()), + Idx&15, false), "tmp"); + } + + // Insert this value into the result vector. + Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx], + ConstantInt::get(Type::getInt32Ty(II->getContext()), + i, false), "tmp"); + } + return CastInst::Create(Instruction::BitCast, Result, CI.getType()); + } + } + break; + + case Intrinsic::stackrestore: { + // If the save is right next to the restore, remove the restore. This can + // happen when variable allocas are DCE'd. + if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) { + if (SS->getIntrinsicID() == Intrinsic::stacksave) { + BasicBlock::iterator BI = SS; + if (&*++BI == II) + return EraseInstFromFunction(CI); + } + } + + // Scan down this block to see if there is another stack restore in the + // same block without an intervening call/alloca. + BasicBlock::iterator BI = II; + TerminatorInst *TI = II->getParent()->getTerminator(); + bool CannotRemove = false; + for (++BI; &*BI != TI; ++BI) { + if (isa<AllocaInst>(BI) || isMalloc(BI)) { + CannotRemove = true; + break; + } + if (CallInst *BCI = dyn_cast<CallInst>(BI)) { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) { + // If there is a stackrestore below this one, remove this one. + if (II->getIntrinsicID() == Intrinsic::stackrestore) + return EraseInstFromFunction(CI); + // Otherwise, ignore the intrinsic. + } else { + // If we found a non-intrinsic call, we can't remove the stack + // restore. + CannotRemove = true; + break; + } + } + } + + // If the stack restore is in a return/unwind block and if there are no + // allocas or calls between the restore and the return, nuke the restore. + if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI))) + return EraseInstFromFunction(CI); + break; + } + } + + return visitCallSite(II); +} + +// InvokeInst simplification +// +Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { + return visitCallSite(&II); +} + +/// isSafeToEliminateVarargsCast - If this cast does not affect the value +/// passed through the varargs area, we can eliminate the use of the cast. +static bool isSafeToEliminateVarargsCast(const CallSite CS, + const CastInst * const CI, + const TargetData * const TD, + const int ix) { + if (!CI->isLosslessCast()) + return false; + + // The size of ByVal arguments is derived from the type, so we + // can't change to a type with a different size. If the size were + // passed explicitly we could avoid this check. + if (!CS.paramHasAttr(ix, Attribute::ByVal)) + return true; + + const Type* SrcTy = + cast<PointerType>(CI->getOperand(0)->getType())->getElementType(); + const Type* DstTy = cast<PointerType>(CI->getType())->getElementType(); + if (!SrcTy->isSized() || !DstTy->isSized()) + return false; + if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy)) + return false; + return true; +} + +namespace { +class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls { + InstCombiner *IC; +protected: + void replaceCall(Value *With) { + NewInstruction = IC->ReplaceInstUsesWith(*CI, With); + } + bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const { + if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(SizeCIOp))) { + if (SizeCI->isAllOnesValue()) + return true; + if (isString) + return SizeCI->getZExtValue() >= + GetStringLength(CI->getOperand(SizeArgOp)); + if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getOperand(SizeArgOp))) + return SizeCI->getZExtValue() >= Arg->getZExtValue(); + } + return false; + } +public: + InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { } + Instruction *NewInstruction; +}; +} // end anonymous namespace + +// Try to fold some different type of calls here. +// Currently we're only working with the checking functions, memcpy_chk, +// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk, +// strcat_chk and strncat_chk. +Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) { + if (CI->getCalledFunction() == 0) return 0; + + InstCombineFortifiedLibCalls Simplifier(this); + Simplifier.fold(CI, TD); + return Simplifier.NewInstruction; +} + +// visitCallSite - Improvements for call and invoke instructions. +// +Instruction *InstCombiner::visitCallSite(CallSite CS) { + bool Changed = false; + + // If the callee is a constexpr cast of a function, attempt to move the cast + // to the arguments of the call/invoke. + if (transformConstExprCastCall(CS)) return 0; + + Value *Callee = CS.getCalledValue(); + + if (Function *CalleeF = dyn_cast<Function>(Callee)) + // If the call and callee calling conventions don't match, this call must + // be unreachable, as the call is undefined. + if (CalleeF->getCallingConv() != CS.getCallingConv() && + // Only do this for calls to a function with a body. A prototype may + // not actually end up matching the implementation's calling conv for a + // variety of reasons (e.g. it may be written in assembly). + !CalleeF->isDeclaration()) { + Instruction *OldCall = CS.getInstruction(); + new StoreInst(ConstantInt::getTrue(Callee->getContext()), + UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), + OldCall); + // If OldCall dues not return void then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!OldCall->getType()->isVoidTy()) + OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); + if (isa<CallInst>(OldCall)) + return EraseInstFromFunction(*OldCall); + + // We cannot remove an invoke, because it would change the CFG, just + // change the callee to a null pointer. + cast<InvokeInst>(OldCall)->setCalledFunction( + Constant::getNullValue(CalleeF->getType())); + return 0; + } + + if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) { + // This instruction is not reachable, just remove it. We insert a store to + // undef so that we know that this code is not reachable, despite the fact + // that we can't modify the CFG here. + new StoreInst(ConstantInt::getTrue(Callee->getContext()), + UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), + CS.getInstruction()); + + // If CS dues not return void then replaceAllUsesWith undef. + // This allows ValueHandlers and custom metadata to adjust itself. + if (!CS.getInstruction()->getType()->isVoidTy()) + CS.getInstruction()-> + replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); + + if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) { + // Don't break the CFG, insert a dummy cond branch. + BranchInst::Create(II->getNormalDest(), II->getUnwindDest(), + ConstantInt::getTrue(Callee->getContext()), II); + } + return EraseInstFromFunction(*CS.getInstruction()); + } + + if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee)) + if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0))) + if (In->getIntrinsicID() == Intrinsic::init_trampoline) + return transformCallThroughTrampoline(CS); + + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + if (FTy->isVarArg()) { + int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1); + // See if we can optimize any arguments passed through the varargs area of + // the call. + for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), + E = CS.arg_end(); I != E; ++I, ++ix) { + CastInst *CI = dyn_cast<CastInst>(*I); + if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) { + *I = CI->getOperand(0); + Changed = true; + } + } + } + + if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) { + // Inline asm calls cannot throw - mark them 'nounwind'. + CS.setDoesNotThrow(); + Changed = true; + } + + // Try to optimize the call if possible, we require TargetData for most of + // this. None of these calls are seen as possibly dead so go ahead and + // delete the instruction now. + if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) { + Instruction *I = tryOptimizeCall(CI, TD); + // If we changed something return the result, etc. Otherwise let + // the fallthrough check. + if (I) return EraseInstFromFunction(*I); + } + + return Changed ? CS.getInstruction() : 0; +} + +// transformConstExprCastCall - If the callee is a constexpr cast of a function, +// attempt to move the cast to the arguments of the call/invoke. +// +bool InstCombiner::transformConstExprCastCall(CallSite CS) { + if (!isa<ConstantExpr>(CS.getCalledValue())) return false; + ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue()); + if (CE->getOpcode() != Instruction::BitCast || + !isa<Function>(CE->getOperand(0))) + return false; + Function *Callee = cast<Function>(CE->getOperand(0)); + Instruction *Caller = CS.getInstruction(); + const AttrListPtr &CallerPAL = CS.getAttributes(); + + // Okay, this is a cast from a function to a different type. Unless doing so + // would cause a type conversion of one of our arguments, change this call to + // be a direct call with arguments casted to the appropriate types. + // + const FunctionType *FT = Callee->getFunctionType(); + const Type *OldRetTy = Caller->getType(); + const Type *NewRetTy = FT->getReturnType(); + + if (NewRetTy->isStructTy()) + return false; // TODO: Handle multiple return values. + + // Check to see if we are changing the return type... + if (OldRetTy != NewRetTy) { + if (Callee->isDeclaration() && + // Conversion is ok if changing from one pointer type to another or from + // a pointer to an integer of the same size. + !((OldRetTy->isPointerTy() || !TD || + OldRetTy == TD->getIntPtrType(Caller->getContext())) && + (NewRetTy->isPointerTy() || !TD || + NewRetTy == TD->getIntPtrType(Caller->getContext())))) + return false; // Cannot transform this return value. + + if (!Caller->use_empty() && + // void -> non-void is handled specially + !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy)) + return false; // Cannot transform this return value. + + if (!CallerPAL.isEmpty() && !Caller->use_empty()) { + Attributes RAttrs = CallerPAL.getRetAttributes(); + if (RAttrs & Attribute::typeIncompatible(NewRetTy)) + return false; // Attribute not compatible with transformed value. + } + + // If the callsite is an invoke instruction, and the return value is used by + // a PHI node in a successor, we cannot change the return type of the call + // because there is no place to put the cast instruction (without breaking + // the critical edge). Bail out in this case. + if (!Caller->use_empty()) + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) + for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); + UI != E; ++UI) + if (PHINode *PN = dyn_cast<PHINode>(*UI)) + if (PN->getParent() == II->getNormalDest() || + PN->getParent() == II->getUnwindDest()) + return false; + } + + unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); + unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); + + CallSite::arg_iterator AI = CS.arg_begin(); + for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { + const Type *ParamTy = FT->getParamType(i); + const Type *ActTy = (*AI)->getType(); + + if (!CastInst::isCastable(ActTy, ParamTy)) + return false; // Cannot transform this parameter value. + + if (CallerPAL.getParamAttributes(i + 1) + & Attribute::typeIncompatible(ParamTy)) + return false; // Attribute not compatible with transformed value. + + // Converting from one pointer type to another or between a pointer and an + // integer of the same size is safe even if we do not have a body. + bool isConvertible = ActTy == ParamTy || + (TD && ((ParamTy->isPointerTy() || + ParamTy == TD->getIntPtrType(Caller->getContext())) && + (ActTy->isPointerTy() || + ActTy == TD->getIntPtrType(Caller->getContext())))); + if (Callee->isDeclaration() && !isConvertible) return false; + } + + if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && + Callee->isDeclaration()) + return false; // Do not delete arguments unless we have a function body. + + if (FT->getNumParams() < NumActualArgs && FT->isVarArg() && + !CallerPAL.isEmpty()) + // In this case we have more arguments than the new function type, but we + // won't be dropping them. Check that these extra arguments have attributes + // that are compatible with being a vararg call argument. + for (unsigned i = CallerPAL.getNumSlots(); i; --i) { + if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams()) + break; + Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs; + if (PAttrs & Attribute::VarArgsIncompatible) + return false; + } + + // Okay, we decided that this is a safe thing to do: go ahead and start + // inserting cast instructions as necessary... + std::vector<Value*> Args; + Args.reserve(NumActualArgs); + SmallVector<AttributeWithIndex, 8> attrVec; + attrVec.reserve(NumCommonArgs); + + // Get any return attributes. + Attributes RAttrs = CallerPAL.getRetAttributes(); + + // If the return value is not being used, the type may not be compatible + // with the existing attributes. Wipe out any problematic attributes. + RAttrs &= ~Attribute::typeIncompatible(NewRetTy); + + // Add the new return attributes. + if (RAttrs) + attrVec.push_back(AttributeWithIndex::get(0, RAttrs)); + + AI = CS.arg_begin(); + for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { + const Type *ParamTy = FT->getParamType(i); + if ((*AI)->getType() == ParamTy) { + Args.push_back(*AI); + } else { + Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, + false, ParamTy, false); + Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp")); + } + + // Add any parameter attributes. + if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) + attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); + } + + // If the function takes more arguments than the call was taking, add them + // now. + for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) + Args.push_back(Constant::getNullValue(FT->getParamType(i))); + + // If we are removing arguments to the function, emit an obnoxious warning. + if (FT->getNumParams() < NumActualArgs) { + if (!FT->isVarArg()) { + errs() << "WARNING: While resolving call to function '" + << Callee->getName() << "' arguments were dropped!\n"; + } else { + // Add all of the arguments in their promoted form to the arg list. + for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { + const Type *PTy = getPromotedType((*AI)->getType()); + if (PTy != (*AI)->getType()) { + // Must promote to pass through va_arg area! + Instruction::CastOps opcode = + CastInst::getCastOpcode(*AI, false, PTy, false); + Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp")); + } else { + Args.push_back(*AI); + } + + // Add any parameter attributes. + if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1)) + attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs)); + } + } + } + + if (Attributes FnAttrs = CallerPAL.getFnAttributes()) + attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs)); + + if (NewRetTy->isVoidTy()) + Caller->setName(""); // Void type should not have a name. + + const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(), + attrVec.end()); + + Instruction *NC; + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(), + Args.begin(), Args.end(), + Caller->getName(), Caller); + cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv()); + cast<InvokeInst>(NC)->setAttributes(NewCallerPAL); + } else { + NC = CallInst::Create(Callee, Args.begin(), Args.end(), + Caller->getName(), Caller); + CallInst *CI = cast<CallInst>(Caller); + if (CI->isTailCall()) + cast<CallInst>(NC)->setTailCall(); + cast<CallInst>(NC)->setCallingConv(CI->getCallingConv()); + cast<CallInst>(NC)->setAttributes(NewCallerPAL); + } + + // Insert a cast of the return type as necessary. + Value *NV = NC; + if (OldRetTy != NV->getType() && !Caller->use_empty()) { + if (!NV->getType()->isVoidTy()) { + Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, + OldRetTy, false); + NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp"); + + // If this is an invoke instruction, we should insert it after the first + // non-phi, instruction in the normal successor block. + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI(); + InsertNewInstBefore(NC, *I); + } else { + // Otherwise, it's a call, just insert cast right after the call instr + InsertNewInstBefore(NC, *Caller); + } + Worklist.AddUsersToWorkList(*Caller); + } else { + NV = UndefValue::get(Caller->getType()); + } + } + + + if (!Caller->use_empty()) + Caller->replaceAllUsesWith(NV); + + EraseInstFromFunction(*Caller); + return true; +} + +// transformCallThroughTrampoline - Turn a call to a function created by the +// init_trampoline intrinsic into a direct call to the underlying function. +// +Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) { + Value *Callee = CS.getCalledValue(); + const PointerType *PTy = cast<PointerType>(Callee->getType()); + const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); + const AttrListPtr &Attrs = CS.getAttributes(); + + // If the call already has the 'nest' attribute somewhere then give up - + // otherwise 'nest' would occur twice after splicing in the chain. + if (Attrs.hasAttrSomewhere(Attribute::Nest)) + return 0; + + IntrinsicInst *Tramp = + cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0)); + + Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts()); + const PointerType *NestFPTy = cast<PointerType>(NestF->getType()); + const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType()); + + const AttrListPtr &NestAttrs = NestF->getAttributes(); + if (!NestAttrs.isEmpty()) { + unsigned NestIdx = 1; + const Type *NestTy = 0; + Attributes NestAttr = Attribute::None; + + // Look for a parameter marked with the 'nest' attribute. + for (FunctionType::param_iterator I = NestFTy->param_begin(), + E = NestFTy->param_end(); I != E; ++NestIdx, ++I) + if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) { + // Record the parameter type and any other attributes. + NestTy = *I; + NestAttr = NestAttrs.getParamAttributes(NestIdx); + break; + } + + if (NestTy) { + Instruction *Caller = CS.getInstruction(); + std::vector<Value*> NewArgs; + NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1); + + SmallVector<AttributeWithIndex, 8> NewAttrs; + NewAttrs.reserve(Attrs.getNumSlots() + 1); + + // Insert the nest argument into the call argument list, which may + // mean appending it. Likewise for attributes. + + // Add any result attributes. + if (Attributes Attr = Attrs.getRetAttributes()) + NewAttrs.push_back(AttributeWithIndex::get(0, Attr)); + + { + unsigned Idx = 1; + CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); + do { + if (Idx == NestIdx) { + // Add the chain argument and attributes. + Value *NestVal = Tramp->getOperand(3); + if (NestVal->getType() != NestTy) + NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller); + NewArgs.push_back(NestVal); + NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr)); + } + + if (I == E) + break; + + // Add the original argument and attributes. + NewArgs.push_back(*I); + if (Attributes Attr = Attrs.getParamAttributes(Idx)) + NewAttrs.push_back + (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr)); + + ++Idx, ++I; + } while (1); + } + + // Add any function attributes. + if (Attributes Attr = Attrs.getFnAttributes()) + NewAttrs.push_back(AttributeWithIndex::get(~0, Attr)); + + // The trampoline may have been bitcast to a bogus type (FTy). + // Handle this by synthesizing a new function type, equal to FTy + // with the chain parameter inserted. + + std::vector<const Type*> NewTypes; + NewTypes.reserve(FTy->getNumParams()+1); + + // Insert the chain's type into the list of parameter types, which may + // mean appending it. + { + unsigned Idx = 1; + FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); + + do { + if (Idx == NestIdx) + // Add the chain's type. + NewTypes.push_back(NestTy); + + if (I == E) + break; + + // Add the original type. + NewTypes.push_back(*I); + + ++Idx, ++I; + } while (1); + } + + // Replace the trampoline call with a direct call. Let the generic + // code sort out any function type mismatches. + FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, + FTy->isVarArg()); + Constant *NewCallee = + NestF->getType() == PointerType::getUnqual(NewFTy) ? + NestF : ConstantExpr::getBitCast(NestF, + PointerType::getUnqual(NewFTy)); + const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(), + NewAttrs.end()); + + Instruction *NewCaller; + if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) { + NewCaller = InvokeInst::Create(NewCallee, + II->getNormalDest(), II->getUnwindDest(), + NewArgs.begin(), NewArgs.end(), + Caller->getName(), Caller); + cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv()); + cast<InvokeInst>(NewCaller)->setAttributes(NewPAL); + } else { + NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(), + Caller->getName(), Caller); + if (cast<CallInst>(Caller)->isTailCall()) + cast<CallInst>(NewCaller)->setTailCall(); + cast<CallInst>(NewCaller)-> + setCallingConv(cast<CallInst>(Caller)->getCallingConv()); + cast<CallInst>(NewCaller)->setAttributes(NewPAL); + } + if (!Caller->getType()->isVoidTy()) + Caller->replaceAllUsesWith(NewCaller); + Caller->eraseFromParent(); + Worklist.Remove(Caller); + return 0; + } + } + + // Replace the trampoline call with a direct call. Since there is no 'nest' + // parameter, there is no need to adjust the argument list. Let the generic + // code sort out any function type mismatches. + Constant *NewCallee = + NestF->getType() == PTy ? NestF : + ConstantExpr::getBitCast(NestF, PTy); + CS.setCalledFunction(NewCallee); + return CS.getInstruction(); +} + |