diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp | 661 |
1 files changed, 661 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp new file mode 100644 index 0000000..99b62f8 --- /dev/null +++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp @@ -0,0 +1,661 @@ +//===- InstCombineAddSub.cpp ----------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the visit functions for add, fadd, sub, and fsub. +// +//===----------------------------------------------------------------------===// + +#include "InstCombine.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Support/PatternMatch.h" +using namespace llvm; +using namespace PatternMatch; + +/// AddOne - Add one to a ConstantInt. +static Constant *AddOne(Constant *C) { + return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); +} +/// SubOne - Subtract one from a ConstantInt. +static Constant *SubOne(ConstantInt *C) { + return ConstantInt::get(C->getContext(), C->getValue()-1); +} + + +// dyn_castFoldableMul - If this value is a multiply that can be folded into +// other computations (because it has a constant operand), return the +// non-constant operand of the multiply, and set CST to point to the multiplier. +// Otherwise, return null. +// +static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { + if (!V->hasOneUse() || !V->getType()->isIntegerTy()) + return 0; + + Instruction *I = dyn_cast<Instruction>(V); + if (I == 0) return 0; + + if (I->getOpcode() == Instruction::Mul) + if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) + return I->getOperand(0); + if (I->getOpcode() == Instruction::Shl) + if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { + // The multiplier is really 1 << CST. + uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + uint32_t CSTVal = CST->getLimitedValue(BitWidth); + CST = ConstantInt::get(V->getType()->getContext(), + APInt(BitWidth, 1).shl(CSTVal)); + return I->getOperand(0); + } + return 0; +} + + +/// WillNotOverflowSignedAdd - Return true if we can prove that: +/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) +/// This basically requires proving that the add in the original type would not +/// overflow to change the sign bit or have a carry out. +bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { + // There are different heuristics we can use for this. Here are some simple + // ones. + + // Add has the property that adding any two 2's complement numbers can only + // have one carry bit which can change a sign. As such, if LHS and RHS each + // have at least two sign bits, we know that the addition of the two values + // will sign extend fine. + if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) + return true; + + + // If one of the operands only has one non-zero bit, and if the other operand + // has a known-zero bit in a more significant place than it (not including the + // sign bit) the ripple may go up to and fill the zero, but won't change the + // sign. For example, (X & ~4) + 1. + + // TODO: Implement. + + return false; +} + +Instruction *InstCombiner::visitAdd(BinaryOperator &I) { + bool Changed = SimplifyAssociativeOrCommutative(I); + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), + I.hasNoUnsignedWrap(), TD)) + return ReplaceInstUsesWith(I, V); + + // (A*B)+(A*C) -> A*(B+C) etc + if (Value *V = SimplifyUsingDistributiveLaws(I)) + return ReplaceInstUsesWith(I, V); + + if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { + // X + (signbit) --> X ^ signbit + const APInt &Val = CI->getValue(); + if (Val.isSignBit()) + return BinaryOperator::CreateXor(LHS, RHS); + + // See if SimplifyDemandedBits can simplify this. This handles stuff like + // (X & 254)+1 -> (X&254)|1 + if (SimplifyDemandedInstructionBits(I)) + return &I; + + // zext(bool) + C -> bool ? C + 1 : C + if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) + if (ZI->getSrcTy()->isIntegerTy(1)) + return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); + + Value *XorLHS = 0; ConstantInt *XorRHS = 0; + if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { + uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); + const APInt &RHSVal = CI->getValue(); + unsigned ExtendAmt = 0; + // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. + // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. + if (XorRHS->getValue() == -RHSVal) { + if (RHSVal.isPowerOf2()) + ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; + else if (XorRHS->getValue().isPowerOf2()) + ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; + } + + if (ExtendAmt) { + APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); + if (!MaskedValueIsZero(XorLHS, Mask)) + ExtendAmt = 0; + } + + if (ExtendAmt) { + Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); + Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); + return BinaryOperator::CreateAShr(NewShl, ShAmt); + } + + // If this is a xor that was canonicalized from a sub, turn it back into + // a sub and fuse this add with it. + if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { + IntegerType *IT = cast<IntegerType>(I.getType()); + APInt LHSKnownOne(IT->getBitWidth(), 0); + APInt LHSKnownZero(IT->getBitWidth(), 0); + ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne); + if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) + return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), + XorLHS); + } + } + } + + if (isa<Constant>(RHS) && isa<PHINode>(LHS)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + + if (I.getType()->isIntegerTy(1)) + return BinaryOperator::CreateXor(LHS, RHS); + + // X + X --> X << 1 + if (LHS == RHS) { + BinaryOperator *New = + BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); + New->setHasNoSignedWrap(I.hasNoSignedWrap()); + New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); + return New; + } + + // -A + B --> B - A + // -A + -B --> -(A + B) + if (Value *LHSV = dyn_castNegVal(LHS)) { + if (!isa<Constant>(RHS)) + if (Value *RHSV = dyn_castNegVal(RHS)) { + Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); + return BinaryOperator::CreateNeg(NewAdd); + } + + return BinaryOperator::CreateSub(RHS, LHSV); + } + + // A + -B --> A - B + if (!isa<Constant>(RHS)) + if (Value *V = dyn_castNegVal(RHS)) + return BinaryOperator::CreateSub(LHS, V); + + + ConstantInt *C2; + if (Value *X = dyn_castFoldableMul(LHS, C2)) { + if (X == RHS) // X*C + X --> X * (C+1) + return BinaryOperator::CreateMul(RHS, AddOne(C2)); + + // X*C1 + X*C2 --> X * (C1+C2) + ConstantInt *C1; + if (X == dyn_castFoldableMul(RHS, C1)) + return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); + } + + // X + X*C --> X * (C+1) + if (dyn_castFoldableMul(RHS, C2) == LHS) + return BinaryOperator::CreateMul(LHS, AddOne(C2)); + + // A+B --> A|B iff A and B have no bits set in common. + if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { + APInt LHSKnownOne(IT->getBitWidth(), 0); + APInt LHSKnownZero(IT->getBitWidth(), 0); + ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne); + if (LHSKnownZero != 0) { + APInt RHSKnownOne(IT->getBitWidth(), 0); + APInt RHSKnownZero(IT->getBitWidth(), 0); + ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne); + + // No bits in common -> bitwise or. + if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) + return BinaryOperator::CreateOr(LHS, RHS); + } + } + + // W*X + Y*Z --> W * (X+Z) iff W == Y + { + Value *W, *X, *Y, *Z; + if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && + match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { + if (W != Y) { + if (W == Z) { + std::swap(Y, Z); + } else if (Y == X) { + std::swap(W, X); + } else if (X == Z) { + std::swap(Y, Z); + std::swap(W, X); + } + } + + if (W == Y) { + Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); + return BinaryOperator::CreateMul(W, NewAdd); + } + } + } + + if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { + Value *X = 0; + if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X + return BinaryOperator::CreateSub(SubOne(CRHS), X); + + // (X & FF00) + xx00 -> (X+xx00) & FF00 + if (LHS->hasOneUse() && + match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && + CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { + // See if all bits from the first bit set in the Add RHS up are included + // in the mask. First, get the rightmost bit. + const APInt &AddRHSV = CRHS->getValue(); + + // Form a mask of all bits from the lowest bit added through the top. + APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); + + // See if the and mask includes all of these bits. + APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); + + if (AddRHSHighBits == AddRHSHighBitsAnd) { + // Okay, the xform is safe. Insert the new add pronto. + Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); + return BinaryOperator::CreateAnd(NewAdd, C2); + } + } + + // Try to fold constant add into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + } + + // add (select X 0 (sub n A)) A --> select X A n + { + SelectInst *SI = dyn_cast<SelectInst>(LHS); + Value *A = RHS; + if (!SI) { + SI = dyn_cast<SelectInst>(RHS); + A = LHS; + } + if (SI && SI->hasOneUse()) { + Value *TV = SI->getTrueValue(); + Value *FV = SI->getFalseValue(); + Value *N; + + // Can we fold the add into the argument of the select? + // We check both true and false select arguments for a matching subtract. + if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the true select value. + return SelectInst::Create(SI->getCondition(), N, A); + + if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) + // Fold the add into the false select value. + return SelectInst::Create(SI->getCondition(), A, N); + } + } + + // Check for (add (sext x), y), see if we can merge this into an + // integer add followed by a sext. + if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { + // (add (sext x), cst) --> (sext (add x, cst')) + if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { + Constant *CI = + ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); + if (LHSConv->hasOneUse() && + ConstantExpr::getSExt(CI, I.getType()) == RHSC && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { + // Insert the new, smaller add. + Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), + CI, "addconv"); + return new SExtInst(NewAdd, I.getType()); + } + } + + // (add (sext x), (sext y)) --> (sext (add int x, y)) + if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { + // Only do this if x/y have the same type, if at last one of them has a + // single use (so we don't increase the number of sexts), and if the + // integer add will not overflow. + if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& + (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0))) { + // Insert the new integer add. + Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0), "addconv"); + return new SExtInst(NewAdd, I.getType()); + } + } + } + + // Check for (x & y) + (x ^ y) + { + Value *A = 0, *B = 0; + if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && + (match(LHS, m_And(m_Specific(A), m_Specific(B))) || + match(LHS, m_And(m_Specific(B), m_Specific(A))))) + return BinaryOperator::CreateOr(A, B); + + if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && + (match(RHS, m_And(m_Specific(A), m_Specific(B))) || + match(RHS, m_And(m_Specific(B), m_Specific(A))))) + return BinaryOperator::CreateOr(A, B); + } + + return Changed ? &I : 0; +} + +Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { + bool Changed = SimplifyAssociativeOrCommutative(I); + Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); + + if (Constant *RHSC = dyn_cast<Constant>(RHS)) { + // X + 0 --> X + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { + if (CFP->isExactlyValue(ConstantFP::getNegativeZero + (I.getType())->getValueAPF())) + return ReplaceInstUsesWith(I, LHS); + } + + if (isa<PHINode>(LHS)) + if (Instruction *NV = FoldOpIntoPhi(I)) + return NV; + } + + // -A + B --> B - A + // -A + -B --> -(A + B) + if (Value *LHSV = dyn_castFNegVal(LHS)) + return BinaryOperator::CreateFSub(RHS, LHSV); + + // A + -B --> A - B + if (!isa<Constant>(RHS)) + if (Value *V = dyn_castFNegVal(RHS)) + return BinaryOperator::CreateFSub(LHS, V); + + // Check for X+0.0. Simplify it to X if we know X is not -0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) + if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) + return ReplaceInstUsesWith(I, LHS); + + // Check for (fadd double (sitofp x), y), see if we can merge this into an + // integer add followed by a promotion. + if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { + // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) + // ... if the constant fits in the integer value. This is useful for things + // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer + // requires a constant pool load, and generally allows the add to be better + // instcombined. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { + Constant *CI = + ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); + if (LHSConv->hasOneUse() && + ConstantExpr::getSIToFP(CI, I.getType()) == CFP && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { + // Insert the new integer add. + Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), + CI, "addconv"); + return new SIToFPInst(NewAdd, I.getType()); + } + } + + // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) + if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { + // Only do this if x/y have the same type, if at last one of them has a + // single use (so we don't increase the number of int->fp conversions), + // and if the integer add will not overflow. + if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& + (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && + WillNotOverflowSignedAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0))) { + // Insert the new integer add. + Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), + RHSConv->getOperand(0),"addconv"); + return new SIToFPInst(NewAdd, I.getType()); + } + } + } + + return Changed ? &I : 0; +} + + +/// Optimize pointer differences into the same array into a size. Consider: +/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer +/// operands to the ptrtoint instructions for the LHS/RHS of the subtract. +/// +Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, + Type *Ty) { + assert(TD && "Must have target data info for this"); + + // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize + // this. + bool Swapped = false; + GEPOperator *GEP1 = 0, *GEP2 = 0; + + // For now we require one side to be the base pointer "A" or a constant + // GEP derived from it. + if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { + // (gep X, ...) - X + if (LHSGEP->getOperand(0) == RHS) { + GEP1 = LHSGEP; + Swapped = false; + } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { + // (gep X, ...) - (gep X, ...) + if (LHSGEP->getOperand(0)->stripPointerCasts() == + RHSGEP->getOperand(0)->stripPointerCasts()) { + GEP2 = RHSGEP; + GEP1 = LHSGEP; + Swapped = false; + } + } + } + + if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { + // X - (gep X, ...) + if (RHSGEP->getOperand(0) == LHS) { + GEP1 = RHSGEP; + Swapped = true; + } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { + // (gep X, ...) - (gep X, ...) + if (RHSGEP->getOperand(0)->stripPointerCasts() == + LHSGEP->getOperand(0)->stripPointerCasts()) { + GEP2 = LHSGEP; + GEP1 = RHSGEP; + Swapped = true; + } + } + } + + // Avoid duplicating the arithmetic if GEP2 has non-constant indices and + // multiple users. + if (GEP1 == 0 || + (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) + return 0; + + // Emit the offset of the GEP and an intptr_t. + Value *Result = EmitGEPOffset(GEP1); + + // If we had a constant expression GEP on the other side offsetting the + // pointer, subtract it from the offset we have. + if (GEP2) { + Value *Offset = EmitGEPOffset(GEP2); + Result = Builder->CreateSub(Result, Offset); + } + + // If we have p - gep(p, ...) then we have to negate the result. + if (Swapped) + Result = Builder->CreateNeg(Result, "diff.neg"); + + return Builder->CreateIntCast(Result, Ty, true); +} + + +Instruction *InstCombiner::visitSub(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), + I.hasNoUnsignedWrap(), TD)) + return ReplaceInstUsesWith(I, V); + + // (A*B)-(A*C) -> A*(B-C) etc + if (Value *V = SimplifyUsingDistributiveLaws(I)) + return ReplaceInstUsesWith(I, V); + + // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. + if (Value *V = dyn_castNegVal(Op1)) { + BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); + Res->setHasNoSignedWrap(I.hasNoSignedWrap()); + Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); + return Res; + } + + if (I.getType()->isIntegerTy(1)) + return BinaryOperator::CreateXor(Op0, Op1); + + // Replace (-1 - A) with (~A). + if (match(Op0, m_AllOnes())) + return BinaryOperator::CreateNot(Op1); + + if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { + // C - ~X == X + (1+C) + Value *X = 0; + if (match(Op1, m_Not(m_Value(X)))) + return BinaryOperator::CreateAdd(X, AddOne(C)); + + // -(X >>u 31) -> (X >>s 31) + // -(X >>s 31) -> (X >>u 31) + if (C->isZero()) { + Value *X; ConstantInt *CI; + if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && + // Verify we are shifting out everything but the sign bit. + CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) + return BinaryOperator::CreateAShr(X, CI); + + if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && + // Verify we are shifting out everything but the sign bit. + CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) + return BinaryOperator::CreateLShr(X, CI); + } + + // Try to fold constant sub into select arguments. + if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) + if (Instruction *R = FoldOpIntoSelect(I, SI)) + return R; + + // C-(X+C2) --> (C-C2)-X + ConstantInt *C2; + if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2)))) + return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); + + if (SimplifyDemandedInstructionBits(I)) + return &I; + } + + + { Value *Y; + // X-(X+Y) == -Y X-(Y+X) == -Y + if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || + match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) + return BinaryOperator::CreateNeg(Y); + + // (X-Y)-X == -Y + if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) + return BinaryOperator::CreateNeg(Y); + } + + if (Op1->hasOneUse()) { + Value *X = 0, *Y = 0, *Z = 0; + Constant *C = 0; + ConstantInt *CI = 0; + + // (X - (Y - Z)) --> (X + (Z - Y)). + if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) + return BinaryOperator::CreateAdd(Op0, + Builder->CreateSub(Z, Y, Op1->getName())); + + // (X - (X & Y)) --> (X & ~Y) + // + if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || + match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) + return BinaryOperator::CreateAnd(Op0, + Builder->CreateNot(Y, Y->getName() + ".not")); + + // 0 - (X sdiv C) -> (X sdiv -C) + if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && + match(Op0, m_Zero())) + return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); + + // 0 - (X << Y) -> (-X << Y) when X is freely negatable. + if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) + if (Value *XNeg = dyn_castNegVal(X)) + return BinaryOperator::CreateShl(XNeg, Y); + + // X - X*C --> X * (1-C) + if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) { + Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); + return BinaryOperator::CreateMul(Op0, CP1); + } + + // X - X<<C --> X * (1-(1<<C)) + if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) { + Constant *One = ConstantInt::get(I.getType(), 1); + C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); + return BinaryOperator::CreateMul(Op0, C); + } + + // X - A*-B -> X + A*B + // X - -A*B -> X + A*B + Value *A, *B; + if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || + match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) + return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); + + // X - A*CI -> X + A*-CI + // X - CI*A -> X + A*-CI + if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) || + match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) { + Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); + return BinaryOperator::CreateAdd(Op0, NewMul); + } + } + + ConstantInt *C1; + if (Value *X = dyn_castFoldableMul(Op0, C1)) { + if (X == Op1) // X*C - X --> X * (C-1) + return BinaryOperator::CreateMul(Op1, SubOne(C1)); + + ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) + if (X == dyn_castFoldableMul(Op1, C2)) + return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); + } + + // Optimize pointer differences into the same array into a size. Consider: + // &A[10] - &A[0]: we should compile this to "10". + if (TD) { + Value *LHSOp, *RHSOp; + if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && + match(Op1, m_PtrToInt(m_Value(RHSOp)))) + if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) + return ReplaceInstUsesWith(I, Res); + + // trunc(p)-trunc(q) -> trunc(p-q) + if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && + match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) + if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) + return ReplaceInstUsesWith(I, Res); + } + + return 0; +} + +Instruction *InstCombiner::visitFSub(BinaryOperator &I) { + Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); + + // If this is a 'B = x-(-A)', change to B = x+A... + if (Value *V = dyn_castFNegVal(Op1)) + return BinaryOperator::CreateFAdd(Op0, V); + + return 0; +} |