summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp731
1 files changed, 731 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
new file mode 100644
index 0000000..4d2c89e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
@@ -0,0 +1,731 @@
+//===- InstCombineAddSub.cpp ----------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for add, fadd, sub, and fsub.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombine.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+using namespace llvm;
+using namespace PatternMatch;
+
+/// AddOne - Add one to a ConstantInt.
+static Constant *AddOne(Constant *C) {
+ return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
+}
+/// SubOne - Subtract one from a ConstantInt.
+static Constant *SubOne(ConstantInt *C) {
+ return ConstantInt::get(C->getContext(), C->getValue()-1);
+}
+
+
+// dyn_castFoldableMul - If this value is a multiply that can be folded into
+// other computations (because it has a constant operand), return the
+// non-constant operand of the multiply, and set CST to point to the multiplier.
+// Otherwise, return null.
+//
+static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
+ if (!V->hasOneUse() || !V->getType()->isIntegerTy())
+ return 0;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (I == 0) return 0;
+
+ if (I->getOpcode() == Instruction::Mul)
+ if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
+ return I->getOperand(0);
+ if (I->getOpcode() == Instruction::Shl)
+ if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
+ // The multiplier is really 1 << CST.
+ uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
+ uint32_t CSTVal = CST->getLimitedValue(BitWidth);
+ CST = ConstantInt::get(V->getType()->getContext(),
+ APInt(BitWidth, 1).shl(CSTVal));
+ return I->getOperand(0);
+ }
+ return 0;
+}
+
+
+/// WillNotOverflowSignedAdd - Return true if we can prove that:
+/// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
+/// This basically requires proving that the add in the original type would not
+/// overflow to change the sign bit or have a carry out.
+bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
+ // There are different heuristics we can use for this. Here are some simple
+ // ones.
+
+ // Add has the property that adding any two 2's complement numbers can only
+ // have one carry bit which can change a sign. As such, if LHS and RHS each
+ // have at least two sign bits, we know that the addition of the two values
+ // will sign extend fine.
+ if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
+ return true;
+
+
+ // If one of the operands only has one non-zero bit, and if the other operand
+ // has a known-zero bit in a more significant place than it (not including the
+ // sign bit) the ripple may go up to and fill the zero, but won't change the
+ // sign. For example, (X & ~4) + 1.
+
+ // TODO: Implement.
+
+ return false;
+}
+
+Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
+ I.hasNoUnsignedWrap(), TD))
+ return ReplaceInstUsesWith(I, V);
+
+
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
+ // X + (signbit) --> X ^ signbit
+ const APInt& Val = CI->getValue();
+ uint32_t BitWidth = Val.getBitWidth();
+ if (Val == APInt::getSignBit(BitWidth))
+ return BinaryOperator::CreateXor(LHS, RHS);
+
+ // See if SimplifyDemandedBits can simplify this. This handles stuff like
+ // (X & 254)+1 -> (X&254)|1
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // zext(bool) + C -> bool ? C + 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
+ if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+ return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
+ }
+
+ if (isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+
+ ConstantInt *XorRHS = 0;
+ Value *XorLHS = 0;
+ if (isa<ConstantInt>(RHSC) &&
+ match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
+ uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
+ const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
+ unsigned ExtendAmt = 0;
+ // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
+ // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
+ if (XorRHS->getValue() == -RHSVal) {
+ if (RHSVal.isPowerOf2())
+ ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
+ else if (XorRHS->getValue().isPowerOf2())
+ ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
+ }
+
+ if (ExtendAmt) {
+ APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
+ if (!MaskedValueIsZero(XorLHS, Mask))
+ ExtendAmt = 0;
+ }
+
+ if (ExtendAmt) {
+ Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
+ Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
+ return BinaryOperator::CreateAShr(NewShl, ShAmt);
+ }
+ }
+ }
+
+ if (I.getType()->isIntegerTy(1))
+ return BinaryOperator::CreateXor(LHS, RHS);
+
+ if (I.getType()->isIntegerTy()) {
+ // X + X --> X << 1
+ if (LHS == RHS)
+ return BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
+
+ if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
+ if (RHSI->getOpcode() == Instruction::Sub)
+ if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
+ return ReplaceInstUsesWith(I, RHSI->getOperand(0));
+ }
+ if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
+ if (LHSI->getOpcode() == Instruction::Sub)
+ if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
+ return ReplaceInstUsesWith(I, LHSI->getOperand(0));
+ }
+ }
+
+ // -A + B --> B - A
+ // -A + -B --> -(A + B)
+ if (Value *LHSV = dyn_castNegVal(LHS)) {
+ if (LHS->getType()->isIntOrIntVectorTy()) {
+ if (Value *RHSV = dyn_castNegVal(RHS)) {
+ Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
+ return BinaryOperator::CreateNeg(NewAdd);
+ }
+ }
+
+ return BinaryOperator::CreateSub(RHS, LHSV);
+ }
+
+ // A + -B --> A - B
+ if (!isa<Constant>(RHS))
+ if (Value *V = dyn_castNegVal(RHS))
+ return BinaryOperator::CreateSub(LHS, V);
+
+
+ ConstantInt *C2;
+ if (Value *X = dyn_castFoldableMul(LHS, C2)) {
+ if (X == RHS) // X*C + X --> X * (C+1)
+ return BinaryOperator::CreateMul(RHS, AddOne(C2));
+
+ // X*C1 + X*C2 --> X * (C1+C2)
+ ConstantInt *C1;
+ if (X == dyn_castFoldableMul(RHS, C1))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
+ }
+
+ // X + X*C --> X * (C+1)
+ if (dyn_castFoldableMul(RHS, C2) == LHS)
+ return BinaryOperator::CreateMul(LHS, AddOne(C2));
+
+ // X + ~X --> -1 since ~X = -X-1
+ if (match(LHS, m_Not(m_Specific(RHS))) ||
+ match(RHS, m_Not(m_Specific(LHS))))
+ return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
+
+ // A+B --> A|B iff A and B have no bits set in common.
+ if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
+ APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
+ APInt LHSKnownOne(IT->getBitWidth(), 0);
+ APInt LHSKnownZero(IT->getBitWidth(), 0);
+ ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
+ if (LHSKnownZero != 0) {
+ APInt RHSKnownOne(IT->getBitWidth(), 0);
+ APInt RHSKnownZero(IT->getBitWidth(), 0);
+ ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
+
+ // No bits in common -> bitwise or.
+ if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
+ return BinaryOperator::CreateOr(LHS, RHS);
+ }
+ }
+
+ // W*X + Y*Z --> W * (X+Z) iff W == Y
+ if (I.getType()->isIntOrIntVectorTy()) {
+ Value *W, *X, *Y, *Z;
+ if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
+ match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
+ if (W != Y) {
+ if (W == Z) {
+ std::swap(Y, Z);
+ } else if (Y == X) {
+ std::swap(W, X);
+ } else if (X == Z) {
+ std::swap(Y, Z);
+ std::swap(W, X);
+ }
+ }
+
+ if (W == Y) {
+ Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
+ return BinaryOperator::CreateMul(W, NewAdd);
+ }
+ }
+ }
+
+ if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
+ Value *X = 0;
+ if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
+ return BinaryOperator::CreateSub(SubOne(CRHS), X);
+
+ // (X & FF00) + xx00 -> (X+xx00) & FF00
+ if (LHS->hasOneUse() &&
+ match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
+ Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
+ if (Anded == CRHS) {
+ // See if all bits from the first bit set in the Add RHS up are included
+ // in the mask. First, get the rightmost bit.
+ const APInt &AddRHSV = CRHS->getValue();
+
+ // Form a mask of all bits from the lowest bit added through the top.
+ APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
+
+ // See if the and mask includes all of these bits.
+ APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
+
+ if (AddRHSHighBits == AddRHSHighBitsAnd) {
+ // Okay, the xform is safe. Insert the new add pronto.
+ Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
+ return BinaryOperator::CreateAnd(NewAdd, C2);
+ }
+ }
+ }
+
+ // Try to fold constant add into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ }
+
+ // add (select X 0 (sub n A)) A --> select X A n
+ {
+ SelectInst *SI = dyn_cast<SelectInst>(LHS);
+ Value *A = RHS;
+ if (!SI) {
+ SI = dyn_cast<SelectInst>(RHS);
+ A = LHS;
+ }
+ if (SI && SI->hasOneUse()) {
+ Value *TV = SI->getTrueValue();
+ Value *FV = SI->getFalseValue();
+ Value *N;
+
+ // Can we fold the add into the argument of the select?
+ // We check both true and false select arguments for a matching subtract.
+ if (match(FV, m_Zero()) &&
+ match(TV, m_Sub(m_Value(N), m_Specific(A))))
+ // Fold the add into the true select value.
+ return SelectInst::Create(SI->getCondition(), N, A);
+ if (match(TV, m_Zero()) &&
+ match(FV, m_Sub(m_Value(N), m_Specific(A))))
+ // Fold the add into the false select value.
+ return SelectInst::Create(SI->getCondition(), A, N);
+ }
+ }
+
+ // Check for (add (sext x), y), see if we can merge this into an
+ // integer add followed by a sext.
+ if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
+ // (add (sext x), cst) --> (sext (add x, cst'))
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new, smaller add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+
+ // (add (sext x), (sext y)) --> (sext (add int x, y))
+ if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of sexts), and if the
+ // integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0), "addconv");
+ return new SExtInst(NewAdd, I.getType());
+ }
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
+ bool Changed = SimplifyCommutative(I);
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+
+ if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
+ // X + 0 --> X
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
+ if (CFP->isExactlyValue(ConstantFP::getNegativeZero
+ (I.getType())->getValueAPF()))
+ return ReplaceInstUsesWith(I, LHS);
+ }
+
+ if (isa<PHINode>(LHS))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
+
+ // -A + B --> B - A
+ // -A + -B --> -(A + B)
+ if (Value *LHSV = dyn_castFNegVal(LHS))
+ return BinaryOperator::CreateFSub(RHS, LHSV);
+
+ // A + -B --> A - B
+ if (!isa<Constant>(RHS))
+ if (Value *V = dyn_castFNegVal(RHS))
+ return BinaryOperator::CreateFSub(LHS, V);
+
+ // Check for X+0.0. Simplify it to X if we know X is not -0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
+ if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
+ return ReplaceInstUsesWith(I, LHS);
+
+ // Check for (fadd double (sitofp x), y), see if we can merge this into an
+ // integer add followed by a promotion.
+ if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
+ // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
+ // ... if the constant fits in the integer value. This is useful for things
+ // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
+ // requires a constant pool load, and generally allows the add to be better
+ // instcombined.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
+ Constant *CI =
+ ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
+ if (LHSConv->hasOneUse() &&
+ ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ CI, "addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+
+ // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
+ if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
+ // Only do this if x/y have the same type, if at last one of them has a
+ // single use (so we don't increase the number of int->fp conversions),
+ // and if the integer add will not overflow.
+ if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
+ (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
+ WillNotOverflowSignedAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0))) {
+ // Insert the new integer add.
+ Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
+ RHSConv->getOperand(0),"addconv");
+ return new SIToFPInst(NewAdd, I.getType());
+ }
+ }
+ }
+
+ return Changed ? &I : 0;
+}
+
+
+/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
+/// code necessary to compute the offset from the base pointer (without adding
+/// in the base pointer). Return the result as a signed integer of intptr size.
+Value *InstCombiner::EmitGEPOffset(User *GEP) {
+ TargetData &TD = *getTargetData();
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ const Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
+ Value *Result = Constant::getNullValue(IntPtrTy);
+
+ // Build a mask for high order bits.
+ unsigned IntPtrWidth = TD.getPointerSizeInBits();
+ uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
+
+ for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
+ ++i, ++GTI) {
+ Value *Op = *i;
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
+ if (OpC->isZero()) continue;
+
+ // Handle a struct index, which adds its field offset to the pointer.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
+
+ Result = Builder->CreateAdd(Result,
+ ConstantInt::get(IntPtrTy, Size),
+ GEP->getName()+".offs");
+ continue;
+ }
+
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ Constant *OC =
+ ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
+ Scale = ConstantExpr::getMul(OC, Scale);
+ // Emit an add instruction.
+ Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
+ continue;
+ }
+ // Convert to correct type.
+ if (Op->getType() != IntPtrTy)
+ Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
+ if (Size != 1) {
+ Constant *Scale = ConstantInt::get(IntPtrTy, Size);
+ // We'll let instcombine(mul) convert this to a shl if possible.
+ Op = Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
+ }
+
+ // Emit an add instruction.
+ Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
+ }
+ return Result;
+}
+
+
+
+
+/// Optimize pointer differences into the same array into a size. Consider:
+/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
+/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
+///
+Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
+ const Type *Ty) {
+ assert(TD && "Must have target data info for this");
+
+ // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
+ // this.
+ bool Swapped = false;
+ GetElementPtrInst *GEP = 0;
+ ConstantExpr *CstGEP = 0;
+
+ // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
+ // For now we require one side to be the base pointer "A" or a constant
+ // expression derived from it.
+ if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
+ // (gep X, ...) - X
+ if (LHSGEP->getOperand(0) == RHS) {
+ GEP = LHSGEP;
+ Swapped = false;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
+ // (gep X, ...) - (ce_gep X, ...)
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ LHSGEP->getOperand(0) == CE->getOperand(0)) {
+ CstGEP = CE;
+ GEP = LHSGEP;
+ Swapped = false;
+ }
+ }
+ }
+
+ if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
+ // X - (gep X, ...)
+ if (RHSGEP->getOperand(0) == LHS) {
+ GEP = RHSGEP;
+ Swapped = true;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
+ // (ce_gep X, ...) - (gep X, ...)
+ if (CE->getOpcode() == Instruction::GetElementPtr &&
+ RHSGEP->getOperand(0) == CE->getOperand(0)) {
+ CstGEP = CE;
+ GEP = RHSGEP;
+ Swapped = true;
+ }
+ }
+ }
+
+ if (GEP == 0)
+ return 0;
+
+ // Emit the offset of the GEP and an intptr_t.
+ Value *Result = EmitGEPOffset(GEP);
+
+ // If we had a constant expression GEP on the other side offsetting the
+ // pointer, subtract it from the offset we have.
+ if (CstGEP) {
+ Value *CstOffset = EmitGEPOffset(CstGEP);
+ Result = Builder->CreateSub(Result, CstOffset);
+ }
+
+
+ // If we have p - gep(p, ...) then we have to negate the result.
+ if (Swapped)
+ Result = Builder->CreateNeg(Result, "diff.neg");
+
+ return Builder->CreateIntCast(Result, Ty, true);
+}
+
+
+Instruction *InstCombiner::visitSub(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (Op0 == Op1) // sub X, X -> 0
+ return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
+
+ // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW.
+ if (Value *V = dyn_castNegVal(Op1)) {
+ BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
+ Res->setHasNoSignedWrap(I.hasNoSignedWrap());
+ Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
+ return Res;
+ }
+
+ if (isa<UndefValue>(Op0))
+ return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
+ if (I.getType()->isIntegerTy(1))
+ return BinaryOperator::CreateXor(Op0, Op1);
+
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
+ // Replace (-1 - A) with (~A).
+ if (C->isAllOnesValue())
+ return BinaryOperator::CreateNot(Op1);
+
+ // C - ~X == X + (1+C)
+ Value *X = 0;
+ if (match(Op1, m_Not(m_Value(X))))
+ return BinaryOperator::CreateAdd(X, AddOne(C));
+
+ // -(X >>u 31) -> (X >>s 31)
+ // -(X >>s 31) -> (X >>u 31)
+ if (C->isZero()) {
+ if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
+ if (SI->getOpcode() == Instruction::LShr) {
+ if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ // Check to see if we are shifting out everything but the sign bit.
+ if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+ SI->getType()->getPrimitiveSizeInBits()-1) {
+ // Ok, the transformation is safe. Insert AShr.
+ return BinaryOperator::Create(Instruction::AShr,
+ SI->getOperand(0), CU, SI->getName());
+ }
+ }
+ } else if (SI->getOpcode() == Instruction::AShr) {
+ if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
+ // Check to see if we are shifting out everything but the sign bit.
+ if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
+ SI->getType()->getPrimitiveSizeInBits()-1) {
+ // Ok, the transformation is safe. Insert LShr.
+ return BinaryOperator::CreateLShr(
+ SI->getOperand(0), CU, SI->getName());
+ }
+ }
+ }
+ }
+ }
+
+ // Try to fold constant sub into select arguments.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ // C - zext(bool) -> bool ? C - 1 : C
+ if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
+ if (ZI->getSrcTy() == Type::getInt1Ty(I.getContext()))
+ return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
+ }
+
+ if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
+ if (Op1I->getOpcode() == Instruction::Add) {
+ if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
+ return BinaryOperator::CreateNeg(Op1I->getOperand(1),
+ I.getName());
+ else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
+ return BinaryOperator::CreateNeg(Op1I->getOperand(0),
+ I.getName());
+ else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
+ if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
+ // C1-(X+C2) --> (C1-C2)-X
+ return BinaryOperator::CreateSub(
+ ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
+ }
+ }
+
+ if (Op1I->hasOneUse()) {
+ // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
+ // is not used by anyone else...
+ //
+ if (Op1I->getOpcode() == Instruction::Sub) {
+ // Swap the two operands of the subexpr...
+ Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
+ Op1I->setOperand(0, IIOp1);
+ Op1I->setOperand(1, IIOp0);
+
+ // Create the new top level add instruction...
+ return BinaryOperator::CreateAdd(Op0, Op1);
+ }
+
+ // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
+ //
+ if (Op1I->getOpcode() == Instruction::And &&
+ (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
+ Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
+
+ Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
+ return BinaryOperator::CreateAnd(Op0, NewNot);
+ }
+
+ // 0 - (X sdiv C) -> (X sdiv -C)
+ if (Op1I->getOpcode() == Instruction::SDiv)
+ if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
+ if (CSI->isZero())
+ if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
+ return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
+ ConstantExpr::getNeg(DivRHS));
+
+ // 0 - (C << X) -> (-C << X)
+ if (Op1I->getOpcode() == Instruction::Shl)
+ if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
+ if (CSI->isZero())
+ if (Value *ShlLHSNeg = dyn_castNegVal(Op1I->getOperand(0)))
+ return BinaryOperator::CreateShl(ShlLHSNeg, Op1I->getOperand(1));
+
+ // X - X*C --> X * (1-C)
+ ConstantInt *C2 = 0;
+ if (dyn_castFoldableMul(Op1I, C2) == Op0) {
+ Constant *CP1 =
+ ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
+ C2);
+ return BinaryOperator::CreateMul(Op0, CP1);
+ }
+ }
+ }
+
+ if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
+ if (Op0I->getOpcode() == Instruction::Add) {
+ if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
+ return ReplaceInstUsesWith(I, Op0I->getOperand(1));
+ else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
+ return ReplaceInstUsesWith(I, Op0I->getOperand(0));
+ } else if (Op0I->getOpcode() == Instruction::Sub) {
+ if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
+ return BinaryOperator::CreateNeg(Op0I->getOperand(1),
+ I.getName());
+ }
+ }
+
+ ConstantInt *C1;
+ if (Value *X = dyn_castFoldableMul(Op0, C1)) {
+ if (X == Op1) // X*C - X --> X * (C-1)
+ return BinaryOperator::CreateMul(Op1, SubOne(C1));
+
+ ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
+ if (X == dyn_castFoldableMul(Op1, C2))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
+ }
+
+ // Optimize pointer differences into the same array into a size. Consider:
+ // &A[10] - &A[0]: we should compile this to "10".
+ if (TD) {
+ Value *LHSOp, *RHSOp;
+ if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
+ match(Op1, m_PtrToInt(m_Value(RHSOp))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
+
+ // trunc(p)-trunc(q) -> trunc(p-q)
+ if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
+ match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
+ if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
+ return ReplaceInstUsesWith(I, Res);
+ }
+
+ return 0;
+}
+
+Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // If this is a 'B = x-(-A)', change to B = x+A...
+ if (Value *V = dyn_castFNegVal(Op1))
+ return BinaryOperator::CreateFAdd(Op0, V);
+
+ return 0;
+}
OpenPOWER on IntegriCloud