summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp1265
1 files changed, 1265 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp b/contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp
new file mode 100644
index 0000000..928d92e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/IPO/SampleProfile.cpp
@@ -0,0 +1,1265 @@
+//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the SampleProfileLoader transformation. This pass
+// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
+// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
+// profile information in the given profile.
+//
+// This pass generates branch weight annotations on the IR:
+//
+// - prof: Represents branch weights. This annotation is added to branches
+// to indicate the weights of each edge coming out of the branch.
+// The weight of each edge is the weight of the target block for
+// that edge. The weight of a block B is computed as the maximum
+// number of samples found in B.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/ProfileData/SampleProfReader.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorOr.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <cctype>
+
+using namespace llvm;
+using namespace sampleprof;
+
+#define DEBUG_TYPE "sample-profile"
+
+// Command line option to specify the file to read samples from. This is
+// mainly used for debugging.
+static cl::opt<std::string> SampleProfileFile(
+ "sample-profile-file", cl::init(""), cl::value_desc("filename"),
+ cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
+static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
+ "sample-profile-max-propagate-iterations", cl::init(100),
+ cl::desc("Maximum number of iterations to go through when propagating "
+ "sample block/edge weights through the CFG."));
+static cl::opt<unsigned> SampleProfileRecordCoverage(
+ "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
+ cl::desc("Emit a warning if less than N% of records in the input profile "
+ "are matched to the IR."));
+static cl::opt<unsigned> SampleProfileSampleCoverage(
+ "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
+ cl::desc("Emit a warning if less than N% of samples in the input profile "
+ "are matched to the IR."));
+static cl::opt<double> SampleProfileHotThreshold(
+ "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
+ cl::desc("Inlined functions that account for more than N% of all samples "
+ "collected in the parent function, will be inlined again."));
+static cl::opt<double> SampleProfileGlobalHotThreshold(
+ "sample-profile-global-hot-threshold", cl::init(30), cl::value_desc("N"),
+ cl::desc("Top-level functions that account for more than N% of all samples "
+ "collected in the profile, will be marked as hot for the inliner "
+ "to consider."));
+static cl::opt<double> SampleProfileGlobalColdThreshold(
+ "sample-profile-global-cold-threshold", cl::init(0.5), cl::value_desc("N"),
+ cl::desc("Top-level functions that account for less than N% of all samples "
+ "collected in the profile, will be marked as cold for the inliner "
+ "to consider."));
+
+namespace {
+typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
+typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
+typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
+typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
+typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
+ BlockEdgeMap;
+
+/// \brief Sample profile pass.
+///
+/// This pass reads profile data from the file specified by
+/// -sample-profile-file and annotates every affected function with the
+/// profile information found in that file.
+class SampleProfileLoader : public ModulePass {
+public:
+ // Class identification, replacement for typeinfo
+ static char ID;
+
+ SampleProfileLoader(StringRef Name = SampleProfileFile)
+ : ModulePass(ID), DT(nullptr), PDT(nullptr), LI(nullptr), Reader(),
+ Samples(nullptr), Filename(Name), ProfileIsValid(false),
+ TotalCollectedSamples(0) {
+ initializeSampleProfileLoaderPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool doInitialization(Module &M) override;
+
+ void dump() { Reader->dump(); }
+
+ const char *getPassName() const override { return "Sample profile pass"; }
+
+ bool runOnModule(Module &M) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ }
+
+protected:
+ bool runOnFunction(Function &F);
+ unsigned getFunctionLoc(Function &F);
+ bool emitAnnotations(Function &F);
+ ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
+ ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
+ const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
+ const FunctionSamples *findFunctionSamples(const Instruction &I) const;
+ bool inlineHotFunctions(Function &F);
+ bool emitInlineHints(Function &F);
+ void printEdgeWeight(raw_ostream &OS, Edge E);
+ void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
+ void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
+ bool computeBlockWeights(Function &F);
+ void findEquivalenceClasses(Function &F);
+ void findEquivalencesFor(BasicBlock *BB1,
+ SmallVector<BasicBlock *, 8> Descendants,
+ DominatorTreeBase<BasicBlock> *DomTree);
+ void propagateWeights(Function &F);
+ uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
+ void buildEdges(Function &F);
+ bool propagateThroughEdges(Function &F);
+ void computeDominanceAndLoopInfo(Function &F);
+ unsigned getOffset(unsigned L, unsigned H) const;
+ void clearFunctionData();
+
+ /// \brief Map basic blocks to their computed weights.
+ ///
+ /// The weight of a basic block is defined to be the maximum
+ /// of all the instruction weights in that block.
+ BlockWeightMap BlockWeights;
+
+ /// \brief Map edges to their computed weights.
+ ///
+ /// Edge weights are computed by propagating basic block weights in
+ /// SampleProfile::propagateWeights.
+ EdgeWeightMap EdgeWeights;
+
+ /// \brief Set of visited blocks during propagation.
+ SmallPtrSet<const BasicBlock *, 128> VisitedBlocks;
+
+ /// \brief Set of visited edges during propagation.
+ SmallSet<Edge, 128> VisitedEdges;
+
+ /// \brief Equivalence classes for block weights.
+ ///
+ /// Two blocks BB1 and BB2 are in the same equivalence class if they
+ /// dominate and post-dominate each other, and they are in the same loop
+ /// nest. When this happens, the two blocks are guaranteed to execute
+ /// the same number of times.
+ EquivalenceClassMap EquivalenceClass;
+
+ /// \brief Dominance, post-dominance and loop information.
+ std::unique_ptr<DominatorTree> DT;
+ std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
+ std::unique_ptr<LoopInfo> LI;
+
+ /// \brief Predecessors for each basic block in the CFG.
+ BlockEdgeMap Predecessors;
+
+ /// \brief Successors for each basic block in the CFG.
+ BlockEdgeMap Successors;
+
+ /// \brief Profile reader object.
+ std::unique_ptr<SampleProfileReader> Reader;
+
+ /// \brief Samples collected for the body of this function.
+ FunctionSamples *Samples;
+
+ /// \brief Name of the profile file to load.
+ StringRef Filename;
+
+ /// \brief Flag indicating whether the profile input loaded successfully.
+ bool ProfileIsValid;
+
+ /// \brief Total number of samples collected in this profile.
+ ///
+ /// This is the sum of all the samples collected in all the functions executed
+ /// at runtime.
+ uint64_t TotalCollectedSamples;
+};
+
+class SampleCoverageTracker {
+public:
+ SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
+
+ bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
+ uint32_t Discriminator, uint64_t Samples);
+ unsigned computeCoverage(unsigned Used, unsigned Total) const;
+ unsigned countUsedRecords(const FunctionSamples *FS) const;
+ unsigned countBodyRecords(const FunctionSamples *FS) const;
+ uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
+ uint64_t countBodySamples(const FunctionSamples *FS) const;
+ void clear() {
+ SampleCoverage.clear();
+ TotalUsedSamples = 0;
+ }
+
+private:
+ typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
+ typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
+ FunctionSamplesCoverageMap;
+
+ /// Coverage map for sampling records.
+ ///
+ /// This map keeps a record of sampling records that have been matched to
+ /// an IR instruction. This is used to detect some form of staleness in
+ /// profiles (see flag -sample-profile-check-coverage).
+ ///
+ /// Each entry in the map corresponds to a FunctionSamples instance. This is
+ /// another map that counts how many times the sample record at the
+ /// given location has been used.
+ FunctionSamplesCoverageMap SampleCoverage;
+
+ /// Number of samples used from the profile.
+ ///
+ /// When a sampling record is used for the first time, the samples from
+ /// that record are added to this accumulator. Coverage is later computed
+ /// based on the total number of samples available in this function and
+ /// its callsites.
+ ///
+ /// Note that this accumulator tracks samples used from a single function
+ /// and all the inlined callsites. Strictly, we should have a map of counters
+ /// keyed by FunctionSamples pointers, but these stats are cleared after
+ /// every function, so we just need to keep a single counter.
+ uint64_t TotalUsedSamples;
+};
+
+SampleCoverageTracker CoverageTracker;
+
+/// Return true if the given callsite is hot wrt to its caller.
+///
+/// Functions that were inlined in the original binary will be represented
+/// in the inline stack in the sample profile. If the profile shows that
+/// the original inline decision was "good" (i.e., the callsite is executed
+/// frequently), then we will recreate the inline decision and apply the
+/// profile from the inlined callsite.
+///
+/// To decide whether an inlined callsite is hot, we compute the fraction
+/// of samples used by the callsite with respect to the total number of samples
+/// collected in the caller.
+///
+/// If that fraction is larger than the default given by
+/// SampleProfileHotThreshold, the callsite will be inlined again.
+bool callsiteIsHot(const FunctionSamples *CallerFS,
+ const FunctionSamples *CallsiteFS) {
+ if (!CallsiteFS)
+ return false; // The callsite was not inlined in the original binary.
+
+ uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
+ if (ParentTotalSamples == 0)
+ return false; // Avoid division by zero.
+
+ uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
+ if (CallsiteTotalSamples == 0)
+ return false; // Callsite is trivially cold.
+
+ double PercentSamples =
+ (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
+ return PercentSamples >= SampleProfileHotThreshold;
+}
+
+}
+
+/// Mark as used the sample record for the given function samples at
+/// (LineOffset, Discriminator).
+///
+/// \returns true if this is the first time we mark the given record.
+bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
+ uint32_t LineOffset,
+ uint32_t Discriminator,
+ uint64_t Samples) {
+ LineLocation Loc(LineOffset, Discriminator);
+ unsigned &Count = SampleCoverage[FS][Loc];
+ bool FirstTime = (++Count == 1);
+ if (FirstTime)
+ TotalUsedSamples += Samples;
+ return FirstTime;
+}
+
+/// Return the number of sample records that were applied from this profile.
+///
+/// This count does not include records from cold inlined callsites.
+unsigned
+SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
+ auto I = SampleCoverage.find(FS);
+
+ // The size of the coverage map for FS represents the number of records
+ // that were marked used at least once.
+ unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
+
+ // If there are inlined callsites in this function, count the samples found
+ // in the respective bodies. However, do not bother counting callees with 0
+ // total samples, these are callees that were never invoked at runtime.
+ for (const auto &I : FS->getCallsiteSamples()) {
+ const FunctionSamples *CalleeSamples = &I.second;
+ if (callsiteIsHot(FS, CalleeSamples))
+ Count += countUsedRecords(CalleeSamples);
+ }
+
+ return Count;
+}
+
+/// Return the number of sample records in the body of this profile.
+///
+/// This count does not include records from cold inlined callsites.
+unsigned
+SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
+ unsigned Count = FS->getBodySamples().size();
+
+ // Only count records in hot callsites.
+ for (const auto &I : FS->getCallsiteSamples()) {
+ const FunctionSamples *CalleeSamples = &I.second;
+ if (callsiteIsHot(FS, CalleeSamples))
+ Count += countBodyRecords(CalleeSamples);
+ }
+
+ return Count;
+}
+
+/// Return the number of samples collected in the body of this profile.
+///
+/// This count does not include samples from cold inlined callsites.
+uint64_t
+SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
+ uint64_t Total = 0;
+ for (const auto &I : FS->getBodySamples())
+ Total += I.second.getSamples();
+
+ // Only count samples in hot callsites.
+ for (const auto &I : FS->getCallsiteSamples()) {
+ const FunctionSamples *CalleeSamples = &I.second;
+ if (callsiteIsHot(FS, CalleeSamples))
+ Total += countBodySamples(CalleeSamples);
+ }
+
+ return Total;
+}
+
+/// Return the fraction of sample records used in this profile.
+///
+/// The returned value is an unsigned integer in the range 0-100 indicating
+/// the percentage of sample records that were used while applying this
+/// profile to the associated function.
+unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
+ unsigned Total) const {
+ assert(Used <= Total &&
+ "number of used records cannot exceed the total number of records");
+ return Total > 0 ? Used * 100 / Total : 100;
+}
+
+/// Clear all the per-function data used to load samples and propagate weights.
+void SampleProfileLoader::clearFunctionData() {
+ BlockWeights.clear();
+ EdgeWeights.clear();
+ VisitedBlocks.clear();
+ VisitedEdges.clear();
+ EquivalenceClass.clear();
+ DT = nullptr;
+ PDT = nullptr;
+ LI = nullptr;
+ Predecessors.clear();
+ Successors.clear();
+ CoverageTracker.clear();
+}
+
+/// \brief Returns the offset of lineno \p L to head_lineno \p H
+///
+/// \param L Lineno
+/// \param H Header lineno of the function
+///
+/// \returns offset to the header lineno. 16 bits are used to represent offset.
+/// We assume that a single function will not exceed 65535 LOC.
+unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
+ return (L - H) & 0xffff;
+}
+
+/// \brief Print the weight of edge \p E on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param E Edge to print.
+void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
+ OS << "weight[" << E.first->getName() << "->" << E.second->getName()
+ << "]: " << EdgeWeights[E] << "\n";
+}
+
+/// \brief Print the equivalence class of block \p BB on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param BB Block to print.
+void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
+ const BasicBlock *BB) {
+ const BasicBlock *Equiv = EquivalenceClass[BB];
+ OS << "equivalence[" << BB->getName()
+ << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
+}
+
+/// \brief Print the weight of block \p BB on stream \p OS.
+///
+/// \param OS Stream to emit the output to.
+/// \param BB Block to print.
+void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
+ const BasicBlock *BB) const {
+ const auto &I = BlockWeights.find(BB);
+ uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
+ OS << "weight[" << BB->getName() << "]: " << W << "\n";
+}
+
+/// \brief Get the weight for an instruction.
+///
+/// The "weight" of an instruction \p Inst is the number of samples
+/// collected on that instruction at runtime. To retrieve it, we
+/// need to compute the line number of \p Inst relative to the start of its
+/// function. We use HeaderLineno to compute the offset. We then
+/// look up the samples collected for \p Inst using BodySamples.
+///
+/// \param Inst Instruction to query.
+///
+/// \returns the weight of \p Inst.
+ErrorOr<uint64_t>
+SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
+ DebugLoc DLoc = Inst.getDebugLoc();
+ if (!DLoc)
+ return std::error_code();
+
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (!FS)
+ return std::error_code();
+
+ const DILocation *DIL = DLoc;
+ unsigned Lineno = DLoc.getLine();
+ unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
+
+ uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
+ uint32_t Discriminator = DIL->getDiscriminator();
+ ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
+ if (R) {
+ bool FirstMark =
+ CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
+ if (FirstMark) {
+ const Function *F = Inst.getParent()->getParent();
+ LLVMContext &Ctx = F->getContext();
+ emitOptimizationRemark(
+ Ctx, DEBUG_TYPE, *F, DLoc,
+ Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
+ Twine(LineOffset) +
+ ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
+ }
+ DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":"
+ << Inst << " (line offset: " << Lineno - HeaderLineno << "."
+ << DIL->getDiscriminator() << " - weight: " << R.get()
+ << ")\n");
+ }
+ return R;
+}
+
+/// \brief Compute the weight of a basic block.
+///
+/// The weight of basic block \p BB is the maximum weight of all the
+/// instructions in BB.
+///
+/// \param BB The basic block to query.
+///
+/// \returns the weight for \p BB.
+ErrorOr<uint64_t>
+SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
+ bool Found = false;
+ uint64_t Weight = 0;
+ for (auto &I : BB->getInstList()) {
+ const ErrorOr<uint64_t> &R = getInstWeight(I);
+ if (R && R.get() >= Weight) {
+ Weight = R.get();
+ Found = true;
+ }
+ }
+ if (Found)
+ return Weight;
+ else
+ return std::error_code();
+}
+
+/// \brief Compute and store the weights of every basic block.
+///
+/// This populates the BlockWeights map by computing
+/// the weights of every basic block in the CFG.
+///
+/// \param F The function to query.
+bool SampleProfileLoader::computeBlockWeights(Function &F) {
+ bool Changed = false;
+ DEBUG(dbgs() << "Block weights\n");
+ for (const auto &BB : F) {
+ ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
+ if (Weight) {
+ BlockWeights[&BB] = Weight.get();
+ VisitedBlocks.insert(&BB);
+ Changed = true;
+ }
+ DEBUG(printBlockWeight(dbgs(), &BB));
+ }
+
+ return Changed;
+}
+
+/// \brief Get the FunctionSamples for a call instruction.
+///
+/// The FunctionSamples of a call instruction \p Inst is the inlined
+/// instance in which that call instruction is calling to. It contains
+/// all samples that resides in the inlined instance. We first find the
+/// inlined instance in which the call instruction is from, then we
+/// traverse its children to find the callsite with the matching
+/// location and callee function name.
+///
+/// \param Inst Call instruction to query.
+///
+/// \returns The FunctionSamples pointer to the inlined instance.
+const FunctionSamples *
+SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
+ const DILocation *DIL = Inst.getDebugLoc();
+ if (!DIL) {
+ return nullptr;
+ }
+ DISubprogram *SP = DIL->getScope()->getSubprogram();
+ if (!SP)
+ return nullptr;
+
+ Function *CalleeFunc = Inst.getCalledFunction();
+ if (!CalleeFunc) {
+ return nullptr;
+ }
+
+ StringRef CalleeName = CalleeFunc->getName();
+ const FunctionSamples *FS = findFunctionSamples(Inst);
+ if (FS == nullptr)
+ return nullptr;
+
+ return FS->findFunctionSamplesAt(
+ CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
+ DIL->getDiscriminator(), CalleeName));
+}
+
+/// \brief Get the FunctionSamples for an instruction.
+///
+/// The FunctionSamples of an instruction \p Inst is the inlined instance
+/// in which that instruction is coming from. We traverse the inline stack
+/// of that instruction, and match it with the tree nodes in the profile.
+///
+/// \param Inst Instruction to query.
+///
+/// \returns the FunctionSamples pointer to the inlined instance.
+const FunctionSamples *
+SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
+ SmallVector<CallsiteLocation, 10> S;
+ const DILocation *DIL = Inst.getDebugLoc();
+ if (!DIL) {
+ return Samples;
+ }
+ StringRef CalleeName;
+ for (const DILocation *DIL = Inst.getDebugLoc(); DIL;
+ DIL = DIL->getInlinedAt()) {
+ DISubprogram *SP = DIL->getScope()->getSubprogram();
+ if (!SP)
+ return nullptr;
+ if (!CalleeName.empty()) {
+ S.push_back(CallsiteLocation(getOffset(DIL->getLine(), SP->getLine()),
+ DIL->getDiscriminator(), CalleeName));
+ }
+ CalleeName = SP->getLinkageName();
+ }
+ if (S.size() == 0)
+ return Samples;
+ const FunctionSamples *FS = Samples;
+ for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
+ FS = FS->findFunctionSamplesAt(S[i]);
+ }
+ return FS;
+}
+
+/// \brief Emit an inline hint if \p F is globally hot or cold.
+///
+/// If \p F consumes a significant fraction of samples (indicated by
+/// SampleProfileGlobalHotThreshold), apply the InlineHint attribute for the
+/// inliner to consider the function hot.
+///
+/// If \p F consumes a small fraction of samples (indicated by
+/// SampleProfileGlobalColdThreshold), apply the Cold attribute for the inliner
+/// to consider the function cold.
+///
+/// FIXME - This setting of inline hints is sub-optimal. Instead of marking a
+/// function globally hot or cold, we should be annotating individual callsites.
+/// This is not currently possible, but work on the inliner will eventually
+/// provide this ability. See http://reviews.llvm.org/D15003 for details and
+/// discussion.
+///
+/// \returns True if either attribute was applied to \p F.
+bool SampleProfileLoader::emitInlineHints(Function &F) {
+ if (TotalCollectedSamples == 0)
+ return false;
+
+ uint64_t FunctionSamples = Samples->getTotalSamples();
+ double SamplesPercent =
+ (double)FunctionSamples / (double)TotalCollectedSamples * 100.0;
+
+ // If the function collected more samples than the hot threshold, mark
+ // it globally hot.
+ if (SamplesPercent >= SampleProfileGlobalHotThreshold) {
+ F.addFnAttr(llvm::Attribute::InlineHint);
+ std::string Msg;
+ raw_string_ostream S(Msg);
+ S << "Applied inline hint to globally hot function '" << F.getName()
+ << "' with " << format("%.2f", SamplesPercent)
+ << "% of samples (threshold: "
+ << format("%.2f", SampleProfileGlobalHotThreshold.getValue()) << "%)";
+ S.flush();
+ emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
+ return true;
+ }
+
+ // If the function collected fewer samples than the cold threshold, mark
+ // it globally cold.
+ if (SamplesPercent <= SampleProfileGlobalColdThreshold) {
+ F.addFnAttr(llvm::Attribute::Cold);
+ std::string Msg;
+ raw_string_ostream S(Msg);
+ S << "Applied cold hint to globally cold function '" << F.getName()
+ << "' with " << format("%.2f", SamplesPercent)
+ << "% of samples (threshold: "
+ << format("%.2f", SampleProfileGlobalColdThreshold.getValue()) << "%)";
+ S.flush();
+ emitOptimizationRemark(F.getContext(), DEBUG_TYPE, F, DebugLoc(), Msg);
+ return true;
+ }
+
+ return false;
+}
+
+/// \brief Iteratively inline hot callsites of a function.
+///
+/// Iteratively traverse all callsites of the function \p F, and find if
+/// the corresponding inlined instance exists and is hot in profile. If
+/// it is hot enough, inline the callsites and adds new callsites of the
+/// callee into the caller.
+///
+/// TODO: investigate the possibility of not invoking InlineFunction directly.
+///
+/// \param F function to perform iterative inlining.
+///
+/// \returns True if there is any inline happened.
+bool SampleProfileLoader::inlineHotFunctions(Function &F) {
+ bool Changed = false;
+ LLVMContext &Ctx = F.getContext();
+ while (true) {
+ bool LocalChanged = false;
+ SmallVector<CallInst *, 10> CIS;
+ for (auto &BB : F) {
+ for (auto &I : BB.getInstList()) {
+ CallInst *CI = dyn_cast<CallInst>(&I);
+ if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
+ CIS.push_back(CI);
+ }
+ }
+ for (auto CI : CIS) {
+ InlineFunctionInfo IFI;
+ Function *CalledFunction = CI->getCalledFunction();
+ DebugLoc DLoc = CI->getDebugLoc();
+ uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
+ if (InlineFunction(CI, IFI)) {
+ LocalChanged = true;
+ emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
+ Twine("inlined hot callee '") +
+ CalledFunction->getName() + "' with " +
+ Twine(NumSamples) + " samples into '" +
+ F.getName() + "'");
+ }
+ }
+ if (LocalChanged) {
+ Changed = true;
+ } else {
+ break;
+ }
+ }
+ return Changed;
+}
+
+/// \brief Find equivalence classes for the given block.
+///
+/// This finds all the blocks that are guaranteed to execute the same
+/// number of times as \p BB1. To do this, it traverses all the
+/// descendants of \p BB1 in the dominator or post-dominator tree.
+///
+/// A block BB2 will be in the same equivalence class as \p BB1 if
+/// the following holds:
+///
+/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
+/// is a descendant of \p BB1 in the dominator tree, then BB2 should
+/// dominate BB1 in the post-dominator tree.
+///
+/// 2- Both BB2 and \p BB1 must be in the same loop.
+///
+/// For every block BB2 that meets those two requirements, we set BB2's
+/// equivalence class to \p BB1.
+///
+/// \param BB1 Block to check.
+/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
+/// \param DomTree Opposite dominator tree. If \p Descendants is filled
+/// with blocks from \p BB1's dominator tree, then
+/// this is the post-dominator tree, and vice versa.
+void SampleProfileLoader::findEquivalencesFor(
+ BasicBlock *BB1, SmallVector<BasicBlock *, 8> Descendants,
+ DominatorTreeBase<BasicBlock> *DomTree) {
+ const BasicBlock *EC = EquivalenceClass[BB1];
+ uint64_t Weight = BlockWeights[EC];
+ for (const auto *BB2 : Descendants) {
+ bool IsDomParent = DomTree->dominates(BB2, BB1);
+ bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
+ if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
+ EquivalenceClass[BB2] = EC;
+
+ // If BB2 is heavier than BB1, make BB2 have the same weight
+ // as BB1.
+ //
+ // Note that we don't worry about the opposite situation here
+ // (when BB2 is lighter than BB1). We will deal with this
+ // during the propagation phase. Right now, we just want to
+ // make sure that BB1 has the largest weight of all the
+ // members of its equivalence set.
+ Weight = std::max(Weight, BlockWeights[BB2]);
+ }
+ }
+ BlockWeights[EC] = Weight;
+}
+
+/// \brief Find equivalence classes.
+///
+/// Since samples may be missing from blocks, we can fill in the gaps by setting
+/// the weights of all the blocks in the same equivalence class to the same
+/// weight. To compute the concept of equivalence, we use dominance and loop
+/// information. Two blocks B1 and B2 are in the same equivalence class if B1
+/// dominates B2, B2 post-dominates B1 and both are in the same loop.
+///
+/// \param F The function to query.
+void SampleProfileLoader::findEquivalenceClasses(Function &F) {
+ SmallVector<BasicBlock *, 8> DominatedBBs;
+ DEBUG(dbgs() << "\nBlock equivalence classes\n");
+ // Find equivalence sets based on dominance and post-dominance information.
+ for (auto &BB : F) {
+ BasicBlock *BB1 = &BB;
+
+ // Compute BB1's equivalence class once.
+ if (EquivalenceClass.count(BB1)) {
+ DEBUG(printBlockEquivalence(dbgs(), BB1));
+ continue;
+ }
+
+ // By default, blocks are in their own equivalence class.
+ EquivalenceClass[BB1] = BB1;
+
+ // Traverse all the blocks dominated by BB1. We are looking for
+ // every basic block BB2 such that:
+ //
+ // 1- BB1 dominates BB2.
+ // 2- BB2 post-dominates BB1.
+ // 3- BB1 and BB2 are in the same loop nest.
+ //
+ // If all those conditions hold, it means that BB2 is executed
+ // as many times as BB1, so they are placed in the same equivalence
+ // class by making BB2's equivalence class be BB1.
+ DominatedBBs.clear();
+ DT->getDescendants(BB1, DominatedBBs);
+ findEquivalencesFor(BB1, DominatedBBs, PDT.get());
+
+ DEBUG(printBlockEquivalence(dbgs(), BB1));
+ }
+
+ // Assign weights to equivalence classes.
+ //
+ // All the basic blocks in the same equivalence class will execute
+ // the same number of times. Since we know that the head block in
+ // each equivalence class has the largest weight, assign that weight
+ // to all the blocks in that equivalence class.
+ DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
+ for (auto &BI : F) {
+ const BasicBlock *BB = &BI;
+ const BasicBlock *EquivBB = EquivalenceClass[BB];
+ if (BB != EquivBB)
+ BlockWeights[BB] = BlockWeights[EquivBB];
+ DEBUG(printBlockWeight(dbgs(), BB));
+ }
+}
+
+/// \brief Visit the given edge to decide if it has a valid weight.
+///
+/// If \p E has not been visited before, we copy to \p UnknownEdge
+/// and increment the count of unknown edges.
+///
+/// \param E Edge to visit.
+/// \param NumUnknownEdges Current number of unknown edges.
+/// \param UnknownEdge Set if E has not been visited before.
+///
+/// \returns E's weight, if known. Otherwise, return 0.
+uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
+ Edge *UnknownEdge) {
+ if (!VisitedEdges.count(E)) {
+ (*NumUnknownEdges)++;
+ *UnknownEdge = E;
+ return 0;
+ }
+
+ return EdgeWeights[E];
+}
+
+/// \brief Propagate weights through incoming/outgoing edges.
+///
+/// If the weight of a basic block is known, and there is only one edge
+/// with an unknown weight, we can calculate the weight of that edge.
+///
+/// Similarly, if all the edges have a known count, we can calculate the
+/// count of the basic block, if needed.
+///
+/// \param F Function to process.
+///
+/// \returns True if new weights were assigned to edges or blocks.
+bool SampleProfileLoader::propagateThroughEdges(Function &F) {
+ bool Changed = false;
+ DEBUG(dbgs() << "\nPropagation through edges\n");
+ for (const auto &BI : F) {
+ const BasicBlock *BB = &BI;
+ const BasicBlock *EC = EquivalenceClass[BB];
+
+ // Visit all the predecessor and successor edges to determine
+ // which ones have a weight assigned already. Note that it doesn't
+ // matter that we only keep track of a single unknown edge. The
+ // only case we are interested in handling is when only a single
+ // edge is unknown (see setEdgeOrBlockWeight).
+ for (unsigned i = 0; i < 2; i++) {
+ uint64_t TotalWeight = 0;
+ unsigned NumUnknownEdges = 0;
+ Edge UnknownEdge, SelfReferentialEdge;
+
+ if (i == 0) {
+ // First, visit all predecessor edges.
+ for (auto *Pred : Predecessors[BB]) {
+ Edge E = std::make_pair(Pred, BB);
+ TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
+ if (E.first == E.second)
+ SelfReferentialEdge = E;
+ }
+ } else {
+ // On the second round, visit all successor edges.
+ for (auto *Succ : Successors[BB]) {
+ Edge E = std::make_pair(BB, Succ);
+ TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
+ }
+ }
+
+ // After visiting all the edges, there are three cases that we
+ // can handle immediately:
+ //
+ // - All the edge weights are known (i.e., NumUnknownEdges == 0).
+ // In this case, we simply check that the sum of all the edges
+ // is the same as BB's weight. If not, we change BB's weight
+ // to match. Additionally, if BB had not been visited before,
+ // we mark it visited.
+ //
+ // - Only one edge is unknown and BB has already been visited.
+ // In this case, we can compute the weight of the edge by
+ // subtracting the total block weight from all the known
+ // edge weights. If the edges weight more than BB, then the
+ // edge of the last remaining edge is set to zero.
+ //
+ // - There exists a self-referential edge and the weight of BB is
+ // known. In this case, this edge can be based on BB's weight.
+ // We add up all the other known edges and set the weight on
+ // the self-referential edge as we did in the previous case.
+ //
+ // In any other case, we must continue iterating. Eventually,
+ // all edges will get a weight, or iteration will stop when
+ // it reaches SampleProfileMaxPropagateIterations.
+ if (NumUnknownEdges <= 1) {
+ uint64_t &BBWeight = BlockWeights[EC];
+ if (NumUnknownEdges == 0) {
+ // If we already know the weight of all edges, the weight of the
+ // basic block can be computed. It should be no larger than the sum
+ // of all edge weights.
+ if (TotalWeight > BBWeight) {
+ BBWeight = TotalWeight;
+ Changed = true;
+ DEBUG(dbgs() << "All edge weights for " << BB->getName()
+ << " known. Set weight for block: ";
+ printBlockWeight(dbgs(), BB););
+ }
+ if (VisitedBlocks.insert(EC).second)
+ Changed = true;
+ } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
+ // If there is a single unknown edge and the block has been
+ // visited, then we can compute E's weight.
+ if (BBWeight >= TotalWeight)
+ EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
+ else
+ EdgeWeights[UnknownEdge] = 0;
+ VisitedEdges.insert(UnknownEdge);
+ Changed = true;
+ DEBUG(dbgs() << "Set weight for edge: ";
+ printEdgeWeight(dbgs(), UnknownEdge));
+ }
+ } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
+ uint64_t &BBWeight = BlockWeights[BB];
+ // We have a self-referential edge and the weight of BB is known.
+ if (BBWeight >= TotalWeight)
+ EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
+ else
+ EdgeWeights[SelfReferentialEdge] = 0;
+ VisitedEdges.insert(SelfReferentialEdge);
+ Changed = true;
+ DEBUG(dbgs() << "Set self-referential edge weight to: ";
+ printEdgeWeight(dbgs(), SelfReferentialEdge));
+ }
+ }
+ }
+
+ return Changed;
+}
+
+/// \brief Build in/out edge lists for each basic block in the CFG.
+///
+/// We are interested in unique edges. If a block B1 has multiple
+/// edges to another block B2, we only add a single B1->B2 edge.
+void SampleProfileLoader::buildEdges(Function &F) {
+ for (auto &BI : F) {
+ BasicBlock *B1 = &BI;
+
+ // Add predecessors for B1.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ if (!Predecessors[B1].empty())
+ llvm_unreachable("Found a stale predecessors list in a basic block.");
+ for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
+ BasicBlock *B2 = *PI;
+ if (Visited.insert(B2).second)
+ Predecessors[B1].push_back(B2);
+ }
+
+ // Add successors for B1.
+ Visited.clear();
+ if (!Successors[B1].empty())
+ llvm_unreachable("Found a stale successors list in a basic block.");
+ for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
+ BasicBlock *B2 = *SI;
+ if (Visited.insert(B2).second)
+ Successors[B1].push_back(B2);
+ }
+ }
+}
+
+/// \brief Propagate weights into edges
+///
+/// The following rules are applied to every block BB in the CFG:
+///
+/// - If BB has a single predecessor/successor, then the weight
+/// of that edge is the weight of the block.
+///
+/// - If all incoming or outgoing edges are known except one, and the
+/// weight of the block is already known, the weight of the unknown
+/// edge will be the weight of the block minus the sum of all the known
+/// edges. If the sum of all the known edges is larger than BB's weight,
+/// we set the unknown edge weight to zero.
+///
+/// - If there is a self-referential edge, and the weight of the block is
+/// known, the weight for that edge is set to the weight of the block
+/// minus the weight of the other incoming edges to that block (if
+/// known).
+void SampleProfileLoader::propagateWeights(Function &F) {
+ bool Changed = true;
+ unsigned I = 0;
+
+ // Add an entry count to the function using the samples gathered
+ // at the function entry.
+ F.setEntryCount(Samples->getHeadSamples());
+
+ // Before propagation starts, build, for each block, a list of
+ // unique predecessors and successors. This is necessary to handle
+ // identical edges in multiway branches. Since we visit all blocks and all
+ // edges of the CFG, it is cleaner to build these lists once at the start
+ // of the pass.
+ buildEdges(F);
+
+ // Propagate until we converge or we go past the iteration limit.
+ while (Changed && I++ < SampleProfileMaxPropagateIterations) {
+ Changed = propagateThroughEdges(F);
+ }
+
+ // Generate MD_prof metadata for every branch instruction using the
+ // edge weights computed during propagation.
+ DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
+ LLVMContext &Ctx = F.getContext();
+ MDBuilder MDB(Ctx);
+ for (auto &BI : F) {
+ BasicBlock *BB = &BI;
+ TerminatorInst *TI = BB->getTerminator();
+ if (TI->getNumSuccessors() == 1)
+ continue;
+ if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
+ continue;
+
+ DEBUG(dbgs() << "\nGetting weights for branch at line "
+ << TI->getDebugLoc().getLine() << ".\n");
+ SmallVector<uint32_t, 4> Weights;
+ uint32_t MaxWeight = 0;
+ DebugLoc MaxDestLoc;
+ for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
+ BasicBlock *Succ = TI->getSuccessor(I);
+ Edge E = std::make_pair(BB, Succ);
+ uint64_t Weight = EdgeWeights[E];
+ DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
+ // Use uint32_t saturated arithmetic to adjust the incoming weights,
+ // if needed. Sample counts in profiles are 64-bit unsigned values,
+ // but internally branch weights are expressed as 32-bit values.
+ if (Weight > std::numeric_limits<uint32_t>::max()) {
+ DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
+ Weight = std::numeric_limits<uint32_t>::max();
+ }
+ Weights.push_back(static_cast<uint32_t>(Weight));
+ if (Weight != 0) {
+ if (Weight > MaxWeight) {
+ MaxWeight = Weight;
+ MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
+ }
+ }
+ }
+
+ // Only set weights if there is at least one non-zero weight.
+ // In any other case, let the analyzer set weights.
+ if (MaxWeight > 0) {
+ DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
+ TI->setMetadata(llvm::LLVMContext::MD_prof,
+ MDB.createBranchWeights(Weights));
+ DebugLoc BranchLoc = TI->getDebugLoc();
+ emitOptimizationRemark(
+ Ctx, DEBUG_TYPE, F, MaxDestLoc,
+ Twine("most popular destination for conditional branches at ") +
+ ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
+ Twine(BranchLoc.getLine()) + ":" +
+ Twine(BranchLoc.getCol()))
+ : Twine("<UNKNOWN LOCATION>")));
+ } else {
+ DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
+ }
+ }
+}
+
+/// \brief Get the line number for the function header.
+///
+/// This looks up function \p F in the current compilation unit and
+/// retrieves the line number where the function is defined. This is
+/// line 0 for all the samples read from the profile file. Every line
+/// number is relative to this line.
+///
+/// \param F Function object to query.
+///
+/// \returns the line number where \p F is defined. If it returns 0,
+/// it means that there is no debug information available for \p F.
+unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
+ if (DISubprogram *S = getDISubprogram(&F))
+ return S->getLine();
+
+ // If the start of \p F is missing, emit a diagnostic to inform the user
+ // about the missed opportunity.
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ "No debug information found in function " + F.getName() +
+ ": Function profile not used",
+ DS_Warning));
+ return 0;
+}
+
+void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
+ DT.reset(new DominatorTree);
+ DT->recalculate(F);
+
+ PDT.reset(new DominatorTreeBase<BasicBlock>(true));
+ PDT->recalculate(F);
+
+ LI.reset(new LoopInfo);
+ LI->analyze(*DT);
+}
+
+/// \brief Generate branch weight metadata for all branches in \p F.
+///
+/// Branch weights are computed out of instruction samples using a
+/// propagation heuristic. Propagation proceeds in 3 phases:
+///
+/// 1- Assignment of block weights. All the basic blocks in the function
+/// are initial assigned the same weight as their most frequently
+/// executed instruction.
+///
+/// 2- Creation of equivalence classes. Since samples may be missing from
+/// blocks, we can fill in the gaps by setting the weights of all the
+/// blocks in the same equivalence class to the same weight. To compute
+/// the concept of equivalence, we use dominance and loop information.
+/// Two blocks B1 and B2 are in the same equivalence class if B1
+/// dominates B2, B2 post-dominates B1 and both are in the same loop.
+///
+/// 3- Propagation of block weights into edges. This uses a simple
+/// propagation heuristic. The following rules are applied to every
+/// block BB in the CFG:
+///
+/// - If BB has a single predecessor/successor, then the weight
+/// of that edge is the weight of the block.
+///
+/// - If all the edges are known except one, and the weight of the
+/// block is already known, the weight of the unknown edge will
+/// be the weight of the block minus the sum of all the known
+/// edges. If the sum of all the known edges is larger than BB's weight,
+/// we set the unknown edge weight to zero.
+///
+/// - If there is a self-referential edge, and the weight of the block is
+/// known, the weight for that edge is set to the weight of the block
+/// minus the weight of the other incoming edges to that block (if
+/// known).
+///
+/// Since this propagation is not guaranteed to finalize for every CFG, we
+/// only allow it to proceed for a limited number of iterations (controlled
+/// by -sample-profile-max-propagate-iterations).
+///
+/// FIXME: Try to replace this propagation heuristic with a scheme
+/// that is guaranteed to finalize. A work-list approach similar to
+/// the standard value propagation algorithm used by SSA-CCP might
+/// work here.
+///
+/// Once all the branch weights are computed, we emit the MD_prof
+/// metadata on BB using the computed values for each of its branches.
+///
+/// \param F The function to query.
+///
+/// \returns true if \p F was modified. Returns false, otherwise.
+bool SampleProfileLoader::emitAnnotations(Function &F) {
+ bool Changed = false;
+
+ if (getFunctionLoc(F) == 0)
+ return false;
+
+ DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
+ << ": " << getFunctionLoc(F) << "\n");
+
+ Changed |= emitInlineHints(F);
+
+ Changed |= inlineHotFunctions(F);
+
+ // Compute basic block weights.
+ Changed |= computeBlockWeights(F);
+
+ if (Changed) {
+ // Compute dominance and loop info needed for propagation.
+ computeDominanceAndLoopInfo(F);
+
+ // Find equivalence classes.
+ findEquivalenceClasses(F);
+
+ // Propagate weights to all edges.
+ propagateWeights(F);
+ }
+
+ // If coverage checking was requested, compute it now.
+ if (SampleProfileRecordCoverage) {
+ unsigned Used = CoverageTracker.countUsedRecords(Samples);
+ unsigned Total = CoverageTracker.countBodyRecords(Samples);
+ unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
+ if (Coverage < SampleProfileRecordCoverage) {
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
+ Twine(Used) + " of " + Twine(Total) + " available profile records (" +
+ Twine(Coverage) + "%) were applied",
+ DS_Warning));
+ }
+ }
+
+ if (SampleProfileSampleCoverage) {
+ uint64_t Used = CoverageTracker.getTotalUsedSamples();
+ uint64_t Total = CoverageTracker.countBodySamples(Samples);
+ unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
+ if (Coverage < SampleProfileSampleCoverage) {
+ F.getContext().diagnose(DiagnosticInfoSampleProfile(
+ getDISubprogram(&F)->getFilename(), getFunctionLoc(F),
+ Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
+ Twine(Coverage) + "%) were applied",
+ DS_Warning));
+ }
+ }
+ return Changed;
+}
+
+char SampleProfileLoader::ID = 0;
+INITIALIZE_PASS_BEGIN(SampleProfileLoader, "sample-profile",
+ "Sample Profile loader", false, false)
+INITIALIZE_PASS_DEPENDENCY(AddDiscriminators)
+INITIALIZE_PASS_END(SampleProfileLoader, "sample-profile",
+ "Sample Profile loader", false, false)
+
+bool SampleProfileLoader::doInitialization(Module &M) {
+ auto &Ctx = M.getContext();
+ auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
+ if (std::error_code EC = ReaderOrErr.getError()) {
+ std::string Msg = "Could not open profile: " + EC.message();
+ Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
+ return false;
+ }
+ Reader = std::move(ReaderOrErr.get());
+ ProfileIsValid = (Reader->read() == sampleprof_error::success);
+ return true;
+}
+
+ModulePass *llvm::createSampleProfileLoaderPass() {
+ return new SampleProfileLoader(SampleProfileFile);
+}
+
+ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
+ return new SampleProfileLoader(Name);
+}
+
+bool SampleProfileLoader::runOnModule(Module &M) {
+ if (!ProfileIsValid)
+ return false;
+
+ // Compute the total number of samples collected in this profile.
+ for (const auto &I : Reader->getProfiles())
+ TotalCollectedSamples += I.second.getTotalSamples();
+
+ bool retval = false;
+ for (auto &F : M)
+ if (!F.isDeclaration()) {
+ clearFunctionData();
+ retval |= runOnFunction(F);
+ }
+ return retval;
+}
+
+bool SampleProfileLoader::runOnFunction(Function &F) {
+ Samples = Reader->getSamplesFor(F);
+ if (!Samples->empty())
+ return emitAnnotations(F);
+ return false;
+}
OpenPOWER on IntegriCloud