summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp872
1 files changed, 872 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
new file mode 100644
index 0000000..0b01c38
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
@@ -0,0 +1,872 @@
+//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass looks for equivalent functions that are mergable and folds them.
+//
+// A hash is computed from the function, based on its type and number of
+// basic blocks.
+//
+// Once all hashes are computed, we perform an expensive equality comparison
+// on each function pair. This takes n^2/2 comparisons per bucket, so it's
+// important that the hash function be high quality. The equality comparison
+// iterates through each instruction in each basic block.
+//
+// When a match is found the functions are folded. If both functions are
+// overridable, we move the functionality into a new internal function and
+// leave two overridable thunks to it.
+//
+//===----------------------------------------------------------------------===//
+//
+// Future work:
+//
+// * virtual functions.
+//
+// Many functions have their address taken by the virtual function table for
+// the object they belong to. However, as long as it's only used for a lookup
+// and call, this is irrelevant, and we'd like to fold such functions.
+//
+// * switch from n^2 pair-wise comparisons to an n-way comparison for each
+// bucket.
+//
+// * be smarter about bitcasts.
+//
+// In order to fold functions, we will sometimes add either bitcast instructions
+// or bitcast constant expressions. Unfortunately, this can confound further
+// analysis since the two functions differ where one has a bitcast and the
+// other doesn't. We should learn to look through bitcasts.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "mergefunc"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Constants.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Module.h"
+#include "llvm/Operator.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/IRBuilder.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetData.h"
+#include <vector>
+using namespace llvm;
+
+STATISTIC(NumFunctionsMerged, "Number of functions merged");
+STATISTIC(NumThunksWritten, "Number of thunks generated");
+STATISTIC(NumAliasesWritten, "Number of aliases generated");
+STATISTIC(NumDoubleWeak, "Number of new functions created");
+
+/// Creates a hash-code for the function which is the same for any two
+/// functions that will compare equal, without looking at the instructions
+/// inside the function.
+static unsigned profileFunction(const Function *F) {
+ FunctionType *FTy = F->getFunctionType();
+
+ FoldingSetNodeID ID;
+ ID.AddInteger(F->size());
+ ID.AddInteger(F->getCallingConv());
+ ID.AddBoolean(F->hasGC());
+ ID.AddBoolean(FTy->isVarArg());
+ ID.AddInteger(FTy->getReturnType()->getTypeID());
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ ID.AddInteger(FTy->getParamType(i)->getTypeID());
+ return ID.ComputeHash();
+}
+
+namespace {
+
+/// ComparableFunction - A struct that pairs together functions with a
+/// TargetData so that we can keep them together as elements in the DenseSet.
+class ComparableFunction {
+public:
+ static const ComparableFunction EmptyKey;
+ static const ComparableFunction TombstoneKey;
+ static TargetData * const LookupOnly;
+
+ ComparableFunction(Function *Func, TargetData *TD)
+ : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
+
+ Function *getFunc() const { return Func; }
+ unsigned getHash() const { return Hash; }
+ TargetData *getTD() const { return TD; }
+
+ // Drops AssertingVH reference to the function. Outside of debug mode, this
+ // does nothing.
+ void release() {
+ assert(Func &&
+ "Attempted to release function twice, or release empty/tombstone!");
+ Func = NULL;
+ }
+
+private:
+ explicit ComparableFunction(unsigned Hash)
+ : Func(NULL), Hash(Hash), TD(NULL) {}
+
+ AssertingVH<Function> Func;
+ unsigned Hash;
+ TargetData *TD;
+};
+
+const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
+const ComparableFunction ComparableFunction::TombstoneKey =
+ ComparableFunction(1);
+TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
+
+}
+
+namespace llvm {
+ template <>
+ struct DenseMapInfo<ComparableFunction> {
+ static ComparableFunction getEmptyKey() {
+ return ComparableFunction::EmptyKey;
+ }
+ static ComparableFunction getTombstoneKey() {
+ return ComparableFunction::TombstoneKey;
+ }
+ static unsigned getHashValue(const ComparableFunction &CF) {
+ return CF.getHash();
+ }
+ static bool isEqual(const ComparableFunction &LHS,
+ const ComparableFunction &RHS);
+ };
+}
+
+namespace {
+
+/// FunctionComparator - Compares two functions to determine whether or not
+/// they will generate machine code with the same behaviour. TargetData is
+/// used if available. The comparator always fails conservatively (erring on the
+/// side of claiming that two functions are different).
+class FunctionComparator {
+public:
+ FunctionComparator(const TargetData *TD, const Function *F1,
+ const Function *F2)
+ : F1(F1), F2(F2), TD(TD) {}
+
+ /// Test whether the two functions have equivalent behaviour.
+ bool compare();
+
+private:
+ /// Test whether two basic blocks have equivalent behaviour.
+ bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
+
+ /// Assign or look up previously assigned numbers for the two values, and
+ /// return whether the numbers are equal. Numbers are assigned in the order
+ /// visited.
+ bool enumerate(const Value *V1, const Value *V2);
+
+ /// Compare two Instructions for equivalence, similar to
+ /// Instruction::isSameOperationAs but with modifications to the type
+ /// comparison.
+ bool isEquivalentOperation(const Instruction *I1,
+ const Instruction *I2) const;
+
+ /// Compare two GEPs for equivalent pointer arithmetic.
+ bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
+ bool isEquivalentGEP(const GetElementPtrInst *GEP1,
+ const GetElementPtrInst *GEP2) {
+ return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
+ }
+
+ /// Compare two Types, treating all pointer types as equal.
+ bool isEquivalentType(Type *Ty1, Type *Ty2) const;
+
+ // The two functions undergoing comparison.
+ const Function *F1, *F2;
+
+ const TargetData *TD;
+
+ DenseMap<const Value *, const Value *> id_map;
+ DenseSet<const Value *> seen_values;
+};
+
+}
+
+// Any two pointers in the same address space are equivalent, intptr_t and
+// pointers are equivalent. Otherwise, standard type equivalence rules apply.
+bool FunctionComparator::isEquivalentType(Type *Ty1,
+ Type *Ty2) const {
+ if (Ty1 == Ty2)
+ return true;
+ if (Ty1->getTypeID() != Ty2->getTypeID()) {
+ if (TD) {
+ LLVMContext &Ctx = Ty1->getContext();
+ if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
+ if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
+ }
+ return false;
+ }
+
+ switch (Ty1->getTypeID()) {
+ default:
+ llvm_unreachable("Unknown type!");
+ // Fall through in Release mode.
+ case Type::IntegerTyID:
+ case Type::VectorTyID:
+ // Ty1 == Ty2 would have returned true earlier.
+ return false;
+
+ case Type::VoidTyID:
+ case Type::FloatTyID:
+ case Type::DoubleTyID:
+ case Type::X86_FP80TyID:
+ case Type::FP128TyID:
+ case Type::PPC_FP128TyID:
+ case Type::LabelTyID:
+ case Type::MetadataTyID:
+ return true;
+
+ case Type::PointerTyID: {
+ PointerType *PTy1 = cast<PointerType>(Ty1);
+ PointerType *PTy2 = cast<PointerType>(Ty2);
+ return PTy1->getAddressSpace() == PTy2->getAddressSpace();
+ }
+
+ case Type::StructTyID: {
+ StructType *STy1 = cast<StructType>(Ty1);
+ StructType *STy2 = cast<StructType>(Ty2);
+ if (STy1->getNumElements() != STy2->getNumElements())
+ return false;
+
+ if (STy1->isPacked() != STy2->isPacked())
+ return false;
+
+ for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
+ if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
+ return false;
+ }
+ return true;
+ }
+
+ case Type::FunctionTyID: {
+ FunctionType *FTy1 = cast<FunctionType>(Ty1);
+ FunctionType *FTy2 = cast<FunctionType>(Ty2);
+ if (FTy1->getNumParams() != FTy2->getNumParams() ||
+ FTy1->isVarArg() != FTy2->isVarArg())
+ return false;
+
+ if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
+ return false;
+
+ for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
+ if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
+ return false;
+ }
+ return true;
+ }
+
+ case Type::ArrayTyID: {
+ ArrayType *ATy1 = cast<ArrayType>(Ty1);
+ ArrayType *ATy2 = cast<ArrayType>(Ty2);
+ return ATy1->getNumElements() == ATy2->getNumElements() &&
+ isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
+ }
+ }
+}
+
+// Determine whether the two operations are the same except that pointer-to-A
+// and pointer-to-B are equivalent. This should be kept in sync with
+// Instruction::isSameOperationAs.
+bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
+ const Instruction *I2) const {
+ // Differences from Instruction::isSameOperationAs:
+ // * replace type comparison with calls to isEquivalentType.
+ // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
+ // * because of the above, we don't test for the tail bit on calls later on
+ if (I1->getOpcode() != I2->getOpcode() ||
+ I1->getNumOperands() != I2->getNumOperands() ||
+ !isEquivalentType(I1->getType(), I2->getType()) ||
+ !I1->hasSameSubclassOptionalData(I2))
+ return false;
+
+ // We have two instructions of identical opcode and #operands. Check to see
+ // if all operands are the same type
+ for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
+ if (!isEquivalentType(I1->getOperand(i)->getType(),
+ I2->getOperand(i)->getType()))
+ return false;
+
+ // Check special state that is a part of some instructions.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
+ return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
+ LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
+ LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
+ LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
+ return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
+ SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
+ SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
+ SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
+ if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
+ return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
+ if (const CallInst *CI = dyn_cast<CallInst>(I1))
+ return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
+ CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
+ if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
+ return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
+ CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
+ if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
+ return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
+ if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
+ return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
+ if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
+ return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
+ FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
+ if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
+ return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
+ CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
+ CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
+ return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
+ RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
+ RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
+ RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
+
+ return true;
+}
+
+// Determine whether two GEP operations perform the same underlying arithmetic.
+bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
+ const GEPOperator *GEP2) {
+ // When we have target data, we can reduce the GEP down to the value in bytes
+ // added to the address.
+ if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
+ SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
+ SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
+ uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
+ Indices1);
+ uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
+ Indices2);
+ return Offset1 == Offset2;
+ }
+
+ if (GEP1->getPointerOperand()->getType() !=
+ GEP2->getPointerOperand()->getType())
+ return false;
+
+ if (GEP1->getNumOperands() != GEP2->getNumOperands())
+ return false;
+
+ for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
+ if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
+ return false;
+ }
+
+ return true;
+}
+
+// Compare two values used by the two functions under pair-wise comparison. If
+// this is the first time the values are seen, they're added to the mapping so
+// that we will detect mismatches on next use.
+bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
+ // Check for function @f1 referring to itself and function @f2 referring to
+ // itself, or referring to each other, or both referring to either of them.
+ // They're all equivalent if the two functions are otherwise equivalent.
+ if (V1 == F1 && V2 == F2)
+ return true;
+ if (V1 == F2 && V2 == F1)
+ return true;
+
+ if (const Constant *C1 = dyn_cast<Constant>(V1)) {
+ if (V1 == V2) return true;
+ const Constant *C2 = dyn_cast<Constant>(V2);
+ if (!C2) return false;
+ // TODO: constant expressions with GEP or references to F1 or F2.
+ if (C1->isNullValue() && C2->isNullValue() &&
+ isEquivalentType(C1->getType(), C2->getType()))
+ return true;
+ // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
+ // then they must have equal bit patterns.
+ return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
+ C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
+ }
+
+ if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
+ return V1 == V2;
+
+ // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
+ // check whether it's equal to V2. When there is no mapping then we need to
+ // ensure that V2 isn't already equivalent to something else. For this
+ // purpose, we track the V2 values in a set.
+
+ const Value *&map_elem = id_map[V1];
+ if (map_elem)
+ return map_elem == V2;
+ if (!seen_values.insert(V2).second)
+ return false;
+ map_elem = V2;
+ return true;
+}
+
+// Test whether two basic blocks have equivalent behaviour.
+bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
+ BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
+ BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
+
+ do {
+ if (!enumerate(F1I, F2I))
+ return false;
+
+ if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
+ const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
+ if (!GEP2)
+ return false;
+
+ if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
+ return false;
+
+ if (!isEquivalentGEP(GEP1, GEP2))
+ return false;
+ } else {
+ if (!isEquivalentOperation(F1I, F2I))
+ return false;
+
+ assert(F1I->getNumOperands() == F2I->getNumOperands());
+ for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
+ Value *OpF1 = F1I->getOperand(i);
+ Value *OpF2 = F2I->getOperand(i);
+
+ if (!enumerate(OpF1, OpF2))
+ return false;
+
+ if (OpF1->getValueID() != OpF2->getValueID() ||
+ !isEquivalentType(OpF1->getType(), OpF2->getType()))
+ return false;
+ }
+ }
+
+ ++F1I, ++F2I;
+ } while (F1I != F1E && F2I != F2E);
+
+ return F1I == F1E && F2I == F2E;
+}
+
+// Test whether the two functions have equivalent behaviour.
+bool FunctionComparator::compare() {
+ // We need to recheck everything, but check the things that weren't included
+ // in the hash first.
+
+ if (F1->getAttributes() != F2->getAttributes())
+ return false;
+
+ if (F1->hasGC() != F2->hasGC())
+ return false;
+
+ if (F1->hasGC() && F1->getGC() != F2->getGC())
+ return false;
+
+ if (F1->hasSection() != F2->hasSection())
+ return false;
+
+ if (F1->hasSection() && F1->getSection() != F2->getSection())
+ return false;
+
+ if (F1->isVarArg() != F2->isVarArg())
+ return false;
+
+ // TODO: if it's internal and only used in direct calls, we could handle this
+ // case too.
+ if (F1->getCallingConv() != F2->getCallingConv())
+ return false;
+
+ if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
+ return false;
+
+ assert(F1->arg_size() == F2->arg_size() &&
+ "Identically typed functions have different numbers of args!");
+
+ // Visit the arguments so that they get enumerated in the order they're
+ // passed in.
+ for (Function::const_arg_iterator f1i = F1->arg_begin(),
+ f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
+ if (!enumerate(f1i, f2i))
+ llvm_unreachable("Arguments repeat!");
+ }
+
+ // We do a CFG-ordered walk since the actual ordering of the blocks in the
+ // linked list is immaterial. Our walk starts at the entry block for both
+ // functions, then takes each block from each terminator in order. As an
+ // artifact, this also means that unreachable blocks are ignored.
+ SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
+ SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
+
+ F1BBs.push_back(&F1->getEntryBlock());
+ F2BBs.push_back(&F2->getEntryBlock());
+
+ VisitedBBs.insert(F1BBs[0]);
+ while (!F1BBs.empty()) {
+ const BasicBlock *F1BB = F1BBs.pop_back_val();
+ const BasicBlock *F2BB = F2BBs.pop_back_val();
+
+ if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
+ return false;
+
+ const TerminatorInst *F1TI = F1BB->getTerminator();
+ const TerminatorInst *F2TI = F2BB->getTerminator();
+
+ assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
+ for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
+ if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
+ continue;
+
+ F1BBs.push_back(F1TI->getSuccessor(i));
+ F2BBs.push_back(F2TI->getSuccessor(i));
+ }
+ }
+ return true;
+}
+
+namespace {
+
+/// MergeFunctions finds functions which will generate identical machine code,
+/// by considering all pointer types to be equivalent. Once identified,
+/// MergeFunctions will fold them by replacing a call to one to a call to a
+/// bitcast of the other.
+///
+class MergeFunctions : public ModulePass {
+public:
+ static char ID;
+ MergeFunctions()
+ : ModulePass(ID), HasGlobalAliases(false) {
+ initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M);
+
+private:
+ typedef DenseSet<ComparableFunction> FnSetType;
+
+ /// A work queue of functions that may have been modified and should be
+ /// analyzed again.
+ std::vector<WeakVH> Deferred;
+
+ /// Insert a ComparableFunction into the FnSet, or merge it away if it's
+ /// equal to one that's already present.
+ bool insert(ComparableFunction &NewF);
+
+ /// Remove a Function from the FnSet and queue it up for a second sweep of
+ /// analysis.
+ void remove(Function *F);
+
+ /// Find the functions that use this Value and remove them from FnSet and
+ /// queue the functions.
+ void removeUsers(Value *V);
+
+ /// Replace all direct calls of Old with calls of New. Will bitcast New if
+ /// necessary to make types match.
+ void replaceDirectCallers(Function *Old, Function *New);
+
+ /// Merge two equivalent functions. Upon completion, G may be deleted, or may
+ /// be converted into a thunk. In either case, it should never be visited
+ /// again.
+ void mergeTwoFunctions(Function *F, Function *G);
+
+ /// Replace G with a thunk or an alias to F. Deletes G.
+ void writeThunkOrAlias(Function *F, Function *G);
+
+ /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
+ /// of G with bitcast(F). Deletes G.
+ void writeThunk(Function *F, Function *G);
+
+ /// Replace G with an alias to F. Deletes G.
+ void writeAlias(Function *F, Function *G);
+
+ /// The set of all distinct functions. Use the insert() and remove() methods
+ /// to modify it.
+ FnSetType FnSet;
+
+ /// TargetData for more accurate GEP comparisons. May be NULL.
+ TargetData *TD;
+
+ /// Whether or not the target supports global aliases.
+ bool HasGlobalAliases;
+};
+
+} // end anonymous namespace
+
+char MergeFunctions::ID = 0;
+INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
+
+ModulePass *llvm::createMergeFunctionsPass() {
+ return new MergeFunctions();
+}
+
+bool MergeFunctions::runOnModule(Module &M) {
+ bool Changed = false;
+ TD = getAnalysisIfAvailable<TargetData>();
+
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
+ if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
+ Deferred.push_back(WeakVH(I));
+ }
+ FnSet.resize(Deferred.size());
+
+ do {
+ std::vector<WeakVH> Worklist;
+ Deferred.swap(Worklist);
+
+ DEBUG(dbgs() << "size of module: " << M.size() << '\n');
+ DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
+
+ // Insert only strong functions and merge them. Strong function merging
+ // always deletes one of them.
+ for (std::vector<WeakVH>::iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ if (!*I) continue;
+ Function *F = cast<Function>(*I);
+ if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
+ !F->mayBeOverridden()) {
+ ComparableFunction CF = ComparableFunction(F, TD);
+ Changed |= insert(CF);
+ }
+ }
+
+ // Insert only weak functions and merge them. By doing these second we
+ // create thunks to the strong function when possible. When two weak
+ // functions are identical, we create a new strong function with two weak
+ // weak thunks to it which are identical but not mergable.
+ for (std::vector<WeakVH>::iterator I = Worklist.begin(),
+ E = Worklist.end(); I != E; ++I) {
+ if (!*I) continue;
+ Function *F = cast<Function>(*I);
+ if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
+ F->mayBeOverridden()) {
+ ComparableFunction CF = ComparableFunction(F, TD);
+ Changed |= insert(CF);
+ }
+ }
+ DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
+ } while (!Deferred.empty());
+
+ FnSet.clear();
+
+ return Changed;
+}
+
+bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
+ const ComparableFunction &RHS) {
+ if (LHS.getFunc() == RHS.getFunc() &&
+ LHS.getHash() == RHS.getHash())
+ return true;
+ if (!LHS.getFunc() || !RHS.getFunc())
+ return false;
+
+ // One of these is a special "underlying pointer comparison only" object.
+ if (LHS.getTD() == ComparableFunction::LookupOnly ||
+ RHS.getTD() == ComparableFunction::LookupOnly)
+ return false;
+
+ assert(LHS.getTD() == RHS.getTD() &&
+ "Comparing functions for different targets");
+
+ return FunctionComparator(LHS.getTD(), LHS.getFunc(),
+ RHS.getFunc()).compare();
+}
+
+// Replace direct callers of Old with New.
+void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
+ Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
+ for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
+ UI != UE;) {
+ Value::use_iterator TheIter = UI;
+ ++UI;
+ CallSite CS(*TheIter);
+ if (CS && CS.isCallee(TheIter)) {
+ remove(CS.getInstruction()->getParent()->getParent());
+ TheIter.getUse().set(BitcastNew);
+ }
+ }
+}
+
+// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
+void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
+ if (HasGlobalAliases && G->hasUnnamedAddr()) {
+ if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
+ G->hasWeakLinkage()) {
+ writeAlias(F, G);
+ return;
+ }
+ }
+
+ writeThunk(F, G);
+}
+
+// Replace G with a simple tail call to bitcast(F). Also replace direct uses
+// of G with bitcast(F). Deletes G.
+void MergeFunctions::writeThunk(Function *F, Function *G) {
+ if (!G->mayBeOverridden()) {
+ // Redirect direct callers of G to F.
+ replaceDirectCallers(G, F);
+ }
+
+ // If G was internal then we may have replaced all uses of G with F. If so,
+ // stop here and delete G. There's no need for a thunk.
+ if (G->hasLocalLinkage() && G->use_empty()) {
+ G->eraseFromParent();
+ return;
+ }
+
+ Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
+ G->getParent());
+ BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
+ IRBuilder<false> Builder(BB);
+
+ SmallVector<Value *, 16> Args;
+ unsigned i = 0;
+ FunctionType *FFTy = F->getFunctionType();
+ for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
+ AI != AE; ++AI) {
+ Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
+ ++i;
+ }
+
+ CallInst *CI = Builder.CreateCall(F, Args);
+ CI->setTailCall();
+ CI->setCallingConv(F->getCallingConv());
+ if (NewG->getReturnType()->isVoidTy()) {
+ Builder.CreateRetVoid();
+ } else {
+ Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
+ }
+
+ NewG->copyAttributesFrom(G);
+ NewG->takeName(G);
+ removeUsers(G);
+ G->replaceAllUsesWith(NewG);
+ G->eraseFromParent();
+
+ DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
+ ++NumThunksWritten;
+}
+
+// Replace G with an alias to F and delete G.
+void MergeFunctions::writeAlias(Function *F, Function *G) {
+ Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
+ GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
+ BitcastF, G->getParent());
+ F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
+ GA->takeName(G);
+ GA->setVisibility(G->getVisibility());
+ removeUsers(G);
+ G->replaceAllUsesWith(GA);
+ G->eraseFromParent();
+
+ DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
+ ++NumAliasesWritten;
+}
+
+// Merge two equivalent functions. Upon completion, Function G is deleted.
+void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
+ if (F->mayBeOverridden()) {
+ assert(G->mayBeOverridden());
+
+ if (HasGlobalAliases) {
+ // Make them both thunks to the same internal function.
+ Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
+ F->getParent());
+ H->copyAttributesFrom(F);
+ H->takeName(F);
+ removeUsers(F);
+ F->replaceAllUsesWith(H);
+
+ unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
+
+ writeAlias(F, G);
+ writeAlias(F, H);
+
+ F->setAlignment(MaxAlignment);
+ F->setLinkage(GlobalValue::PrivateLinkage);
+ } else {
+ // We can't merge them. Instead, pick one and update all direct callers
+ // to call it and hope that we improve the instruction cache hit rate.
+ replaceDirectCallers(G, F);
+ }
+
+ ++NumDoubleWeak;
+ } else {
+ writeThunkOrAlias(F, G);
+ }
+
+ ++NumFunctionsMerged;
+}
+
+// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
+// that was already inserted.
+bool MergeFunctions::insert(ComparableFunction &NewF) {
+ std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
+ if (Result.second) {
+ DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
+ return false;
+ }
+
+ const ComparableFunction &OldF = *Result.first;
+
+ // Never thunk a strong function to a weak function.
+ assert(!OldF.getFunc()->mayBeOverridden() ||
+ NewF.getFunc()->mayBeOverridden());
+
+ DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
+ << NewF.getFunc()->getName() << '\n');
+
+ Function *DeleteF = NewF.getFunc();
+ NewF.release();
+ mergeTwoFunctions(OldF.getFunc(), DeleteF);
+ return true;
+}
+
+// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
+// so that we'll look at it in the next round.
+void MergeFunctions::remove(Function *F) {
+ // We need to make sure we remove F, not a function "equal" to F per the
+ // function equality comparator.
+ //
+ // The special "lookup only" ComparableFunction bypasses the expensive
+ // function comparison in favour of a pointer comparison on the underlying
+ // Function*'s.
+ ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
+ if (FnSet.erase(CF)) {
+ DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
+ Deferred.push_back(F);
+ }
+}
+
+// For each instruction used by the value, remove() the function that contains
+// the instruction. This should happen right before a call to RAUW.
+void MergeFunctions::removeUsers(Value *V) {
+ std::vector<Value *> Worklist;
+ Worklist.push_back(V);
+ while (!Worklist.empty()) {
+ Value *V = Worklist.back();
+ Worklist.pop_back();
+
+ for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
+ UI != UE; ++UI) {
+ Use &U = UI.getUse();
+ if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
+ remove(I->getParent()->getParent());
+ } else if (isa<GlobalValue>(U.getUser())) {
+ // do nothing
+ } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
+ for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
+ CUI != CUE; ++CUI)
+ Worklist.push_back(*CUI);
+ }
+ }
+ }
+}
OpenPOWER on IntegriCloud