diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp | 1880 |
1 files changed, 1880 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp new file mode 100644 index 0000000..8a209a1 --- /dev/null +++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp @@ -0,0 +1,1880 @@ +//===- MergeFunctions.cpp - Merge identical functions ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass looks for equivalent functions that are mergable and folds them. +// +// Order relation is defined on set of functions. It was made through +// special function comparison procedure that returns +// 0 when functions are equal, +// -1 when Left function is less than right function, and +// 1 for opposite case. We need total-ordering, so we need to maintain +// four properties on the functions set: +// a <= a (reflexivity) +// if a <= b and b <= a then a = b (antisymmetry) +// if a <= b and b <= c then a <= c (transitivity). +// for all a and b: a <= b or b <= a (totality). +// +// Comparison iterates through each instruction in each basic block. +// Functions are kept on binary tree. For each new function F we perform +// lookup in binary tree. +// In practice it works the following way: +// -- We define Function* container class with custom "operator<" (FunctionPtr). +// -- "FunctionPtr" instances are stored in std::set collection, so every +// std::set::insert operation will give you result in log(N) time. +// +// As an optimization, a hash of the function structure is calculated first, and +// two functions are only compared if they have the same hash. This hash is +// cheap to compute, and has the property that if function F == G according to +// the comparison function, then hash(F) == hash(G). This consistency property +// is critical to ensuring all possible merging opportunities are exploited. +// Collisions in the hash affect the speed of the pass but not the correctness +// or determinism of the resulting transformation. +// +// When a match is found the functions are folded. If both functions are +// overridable, we move the functionality into a new internal function and +// leave two overridable thunks to it. +// +//===----------------------------------------------------------------------===// +// +// Future work: +// +// * virtual functions. +// +// Many functions have their address taken by the virtual function table for +// the object they belong to. However, as long as it's only used for a lookup +// and call, this is irrelevant, and we'd like to fold such functions. +// +// * be smarter about bitcasts. +// +// In order to fold functions, we will sometimes add either bitcast instructions +// or bitcast constant expressions. Unfortunately, this can confound further +// analysis since the two functions differ where one has a bitcast and the +// other doesn't. We should learn to look through bitcasts. +// +// * Compare complex types with pointer types inside. +// * Compare cross-reference cases. +// * Compare complex expressions. +// +// All the three issues above could be described as ability to prove that +// fA == fB == fC == fE == fF == fG in example below: +// +// void fA() { +// fB(); +// } +// void fB() { +// fA(); +// } +// +// void fE() { +// fF(); +// } +// void fF() { +// fG(); +// } +// void fG() { +// fE(); +// } +// +// Simplest cross-reference case (fA <--> fB) was implemented in previous +// versions of MergeFunctions, though it presented only in two function pairs +// in test-suite (that counts >50k functions) +// Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A) +// could cover much more cases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "mergefunc" + +STATISTIC(NumFunctionsMerged, "Number of functions merged"); +STATISTIC(NumThunksWritten, "Number of thunks generated"); +STATISTIC(NumAliasesWritten, "Number of aliases generated"); +STATISTIC(NumDoubleWeak, "Number of new functions created"); + +static cl::opt<unsigned> NumFunctionsForSanityCheck( + "mergefunc-sanity", + cl::desc("How many functions in module could be used for " + "MergeFunctions pass sanity check. " + "'0' disables this check. Works only with '-debug' key."), + cl::init(0), cl::Hidden); + +namespace { + +/// GlobalNumberState assigns an integer to each global value in the program, +/// which is used by the comparison routine to order references to globals. This +/// state must be preserved throughout the pass, because Functions and other +/// globals need to maintain their relative order. Globals are assigned a number +/// when they are first visited. This order is deterministic, and so the +/// assigned numbers are as well. When two functions are merged, neither number +/// is updated. If the symbols are weak, this would be incorrect. If they are +/// strong, then one will be replaced at all references to the other, and so +/// direct callsites will now see one or the other symbol, and no update is +/// necessary. Note that if we were guaranteed unique names, we could just +/// compare those, but this would not work for stripped bitcodes or for those +/// few symbols without a name. +class GlobalNumberState { + struct Config : ValueMapConfig<GlobalValue*> { + enum { FollowRAUW = false }; + }; + // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW + // occurs, the mapping does not change. Tracking changes is unnecessary, and + // also problematic for weak symbols (which may be overwritten). + typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap; + ValueNumberMap GlobalNumbers; + // The next unused serial number to assign to a global. + uint64_t NextNumber; + public: + GlobalNumberState() : GlobalNumbers(), NextNumber(0) {} + uint64_t getNumber(GlobalValue* Global) { + ValueNumberMap::iterator MapIter; + bool Inserted; + std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber}); + if (Inserted) + NextNumber++; + return MapIter->second; + } + void clear() { + GlobalNumbers.clear(); + } +}; + +/// FunctionComparator - Compares two functions to determine whether or not +/// they will generate machine code with the same behaviour. DataLayout is +/// used if available. The comparator always fails conservatively (erring on the +/// side of claiming that two functions are different). +class FunctionComparator { +public: + FunctionComparator(const Function *F1, const Function *F2, + GlobalNumberState* GN) + : FnL(F1), FnR(F2), GlobalNumbers(GN) {} + + /// Test whether the two functions have equivalent behaviour. + int compare(); + /// Hash a function. Equivalent functions will have the same hash, and unequal + /// functions will have different hashes with high probability. + typedef uint64_t FunctionHash; + static FunctionHash functionHash(Function &); + +private: + /// Test whether two basic blocks have equivalent behaviour. + int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR); + + /// Constants comparison. + /// Its analog to lexicographical comparison between hypothetical numbers + /// of next format: + /// <bitcastability-trait><raw-bit-contents> + /// + /// 1. Bitcastability. + /// Check whether L's type could be losslessly bitcasted to R's type. + /// On this stage method, in case when lossless bitcast is not possible + /// method returns -1 or 1, thus also defining which type is greater in + /// context of bitcastability. + /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight + /// to the contents comparison. + /// If types differ, remember types comparison result and check + /// whether we still can bitcast types. + /// Stage 1: Types that satisfies isFirstClassType conditions are always + /// greater then others. + /// Stage 2: Vector is greater then non-vector. + /// If both types are vectors, then vector with greater bitwidth is + /// greater. + /// If both types are vectors with the same bitwidth, then types + /// are bitcastable, and we can skip other stages, and go to contents + /// comparison. + /// Stage 3: Pointer types are greater than non-pointers. If both types are + /// pointers of the same address space - go to contents comparison. + /// Different address spaces: pointer with greater address space is + /// greater. + /// Stage 4: Types are neither vectors, nor pointers. And they differ. + /// We don't know how to bitcast them. So, we better don't do it, + /// and return types comparison result (so it determines the + /// relationship among constants we don't know how to bitcast). + /// + /// Just for clearance, let's see how the set of constants could look + /// on single dimension axis: + /// + /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] + /// Where: NFCT - Not a FirstClassType + /// FCT - FirstClassTyp: + /// + /// 2. Compare raw contents. + /// It ignores types on this stage and only compares bits from L and R. + /// Returns 0, if L and R has equivalent contents. + /// -1 or 1 if values are different. + /// Pretty trivial: + /// 2.1. If contents are numbers, compare numbers. + /// Ints with greater bitwidth are greater. Ints with same bitwidths + /// compared by their contents. + /// 2.2. "And so on". Just to avoid discrepancies with comments + /// perhaps it would be better to read the implementation itself. + /// 3. And again about overall picture. Let's look back at how the ordered set + /// of constants will look like: + /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors] + /// + /// Now look, what could be inside [FCT, "others"], for example: + /// [FCT, "others"] = + /// [ + /// [double 0.1], [double 1.23], + /// [i32 1], [i32 2], + /// { double 1.0 }, ; StructTyID, NumElements = 1 + /// { i32 1 }, ; StructTyID, NumElements = 1 + /// { double 1, i32 1 }, ; StructTyID, NumElements = 2 + /// { i32 1, double 1 } ; StructTyID, NumElements = 2 + /// ] + /// + /// Let's explain the order. Float numbers will be less than integers, just + /// because of cmpType terms: FloatTyID < IntegerTyID. + /// Floats (with same fltSemantics) are sorted according to their value. + /// Then you can see integers, and they are, like a floats, + /// could be easy sorted among each others. + /// The structures. Structures are grouped at the tail, again because of their + /// TypeID: StructTyID > IntegerTyID > FloatTyID. + /// Structures with greater number of elements are greater. Structures with + /// greater elements going first are greater. + /// The same logic with vectors, arrays and other possible complex types. + /// + /// Bitcastable constants. + /// Let's assume, that some constant, belongs to some group of + /// "so-called-equal" values with different types, and at the same time + /// belongs to another group of constants with equal types + /// and "really" equal values. + /// + /// Now, prove that this is impossible: + /// + /// If constant A with type TyA is bitcastable to B with type TyB, then: + /// 1. All constants with equal types to TyA, are bitcastable to B. Since + /// those should be vectors (if TyA is vector), pointers + /// (if TyA is pointer), or else (if TyA equal to TyB), those types should + /// be equal to TyB. + /// 2. All constants with non-equal, but bitcastable types to TyA, are + /// bitcastable to B. + /// Once again, just because we allow it to vectors and pointers only. + /// This statement could be expanded as below: + /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to + /// vector B, and thus bitcastable to B as well. + /// 2.2. All pointers of the same address space, no matter what they point to, + /// bitcastable. So if C is pointer, it could be bitcasted to A and to B. + /// So any constant equal or bitcastable to A is equal or bitcastable to B. + /// QED. + /// + /// In another words, for pointers and vectors, we ignore top-level type and + /// look at their particular properties (bit-width for vectors, and + /// address space for pointers). + /// If these properties are equal - compare their contents. + int cmpConstants(const Constant *L, const Constant *R); + + /// Compares two global values by number. Uses the GlobalNumbersState to + /// identify the same gobals across function calls. + int cmpGlobalValues(GlobalValue *L, GlobalValue *R); + + /// Assign or look up previously assigned numbers for the two values, and + /// return whether the numbers are equal. Numbers are assigned in the order + /// visited. + /// Comparison order: + /// Stage 0: Value that is function itself is always greater then others. + /// If left and right values are references to their functions, then + /// they are equal. + /// Stage 1: Constants are greater than non-constants. + /// If both left and right are constants, then the result of + /// cmpConstants is used as cmpValues result. + /// Stage 2: InlineAsm instances are greater than others. If both left and + /// right are InlineAsm instances, InlineAsm* pointers casted to + /// integers and compared as numbers. + /// Stage 3: For all other cases we compare order we meet these values in + /// their functions. If right value was met first during scanning, + /// then left value is greater. + /// In another words, we compare serial numbers, for more details + /// see comments for sn_mapL and sn_mapR. + int cmpValues(const Value *L, const Value *R); + + /// Compare two Instructions for equivalence, similar to + /// Instruction::isSameOperationAs but with modifications to the type + /// comparison. + /// Stages are listed in "most significant stage first" order: + /// On each stage below, we do comparison between some left and right + /// operation parts. If parts are non-equal, we assign parts comparison + /// result to the operation comparison result and exit from method. + /// Otherwise we proceed to the next stage. + /// Stages: + /// 1. Operations opcodes. Compared as numbers. + /// 2. Number of operands. + /// 3. Operation types. Compared with cmpType method. + /// 4. Compare operation subclass optional data as stream of bytes: + /// just convert it to integers and call cmpNumbers. + /// 5. Compare in operation operand types with cmpType in + /// most significant operand first order. + /// 6. Last stage. Check operations for some specific attributes. + /// For example, for Load it would be: + /// 6.1.Load: volatile (as boolean flag) + /// 6.2.Load: alignment (as integer numbers) + /// 6.3.Load: synch-scope (as integer numbers) + /// 6.4.Load: range metadata (as integer numbers) + /// On this stage its better to see the code, since its not more than 10-15 + /// strings for particular instruction, and could change sometimes. + int cmpOperations(const Instruction *L, const Instruction *R) const; + + /// Compare two GEPs for equivalent pointer arithmetic. + /// Parts to be compared for each comparison stage, + /// most significant stage first: + /// 1. Address space. As numbers. + /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method). + /// 3. Pointer operand type (using cmpType method). + /// 4. Number of operands. + /// 5. Compare operands, using cmpValues method. + int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR); + int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) { + return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR)); + } + + /// cmpType - compares two types, + /// defines total ordering among the types set. + /// + /// Return values: + /// 0 if types are equal, + /// -1 if Left is less than Right, + /// +1 if Left is greater than Right. + /// + /// Description: + /// Comparison is broken onto stages. Like in lexicographical comparison + /// stage coming first has higher priority. + /// On each explanation stage keep in mind total ordering properties. + /// + /// 0. Before comparison we coerce pointer types of 0 address space to + /// integer. + /// We also don't bother with same type at left and right, so + /// just return 0 in this case. + /// + /// 1. If types are of different kind (different type IDs). + /// Return result of type IDs comparison, treating them as numbers. + /// 2. If types are integers, check that they have the same width. If they + /// are vectors, check that they have the same count and subtype. + /// 3. Types have the same ID, so check whether they are one of: + /// * Void + /// * Float + /// * Double + /// * X86_FP80 + /// * FP128 + /// * PPC_FP128 + /// * Label + /// * Metadata + /// We can treat these types as equal whenever their IDs are same. + /// 4. If Left and Right are pointers, return result of address space + /// comparison (numbers comparison). We can treat pointer types of same + /// address space as equal. + /// 5. If types are complex. + /// Then both Left and Right are to be expanded and their element types will + /// be checked with the same way. If we get Res != 0 on some stage, return it. + /// Otherwise return 0. + /// 6. For all other cases put llvm_unreachable. + int cmpTypes(Type *TyL, Type *TyR) const; + + int cmpNumbers(uint64_t L, uint64_t R) const; + int cmpAPInts(const APInt &L, const APInt &R) const; + int cmpAPFloats(const APFloat &L, const APFloat &R) const; + int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const; + int cmpMem(StringRef L, StringRef R) const; + int cmpAttrs(const AttributeSet L, const AttributeSet R) const; + int cmpRangeMetadata(const MDNode* L, const MDNode* R) const; + int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const; + + // The two functions undergoing comparison. + const Function *FnL, *FnR; + + /// Assign serial numbers to values from left function, and values from + /// right function. + /// Explanation: + /// Being comparing functions we need to compare values we meet at left and + /// right sides. + /// Its easy to sort things out for external values. It just should be + /// the same value at left and right. + /// But for local values (those were introduced inside function body) + /// we have to ensure they were introduced at exactly the same place, + /// and plays the same role. + /// Let's assign serial number to each value when we meet it first time. + /// Values that were met at same place will be with same serial numbers. + /// In this case it would be good to explain few points about values assigned + /// to BBs and other ways of implementation (see below). + /// + /// 1. Safety of BB reordering. + /// It's safe to change the order of BasicBlocks in function. + /// Relationship with other functions and serial numbering will not be + /// changed in this case. + /// As follows from FunctionComparator::compare(), we do CFG walk: we start + /// from the entry, and then take each terminator. So it doesn't matter how in + /// fact BBs are ordered in function. And since cmpValues are called during + /// this walk, the numbering depends only on how BBs located inside the CFG. + /// So the answer is - yes. We will get the same numbering. + /// + /// 2. Impossibility to use dominance properties of values. + /// If we compare two instruction operands: first is usage of local + /// variable AL from function FL, and second is usage of local variable AR + /// from FR, we could compare their origins and check whether they are + /// defined at the same place. + /// But, we are still not able to compare operands of PHI nodes, since those + /// could be operands from further BBs we didn't scan yet. + /// So it's impossible to use dominance properties in general. + DenseMap<const Value*, int> sn_mapL, sn_mapR; + + // The global state we will use + GlobalNumberState* GlobalNumbers; +}; + +class FunctionNode { + mutable AssertingVH<Function> F; + FunctionComparator::FunctionHash Hash; +public: + // Note the hash is recalculated potentially multiple times, but it is cheap. + FunctionNode(Function *F) + : F(F), Hash(FunctionComparator::functionHash(*F)) {} + Function *getFunc() const { return F; } + FunctionComparator::FunctionHash getHash() const { return Hash; } + + /// Replace the reference to the function F by the function G, assuming their + /// implementations are equal. + void replaceBy(Function *G) const { + F = G; + } + + void release() { F = nullptr; } +}; +} // end anonymous namespace + +int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const { + if (L < R) return -1; + if (L > R) return 1; + return 0; +} + +int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const { + if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth())) + return Res; + if (L.ugt(R)) return 1; + if (R.ugt(L)) return -1; + return 0; +} + +int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const { + // Floats are ordered first by semantics (i.e. float, double, half, etc.), + // then by value interpreted as a bitstring (aka APInt). + const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics(); + if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL), + APFloat::semanticsPrecision(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL), + APFloat::semanticsMaxExponent(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL), + APFloat::semanticsMinExponent(SR))) + return Res; + if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL), + APFloat::semanticsSizeInBits(SR))) + return Res; + return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt()); +} + +int FunctionComparator::cmpMem(StringRef L, StringRef R) const { + // Prevent heavy comparison, compare sizes first. + if (int Res = cmpNumbers(L.size(), R.size())) + return Res; + + // Compare strings lexicographically only when it is necessary: only when + // strings are equal in size. + return L.compare(R); +} + +int FunctionComparator::cmpAttrs(const AttributeSet L, + const AttributeSet R) const { + if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots())) + return Res; + + for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) { + AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i), + RE = R.end(i); + for (; LI != LE && RI != RE; ++LI, ++RI) { + Attribute LA = *LI; + Attribute RA = *RI; + if (LA < RA) + return -1; + if (RA < LA) + return 1; + } + if (LI != LE) + return 1; + if (RI != RE) + return -1; + } + return 0; +} + +int FunctionComparator::cmpRangeMetadata(const MDNode* L, + const MDNode* R) const { + if (L == R) + return 0; + if (!L) + return -1; + if (!R) + return 1; + // Range metadata is a sequence of numbers. Make sure they are the same + // sequence. + // TODO: Note that as this is metadata, it is possible to drop and/or merge + // this data when considering functions to merge. Thus this comparison would + // return 0 (i.e. equivalent), but merging would become more complicated + // because the ranges would need to be unioned. It is not likely that + // functions differ ONLY in this metadata if they are actually the same + // function semantically. + if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) + return Res; + for (size_t I = 0; I < L->getNumOperands(); ++I) { + ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I)); + ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I)); + if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue())) + return Res; + } + return 0; +} + +int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L, + const Instruction *R) const { + ImmutableCallSite LCS(L); + ImmutableCallSite RCS(R); + + assert(LCS && RCS && "Must be calls or invokes!"); + assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!"); + + if (int Res = + cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles())) + return Res; + + for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) { + auto OBL = LCS.getOperandBundleAt(i); + auto OBR = RCS.getOperandBundleAt(i); + + if (int Res = OBL.getTagName().compare(OBR.getTagName())) + return Res; + + if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size())) + return Res; + } + + return 0; +} + +/// Constants comparison: +/// 1. Check whether type of L constant could be losslessly bitcasted to R +/// type. +/// 2. Compare constant contents. +/// For more details see declaration comments. +int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) { + + Type *TyL = L->getType(); + Type *TyR = R->getType(); + + // Check whether types are bitcastable. This part is just re-factored + // Type::canLosslesslyBitCastTo method, but instead of returning true/false, + // we also pack into result which type is "less" for us. + int TypesRes = cmpTypes(TyL, TyR); + if (TypesRes != 0) { + // Types are different, but check whether we can bitcast them. + if (!TyL->isFirstClassType()) { + if (TyR->isFirstClassType()) + return -1; + // Neither TyL nor TyR are values of first class type. Return the result + // of comparing the types + return TypesRes; + } + if (!TyR->isFirstClassType()) { + if (TyL->isFirstClassType()) + return 1; + return TypesRes; + } + + // Vector -> Vector conversions are always lossless if the two vector types + // have the same size, otherwise not. + unsigned TyLWidth = 0; + unsigned TyRWidth = 0; + + if (auto *VecTyL = dyn_cast<VectorType>(TyL)) + TyLWidth = VecTyL->getBitWidth(); + if (auto *VecTyR = dyn_cast<VectorType>(TyR)) + TyRWidth = VecTyR->getBitWidth(); + + if (TyLWidth != TyRWidth) + return cmpNumbers(TyLWidth, TyRWidth); + + // Zero bit-width means neither TyL nor TyR are vectors. + if (!TyLWidth) { + PointerType *PTyL = dyn_cast<PointerType>(TyL); + PointerType *PTyR = dyn_cast<PointerType>(TyR); + if (PTyL && PTyR) { + unsigned AddrSpaceL = PTyL->getAddressSpace(); + unsigned AddrSpaceR = PTyR->getAddressSpace(); + if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR)) + return Res; + } + if (PTyL) + return 1; + if (PTyR) + return -1; + + // TyL and TyR aren't vectors, nor pointers. We don't know how to + // bitcast them. + return TypesRes; + } + } + + // OK, types are bitcastable, now check constant contents. + + if (L->isNullValue() && R->isNullValue()) + return TypesRes; + if (L->isNullValue() && !R->isNullValue()) + return 1; + if (!L->isNullValue() && R->isNullValue()) + return -1; + + auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L)); + auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R)); + if (GlobalValueL && GlobalValueR) { + return cmpGlobalValues(GlobalValueL, GlobalValueR); + } + + if (int Res = cmpNumbers(L->getValueID(), R->getValueID())) + return Res; + + if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) { + const auto *SeqR = cast<ConstantDataSequential>(R); + // This handles ConstantDataArray and ConstantDataVector. Note that we + // compare the two raw data arrays, which might differ depending on the host + // endianness. This isn't a problem though, because the endiness of a module + // will affect the order of the constants, but this order is the same + // for a given input module and host platform. + return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues()); + } + + switch (L->getValueID()) { + case Value::UndefValueVal: + case Value::ConstantTokenNoneVal: + return TypesRes; + case Value::ConstantIntVal: { + const APInt &LInt = cast<ConstantInt>(L)->getValue(); + const APInt &RInt = cast<ConstantInt>(R)->getValue(); + return cmpAPInts(LInt, RInt); + } + case Value::ConstantFPVal: { + const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF(); + const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF(); + return cmpAPFloats(LAPF, RAPF); + } + case Value::ConstantArrayVal: { + const ConstantArray *LA = cast<ConstantArray>(L); + const ConstantArray *RA = cast<ConstantArray>(R); + uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements(); + uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (uint64_t i = 0; i < NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)), + cast<Constant>(RA->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantStructVal: { + const ConstantStruct *LS = cast<ConstantStruct>(L); + const ConstantStruct *RS = cast<ConstantStruct>(R); + unsigned NumElementsL = cast<StructType>(TyL)->getNumElements(); + unsigned NumElementsR = cast<StructType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (unsigned i = 0; i != NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)), + cast<Constant>(RS->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantVectorVal: { + const ConstantVector *LV = cast<ConstantVector>(L); + const ConstantVector *RV = cast<ConstantVector>(R); + unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements(); + unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements(); + if (int Res = cmpNumbers(NumElementsL, NumElementsR)) + return Res; + for (uint64_t i = 0; i < NumElementsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)), + cast<Constant>(RV->getOperand(i)))) + return Res; + } + return 0; + } + case Value::ConstantExprVal: { + const ConstantExpr *LE = cast<ConstantExpr>(L); + const ConstantExpr *RE = cast<ConstantExpr>(R); + unsigned NumOperandsL = LE->getNumOperands(); + unsigned NumOperandsR = RE->getNumOperands(); + if (int Res = cmpNumbers(NumOperandsL, NumOperandsR)) + return Res; + for (unsigned i = 0; i < NumOperandsL; ++i) { + if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)), + cast<Constant>(RE->getOperand(i)))) + return Res; + } + return 0; + } + case Value::BlockAddressVal: { + const BlockAddress *LBA = cast<BlockAddress>(L); + const BlockAddress *RBA = cast<BlockAddress>(R); + if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction())) + return Res; + if (LBA->getFunction() == RBA->getFunction()) { + // They are BBs in the same function. Order by which comes first in the + // BB order of the function. This order is deterministic. + Function* F = LBA->getFunction(); + BasicBlock *LBB = LBA->getBasicBlock(); + BasicBlock *RBB = RBA->getBasicBlock(); + if (LBB == RBB) + return 0; + for(BasicBlock &BB : F->getBasicBlockList()) { + if (&BB == LBB) { + assert(&BB != RBB); + return -1; + } + if (&BB == RBB) + return 1; + } + llvm_unreachable("Basic Block Address does not point to a basic block in " + "its function."); + return -1; + } else { + // cmpValues said the functions are the same. So because they aren't + // literally the same pointer, they must respectively be the left and + // right functions. + assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR); + // cmpValues will tell us if these are equivalent BasicBlocks, in the + // context of their respective functions. + return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock()); + } + } + default: // Unknown constant, abort. + DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n"); + llvm_unreachable("Constant ValueID not recognized."); + return -1; + } +} + +int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) { + return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R)); +} + +/// cmpType - compares two types, +/// defines total ordering among the types set. +/// See method declaration comments for more details. +int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const { + PointerType *PTyL = dyn_cast<PointerType>(TyL); + PointerType *PTyR = dyn_cast<PointerType>(TyR); + + const DataLayout &DL = FnL->getParent()->getDataLayout(); + if (PTyL && PTyL->getAddressSpace() == 0) + TyL = DL.getIntPtrType(TyL); + if (PTyR && PTyR->getAddressSpace() == 0) + TyR = DL.getIntPtrType(TyR); + + if (TyL == TyR) + return 0; + + if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID())) + return Res; + + switch (TyL->getTypeID()) { + default: + llvm_unreachable("Unknown type!"); + // Fall through in Release mode. + case Type::IntegerTyID: + return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(), + cast<IntegerType>(TyR)->getBitWidth()); + case Type::VectorTyID: { + VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR); + if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements())) + return Res; + return cmpTypes(VTyL->getElementType(), VTyR->getElementType()); + } + // TyL == TyR would have returned true earlier, because types are uniqued. + case Type::VoidTyID: + case Type::FloatTyID: + case Type::DoubleTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + case Type::LabelTyID: + case Type::MetadataTyID: + case Type::TokenTyID: + return 0; + + case Type::PointerTyID: { + assert(PTyL && PTyR && "Both types must be pointers here."); + return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace()); + } + + case Type::StructTyID: { + StructType *STyL = cast<StructType>(TyL); + StructType *STyR = cast<StructType>(TyR); + if (STyL->getNumElements() != STyR->getNumElements()) + return cmpNumbers(STyL->getNumElements(), STyR->getNumElements()); + + if (STyL->isPacked() != STyR->isPacked()) + return cmpNumbers(STyL->isPacked(), STyR->isPacked()); + + for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) { + if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i))) + return Res; + } + return 0; + } + + case Type::FunctionTyID: { + FunctionType *FTyL = cast<FunctionType>(TyL); + FunctionType *FTyR = cast<FunctionType>(TyR); + if (FTyL->getNumParams() != FTyR->getNumParams()) + return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams()); + + if (FTyL->isVarArg() != FTyR->isVarArg()) + return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg()); + + if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType())) + return Res; + + for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) { + if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i))) + return Res; + } + return 0; + } + + case Type::ArrayTyID: { + ArrayType *ATyL = cast<ArrayType>(TyL); + ArrayType *ATyR = cast<ArrayType>(TyR); + if (ATyL->getNumElements() != ATyR->getNumElements()) + return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements()); + return cmpTypes(ATyL->getElementType(), ATyR->getElementType()); + } + } +} + +// Determine whether the two operations are the same except that pointer-to-A +// and pointer-to-B are equivalent. This should be kept in sync with +// Instruction::isSameOperationAs. +// Read method declaration comments for more details. +int FunctionComparator::cmpOperations(const Instruction *L, + const Instruction *R) const { + // Differences from Instruction::isSameOperationAs: + // * replace type comparison with calls to isEquivalentType. + // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top + // * because of the above, we don't test for the tail bit on calls later on + if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode())) + return Res; + + if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands())) + return Res; + + if (int Res = cmpTypes(L->getType(), R->getType())) + return Res; + + if (int Res = cmpNumbers(L->getRawSubclassOptionalData(), + R->getRawSubclassOptionalData())) + return Res; + + if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) { + if (int Res = cmpTypes(AI->getAllocatedType(), + cast<AllocaInst>(R)->getAllocatedType())) + return Res; + if (int Res = + cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment())) + return Res; + } + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) { + if (int Res = + cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType())) + return Res; + } + + // Check special state that is a part of some instructions. + if (const LoadInst *LI = dyn_cast<LoadInst>(L)) { + if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile())) + return Res; + if (int Res = + cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment())) + return Res; + if (int Res = + cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering())) + return Res; + if (int Res = + cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope())) + return Res; + return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range), + cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const StoreInst *SI = dyn_cast<StoreInst>(L)) { + if (int Res = + cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile())) + return Res; + if (int Res = + cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment())) + return Res; + if (int Res = + cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering())) + return Res; + return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope()); + } + if (const CmpInst *CI = dyn_cast<CmpInst>(L)) + return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate()); + if (const CallInst *CI = dyn_cast<CallInst>(L)) { + if (int Res = cmpNumbers(CI->getCallingConv(), + cast<CallInst>(R)->getCallingConv())) + return Res; + if (int Res = + cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes())) + return Res; + if (int Res = cmpOperandBundlesSchema(CI, R)) + return Res; + return cmpRangeMetadata( + CI->getMetadata(LLVMContext::MD_range), + cast<CallInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) { + if (int Res = cmpNumbers(II->getCallingConv(), + cast<InvokeInst>(R)->getCallingConv())) + return Res; + if (int Res = + cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes())) + return Res; + if (int Res = cmpOperandBundlesSchema(II, R)) + return Res; + return cmpRangeMetadata( + II->getMetadata(LLVMContext::MD_range), + cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range)); + } + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) { + ArrayRef<unsigned> LIndices = IVI->getIndices(); + ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices(); + if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) + return Res; + for (size_t i = 0, e = LIndices.size(); i != e; ++i) { + if (int Res = cmpNumbers(LIndices[i], RIndices[i])) + return Res; + } + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) { + ArrayRef<unsigned> LIndices = EVI->getIndices(); + ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices(); + if (int Res = cmpNumbers(LIndices.size(), RIndices.size())) + return Res; + for (size_t i = 0, e = LIndices.size(); i != e; ++i) { + if (int Res = cmpNumbers(LIndices[i], RIndices[i])) + return Res; + } + } + if (const FenceInst *FI = dyn_cast<FenceInst>(L)) { + if (int Res = + cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering())) + return Res; + return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope()); + } + + if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) { + if (int Res = cmpNumbers(CXI->isVolatile(), + cast<AtomicCmpXchgInst>(R)->isVolatile())) + return Res; + if (int Res = cmpNumbers(CXI->isWeak(), + cast<AtomicCmpXchgInst>(R)->isWeak())) + return Res; + if (int Res = cmpNumbers(CXI->getSuccessOrdering(), + cast<AtomicCmpXchgInst>(R)->getSuccessOrdering())) + return Res; + if (int Res = cmpNumbers(CXI->getFailureOrdering(), + cast<AtomicCmpXchgInst>(R)->getFailureOrdering())) + return Res; + return cmpNumbers(CXI->getSynchScope(), + cast<AtomicCmpXchgInst>(R)->getSynchScope()); + } + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) { + if (int Res = cmpNumbers(RMWI->getOperation(), + cast<AtomicRMWInst>(R)->getOperation())) + return Res; + if (int Res = cmpNumbers(RMWI->isVolatile(), + cast<AtomicRMWInst>(R)->isVolatile())) + return Res; + if (int Res = cmpNumbers(RMWI->getOrdering(), + cast<AtomicRMWInst>(R)->getOrdering())) + return Res; + return cmpNumbers(RMWI->getSynchScope(), + cast<AtomicRMWInst>(R)->getSynchScope()); + } + return 0; +} + +// Determine whether two GEP operations perform the same underlying arithmetic. +// Read method declaration comments for more details. +int FunctionComparator::cmpGEPs(const GEPOperator *GEPL, + const GEPOperator *GEPR) { + + unsigned int ASL = GEPL->getPointerAddressSpace(); + unsigned int ASR = GEPR->getPointerAddressSpace(); + + if (int Res = cmpNumbers(ASL, ASR)) + return Res; + + // When we have target data, we can reduce the GEP down to the value in bytes + // added to the address. + const DataLayout &DL = FnL->getParent()->getDataLayout(); + unsigned BitWidth = DL.getPointerSizeInBits(ASL); + APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0); + if (GEPL->accumulateConstantOffset(DL, OffsetL) && + GEPR->accumulateConstantOffset(DL, OffsetR)) + return cmpAPInts(OffsetL, OffsetR); + if (int Res = cmpTypes(GEPL->getSourceElementType(), + GEPR->getSourceElementType())) + return Res; + + if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands())) + return Res; + + for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) { + if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i))) + return Res; + } + + return 0; +} + +int FunctionComparator::cmpInlineAsm(const InlineAsm *L, + const InlineAsm *R) const { + // InlineAsm's are uniqued. If they are the same pointer, obviously they are + // the same, otherwise compare the fields. + if (L == R) + return 0; + if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType())) + return Res; + if (int Res = cmpMem(L->getAsmString(), R->getAsmString())) + return Res; + if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString())) + return Res; + if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects())) + return Res; + if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack())) + return Res; + if (int Res = cmpNumbers(L->getDialect(), R->getDialect())) + return Res; + llvm_unreachable("InlineAsm blocks were not uniqued."); + return 0; +} + +/// Compare two values used by the two functions under pair-wise comparison. If +/// this is the first time the values are seen, they're added to the mapping so +/// that we will detect mismatches on next use. +/// See comments in declaration for more details. +int FunctionComparator::cmpValues(const Value *L, const Value *R) { + // Catch self-reference case. + if (L == FnL) { + if (R == FnR) + return 0; + return -1; + } + if (R == FnR) { + if (L == FnL) + return 0; + return 1; + } + + const Constant *ConstL = dyn_cast<Constant>(L); + const Constant *ConstR = dyn_cast<Constant>(R); + if (ConstL && ConstR) { + if (L == R) + return 0; + return cmpConstants(ConstL, ConstR); + } + + if (ConstL) + return 1; + if (ConstR) + return -1; + + const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L); + const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R); + + if (InlineAsmL && InlineAsmR) + return cmpInlineAsm(InlineAsmL, InlineAsmR); + if (InlineAsmL) + return 1; + if (InlineAsmR) + return -1; + + auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())), + RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size())); + + return cmpNumbers(LeftSN.first->second, RightSN.first->second); +} +// Test whether two basic blocks have equivalent behaviour. +int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL, + const BasicBlock *BBR) { + BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end(); + BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end(); + + do { + if (int Res = cmpValues(&*InstL, &*InstR)) + return Res; + + const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL); + const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR); + + if (GEPL && !GEPR) + return 1; + if (GEPR && !GEPL) + return -1; + + if (GEPL && GEPR) { + if (int Res = + cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand())) + return Res; + if (int Res = cmpGEPs(GEPL, GEPR)) + return Res; + } else { + if (int Res = cmpOperations(&*InstL, &*InstR)) + return Res; + assert(InstL->getNumOperands() == InstR->getNumOperands()); + + for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) { + Value *OpL = InstL->getOperand(i); + Value *OpR = InstR->getOperand(i); + if (int Res = cmpValues(OpL, OpR)) + return Res; + // cmpValues should ensure this is true. + assert(cmpTypes(OpL->getType(), OpR->getType()) == 0); + } + } + + ++InstL, ++InstR; + } while (InstL != InstLE && InstR != InstRE); + + if (InstL != InstLE && InstR == InstRE) + return 1; + if (InstL == InstLE && InstR != InstRE) + return -1; + return 0; +} + +// Test whether the two functions have equivalent behaviour. +int FunctionComparator::compare() { + sn_mapL.clear(); + sn_mapR.clear(); + + if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes())) + return Res; + + if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC())) + return Res; + + if (FnL->hasGC()) { + if (int Res = cmpMem(FnL->getGC(), FnR->getGC())) + return Res; + } + + if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection())) + return Res; + + if (FnL->hasSection()) { + if (int Res = cmpMem(FnL->getSection(), FnR->getSection())) + return Res; + } + + if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg())) + return Res; + + // TODO: if it's internal and only used in direct calls, we could handle this + // case too. + if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv())) + return Res; + + if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType())) + return Res; + + assert(FnL->arg_size() == FnR->arg_size() && + "Identically typed functions have different numbers of args!"); + + // Visit the arguments so that they get enumerated in the order they're + // passed in. + for (Function::const_arg_iterator ArgLI = FnL->arg_begin(), + ArgRI = FnR->arg_begin(), + ArgLE = FnL->arg_end(); + ArgLI != ArgLE; ++ArgLI, ++ArgRI) { + if (cmpValues(&*ArgLI, &*ArgRI) != 0) + llvm_unreachable("Arguments repeat!"); + } + + // We do a CFG-ordered walk since the actual ordering of the blocks in the + // linked list is immaterial. Our walk starts at the entry block for both + // functions, then takes each block from each terminator in order. As an + // artifact, this also means that unreachable blocks are ignored. + SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs; + SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. + + FnLBBs.push_back(&FnL->getEntryBlock()); + FnRBBs.push_back(&FnR->getEntryBlock()); + + VisitedBBs.insert(FnLBBs[0]); + while (!FnLBBs.empty()) { + const BasicBlock *BBL = FnLBBs.pop_back_val(); + const BasicBlock *BBR = FnRBBs.pop_back_val(); + + if (int Res = cmpValues(BBL, BBR)) + return Res; + + if (int Res = cmpBasicBlocks(BBL, BBR)) + return Res; + + const TerminatorInst *TermL = BBL->getTerminator(); + const TerminatorInst *TermR = BBR->getTerminator(); + + assert(TermL->getNumSuccessors() == TermR->getNumSuccessors()); + for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(TermL->getSuccessor(i)).second) + continue; + + FnLBBs.push_back(TermL->getSuccessor(i)); + FnRBBs.push_back(TermR->getSuccessor(i)); + } + } + return 0; +} + +namespace { +// Accumulate the hash of a sequence of 64-bit integers. This is similar to a +// hash of a sequence of 64bit ints, but the entire input does not need to be +// available at once. This interface is necessary for functionHash because it +// needs to accumulate the hash as the structure of the function is traversed +// without saving these values to an intermediate buffer. This form of hashing +// is not often needed, as usually the object to hash is just read from a +// buffer. +class HashAccumulator64 { + uint64_t Hash; +public: + // Initialize to random constant, so the state isn't zero. + HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; } + void add(uint64_t V) { + Hash = llvm::hashing::detail::hash_16_bytes(Hash, V); + } + // No finishing is required, because the entire hash value is used. + uint64_t getHash() { return Hash; } +}; +} // end anonymous namespace + +// A function hash is calculated by considering only the number of arguments and +// whether a function is varargs, the order of basic blocks (given by the +// successors of each basic block in depth first order), and the order of +// opcodes of each instruction within each of these basic blocks. This mirrors +// the strategy compare() uses to compare functions by walking the BBs in depth +// first order and comparing each instruction in sequence. Because this hash +// does not look at the operands, it is insensitive to things such as the +// target of calls and the constants used in the function, which makes it useful +// when possibly merging functions which are the same modulo constants and call +// targets. +FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) { + HashAccumulator64 H; + H.add(F.isVarArg()); + H.add(F.arg_size()); + + SmallVector<const BasicBlock *, 8> BBs; + SmallSet<const BasicBlock *, 16> VisitedBBs; + + // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(), + // accumulating the hash of the function "structure." (BB and opcode sequence) + BBs.push_back(&F.getEntryBlock()); + VisitedBBs.insert(BBs[0]); + while (!BBs.empty()) { + const BasicBlock *BB = BBs.pop_back_val(); + // This random value acts as a block header, as otherwise the partition of + // opcodes into BBs wouldn't affect the hash, only the order of the opcodes + H.add(45798); + for (auto &Inst : *BB) { + H.add(Inst.getOpcode()); + } + const TerminatorInst *Term = BB->getTerminator(); + for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(Term->getSuccessor(i)).second) + continue; + BBs.push_back(Term->getSuccessor(i)); + } + } + return H.getHash(); +} + + +namespace { + +/// MergeFunctions finds functions which will generate identical machine code, +/// by considering all pointer types to be equivalent. Once identified, +/// MergeFunctions will fold them by replacing a call to one to a call to a +/// bitcast of the other. +/// +class MergeFunctions : public ModulePass { +public: + static char ID; + MergeFunctions() + : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(), + HasGlobalAliases(false) { + initializeMergeFunctionsPass(*PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override; + +private: + // The function comparison operator is provided here so that FunctionNodes do + // not need to become larger with another pointer. + class FunctionNodeCmp { + GlobalNumberState* GlobalNumbers; + public: + FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {} + bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const { + // Order first by hashes, then full function comparison. + if (LHS.getHash() != RHS.getHash()) + return LHS.getHash() < RHS.getHash(); + FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers); + return FCmp.compare() == -1; + } + }; + typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType; + + GlobalNumberState GlobalNumbers; + + /// A work queue of functions that may have been modified and should be + /// analyzed again. + std::vector<WeakVH> Deferred; + + /// Checks the rules of order relation introduced among functions set. + /// Returns true, if sanity check has been passed, and false if failed. + bool doSanityCheck(std::vector<WeakVH> &Worklist); + + /// Insert a ComparableFunction into the FnTree, or merge it away if it's + /// equal to one that's already present. + bool insert(Function *NewFunction); + + /// Remove a Function from the FnTree and queue it up for a second sweep of + /// analysis. + void remove(Function *F); + + /// Find the functions that use this Value and remove them from FnTree and + /// queue the functions. + void removeUsers(Value *V); + + /// Replace all direct calls of Old with calls of New. Will bitcast New if + /// necessary to make types match. + void replaceDirectCallers(Function *Old, Function *New); + + /// Merge two equivalent functions. Upon completion, G may be deleted, or may + /// be converted into a thunk. In either case, it should never be visited + /// again. + void mergeTwoFunctions(Function *F, Function *G); + + /// Replace G with a thunk or an alias to F. Deletes G. + void writeThunkOrAlias(Function *F, Function *G); + + /// Replace G with a simple tail call to bitcast(F). Also replace direct uses + /// of G with bitcast(F). Deletes G. + void writeThunk(Function *F, Function *G); + + /// Replace G with an alias to F. Deletes G. + void writeAlias(Function *F, Function *G); + + /// Replace function F with function G in the function tree. + void replaceFunctionInTree(const FunctionNode &FN, Function *G); + + /// The set of all distinct functions. Use the insert() and remove() methods + /// to modify it. The map allows efficient lookup and deferring of Functions. + FnTreeType FnTree; + // Map functions to the iterators of the FunctionNode which contains them + // in the FnTree. This must be updated carefully whenever the FnTree is + // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid + // dangling iterators into FnTree. The invariant that preserves this is that + // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree. + ValueMap<Function*, FnTreeType::iterator> FNodesInTree; + + /// Whether or not the target supports global aliases. + bool HasGlobalAliases; +}; + +} // end anonymous namespace + +char MergeFunctions::ID = 0; +INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false) + +ModulePass *llvm::createMergeFunctionsPass() { + return new MergeFunctions(); +} + +bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) { + if (const unsigned Max = NumFunctionsForSanityCheck) { + unsigned TripleNumber = 0; + bool Valid = true; + + dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n"; + + unsigned i = 0; + for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end(); + I != E && i < Max; ++I, ++i) { + unsigned j = i; + for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) { + Function *F1 = cast<Function>(*I); + Function *F2 = cast<Function>(*J); + int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare(); + int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare(); + + // If F1 <= F2, then F2 >= F1, otherwise report failure. + if (Res1 != -Res2) { + dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber + << "\n"; + F1->dump(); + F2->dump(); + Valid = false; + } + + if (Res1 == 0) + continue; + + unsigned k = j; + for (std::vector<WeakVH>::iterator K = J; K != E && k < Max; + ++k, ++K, ++TripleNumber) { + if (K == J) + continue; + + Function *F3 = cast<Function>(*K); + int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare(); + int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare(); + + bool Transitive = true; + + if (Res1 != 0 && Res1 == Res4) { + // F1 > F2, F2 > F3 => F1 > F3 + Transitive = Res3 == Res1; + } else if (Res3 != 0 && Res3 == -Res4) { + // F1 > F3, F3 > F2 => F1 > F2 + Transitive = Res3 == Res1; + } else if (Res4 != 0 && -Res3 == Res4) { + // F2 > F3, F3 > F1 => F2 > F1 + Transitive = Res4 == -Res1; + } + + if (!Transitive) { + dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: " + << TripleNumber << "\n"; + dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", " + << Res4 << "\n"; + F1->dump(); + F2->dump(); + F3->dump(); + Valid = false; + } + } + } + } + + dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n"; + return Valid; + } + return true; +} + +bool MergeFunctions::runOnModule(Module &M) { + bool Changed = false; + + // All functions in the module, ordered by hash. Functions with a unique + // hash value are easily eliminated. + std::vector<std::pair<FunctionComparator::FunctionHash, Function *>> + HashedFuncs; + for (Function &Func : M) { + if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) { + HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func}); + } + } + + std::stable_sort( + HashedFuncs.begin(), HashedFuncs.end(), + [](const std::pair<FunctionComparator::FunctionHash, Function *> &a, + const std::pair<FunctionComparator::FunctionHash, Function *> &b) { + return a.first < b.first; + }); + + auto S = HashedFuncs.begin(); + for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) { + // If the hash value matches the previous value or the next one, we must + // consider merging it. Otherwise it is dropped and never considered again. + if ((I != S && std::prev(I)->first == I->first) || + (std::next(I) != IE && std::next(I)->first == I->first) ) { + Deferred.push_back(WeakVH(I->second)); + } + } + + do { + std::vector<WeakVH> Worklist; + Deferred.swap(Worklist); + + DEBUG(doSanityCheck(Worklist)); + + DEBUG(dbgs() << "size of module: " << M.size() << '\n'); + DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n'); + + // Insert only strong functions and merge them. Strong function merging + // always deletes one of them. + for (std::vector<WeakVH>::iterator I = Worklist.begin(), + E = Worklist.end(); I != E; ++I) { + if (!*I) continue; + Function *F = cast<Function>(*I); + if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && + !F->mayBeOverridden()) { + Changed |= insert(F); + } + } + + // Insert only weak functions and merge them. By doing these second we + // create thunks to the strong function when possible. When two weak + // functions are identical, we create a new strong function with two weak + // weak thunks to it which are identical but not mergable. + for (std::vector<WeakVH>::iterator I = Worklist.begin(), + E = Worklist.end(); I != E; ++I) { + if (!*I) continue; + Function *F = cast<Function>(*I); + if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() && + F->mayBeOverridden()) { + Changed |= insert(F); + } + } + DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n'); + } while (!Deferred.empty()); + + FnTree.clear(); + GlobalNumbers.clear(); + + return Changed; +} + +// Replace direct callers of Old with New. +void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) { + Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType()); + for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) { + Use *U = &*UI; + ++UI; + CallSite CS(U->getUser()); + if (CS && CS.isCallee(U)) { + // Transfer the called function's attributes to the call site. Due to the + // bitcast we will 'lose' ABI changing attributes because the 'called + // function' is no longer a Function* but the bitcast. Code that looks up + // the attributes from the called function will fail. + + // FIXME: This is not actually true, at least not anymore. The callsite + // will always have the same ABI affecting attributes as the callee, + // because otherwise the original input has UB. Note that Old and New + // always have matching ABI, so no attributes need to be changed. + // Transferring other attributes may help other optimizations, but that + // should be done uniformly and not in this ad-hoc way. + auto &Context = New->getContext(); + auto NewFuncAttrs = New->getAttributes(); + auto CallSiteAttrs = CS.getAttributes(); + + CallSiteAttrs = CallSiteAttrs.addAttributes( + Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes()); + + for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) { + AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx); + if (Attrs.getNumSlots()) + CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs); + } + + CS.setAttributes(CallSiteAttrs); + + remove(CS.getInstruction()->getParent()->getParent()); + U->set(BitcastNew); + } + } +} + +// Replace G with an alias to F if possible, or else a thunk to F. Deletes G. +void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) { + if (HasGlobalAliases && G->hasUnnamedAddr()) { + if (G->hasExternalLinkage() || G->hasLocalLinkage() || + G->hasWeakLinkage()) { + writeAlias(F, G); + return; + } + } + + writeThunk(F, G); +} + +// Helper for writeThunk, +// Selects proper bitcast operation, +// but a bit simpler then CastInst::getCastOpcode. +static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) { + Type *SrcTy = V->getType(); + if (SrcTy->isStructTy()) { + assert(DestTy->isStructTy()); + assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements()); + Value *Result = UndefValue::get(DestTy); + for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) { + Value *Element = createCast( + Builder, Builder.CreateExtractValue(V, makeArrayRef(I)), + DestTy->getStructElementType(I)); + + Result = + Builder.CreateInsertValue(Result, Element, makeArrayRef(I)); + } + return Result; + } + assert(!DestTy->isStructTy()); + if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) + return Builder.CreateIntToPtr(V, DestTy); + else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) + return Builder.CreatePtrToInt(V, DestTy); + else + return Builder.CreateBitCast(V, DestTy); +} + +// Replace G with a simple tail call to bitcast(F). Also replace direct uses +// of G with bitcast(F). Deletes G. +void MergeFunctions::writeThunk(Function *F, Function *G) { + if (!G->mayBeOverridden()) { + // Redirect direct callers of G to F. + replaceDirectCallers(G, F); + } + + // If G was internal then we may have replaced all uses of G with F. If so, + // stop here and delete G. There's no need for a thunk. + if (G->hasLocalLinkage() && G->use_empty()) { + G->eraseFromParent(); + return; + } + + Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", + G->getParent()); + BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); + IRBuilder<false> Builder(BB); + + SmallVector<Value *, 16> Args; + unsigned i = 0; + FunctionType *FFTy = F->getFunctionType(); + for (Argument & AI : NewG->args()) { + Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i))); + ++i; + } + + CallInst *CI = Builder.CreateCall(F, Args); + CI->setTailCall(); + CI->setCallingConv(F->getCallingConv()); + CI->setAttributes(F->getAttributes()); + if (NewG->getReturnType()->isVoidTy()) { + Builder.CreateRetVoid(); + } else { + Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType())); + } + + NewG->copyAttributesFrom(G); + NewG->takeName(G); + removeUsers(G); + G->replaceAllUsesWith(NewG); + G->eraseFromParent(); + + DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n'); + ++NumThunksWritten; +} + +// Replace G with an alias to F and delete G. +void MergeFunctions::writeAlias(Function *F, Function *G) { + auto *GA = GlobalAlias::create(G->getLinkage(), "", F); + F->setAlignment(std::max(F->getAlignment(), G->getAlignment())); + GA->takeName(G); + GA->setVisibility(G->getVisibility()); + removeUsers(G); + G->replaceAllUsesWith(GA); + G->eraseFromParent(); + + DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n'); + ++NumAliasesWritten; +} + +// Merge two equivalent functions. Upon completion, Function G is deleted. +void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) { + if (F->mayBeOverridden()) { + assert(G->mayBeOverridden()); + + // Make them both thunks to the same internal function. + Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", + F->getParent()); + H->copyAttributesFrom(F); + H->takeName(F); + removeUsers(F); + F->replaceAllUsesWith(H); + + unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); + + if (HasGlobalAliases) { + writeAlias(F, G); + writeAlias(F, H); + } else { + writeThunk(F, G); + writeThunk(F, H); + } + + F->setAlignment(MaxAlignment); + F->setLinkage(GlobalValue::PrivateLinkage); + ++NumDoubleWeak; + } else { + writeThunkOrAlias(F, G); + } + + ++NumFunctionsMerged; +} + +/// Replace function F by function G. +void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN, + Function *G) { + Function *F = FN.getFunc(); + assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 && + "The two functions must be equal"); + + auto I = FNodesInTree.find(F); + assert(I != FNodesInTree.end() && "F should be in FNodesInTree"); + assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G"); + + FnTreeType::iterator IterToFNInFnTree = I->second; + assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree."); + // Remove F -> FN and insert G -> FN + FNodesInTree.erase(I); + FNodesInTree.insert({G, IterToFNInFnTree}); + // Replace F with G in FN, which is stored inside the FnTree. + FN.replaceBy(G); +} + +// Insert a ComparableFunction into the FnTree, or merge it away if equal to one +// that was already inserted. +bool MergeFunctions::insert(Function *NewFunction) { + std::pair<FnTreeType::iterator, bool> Result = + FnTree.insert(FunctionNode(NewFunction)); + + if (Result.second) { + assert(FNodesInTree.count(NewFunction) == 0); + FNodesInTree.insert({NewFunction, Result.first}); + DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n'); + return false; + } + + const FunctionNode &OldF = *Result.first; + + // Don't merge tiny functions, since it can just end up making the function + // larger. + // FIXME: Should still merge them if they are unnamed_addr and produce an + // alias. + if (NewFunction->size() == 1) { + if (NewFunction->front().size() <= 2) { + DEBUG(dbgs() << NewFunction->getName() + << " is to small to bother merging\n"); + return false; + } + } + + // Impose a total order (by name) on the replacement of functions. This is + // important when operating on more than one module independently to prevent + // cycles of thunks calling each other when the modules are linked together. + // + // When one function is weak and the other is strong there is an order imposed + // already. We process strong functions before weak functions. + if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) || + (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden())) + if (OldF.getFunc()->getName() > NewFunction->getName()) { + // Swap the two functions. + Function *F = OldF.getFunc(); + replaceFunctionInTree(*Result.first, NewFunction); + NewFunction = F; + assert(OldF.getFunc() != F && "Must have swapped the functions."); + } + + // Never thunk a strong function to a weak function. + assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden()); + + DEBUG(dbgs() << " " << OldF.getFunc()->getName() + << " == " << NewFunction->getName() << '\n'); + + Function *DeleteF = NewFunction; + mergeTwoFunctions(OldF.getFunc(), DeleteF); + return true; +} + +// Remove a function from FnTree. If it was already in FnTree, add +// it to Deferred so that we'll look at it in the next round. +void MergeFunctions::remove(Function *F) { + auto I = FNodesInTree.find(F); + if (I != FNodesInTree.end()) { + DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n"); + FnTree.erase(I->second); + // I->second has been invalidated, remove it from the FNodesInTree map to + // preserve the invariant. + FNodesInTree.erase(I); + Deferred.emplace_back(F); + } +} + +// For each instruction used by the value, remove() the function that contains +// the instruction. This should happen right before a call to RAUW. +void MergeFunctions::removeUsers(Value *V) { + std::vector<Value *> Worklist; + Worklist.push_back(V); + SmallSet<Value*, 8> Visited; + Visited.insert(V); + while (!Worklist.empty()) { + Value *V = Worklist.back(); + Worklist.pop_back(); + + for (User *U : V->users()) { + if (Instruction *I = dyn_cast<Instruction>(U)) { + remove(I->getParent()->getParent()); + } else if (isa<GlobalValue>(U)) { + // do nothing + } else if (Constant *C = dyn_cast<Constant>(U)) { + for (User *UU : C->users()) { + if (!Visited.insert(UU).second) + Worklist.push_back(UU); + } + } + } + } +} |