summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp1217
1 files changed, 1 insertions, 1216 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
index fe653a7..e0bb0eb 100644
--- a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
+++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp
@@ -97,11 +97,9 @@
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
-#include "llvm/IR/Operator.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Pass.h"
@@ -110,6 +108,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
+#include "llvm/Transforms/Utils/FunctionComparator.h"
#include <vector>
using namespace llvm;
@@ -130,328 +129,6 @@ static cl::opt<unsigned> NumFunctionsForSanityCheck(
namespace {
-/// GlobalNumberState assigns an integer to each global value in the program,
-/// which is used by the comparison routine to order references to globals. This
-/// state must be preserved throughout the pass, because Functions and other
-/// globals need to maintain their relative order. Globals are assigned a number
-/// when they are first visited. This order is deterministic, and so the
-/// assigned numbers are as well. When two functions are merged, neither number
-/// is updated. If the symbols are weak, this would be incorrect. If they are
-/// strong, then one will be replaced at all references to the other, and so
-/// direct callsites will now see one or the other symbol, and no update is
-/// necessary. Note that if we were guaranteed unique names, we could just
-/// compare those, but this would not work for stripped bitcodes or for those
-/// few symbols without a name.
-class GlobalNumberState {
- struct Config : ValueMapConfig<GlobalValue*> {
- enum { FollowRAUW = false };
- };
- // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
- // occurs, the mapping does not change. Tracking changes is unnecessary, and
- // also problematic for weak symbols (which may be overwritten).
- typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
- ValueNumberMap GlobalNumbers;
- // The next unused serial number to assign to a global.
- uint64_t NextNumber;
- public:
- GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
- uint64_t getNumber(GlobalValue* Global) {
- ValueNumberMap::iterator MapIter;
- bool Inserted;
- std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
- if (Inserted)
- NextNumber++;
- return MapIter->second;
- }
- void clear() {
- GlobalNumbers.clear();
- }
-};
-
-/// FunctionComparator - Compares two functions to determine whether or not
-/// they will generate machine code with the same behaviour. DataLayout is
-/// used if available. The comparator always fails conservatively (erring on the
-/// side of claiming that two functions are different).
-class FunctionComparator {
-public:
- FunctionComparator(const Function *F1, const Function *F2,
- GlobalNumberState* GN)
- : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
-
- /// Test whether the two functions have equivalent behaviour.
- int compare();
- /// Hash a function. Equivalent functions will have the same hash, and unequal
- /// functions will have different hashes with high probability.
- typedef uint64_t FunctionHash;
- static FunctionHash functionHash(Function &);
-
-private:
- /// Test whether two basic blocks have equivalent behaviour.
- int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR) const;
-
- /// Constants comparison.
- /// Its analog to lexicographical comparison between hypothetical numbers
- /// of next format:
- /// <bitcastability-trait><raw-bit-contents>
- ///
- /// 1. Bitcastability.
- /// Check whether L's type could be losslessly bitcasted to R's type.
- /// On this stage method, in case when lossless bitcast is not possible
- /// method returns -1 or 1, thus also defining which type is greater in
- /// context of bitcastability.
- /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
- /// to the contents comparison.
- /// If types differ, remember types comparison result and check
- /// whether we still can bitcast types.
- /// Stage 1: Types that satisfies isFirstClassType conditions are always
- /// greater then others.
- /// Stage 2: Vector is greater then non-vector.
- /// If both types are vectors, then vector with greater bitwidth is
- /// greater.
- /// If both types are vectors with the same bitwidth, then types
- /// are bitcastable, and we can skip other stages, and go to contents
- /// comparison.
- /// Stage 3: Pointer types are greater than non-pointers. If both types are
- /// pointers of the same address space - go to contents comparison.
- /// Different address spaces: pointer with greater address space is
- /// greater.
- /// Stage 4: Types are neither vectors, nor pointers. And they differ.
- /// We don't know how to bitcast them. So, we better don't do it,
- /// and return types comparison result (so it determines the
- /// relationship among constants we don't know how to bitcast).
- ///
- /// Just for clearance, let's see how the set of constants could look
- /// on single dimension axis:
- ///
- /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
- /// Where: NFCT - Not a FirstClassType
- /// FCT - FirstClassTyp:
- ///
- /// 2. Compare raw contents.
- /// It ignores types on this stage and only compares bits from L and R.
- /// Returns 0, if L and R has equivalent contents.
- /// -1 or 1 if values are different.
- /// Pretty trivial:
- /// 2.1. If contents are numbers, compare numbers.
- /// Ints with greater bitwidth are greater. Ints with same bitwidths
- /// compared by their contents.
- /// 2.2. "And so on". Just to avoid discrepancies with comments
- /// perhaps it would be better to read the implementation itself.
- /// 3. And again about overall picture. Let's look back at how the ordered set
- /// of constants will look like:
- /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
- ///
- /// Now look, what could be inside [FCT, "others"], for example:
- /// [FCT, "others"] =
- /// [
- /// [double 0.1], [double 1.23],
- /// [i32 1], [i32 2],
- /// { double 1.0 }, ; StructTyID, NumElements = 1
- /// { i32 1 }, ; StructTyID, NumElements = 1
- /// { double 1, i32 1 }, ; StructTyID, NumElements = 2
- /// { i32 1, double 1 } ; StructTyID, NumElements = 2
- /// ]
- ///
- /// Let's explain the order. Float numbers will be less than integers, just
- /// because of cmpType terms: FloatTyID < IntegerTyID.
- /// Floats (with same fltSemantics) are sorted according to their value.
- /// Then you can see integers, and they are, like a floats,
- /// could be easy sorted among each others.
- /// The structures. Structures are grouped at the tail, again because of their
- /// TypeID: StructTyID > IntegerTyID > FloatTyID.
- /// Structures with greater number of elements are greater. Structures with
- /// greater elements going first are greater.
- /// The same logic with vectors, arrays and other possible complex types.
- ///
- /// Bitcastable constants.
- /// Let's assume, that some constant, belongs to some group of
- /// "so-called-equal" values with different types, and at the same time
- /// belongs to another group of constants with equal types
- /// and "really" equal values.
- ///
- /// Now, prove that this is impossible:
- ///
- /// If constant A with type TyA is bitcastable to B with type TyB, then:
- /// 1. All constants with equal types to TyA, are bitcastable to B. Since
- /// those should be vectors (if TyA is vector), pointers
- /// (if TyA is pointer), or else (if TyA equal to TyB), those types should
- /// be equal to TyB.
- /// 2. All constants with non-equal, but bitcastable types to TyA, are
- /// bitcastable to B.
- /// Once again, just because we allow it to vectors and pointers only.
- /// This statement could be expanded as below:
- /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
- /// vector B, and thus bitcastable to B as well.
- /// 2.2. All pointers of the same address space, no matter what they point to,
- /// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
- /// So any constant equal or bitcastable to A is equal or bitcastable to B.
- /// QED.
- ///
- /// In another words, for pointers and vectors, we ignore top-level type and
- /// look at their particular properties (bit-width for vectors, and
- /// address space for pointers).
- /// If these properties are equal - compare their contents.
- int cmpConstants(const Constant *L, const Constant *R) const;
-
- /// Compares two global values by number. Uses the GlobalNumbersState to
- /// identify the same gobals across function calls.
- int cmpGlobalValues(GlobalValue *L, GlobalValue *R) const;
-
- /// Assign or look up previously assigned numbers for the two values, and
- /// return whether the numbers are equal. Numbers are assigned in the order
- /// visited.
- /// Comparison order:
- /// Stage 0: Value that is function itself is always greater then others.
- /// If left and right values are references to their functions, then
- /// they are equal.
- /// Stage 1: Constants are greater than non-constants.
- /// If both left and right are constants, then the result of
- /// cmpConstants is used as cmpValues result.
- /// Stage 2: InlineAsm instances are greater than others. If both left and
- /// right are InlineAsm instances, InlineAsm* pointers casted to
- /// integers and compared as numbers.
- /// Stage 3: For all other cases we compare order we meet these values in
- /// their functions. If right value was met first during scanning,
- /// then left value is greater.
- /// In another words, we compare serial numbers, for more details
- /// see comments for sn_mapL and sn_mapR.
- int cmpValues(const Value *L, const Value *R) const;
-
- /// Compare two Instructions for equivalence, similar to
- /// Instruction::isSameOperationAs.
- ///
- /// Stages are listed in "most significant stage first" order:
- /// On each stage below, we do comparison between some left and right
- /// operation parts. If parts are non-equal, we assign parts comparison
- /// result to the operation comparison result and exit from method.
- /// Otherwise we proceed to the next stage.
- /// Stages:
- /// 1. Operations opcodes. Compared as numbers.
- /// 2. Number of operands.
- /// 3. Operation types. Compared with cmpType method.
- /// 4. Compare operation subclass optional data as stream of bytes:
- /// just convert it to integers and call cmpNumbers.
- /// 5. Compare in operation operand types with cmpType in
- /// most significant operand first order.
- /// 6. Last stage. Check operations for some specific attributes.
- /// For example, for Load it would be:
- /// 6.1.Load: volatile (as boolean flag)
- /// 6.2.Load: alignment (as integer numbers)
- /// 6.3.Load: ordering (as underlying enum class value)
- /// 6.4.Load: synch-scope (as integer numbers)
- /// 6.5.Load: range metadata (as integer ranges)
- /// On this stage its better to see the code, since its not more than 10-15
- /// strings for particular instruction, and could change sometimes.
- int cmpOperations(const Instruction *L, const Instruction *R) const;
-
- /// Compare two GEPs for equivalent pointer arithmetic.
- /// Parts to be compared for each comparison stage,
- /// most significant stage first:
- /// 1. Address space. As numbers.
- /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
- /// 3. Pointer operand type (using cmpType method).
- /// 4. Number of operands.
- /// 5. Compare operands, using cmpValues method.
- int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR) const;
- int cmpGEPs(const GetElementPtrInst *GEPL,
- const GetElementPtrInst *GEPR) const {
- return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
- }
-
- /// cmpType - compares two types,
- /// defines total ordering among the types set.
- ///
- /// Return values:
- /// 0 if types are equal,
- /// -1 if Left is less than Right,
- /// +1 if Left is greater than Right.
- ///
- /// Description:
- /// Comparison is broken onto stages. Like in lexicographical comparison
- /// stage coming first has higher priority.
- /// On each explanation stage keep in mind total ordering properties.
- ///
- /// 0. Before comparison we coerce pointer types of 0 address space to
- /// integer.
- /// We also don't bother with same type at left and right, so
- /// just return 0 in this case.
- ///
- /// 1. If types are of different kind (different type IDs).
- /// Return result of type IDs comparison, treating them as numbers.
- /// 2. If types are integers, check that they have the same width. If they
- /// are vectors, check that they have the same count and subtype.
- /// 3. Types have the same ID, so check whether they are one of:
- /// * Void
- /// * Float
- /// * Double
- /// * X86_FP80
- /// * FP128
- /// * PPC_FP128
- /// * Label
- /// * Metadata
- /// We can treat these types as equal whenever their IDs are same.
- /// 4. If Left and Right are pointers, return result of address space
- /// comparison (numbers comparison). We can treat pointer types of same
- /// address space as equal.
- /// 5. If types are complex.
- /// Then both Left and Right are to be expanded and their element types will
- /// be checked with the same way. If we get Res != 0 on some stage, return it.
- /// Otherwise return 0.
- /// 6. For all other cases put llvm_unreachable.
- int cmpTypes(Type *TyL, Type *TyR) const;
-
- int cmpNumbers(uint64_t L, uint64_t R) const;
- int cmpOrderings(AtomicOrdering L, AtomicOrdering R) const;
- int cmpAPInts(const APInt &L, const APInt &R) const;
- int cmpAPFloats(const APFloat &L, const APFloat &R) const;
- int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
- int cmpMem(StringRef L, StringRef R) const;
- int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
- int cmpRangeMetadata(const MDNode *L, const MDNode *R) const;
- int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
-
- // The two functions undergoing comparison.
- const Function *FnL, *FnR;
-
- /// Assign serial numbers to values from left function, and values from
- /// right function.
- /// Explanation:
- /// Being comparing functions we need to compare values we meet at left and
- /// right sides.
- /// Its easy to sort things out for external values. It just should be
- /// the same value at left and right.
- /// But for local values (those were introduced inside function body)
- /// we have to ensure they were introduced at exactly the same place,
- /// and plays the same role.
- /// Let's assign serial number to each value when we meet it first time.
- /// Values that were met at same place will be with same serial numbers.
- /// In this case it would be good to explain few points about values assigned
- /// to BBs and other ways of implementation (see below).
- ///
- /// 1. Safety of BB reordering.
- /// It's safe to change the order of BasicBlocks in function.
- /// Relationship with other functions and serial numbering will not be
- /// changed in this case.
- /// As follows from FunctionComparator::compare(), we do CFG walk: we start
- /// from the entry, and then take each terminator. So it doesn't matter how in
- /// fact BBs are ordered in function. And since cmpValues are called during
- /// this walk, the numbering depends only on how BBs located inside the CFG.
- /// So the answer is - yes. We will get the same numbering.
- ///
- /// 2. Impossibility to use dominance properties of values.
- /// If we compare two instruction operands: first is usage of local
- /// variable AL from function FL, and second is usage of local variable AR
- /// from FR, we could compare their origins and check whether they are
- /// defined at the same place.
- /// But, we are still not able to compare operands of PHI nodes, since those
- /// could be operands from further BBs we didn't scan yet.
- /// So it's impossible to use dominance properties in general.
- mutable DenseMap<const Value*, int> sn_mapL, sn_mapR;
-
- // The global state we will use
- GlobalNumberState* GlobalNumbers;
-};
-
class FunctionNode {
mutable AssertingVH<Function> F;
FunctionComparator::FunctionHash Hash;
@@ -470,898 +147,6 @@ public:
void release() { F = nullptr; }
};
-} // end anonymous namespace
-
-int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
- if (L < R) return -1;
- if (L > R) return 1;
- return 0;
-}
-
-int FunctionComparator::cmpOrderings(AtomicOrdering L, AtomicOrdering R) const {
- if ((int)L < (int)R) return -1;
- if ((int)L > (int)R) return 1;
- return 0;
-}
-
-int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
- if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
- return Res;
- if (L.ugt(R)) return 1;
- if (R.ugt(L)) return -1;
- return 0;
-}
-
-int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
- // Floats are ordered first by semantics (i.e. float, double, half, etc.),
- // then by value interpreted as a bitstring (aka APInt).
- const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
- if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
- APFloat::semanticsPrecision(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
- APFloat::semanticsMaxExponent(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
- APFloat::semanticsMinExponent(SR)))
- return Res;
- if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
- APFloat::semanticsSizeInBits(SR)))
- return Res;
- return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
-}
-
-int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
- // Prevent heavy comparison, compare sizes first.
- if (int Res = cmpNumbers(L.size(), R.size()))
- return Res;
-
- // Compare strings lexicographically only when it is necessary: only when
- // strings are equal in size.
- return L.compare(R);
-}
-
-int FunctionComparator::cmpAttrs(const AttributeSet L,
- const AttributeSet R) const {
- if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
- return Res;
-
- for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
- AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
- RE = R.end(i);
- for (; LI != LE && RI != RE; ++LI, ++RI) {
- Attribute LA = *LI;
- Attribute RA = *RI;
- if (LA < RA)
- return -1;
- if (RA < LA)
- return 1;
- }
- if (LI != LE)
- return 1;
- if (RI != RE)
- return -1;
- }
- return 0;
-}
-
-int FunctionComparator::cmpRangeMetadata(const MDNode *L,
- const MDNode *R) const {
- if (L == R)
- return 0;
- if (!L)
- return -1;
- if (!R)
- return 1;
- // Range metadata is a sequence of numbers. Make sure they are the same
- // sequence.
- // TODO: Note that as this is metadata, it is possible to drop and/or merge
- // this data when considering functions to merge. Thus this comparison would
- // return 0 (i.e. equivalent), but merging would become more complicated
- // because the ranges would need to be unioned. It is not likely that
- // functions differ ONLY in this metadata if they are actually the same
- // function semantically.
- if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
- return Res;
- for (size_t I = 0; I < L->getNumOperands(); ++I) {
- ConstantInt *LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
- ConstantInt *RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
- if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
- return Res;
- }
- return 0;
-}
-
-int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
- const Instruction *R) const {
- ImmutableCallSite LCS(L);
- ImmutableCallSite RCS(R);
-
- assert(LCS && RCS && "Must be calls or invokes!");
- assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
-
- if (int Res =
- cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
- return Res;
-
- for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
- auto OBL = LCS.getOperandBundleAt(i);
- auto OBR = RCS.getOperandBundleAt(i);
-
- if (int Res = OBL.getTagName().compare(OBR.getTagName()))
- return Res;
-
- if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
- return Res;
- }
-
- return 0;
-}
-
-/// Constants comparison:
-/// 1. Check whether type of L constant could be losslessly bitcasted to R
-/// type.
-/// 2. Compare constant contents.
-/// For more details see declaration comments.
-int FunctionComparator::cmpConstants(const Constant *L,
- const Constant *R) const {
-
- Type *TyL = L->getType();
- Type *TyR = R->getType();
-
- // Check whether types are bitcastable. This part is just re-factored
- // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
- // we also pack into result which type is "less" for us.
- int TypesRes = cmpTypes(TyL, TyR);
- if (TypesRes != 0) {
- // Types are different, but check whether we can bitcast them.
- if (!TyL->isFirstClassType()) {
- if (TyR->isFirstClassType())
- return -1;
- // Neither TyL nor TyR are values of first class type. Return the result
- // of comparing the types
- return TypesRes;
- }
- if (!TyR->isFirstClassType()) {
- if (TyL->isFirstClassType())
- return 1;
- return TypesRes;
- }
-
- // Vector -> Vector conversions are always lossless if the two vector types
- // have the same size, otherwise not.
- unsigned TyLWidth = 0;
- unsigned TyRWidth = 0;
-
- if (auto *VecTyL = dyn_cast<VectorType>(TyL))
- TyLWidth = VecTyL->getBitWidth();
- if (auto *VecTyR = dyn_cast<VectorType>(TyR))
- TyRWidth = VecTyR->getBitWidth();
-
- if (TyLWidth != TyRWidth)
- return cmpNumbers(TyLWidth, TyRWidth);
-
- // Zero bit-width means neither TyL nor TyR are vectors.
- if (!TyLWidth) {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
- if (PTyL && PTyR) {
- unsigned AddrSpaceL = PTyL->getAddressSpace();
- unsigned AddrSpaceR = PTyR->getAddressSpace();
- if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
- return Res;
- }
- if (PTyL)
- return 1;
- if (PTyR)
- return -1;
-
- // TyL and TyR aren't vectors, nor pointers. We don't know how to
- // bitcast them.
- return TypesRes;
- }
- }
-
- // OK, types are bitcastable, now check constant contents.
-
- if (L->isNullValue() && R->isNullValue())
- return TypesRes;
- if (L->isNullValue() && !R->isNullValue())
- return 1;
- if (!L->isNullValue() && R->isNullValue())
- return -1;
-
- auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
- auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
- if (GlobalValueL && GlobalValueR) {
- return cmpGlobalValues(GlobalValueL, GlobalValueR);
- }
-
- if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
- return Res;
-
- if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
- const auto *SeqR = cast<ConstantDataSequential>(R);
- // This handles ConstantDataArray and ConstantDataVector. Note that we
- // compare the two raw data arrays, which might differ depending on the host
- // endianness. This isn't a problem though, because the endiness of a module
- // will affect the order of the constants, but this order is the same
- // for a given input module and host platform.
- return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
- }
-
- switch (L->getValueID()) {
- case Value::UndefValueVal:
- case Value::ConstantTokenNoneVal:
- return TypesRes;
- case Value::ConstantIntVal: {
- const APInt &LInt = cast<ConstantInt>(L)->getValue();
- const APInt &RInt = cast<ConstantInt>(R)->getValue();
- return cmpAPInts(LInt, RInt);
- }
- case Value::ConstantFPVal: {
- const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
- const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
- return cmpAPFloats(LAPF, RAPF);
- }
- case Value::ConstantArrayVal: {
- const ConstantArray *LA = cast<ConstantArray>(L);
- const ConstantArray *RA = cast<ConstantArray>(R);
- uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
- uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
- cast<Constant>(RA->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantStructVal: {
- const ConstantStruct *LS = cast<ConstantStruct>(L);
- const ConstantStruct *RS = cast<ConstantStruct>(R);
- unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (unsigned i = 0; i != NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
- cast<Constant>(RS->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantVectorVal: {
- const ConstantVector *LV = cast<ConstantVector>(L);
- const ConstantVector *RV = cast<ConstantVector>(R);
- unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
- unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
- if (int Res = cmpNumbers(NumElementsL, NumElementsR))
- return Res;
- for (uint64_t i = 0; i < NumElementsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
- cast<Constant>(RV->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::ConstantExprVal: {
- const ConstantExpr *LE = cast<ConstantExpr>(L);
- const ConstantExpr *RE = cast<ConstantExpr>(R);
- unsigned NumOperandsL = LE->getNumOperands();
- unsigned NumOperandsR = RE->getNumOperands();
- if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
- return Res;
- for (unsigned i = 0; i < NumOperandsL; ++i) {
- if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
- cast<Constant>(RE->getOperand(i))))
- return Res;
- }
- return 0;
- }
- case Value::BlockAddressVal: {
- const BlockAddress *LBA = cast<BlockAddress>(L);
- const BlockAddress *RBA = cast<BlockAddress>(R);
- if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
- return Res;
- if (LBA->getFunction() == RBA->getFunction()) {
- // They are BBs in the same function. Order by which comes first in the
- // BB order of the function. This order is deterministic.
- Function* F = LBA->getFunction();
- BasicBlock *LBB = LBA->getBasicBlock();
- BasicBlock *RBB = RBA->getBasicBlock();
- if (LBB == RBB)
- return 0;
- for(BasicBlock &BB : F->getBasicBlockList()) {
- if (&BB == LBB) {
- assert(&BB != RBB);
- return -1;
- }
- if (&BB == RBB)
- return 1;
- }
- llvm_unreachable("Basic Block Address does not point to a basic block in "
- "its function.");
- return -1;
- } else {
- // cmpValues said the functions are the same. So because they aren't
- // literally the same pointer, they must respectively be the left and
- // right functions.
- assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
- // cmpValues will tell us if these are equivalent BasicBlocks, in the
- // context of their respective functions.
- return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
- }
- }
- default: // Unknown constant, abort.
- DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
- llvm_unreachable("Constant ValueID not recognized.");
- return -1;
- }
-}
-
-int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue *R) const {
- return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
-}
-
-/// cmpType - compares two types,
-/// defines total ordering among the types set.
-/// See method declaration comments for more details.
-int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
- PointerType *PTyL = dyn_cast<PointerType>(TyL);
- PointerType *PTyR = dyn_cast<PointerType>(TyR);
-
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- if (PTyL && PTyL->getAddressSpace() == 0)
- TyL = DL.getIntPtrType(TyL);
- if (PTyR && PTyR->getAddressSpace() == 0)
- TyR = DL.getIntPtrType(TyR);
-
- if (TyL == TyR)
- return 0;
-
- if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
- return Res;
-
- switch (TyL->getTypeID()) {
- default:
- llvm_unreachable("Unknown type!");
- // Fall through in Release mode.
- case Type::IntegerTyID:
- return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
- cast<IntegerType>(TyR)->getBitWidth());
- case Type::VectorTyID: {
- VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
- if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
- return Res;
- return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
- }
- // TyL == TyR would have returned true earlier, because types are uniqued.
- case Type::VoidTyID:
- case Type::FloatTyID:
- case Type::DoubleTyID:
- case Type::X86_FP80TyID:
- case Type::FP128TyID:
- case Type::PPC_FP128TyID:
- case Type::LabelTyID:
- case Type::MetadataTyID:
- case Type::TokenTyID:
- return 0;
-
- case Type::PointerTyID: {
- assert(PTyL && PTyR && "Both types must be pointers here.");
- return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
- }
-
- case Type::StructTyID: {
- StructType *STyL = cast<StructType>(TyL);
- StructType *STyR = cast<StructType>(TyR);
- if (STyL->getNumElements() != STyR->getNumElements())
- return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
-
- if (STyL->isPacked() != STyR->isPacked())
- return cmpNumbers(STyL->isPacked(), STyR->isPacked());
-
- for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
- if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
- return Res;
- }
- return 0;
- }
-
- case Type::FunctionTyID: {
- FunctionType *FTyL = cast<FunctionType>(TyL);
- FunctionType *FTyR = cast<FunctionType>(TyR);
- if (FTyL->getNumParams() != FTyR->getNumParams())
- return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
-
- if (FTyL->isVarArg() != FTyR->isVarArg())
- return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
-
- if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
- return Res;
-
- for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
- if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
- return Res;
- }
- return 0;
- }
-
- case Type::ArrayTyID: {
- ArrayType *ATyL = cast<ArrayType>(TyL);
- ArrayType *ATyR = cast<ArrayType>(TyR);
- if (ATyL->getNumElements() != ATyR->getNumElements())
- return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
- return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
- }
- }
-}
-
-// Determine whether the two operations are the same except that pointer-to-A
-// and pointer-to-B are equivalent. This should be kept in sync with
-// Instruction::isSameOperationAs.
-// Read method declaration comments for more details.
-int FunctionComparator::cmpOperations(const Instruction *L,
- const Instruction *R) const {
- // Differences from Instruction::isSameOperationAs:
- // * replace type comparison with calls to cmpTypes.
- // * we test for I->getRawSubclassOptionalData (nuw/nsw/tail) at the top.
- // * because of the above, we don't test for the tail bit on calls later on.
- if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
- return Res;
-
- if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
- return Res;
-
- if (int Res = cmpTypes(L->getType(), R->getType()))
- return Res;
-
- if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
- R->getRawSubclassOptionalData()))
- return Res;
-
- // We have two instructions of identical opcode and #operands. Check to see
- // if all operands are the same type
- for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
- if (int Res =
- cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
- return Res;
- }
-
- // Check special state that is a part of some instructions.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
- if (int Res = cmpTypes(AI->getAllocatedType(),
- cast<AllocaInst>(R)->getAllocatedType()))
- return Res;
- return cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment());
- }
- if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
- if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
- return Res;
- if (int Res =
- cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
- return Res;
- if (int Res =
- cmpOrderings(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
- return Res;
- if (int Res =
- cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
- return Res;
- return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
- cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
- if (int Res =
- cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
- return Res;
- if (int Res =
- cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
- return Res;
- if (int Res =
- cmpOrderings(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
- }
- if (const CmpInst *CI = dyn_cast<CmpInst>(L))
- return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
- if (const CallInst *CI = dyn_cast<CallInst>(L)) {
- if (int Res = cmpNumbers(CI->getCallingConv(),
- cast<CallInst>(R)->getCallingConv()))
- return Res;
- if (int Res =
- cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
- return Res;
- if (int Res = cmpOperandBundlesSchema(CI, R))
- return Res;
- return cmpRangeMetadata(
- CI->getMetadata(LLVMContext::MD_range),
- cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
- if (int Res = cmpNumbers(II->getCallingConv(),
- cast<InvokeInst>(R)->getCallingConv()))
- return Res;
- if (int Res =
- cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
- return Res;
- if (int Res = cmpOperandBundlesSchema(II, R))
- return Res;
- return cmpRangeMetadata(
- II->getMetadata(LLVMContext::MD_range),
- cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
- }
- if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
- ArrayRef<unsigned> LIndices = IVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- return 0;
- }
- if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
- ArrayRef<unsigned> LIndices = EVI->getIndices();
- ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
- if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
- return Res;
- for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
- if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
- return Res;
- }
- }
- if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
- if (int Res =
- cmpOrderings(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
- }
- if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
- if (int Res = cmpNumbers(CXI->isVolatile(),
- cast<AtomicCmpXchgInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpNumbers(CXI->isWeak(),
- cast<AtomicCmpXchgInst>(R)->isWeak()))
- return Res;
- if (int Res =
- cmpOrderings(CXI->getSuccessOrdering(),
- cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
- return Res;
- if (int Res =
- cmpOrderings(CXI->getFailureOrdering(),
- cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
- return Res;
- return cmpNumbers(CXI->getSynchScope(),
- cast<AtomicCmpXchgInst>(R)->getSynchScope());
- }
- if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
- if (int Res = cmpNumbers(RMWI->getOperation(),
- cast<AtomicRMWInst>(R)->getOperation()))
- return Res;
- if (int Res = cmpNumbers(RMWI->isVolatile(),
- cast<AtomicRMWInst>(R)->isVolatile()))
- return Res;
- if (int Res = cmpOrderings(RMWI->getOrdering(),
- cast<AtomicRMWInst>(R)->getOrdering()))
- return Res;
- return cmpNumbers(RMWI->getSynchScope(),
- cast<AtomicRMWInst>(R)->getSynchScope());
- }
- if (const PHINode *PNL = dyn_cast<PHINode>(L)) {
- const PHINode *PNR = cast<PHINode>(R);
- // Ensure that in addition to the incoming values being identical
- // (checked by the caller of this function), the incoming blocks
- // are also identical.
- for (unsigned i = 0, e = PNL->getNumIncomingValues(); i != e; ++i) {
- if (int Res =
- cmpValues(PNL->getIncomingBlock(i), PNR->getIncomingBlock(i)))
- return Res;
- }
- }
- return 0;
-}
-
-// Determine whether two GEP operations perform the same underlying arithmetic.
-// Read method declaration comments for more details.
-int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
- const GEPOperator *GEPR) const {
-
- unsigned int ASL = GEPL->getPointerAddressSpace();
- unsigned int ASR = GEPR->getPointerAddressSpace();
-
- if (int Res = cmpNumbers(ASL, ASR))
- return Res;
-
- // When we have target data, we can reduce the GEP down to the value in bytes
- // added to the address.
- const DataLayout &DL = FnL->getParent()->getDataLayout();
- unsigned BitWidth = DL.getPointerSizeInBits(ASL);
- APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
- if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
- GEPR->accumulateConstantOffset(DL, OffsetR))
- return cmpAPInts(OffsetL, OffsetR);
- if (int Res = cmpTypes(GEPL->getSourceElementType(),
- GEPR->getSourceElementType()))
- return Res;
-
- if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
- return Res;
-
- for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
- if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
- return Res;
- }
-
- return 0;
-}
-
-int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
- const InlineAsm *R) const {
- // InlineAsm's are uniqued. If they are the same pointer, obviously they are
- // the same, otherwise compare the fields.
- if (L == R)
- return 0;
- if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
- return Res;
- if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
- return Res;
- if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
- return Res;
- if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
- return Res;
- if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
- return Res;
- if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
- return Res;
- llvm_unreachable("InlineAsm blocks were not uniqued.");
- return 0;
-}
-
-/// Compare two values used by the two functions under pair-wise comparison. If
-/// this is the first time the values are seen, they're added to the mapping so
-/// that we will detect mismatches on next use.
-/// See comments in declaration for more details.
-int FunctionComparator::cmpValues(const Value *L, const Value *R) const {
- // Catch self-reference case.
- if (L == FnL) {
- if (R == FnR)
- return 0;
- return -1;
- }
- if (R == FnR) {
- if (L == FnL)
- return 0;
- return 1;
- }
-
- const Constant *ConstL = dyn_cast<Constant>(L);
- const Constant *ConstR = dyn_cast<Constant>(R);
- if (ConstL && ConstR) {
- if (L == R)
- return 0;
- return cmpConstants(ConstL, ConstR);
- }
-
- if (ConstL)
- return 1;
- if (ConstR)
- return -1;
-
- const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
- const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
-
- if (InlineAsmL && InlineAsmR)
- return cmpInlineAsm(InlineAsmL, InlineAsmR);
- if (InlineAsmL)
- return 1;
- if (InlineAsmR)
- return -1;
-
- auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
- RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
-
- return cmpNumbers(LeftSN.first->second, RightSN.first->second);
-}
-// Test whether two basic blocks have equivalent behaviour.
-int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
- const BasicBlock *BBR) const {
- BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
- BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
-
- do {
- if (int Res = cmpValues(&*InstL, &*InstR))
- return Res;
-
- const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
- const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
-
- if (GEPL && !GEPR)
- return 1;
- if (GEPR && !GEPL)
- return -1;
-
- if (GEPL && GEPR) {
- if (int Res =
- cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
- return Res;
- if (int Res = cmpGEPs(GEPL, GEPR))
- return Res;
- } else {
- if (int Res = cmpOperations(&*InstL, &*InstR))
- return Res;
- assert(InstL->getNumOperands() == InstR->getNumOperands());
-
- for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
- Value *OpL = InstL->getOperand(i);
- Value *OpR = InstR->getOperand(i);
- if (int Res = cmpValues(OpL, OpR))
- return Res;
- // cmpValues should ensure this is true.
- assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
- }
- }
-
- ++InstL;
- ++InstR;
- } while (InstL != InstLE && InstR != InstRE);
-
- if (InstL != InstLE && InstR == InstRE)
- return 1;
- if (InstL == InstLE && InstR != InstRE)
- return -1;
- return 0;
-}
-
-// Test whether the two functions have equivalent behaviour.
-int FunctionComparator::compare() {
- sn_mapL.clear();
- sn_mapR.clear();
-
- if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
- return Res;
-
- if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
- return Res;
-
- if (FnL->hasGC()) {
- if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
- return Res;
- }
-
- if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
- return Res;
-
- if (FnL->hasSection()) {
- if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
- return Res;
- }
-
- if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
- return Res;
-
- // TODO: if it's internal and only used in direct calls, we could handle this
- // case too.
- if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
- return Res;
-
- if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
- return Res;
-
- assert(FnL->arg_size() == FnR->arg_size() &&
- "Identically typed functions have different numbers of args!");
-
- // Visit the arguments so that they get enumerated in the order they're
- // passed in.
- for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
- ArgRI = FnR->arg_begin(),
- ArgLE = FnL->arg_end();
- ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
- if (cmpValues(&*ArgLI, &*ArgRI) != 0)
- llvm_unreachable("Arguments repeat!");
- }
-
- // We do a CFG-ordered walk since the actual ordering of the blocks in the
- // linked list is immaterial. Our walk starts at the entry block for both
- // functions, then takes each block from each terminator in order. As an
- // artifact, this also means that unreachable blocks are ignored.
- SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
- SmallPtrSet<const BasicBlock *, 32> VisitedBBs; // in terms of F1.
-
- FnLBBs.push_back(&FnL->getEntryBlock());
- FnRBBs.push_back(&FnR->getEntryBlock());
-
- VisitedBBs.insert(FnLBBs[0]);
- while (!FnLBBs.empty()) {
- const BasicBlock *BBL = FnLBBs.pop_back_val();
- const BasicBlock *BBR = FnRBBs.pop_back_val();
-
- if (int Res = cmpValues(BBL, BBR))
- return Res;
-
- if (int Res = cmpBasicBlocks(BBL, BBR))
- return Res;
-
- const TerminatorInst *TermL = BBL->getTerminator();
- const TerminatorInst *TermR = BBR->getTerminator();
-
- assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
- for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
- continue;
-
- FnLBBs.push_back(TermL->getSuccessor(i));
- FnRBBs.push_back(TermR->getSuccessor(i));
- }
- }
- return 0;
-}
-
-namespace {
-// Accumulate the hash of a sequence of 64-bit integers. This is similar to a
-// hash of a sequence of 64bit ints, but the entire input does not need to be
-// available at once. This interface is necessary for functionHash because it
-// needs to accumulate the hash as the structure of the function is traversed
-// without saving these values to an intermediate buffer. This form of hashing
-// is not often needed, as usually the object to hash is just read from a
-// buffer.
-class HashAccumulator64 {
- uint64_t Hash;
-public:
- // Initialize to random constant, so the state isn't zero.
- HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
- void add(uint64_t V) {
- Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
- }
- // No finishing is required, because the entire hash value is used.
- uint64_t getHash() { return Hash; }
-};
-} // end anonymous namespace
-
-// A function hash is calculated by considering only the number of arguments and
-// whether a function is varargs, the order of basic blocks (given by the
-// successors of each basic block in depth first order), and the order of
-// opcodes of each instruction within each of these basic blocks. This mirrors
-// the strategy compare() uses to compare functions by walking the BBs in depth
-// first order and comparing each instruction in sequence. Because this hash
-// does not look at the operands, it is insensitive to things such as the
-// target of calls and the constants used in the function, which makes it useful
-// when possibly merging functions which are the same modulo constants and call
-// targets.
-FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
- HashAccumulator64 H;
- H.add(F.isVarArg());
- H.add(F.arg_size());
-
- SmallVector<const BasicBlock *, 8> BBs;
- SmallSet<const BasicBlock *, 16> VisitedBBs;
-
- // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
- // accumulating the hash of the function "structure." (BB and opcode sequence)
- BBs.push_back(&F.getEntryBlock());
- VisitedBBs.insert(BBs[0]);
- while (!BBs.empty()) {
- const BasicBlock *BB = BBs.pop_back_val();
- // This random value acts as a block header, as otherwise the partition of
- // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
- H.add(45798);
- for (auto &Inst : *BB) {
- H.add(Inst.getOpcode());
- }
- const TerminatorInst *Term = BB->getTerminator();
- for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
- if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
- continue;
- BBs.push_back(Term->getSuccessor(i));
- }
- }
- return H.getHash();
-}
-
-
-namespace {
/// MergeFunctions finds functions which will generate identical machine code,
/// by considering all pointer types to be equivalent. Once identified,
OpenPOWER on IntegriCloud