diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp | 652 |
1 files changed, 652 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp new file mode 100644 index 0000000..5d838f9 --- /dev/null +++ b/contrib/llvm/lib/Transforms/IPO/MergeFunctions.cpp @@ -0,0 +1,652 @@ +//===- MergeFunctions.cpp - Merge identical functions ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass looks for equivalent functions that are mergable and folds them. +// +// A hash is computed from the function, based on its type and number of +// basic blocks. +// +// Once all hashes are computed, we perform an expensive equality comparison +// on each function pair. This takes n^2/2 comparisons per bucket, so it's +// important that the hash function be high quality. The equality comparison +// iterates through each instruction in each basic block. +// +// When a match is found the functions are folded. If both functions are +// overridable, we move the functionality into a new internal function and +// leave two overridable thunks to it. +// +//===----------------------------------------------------------------------===// +// +// Future work: +// +// * virtual functions. +// +// Many functions have their address taken by the virtual function table for +// the object they belong to. However, as long as it's only used for a lookup +// and call, this is irrelevant, and we'd like to fold such functions. +// +// * switch from n^2 pair-wise comparisons to an n-way comparison for each +// bucket. +// +// * be smarter about bitcasts. +// +// In order to fold functions, we will sometimes add either bitcast instructions +// or bitcast constant expressions. Unfortunately, this can confound further +// analysis since the two functions differ where one has a bitcast and the +// other doesn't. We should learn to look through bitcasts. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mergefunc" +#include "llvm/Transforms/IPO.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Constants.h" +#include "llvm/InlineAsm.h" +#include "llvm/Instructions.h" +#include "llvm/LLVMContext.h" +#include "llvm/Module.h" +#include "llvm/Pass.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/ValueHandle.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetData.h" +#include <vector> +using namespace llvm; + +STATISTIC(NumFunctionsMerged, "Number of functions merged"); + +namespace { + /// MergeFunctions finds functions which will generate identical machine code, + /// by considering all pointer types to be equivalent. Once identified, + /// MergeFunctions will fold them by replacing a call to one to a call to a + /// bitcast of the other. + /// + class MergeFunctions : public ModulePass { + public: + static char ID; + MergeFunctions() : ModulePass(ID) {} + + bool runOnModule(Module &M); + + private: + /// MergeTwoFunctions - Merge two equivalent functions. Upon completion, G + /// may be deleted, or may be converted into a thunk. In either case, it + /// should never be visited again. + void MergeTwoFunctions(Function *F, Function *G) const; + + /// WriteThunk - Replace G with a simple tail call to bitcast(F). Also + /// replace direct uses of G with bitcast(F). + void WriteThunk(Function *F, Function *G) const; + + TargetData *TD; + }; +} + +char MergeFunctions::ID = 0; +INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false); + +ModulePass *llvm::createMergeFunctionsPass() { + return new MergeFunctions(); +} + +namespace { +/// FunctionComparator - Compares two functions to determine whether or not +/// they will generate machine code with the same behaviour. TargetData is +/// used if available. The comparator always fails conservatively (erring on the +/// side of claiming that two functions are different). +class FunctionComparator { +public: + FunctionComparator(const TargetData *TD, const Function *F1, + const Function *F2) + : F1(F1), F2(F2), TD(TD), IDMap1Count(0), IDMap2Count(0) {} + + /// Compare - test whether the two functions have equivalent behaviour. + bool Compare(); + +private: + /// Compare - test whether two basic blocks have equivalent behaviour. + bool Compare(const BasicBlock *BB1, const BasicBlock *BB2); + + /// Enumerate - Assign or look up previously assigned numbers for the two + /// values, and return whether the numbers are equal. Numbers are assigned in + /// the order visited. + bool Enumerate(const Value *V1, const Value *V2); + + /// isEquivalentOperation - Compare two Instructions for equivalence, similar + /// to Instruction::isSameOperationAs but with modifications to the type + /// comparison. + bool isEquivalentOperation(const Instruction *I1, + const Instruction *I2) const; + + /// isEquivalentGEP - Compare two GEPs for equivalent pointer arithmetic. + bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2); + bool isEquivalentGEP(const GetElementPtrInst *GEP1, + const GetElementPtrInst *GEP2) { + return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2)); + } + + /// isEquivalentType - Compare two Types, treating all pointer types as equal. + bool isEquivalentType(const Type *Ty1, const Type *Ty2) const; + + // The two functions undergoing comparison. + const Function *F1, *F2; + + const TargetData *TD; + + typedef DenseMap<const Value *, unsigned long> IDMap; + IDMap Map1, Map2; + unsigned long IDMap1Count, IDMap2Count; +}; +} + +/// isEquivalentType - any two pointers in the same address space are +/// equivalent. Otherwise, standard type equivalence rules apply. +bool FunctionComparator::isEquivalentType(const Type *Ty1, + const Type *Ty2) const { + if (Ty1 == Ty2) + return true; + if (Ty1->getTypeID() != Ty2->getTypeID()) + return false; + + switch(Ty1->getTypeID()) { + default: + llvm_unreachable("Unknown type!"); + // Fall through in Release mode. + case Type::IntegerTyID: + case Type::OpaqueTyID: + // Ty1 == Ty2 would have returned true earlier. + return false; + + case Type::VoidTyID: + case Type::FloatTyID: + case Type::DoubleTyID: + case Type::X86_FP80TyID: + case Type::FP128TyID: + case Type::PPC_FP128TyID: + case Type::LabelTyID: + case Type::MetadataTyID: + return true; + + case Type::PointerTyID: { + const PointerType *PTy1 = cast<PointerType>(Ty1); + const PointerType *PTy2 = cast<PointerType>(Ty2); + return PTy1->getAddressSpace() == PTy2->getAddressSpace(); + } + + case Type::StructTyID: { + const StructType *STy1 = cast<StructType>(Ty1); + const StructType *STy2 = cast<StructType>(Ty2); + if (STy1->getNumElements() != STy2->getNumElements()) + return false; + + if (STy1->isPacked() != STy2->isPacked()) + return false; + + for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) { + if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i))) + return false; + } + return true; + } + + case Type::FunctionTyID: { + const FunctionType *FTy1 = cast<FunctionType>(Ty1); + const FunctionType *FTy2 = cast<FunctionType>(Ty2); + if (FTy1->getNumParams() != FTy2->getNumParams() || + FTy1->isVarArg() != FTy2->isVarArg()) + return false; + + if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType())) + return false; + + for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) { + if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i))) + return false; + } + return true; + } + + case Type::ArrayTyID: { + const ArrayType *ATy1 = cast<ArrayType>(Ty1); + const ArrayType *ATy2 = cast<ArrayType>(Ty2); + return ATy1->getNumElements() == ATy2->getNumElements() && + isEquivalentType(ATy1->getElementType(), ATy2->getElementType()); + } + + case Type::VectorTyID: { + const VectorType *VTy1 = cast<VectorType>(Ty1); + const VectorType *VTy2 = cast<VectorType>(Ty2); + return VTy1->getNumElements() == VTy2->getNumElements() && + isEquivalentType(VTy1->getElementType(), VTy2->getElementType()); + } + } +} + +/// isEquivalentOperation - determine whether the two operations are the same +/// except that pointer-to-A and pointer-to-B are equivalent. This should be +/// kept in sync with Instruction::isSameOperationAs. +bool FunctionComparator::isEquivalentOperation(const Instruction *I1, + const Instruction *I2) const { + if (I1->getOpcode() != I2->getOpcode() || + I1->getNumOperands() != I2->getNumOperands() || + !isEquivalentType(I1->getType(), I2->getType()) || + !I1->hasSameSubclassOptionalData(I2)) + return false; + + // We have two instructions of identical opcode and #operands. Check to see + // if all operands are the same type + for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i) + if (!isEquivalentType(I1->getOperand(i)->getType(), + I2->getOperand(i)->getType())) + return false; + + // Check special state that is a part of some instructions. + if (const LoadInst *LI = dyn_cast<LoadInst>(I1)) + return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() && + LI->getAlignment() == cast<LoadInst>(I2)->getAlignment(); + if (const StoreInst *SI = dyn_cast<StoreInst>(I1)) + return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() && + SI->getAlignment() == cast<StoreInst>(I2)->getAlignment(); + if (const CmpInst *CI = dyn_cast<CmpInst>(I1)) + return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate(); + if (const CallInst *CI = dyn_cast<CallInst>(I1)) + return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() && + CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<CallInst>(I2)->getAttributes().getRawPointer(); + if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1)) + return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() && + CI->getAttributes().getRawPointer() == + cast<InvokeInst>(I2)->getAttributes().getRawPointer(); + if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) { + if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices()) + return false; + for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i) + if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i]) + return false; + return true; + } + if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) { + if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices()) + return false; + for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i) + if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i]) + return false; + return true; + } + + return true; +} + +/// isEquivalentGEP - determine whether two GEP operations perform the same +/// underlying arithmetic. +bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1, + const GEPOperator *GEP2) { + // When we have target data, we can reduce the GEP down to the value in bytes + // added to the address. + if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) { + SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end()); + SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end()); + uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(), + Indices1.data(), Indices1.size()); + uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(), + Indices2.data(), Indices2.size()); + return Offset1 == Offset2; + } + + if (GEP1->getPointerOperand()->getType() != + GEP2->getPointerOperand()->getType()) + return false; + + if (GEP1->getNumOperands() != GEP2->getNumOperands()) + return false; + + for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) { + if (!Enumerate(GEP1->getOperand(i), GEP2->getOperand(i))) + return false; + } + + return true; +} + +/// Enumerate - Compare two values used by the two functions under pair-wise +/// comparison. If this is the first time the values are seen, they're added to +/// the mapping so that we will detect mismatches on next use. +bool FunctionComparator::Enumerate(const Value *V1, const Value *V2) { + // Check for function @f1 referring to itself and function @f2 referring to + // itself, or referring to each other, or both referring to either of them. + // They're all equivalent if the two functions are otherwise equivalent. + if (V1 == F1 && V2 == F2) + return true; + if (V1 == F2 && V2 == F1) + return true; + + // TODO: constant expressions with GEP or references to F1 or F2. + if (isa<Constant>(V1)) + return V1 == V2; + + if (isa<InlineAsm>(V1) && isa<InlineAsm>(V2)) { + const InlineAsm *IA1 = cast<InlineAsm>(V1); + const InlineAsm *IA2 = cast<InlineAsm>(V2); + return IA1->getAsmString() == IA2->getAsmString() && + IA1->getConstraintString() == IA2->getConstraintString(); + } + + unsigned long &ID1 = Map1[V1]; + if (!ID1) + ID1 = ++IDMap1Count; + + unsigned long &ID2 = Map2[V2]; + if (!ID2) + ID2 = ++IDMap2Count; + + return ID1 == ID2; +} + +/// Compare - test whether two basic blocks have equivalent behaviour. +bool FunctionComparator::Compare(const BasicBlock *BB1, const BasicBlock *BB2) { + BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end(); + BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end(); + + do { + if (!Enumerate(F1I, F2I)) + return false; + + if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) { + const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I); + if (!GEP2) + return false; + + if (!Enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand())) + return false; + + if (!isEquivalentGEP(GEP1, GEP2)) + return false; + } else { + if (!isEquivalentOperation(F1I, F2I)) + return false; + + assert(F1I->getNumOperands() == F2I->getNumOperands()); + for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) { + Value *OpF1 = F1I->getOperand(i); + Value *OpF2 = F2I->getOperand(i); + + if (!Enumerate(OpF1, OpF2)) + return false; + + if (OpF1->getValueID() != OpF2->getValueID() || + !isEquivalentType(OpF1->getType(), OpF2->getType())) + return false; + } + } + + ++F1I, ++F2I; + } while (F1I != F1E && F2I != F2E); + + return F1I == F1E && F2I == F2E; +} + +/// Compare - test whether the two functions have equivalent behaviour. +bool FunctionComparator::Compare() { + // We need to recheck everything, but check the things that weren't included + // in the hash first. + + if (F1->getAttributes() != F2->getAttributes()) + return false; + + if (F1->hasGC() != F2->hasGC()) + return false; + + if (F1->hasGC() && F1->getGC() != F2->getGC()) + return false; + + if (F1->hasSection() != F2->hasSection()) + return false; + + if (F1->hasSection() && F1->getSection() != F2->getSection()) + return false; + + if (F1->isVarArg() != F2->isVarArg()) + return false; + + // TODO: if it's internal and only used in direct calls, we could handle this + // case too. + if (F1->getCallingConv() != F2->getCallingConv()) + return false; + + if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType())) + return false; + + assert(F1->arg_size() == F2->arg_size() && + "Identical functions have a different number of args."); + + // Visit the arguments so that they get enumerated in the order they're + // passed in. + for (Function::const_arg_iterator f1i = F1->arg_begin(), + f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) { + if (!Enumerate(f1i, f2i)) + llvm_unreachable("Arguments repeat"); + } + + // We do a CFG-ordered walk since the actual ordering of the blocks in the + // linked list is immaterial. Our walk starts at the entry block for both + // functions, then takes each block from each terminator in order. As an + // artifact, this also means that unreachable blocks are ignored. + SmallVector<const BasicBlock *, 8> F1BBs, F2BBs; + SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1. + + F1BBs.push_back(&F1->getEntryBlock()); + F2BBs.push_back(&F2->getEntryBlock()); + + VisitedBBs.insert(F1BBs[0]); + while (!F1BBs.empty()) { + const BasicBlock *F1BB = F1BBs.pop_back_val(); + const BasicBlock *F2BB = F2BBs.pop_back_val(); + + if (!Enumerate(F1BB, F2BB) || !Compare(F1BB, F2BB)) + return false; + + const TerminatorInst *F1TI = F1BB->getTerminator(); + const TerminatorInst *F2TI = F2BB->getTerminator(); + + assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors()); + for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) { + if (!VisitedBBs.insert(F1TI->getSuccessor(i))) + continue; + + F1BBs.push_back(F1TI->getSuccessor(i)); + F2BBs.push_back(F2TI->getSuccessor(i)); + } + } + return true; +} + +/// WriteThunk - Replace G with a simple tail call to bitcast(F). Also replace +/// direct uses of G with bitcast(F). +void MergeFunctions::WriteThunk(Function *F, Function *G) const { + if (!G->mayBeOverridden()) { + // Redirect direct callers of G to F. + Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType()); + for (Value::use_iterator UI = G->use_begin(), UE = G->use_end(); + UI != UE;) { + Value::use_iterator TheIter = UI; + ++UI; + CallSite CS(*TheIter); + if (CS && CS.isCallee(TheIter)) + TheIter.getUse().set(BitcastF); + } + } + + // If G was internal then we may have replaced all uses if G with F. If so, + // stop here and delete G. There's no need for a thunk. + if (G->hasLocalLinkage() && G->use_empty()) { + G->eraseFromParent(); + return; + } + + Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "", + G->getParent()); + BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG); + IRBuilder<false> Builder(BB); + + SmallVector<Value *, 16> Args; + unsigned i = 0; + const FunctionType *FFTy = F->getFunctionType(); + for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end(); + AI != AE; ++AI) { + Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i))); + ++i; + } + + CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end()); + CI->setTailCall(); + CI->setCallingConv(F->getCallingConv()); + if (NewG->getReturnType()->isVoidTy()) { + Builder.CreateRetVoid(); + } else { + Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType())); + } + + NewG->copyAttributesFrom(G); + NewG->takeName(G); + G->replaceAllUsesWith(NewG); + G->eraseFromParent(); +} + +/// MergeTwoFunctions - Merge two equivalent functions. Upon completion, +/// Function G is deleted. +void MergeFunctions::MergeTwoFunctions(Function *F, Function *G) const { + if (F->isWeakForLinker()) { + assert(G->isWeakForLinker()); + + // Make them both thunks to the same internal function. + Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "", + F->getParent()); + H->copyAttributesFrom(F); + H->takeName(F); + F->replaceAllUsesWith(H); + + unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment()); + + WriteThunk(F, G); + WriteThunk(F, H); + + F->setAlignment(MaxAlignment); + F->setLinkage(GlobalValue::InternalLinkage); + } else { + WriteThunk(F, G); + } + + ++NumFunctionsMerged; +} + +static unsigned ProfileFunction(const Function *F) { + const FunctionType *FTy = F->getFunctionType(); + + FoldingSetNodeID ID; + ID.AddInteger(F->size()); + ID.AddInteger(F->getCallingConv()); + ID.AddBoolean(F->hasGC()); + ID.AddBoolean(FTy->isVarArg()); + ID.AddInteger(FTy->getReturnType()->getTypeID()); + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + ID.AddInteger(FTy->getParamType(i)->getTypeID()); + return ID.ComputeHash(); +} + +class ComparableFunction { +public: + ComparableFunction(Function *Func, TargetData *TD) + : Func(Func), Hash(ProfileFunction(Func)), TD(TD) {} + + AssertingVH<Function> const Func; + const unsigned Hash; + TargetData * const TD; +}; + +struct MergeFunctionsEqualityInfo { + static ComparableFunction *getEmptyKey() { + return reinterpret_cast<ComparableFunction*>(0); + } + static ComparableFunction *getTombstoneKey() { + return reinterpret_cast<ComparableFunction*>(-1); + } + static unsigned getHashValue(const ComparableFunction *CF) { + return CF->Hash; + } + static bool isEqual(const ComparableFunction *LHS, + const ComparableFunction *RHS) { + if (LHS == RHS) + return true; + if (LHS == getEmptyKey() || LHS == getTombstoneKey() || + RHS == getEmptyKey() || RHS == getTombstoneKey()) + return false; + assert(LHS->TD == RHS->TD && "Comparing functions for different targets"); + return FunctionComparator(LHS->TD, LHS->Func, RHS->Func).Compare(); + } +}; + +bool MergeFunctions::runOnModule(Module &M) { + typedef DenseSet<ComparableFunction *, MergeFunctionsEqualityInfo> FnSetType; + + bool Changed = false; + TD = getAnalysisIfAvailable<TargetData>(); + + std::vector<Function *> Funcs; + for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { + if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage()) + Funcs.push_back(F); + } + + bool LocalChanged; + do { + LocalChanged = false; + + FnSetType FnSet; + for (unsigned i = 0, e = Funcs.size(); i != e;) { + Function *F = Funcs[i]; + ComparableFunction *NewF = new ComparableFunction(F, TD); + std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF); + if (!Result.second) { + ComparableFunction *&OldF = *Result.first; + assert(OldF && "Expected a hash collision"); + + // NewF will be deleted in favour of OldF unless NewF is strong and + // OldF is weak in which case swap them to keep the strong definition. + + if (OldF->Func->isWeakForLinker() && !NewF->Func->isWeakForLinker()) + std::swap(OldF, NewF); + + DEBUG(dbgs() << " " << OldF->Func->getName() << " == " + << NewF->Func->getName() << '\n'); + + Funcs.erase(Funcs.begin() + i); + --e; + + Function *DeleteF = NewF->Func; + delete NewF; + MergeTwoFunctions(OldF->Func, DeleteF); + LocalChanged = true; + Changed = true; + } else { + ++i; + } + } + DeleteContainerPointers(FnSet); + } while (LocalChanged); + + return Changed; +} |