diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp | 1106 |
1 files changed, 1106 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp new file mode 100644 index 0000000..527fdd1 --- /dev/null +++ b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp @@ -0,0 +1,1106 @@ +//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements interprocedural passes which walk the +/// call-graph deducing and/or propagating function attributes. +/// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/IPO.h" +#include "llvm/ADT/SCCIterator.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/BasicAliasAnalysis.h" +#include "llvm/Analysis/CallGraph.h" +#include "llvm/Analysis/CallGraphSCCPass.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +using namespace llvm; + +#define DEBUG_TYPE "functionattrs" + +STATISTIC(NumReadNone, "Number of functions marked readnone"); +STATISTIC(NumReadOnly, "Number of functions marked readonly"); +STATISTIC(NumNoCapture, "Number of arguments marked nocapture"); +STATISTIC(NumReadNoneArg, "Number of arguments marked readnone"); +STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly"); +STATISTIC(NumNoAlias, "Number of function returns marked noalias"); +STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull"); +STATISTIC(NumNoRecurse, "Number of functions marked as norecurse"); + +namespace { +typedef SmallSetVector<Function *, 8> SCCNodeSet; +} + +namespace { +struct PostOrderFunctionAttrs : public CallGraphSCCPass { + static char ID; // Pass identification, replacement for typeid + PostOrderFunctionAttrs() : CallGraphSCCPass(ID) { + initializePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry()); + } + + bool runOnSCC(CallGraphSCC &SCC) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + CallGraphSCCPass::getAnalysisUsage(AU); + } + +private: + TargetLibraryInfo *TLI; +}; +} + +char PostOrderFunctionAttrs::ID = 0; +INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrs, "functionattrs", + "Deduce function attributes", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(PostOrderFunctionAttrs, "functionattrs", + "Deduce function attributes", false, false) + +Pass *llvm::createPostOrderFunctionAttrsPass() { return new PostOrderFunctionAttrs(); } + +namespace { +/// The three kinds of memory access relevant to 'readonly' and +/// 'readnone' attributes. +enum MemoryAccessKind { + MAK_ReadNone = 0, + MAK_ReadOnly = 1, + MAK_MayWrite = 2 +}; +} + +static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR, + const SCCNodeSet &SCCNodes) { + FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F); + if (MRB == FMRB_DoesNotAccessMemory) + // Already perfect! + return MAK_ReadNone; + + // Definitions with weak linkage may be overridden at linktime with + // something that writes memory, so treat them like declarations. + if (F.isDeclaration() || F.mayBeOverridden()) { + if (AliasAnalysis::onlyReadsMemory(MRB)) + return MAK_ReadOnly; + + // Conservatively assume it writes to memory. + return MAK_MayWrite; + } + + // Scan the function body for instructions that may read or write memory. + bool ReadsMemory = false; + for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { + Instruction *I = &*II; + + // Some instructions can be ignored even if they read or write memory. + // Detect these now, skipping to the next instruction if one is found. + CallSite CS(cast<Value>(I)); + if (CS) { + // Ignore calls to functions in the same SCC. + if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) + continue; + FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS); + + // If the call doesn't access memory, we're done. + if (!(MRB & MRI_ModRef)) + continue; + + if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) { + // The call could access any memory. If that includes writes, give up. + if (MRB & MRI_Mod) + return MAK_MayWrite; + // If it reads, note it. + if (MRB & MRI_Ref) + ReadsMemory = true; + continue; + } + + // Check whether all pointer arguments point to local memory, and + // ignore calls that only access local memory. + for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); + CI != CE; ++CI) { + Value *Arg = *CI; + if (!Arg->getType()->isPtrOrPtrVectorTy()) + continue; + + AAMDNodes AAInfo; + I->getAAMetadata(AAInfo); + MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo); + + // Skip accesses to local or constant memory as they don't impact the + // externally visible mod/ref behavior. + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + + if (MRB & MRI_Mod) + // Writes non-local memory. Give up. + return MAK_MayWrite; + if (MRB & MRI_Ref) + // Ok, it reads non-local memory. + ReadsMemory = true; + } + continue; + } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + // Ignore non-volatile loads from local memory. (Atomic is okay here.) + if (!LI->isVolatile()) { + MemoryLocation Loc = MemoryLocation::get(LI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + // Ignore non-volatile stores to local memory. (Atomic is okay here.) + if (!SI->isVolatile()) { + MemoryLocation Loc = MemoryLocation::get(SI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) { + // Ignore vaargs on local memory. + MemoryLocation Loc = MemoryLocation::get(VI); + if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true)) + continue; + } + + // Any remaining instructions need to be taken seriously! Check if they + // read or write memory. + if (I->mayWriteToMemory()) + // Writes memory. Just give up. + return MAK_MayWrite; + + // If this instruction may read memory, remember that. + ReadsMemory |= I->mayReadFromMemory(); + } + + return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone; +} + +/// Deduce readonly/readnone attributes for the SCC. +template <typename AARGetterT> +static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) { + // Check if any of the functions in the SCC read or write memory. If they + // write memory then they can't be marked readnone or readonly. + bool ReadsMemory = false; + for (Function *F : SCCNodes) { + // Call the callable parameter to look up AA results for this function. + AAResults &AAR = AARGetter(*F); + + switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) { + case MAK_MayWrite: + return false; + case MAK_ReadOnly: + ReadsMemory = true; + break; + case MAK_ReadNone: + // Nothing to do! + break; + } + } + + // Success! Functions in this SCC do not access memory, or only read memory. + // Give them the appropriate attribute. + bool MadeChange = false; + for (Function *F : SCCNodes) { + if (F->doesNotAccessMemory()) + // Already perfect! + continue; + + if (F->onlyReadsMemory() && ReadsMemory) + // No change. + continue; + + MadeChange = true; + + // Clear out any existing attributes. + AttrBuilder B; + B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); + F->removeAttributes( + AttributeSet::FunctionIndex, + AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B)); + + // Add in the new attribute. + F->addAttribute(AttributeSet::FunctionIndex, + ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone); + + if (ReadsMemory) + ++NumReadOnly; + else + ++NumReadNone; + } + + return MadeChange; +} + +namespace { +/// For a given pointer Argument, this retains a list of Arguments of functions +/// in the same SCC that the pointer data flows into. We use this to build an +/// SCC of the arguments. +struct ArgumentGraphNode { + Argument *Definition; + SmallVector<ArgumentGraphNode *, 4> Uses; +}; + +class ArgumentGraph { + // We store pointers to ArgumentGraphNode objects, so it's important that + // that they not move around upon insert. + typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy; + + ArgumentMapTy ArgumentMap; + + // There is no root node for the argument graph, in fact: + // void f(int *x, int *y) { if (...) f(x, y); } + // is an example where the graph is disconnected. The SCCIterator requires a + // single entry point, so we maintain a fake ("synthetic") root node that + // uses every node. Because the graph is directed and nothing points into + // the root, it will not participate in any SCCs (except for its own). + ArgumentGraphNode SyntheticRoot; + +public: + ArgumentGraph() { SyntheticRoot.Definition = nullptr; } + + typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator; + + iterator begin() { return SyntheticRoot.Uses.begin(); } + iterator end() { return SyntheticRoot.Uses.end(); } + ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; } + + ArgumentGraphNode *operator[](Argument *A) { + ArgumentGraphNode &Node = ArgumentMap[A]; + Node.Definition = A; + SyntheticRoot.Uses.push_back(&Node); + return &Node; + } +}; + +/// This tracker checks whether callees are in the SCC, and if so it does not +/// consider that a capture, instead adding it to the "Uses" list and +/// continuing with the analysis. +struct ArgumentUsesTracker : public CaptureTracker { + ArgumentUsesTracker(const SCCNodeSet &SCCNodes) + : Captured(false), SCCNodes(SCCNodes) {} + + void tooManyUses() override { Captured = true; } + + bool captured(const Use *U) override { + CallSite CS(U->getUser()); + if (!CS.getInstruction()) { + Captured = true; + return true; + } + + Function *F = CS.getCalledFunction(); + if (!F || F->isDeclaration() || F->mayBeOverridden() || + !SCCNodes.count(F)) { + Captured = true; + return true; + } + + // Note: the callee and the two successor blocks *follow* the argument + // operands. This means there is no need to adjust UseIndex to account for + // these. + + unsigned UseIndex = + std::distance(const_cast<const Use *>(CS.arg_begin()), U); + + assert(UseIndex < CS.data_operands_size() && + "Indirect function calls should have been filtered above!"); + + if (UseIndex >= CS.getNumArgOperands()) { + // Data operand, but not a argument operand -- must be a bundle operand + assert(CS.hasOperandBundles() && "Must be!"); + + // CaptureTracking told us that we're being captured by an operand bundle + // use. In this case it does not matter if the callee is within our SCC + // or not -- we've been captured in some unknown way, and we have to be + // conservative. + Captured = true; + return true; + } + + if (UseIndex >= F->arg_size()) { + assert(F->isVarArg() && "More params than args in non-varargs call"); + Captured = true; + return true; + } + + Uses.push_back(&*std::next(F->arg_begin(), UseIndex)); + return false; + } + + bool Captured; // True only if certainly captured (used outside our SCC). + SmallVector<Argument *, 4> Uses; // Uses within our SCC. + + const SCCNodeSet &SCCNodes; +}; +} + +namespace llvm { +template <> struct GraphTraits<ArgumentGraphNode *> { + typedef ArgumentGraphNode NodeType; + typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType; + + static inline NodeType *getEntryNode(NodeType *A) { return A; } + static inline ChildIteratorType child_begin(NodeType *N) { + return N->Uses.begin(); + } + static inline ChildIteratorType child_end(NodeType *N) { + return N->Uses.end(); + } +}; +template <> +struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> { + static NodeType *getEntryNode(ArgumentGraph *AG) { + return AG->getEntryNode(); + } + static ChildIteratorType nodes_begin(ArgumentGraph *AG) { + return AG->begin(); + } + static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); } +}; +} + +/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone. +static Attribute::AttrKind +determinePointerReadAttrs(Argument *A, + const SmallPtrSet<Argument *, 8> &SCCNodes) { + + SmallVector<Use *, 32> Worklist; + SmallSet<Use *, 32> Visited; + + // inalloca arguments are always clobbered by the call. + if (A->hasInAllocaAttr()) + return Attribute::None; + + bool IsRead = false; + // We don't need to track IsWritten. If A is written to, return immediately. + + for (Use &U : A->uses()) { + Visited.insert(&U); + Worklist.push_back(&U); + } + + while (!Worklist.empty()) { + Use *U = Worklist.pop_back_val(); + Instruction *I = cast<Instruction>(U->getUser()); + + switch (I->getOpcode()) { + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::PHI: + case Instruction::Select: + case Instruction::AddrSpaceCast: + // The original value is not read/written via this if the new value isn't. + for (Use &UU : I->uses()) + if (Visited.insert(&UU).second) + Worklist.push_back(&UU); + break; + + case Instruction::Call: + case Instruction::Invoke: { + bool Captures = true; + + if (I->getType()->isVoidTy()) + Captures = false; + + auto AddUsersToWorklistIfCapturing = [&] { + if (Captures) + for (Use &UU : I->uses()) + if (Visited.insert(&UU).second) + Worklist.push_back(&UU); + }; + + CallSite CS(I); + if (CS.doesNotAccessMemory()) { + AddUsersToWorklistIfCapturing(); + continue; + } + + Function *F = CS.getCalledFunction(); + if (!F) { + if (CS.onlyReadsMemory()) { + IsRead = true; + AddUsersToWorklistIfCapturing(); + continue; + } + return Attribute::None; + } + + // Note: the callee and the two successor blocks *follow* the argument + // operands. This means there is no need to adjust UseIndex to account + // for these. + + unsigned UseIndex = std::distance(CS.arg_begin(), U); + + // U cannot be the callee operand use: since we're exploring the + // transitive uses of an Argument, having such a use be a callee would + // imply the CallSite is an indirect call or invoke; and we'd take the + // early exit above. + assert(UseIndex < CS.data_operands_size() && + "Data operand use expected!"); + + bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands(); + + if (UseIndex >= F->arg_size() && !IsOperandBundleUse) { + assert(F->isVarArg() && "More params than args in non-varargs call"); + return Attribute::None; + } + + Captures &= !CS.doesNotCapture(UseIndex); + + // Since the optimizer (by design) cannot see the data flow corresponding + // to a operand bundle use, these cannot participate in the optimistic SCC + // analysis. Instead, we model the operand bundle uses as arguments in + // call to a function external to the SCC. + if (!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex)) || + IsOperandBundleUse) { + + // The accessors used on CallSite here do the right thing for calls and + // invokes with operand bundles. + + if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex)) + return Attribute::None; + if (!CS.doesNotAccessMemory(UseIndex)) + IsRead = true; + } + + AddUsersToWorklistIfCapturing(); + break; + } + + case Instruction::Load: + IsRead = true; + break; + + case Instruction::ICmp: + case Instruction::Ret: + break; + + default: + return Attribute::None; + } + } + + return IsRead ? Attribute::ReadOnly : Attribute::ReadNone; +} + +/// Deduce nocapture attributes for the SCC. +static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) { + bool Changed = false; + + ArgumentGraph AG; + + AttrBuilder B; + B.addAttribute(Attribute::NoCapture); + + // Check each function in turn, determining which pointer arguments are not + // captured. + for (Function *F : SCCNodes) { + // Definitions with weak linkage may be overridden at linktime with + // something that captures pointers, so treat them like declarations. + if (F->isDeclaration() || F->mayBeOverridden()) + continue; + + // Functions that are readonly (or readnone) and nounwind and don't return + // a value can't capture arguments. Don't analyze them. + if (F->onlyReadsMemory() && F->doesNotThrow() && + F->getReturnType()->isVoidTy()) { + for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; + ++A) { + if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) { + A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B)); + ++NumNoCapture; + Changed = true; + } + } + continue; + } + + for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E; + ++A) { + if (!A->getType()->isPointerTy()) + continue; + bool HasNonLocalUses = false; + if (!A->hasNoCaptureAttr()) { + ArgumentUsesTracker Tracker(SCCNodes); + PointerMayBeCaptured(&*A, &Tracker); + if (!Tracker.Captured) { + if (Tracker.Uses.empty()) { + // If it's trivially not captured, mark it nocapture now. + A->addAttr( + AttributeSet::get(F->getContext(), A->getArgNo() + 1, B)); + ++NumNoCapture; + Changed = true; + } else { + // If it's not trivially captured and not trivially not captured, + // then it must be calling into another function in our SCC. Save + // its particulars for Argument-SCC analysis later. + ArgumentGraphNode *Node = AG[&*A]; + for (SmallVectorImpl<Argument *>::iterator + UI = Tracker.Uses.begin(), + UE = Tracker.Uses.end(); + UI != UE; ++UI) { + Node->Uses.push_back(AG[*UI]); + if (*UI != A) + HasNonLocalUses = true; + } + } + } + // Otherwise, it's captured. Don't bother doing SCC analysis on it. + } + if (!HasNonLocalUses && !A->onlyReadsMemory()) { + // Can we determine that it's readonly/readnone without doing an SCC? + // Note that we don't allow any calls at all here, or else our result + // will be dependent on the iteration order through the functions in the + // SCC. + SmallPtrSet<Argument *, 8> Self; + Self.insert(&*A); + Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self); + if (R != Attribute::None) { + AttrBuilder B; + B.addAttribute(R); + A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); + Changed = true; + R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; + } + } + } + } + + // The graph we've collected is partial because we stopped scanning for + // argument uses once we solved the argument trivially. These partial nodes + // show up as ArgumentGraphNode objects with an empty Uses list, and for + // these nodes the final decision about whether they capture has already been + // made. If the definition doesn't have a 'nocapture' attribute by now, it + // captures. + + for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) { + const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I; + if (ArgumentSCC.size() == 1) { + if (!ArgumentSCC[0]->Definition) + continue; // synthetic root node + + // eg. "void f(int* x) { if (...) f(x); }" + if (ArgumentSCC[0]->Uses.size() == 1 && + ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) { + Argument *A = ArgumentSCC[0]->Definition; + A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); + ++NumNoCapture; + Changed = true; + } + continue; + } + + bool SCCCaptured = false; + for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); + I != E && !SCCCaptured; ++I) { + ArgumentGraphNode *Node = *I; + if (Node->Uses.empty()) { + if (!Node->Definition->hasNoCaptureAttr()) + SCCCaptured = true; + } + } + if (SCCCaptured) + continue; + + SmallPtrSet<Argument *, 8> ArgumentSCCNodes; + // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for + // quickly looking up whether a given Argument is in this ArgumentSCC. + for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); I != E; ++I) { + ArgumentSCCNodes.insert((*I)->Definition); + } + + for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end(); + I != E && !SCCCaptured; ++I) { + ArgumentGraphNode *N = *I; + for (SmallVectorImpl<ArgumentGraphNode *>::iterator UI = N->Uses.begin(), + UE = N->Uses.end(); + UI != UE; ++UI) { + Argument *A = (*UI)->Definition; + if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A)) + continue; + SCCCaptured = true; + break; + } + } + if (SCCCaptured) + continue; + + for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); + ++NumNoCapture; + Changed = true; + } + + // We also want to compute readonly/readnone. With a small number of false + // negatives, we can assume that any pointer which is captured isn't going + // to be provably readonly or readnone, since by definition we can't + // analyze all uses of a captured pointer. + // + // The false negatives happen when the pointer is captured by a function + // that promises readonly/readnone behaviour on the pointer, then the + // pointer's lifetime ends before anything that writes to arbitrary memory. + // Also, a readonly/readnone pointer may be returned, but returning a + // pointer is capturing it. + + Attribute::AttrKind ReadAttr = Attribute::ReadNone; + for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes); + if (K == Attribute::ReadNone) + continue; + if (K == Attribute::ReadOnly) { + ReadAttr = Attribute::ReadOnly; + continue; + } + ReadAttr = K; + break; + } + + if (ReadAttr != Attribute::None) { + AttrBuilder B, R; + B.addAttribute(ReadAttr); + R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone); + for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) { + Argument *A = ArgumentSCC[i]->Definition; + // Clear out existing readonly/readnone attributes + A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R)); + A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B)); + ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg; + Changed = true; + } + } + } + + return Changed; +} + +/// Tests whether a function is "malloc-like". +/// +/// A function is "malloc-like" if it returns either null or a pointer that +/// doesn't alias any other pointer visible to the caller. +static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) { + SmallSetVector<Value *, 8> FlowsToReturn; + for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) + if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator())) + FlowsToReturn.insert(Ret->getReturnValue()); + + for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { + Value *RetVal = FlowsToReturn[i]; + + if (Constant *C = dyn_cast<Constant>(RetVal)) { + if (!C->isNullValue() && !isa<UndefValue>(C)) + return false; + + continue; + } + + if (isa<Argument>(RetVal)) + return false; + + if (Instruction *RVI = dyn_cast<Instruction>(RetVal)) + switch (RVI->getOpcode()) { + // Extend the analysis by looking upwards. + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::AddrSpaceCast: + FlowsToReturn.insert(RVI->getOperand(0)); + continue; + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(RVI); + FlowsToReturn.insert(SI->getTrueValue()); + FlowsToReturn.insert(SI->getFalseValue()); + continue; + } + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(RVI); + for (Value *IncValue : PN->incoming_values()) + FlowsToReturn.insert(IncValue); + continue; + } + + // Check whether the pointer came from an allocation. + case Instruction::Alloca: + break; + case Instruction::Call: + case Instruction::Invoke: { + CallSite CS(RVI); + if (CS.paramHasAttr(0, Attribute::NoAlias)) + break; + if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction())) + break; + } // fall-through + default: + return false; // Did not come from an allocation. + } + + if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false)) + return false; + } + + return true; +} + +/// Deduce noalias attributes for the SCC. +static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) { + // Check each function in turn, determining which functions return noalias + // pointers. + for (Function *F : SCCNodes) { + // Already noalias. + if (F->doesNotAlias(0)) + continue; + + // Definitions with weak linkage may be overridden at linktime, so + // treat them like declarations. + if (F->isDeclaration() || F->mayBeOverridden()) + return false; + + // We annotate noalias return values, which are only applicable to + // pointer types. + if (!F->getReturnType()->isPointerTy()) + continue; + + if (!isFunctionMallocLike(F, SCCNodes)) + return false; + } + + bool MadeChange = false; + for (Function *F : SCCNodes) { + if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy()) + continue; + + F->setDoesNotAlias(0); + ++NumNoAlias; + MadeChange = true; + } + + return MadeChange; +} + +/// Tests whether this function is known to not return null. +/// +/// Requires that the function returns a pointer. +/// +/// Returns true if it believes the function will not return a null, and sets +/// \p Speculative based on whether the returned conclusion is a speculative +/// conclusion due to SCC calls. +static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes, + const TargetLibraryInfo &TLI, bool &Speculative) { + assert(F->getReturnType()->isPointerTy() && + "nonnull only meaningful on pointer types"); + Speculative = false; + + SmallSetVector<Value *, 8> FlowsToReturn; + for (BasicBlock &BB : *F) + if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) + FlowsToReturn.insert(Ret->getReturnValue()); + + for (unsigned i = 0; i != FlowsToReturn.size(); ++i) { + Value *RetVal = FlowsToReturn[i]; + + // If this value is locally known to be non-null, we're good + if (isKnownNonNull(RetVal, &TLI)) + continue; + + // Otherwise, we need to look upwards since we can't make any local + // conclusions. + Instruction *RVI = dyn_cast<Instruction>(RetVal); + if (!RVI) + return false; + switch (RVI->getOpcode()) { + // Extend the analysis by looking upwards. + case Instruction::BitCast: + case Instruction::GetElementPtr: + case Instruction::AddrSpaceCast: + FlowsToReturn.insert(RVI->getOperand(0)); + continue; + case Instruction::Select: { + SelectInst *SI = cast<SelectInst>(RVI); + FlowsToReturn.insert(SI->getTrueValue()); + FlowsToReturn.insert(SI->getFalseValue()); + continue; + } + case Instruction::PHI: { + PHINode *PN = cast<PHINode>(RVI); + for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i) + FlowsToReturn.insert(PN->getIncomingValue(i)); + continue; + } + case Instruction::Call: + case Instruction::Invoke: { + CallSite CS(RVI); + Function *Callee = CS.getCalledFunction(); + // A call to a node within the SCC is assumed to return null until + // proven otherwise + if (Callee && SCCNodes.count(Callee)) { + Speculative = true; + continue; + } + return false; + } + default: + return false; // Unknown source, may be null + }; + llvm_unreachable("should have either continued or returned"); + } + + return true; +} + +/// Deduce nonnull attributes for the SCC. +static bool addNonNullAttrs(const SCCNodeSet &SCCNodes, + const TargetLibraryInfo &TLI) { + // Speculative that all functions in the SCC return only nonnull + // pointers. We may refute this as we analyze functions. + bool SCCReturnsNonNull = true; + + bool MadeChange = false; + + // Check each function in turn, determining which functions return nonnull + // pointers. + for (Function *F : SCCNodes) { + // Already nonnull. + if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, + Attribute::NonNull)) + continue; + + // Definitions with weak linkage may be overridden at linktime, so + // treat them like declarations. + if (F->isDeclaration() || F->mayBeOverridden()) + return false; + + // We annotate nonnull return values, which are only applicable to + // pointer types. + if (!F->getReturnType()->isPointerTy()) + continue; + + bool Speculative = false; + if (isReturnNonNull(F, SCCNodes, TLI, Speculative)) { + if (!Speculative) { + // Mark the function eagerly since we may discover a function + // which prevents us from speculating about the entire SCC + DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n"); + F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); + ++NumNonNullReturn; + MadeChange = true; + } + continue; + } + // At least one function returns something which could be null, can't + // speculate any more. + SCCReturnsNonNull = false; + } + + if (SCCReturnsNonNull) { + for (Function *F : SCCNodes) { + if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, + Attribute::NonNull) || + !F->getReturnType()->isPointerTy()) + continue; + + DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n"); + F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); + ++NumNonNullReturn; + MadeChange = true; + } + } + + return MadeChange; +} + +static bool setDoesNotRecurse(Function &F) { + if (F.doesNotRecurse()) + return false; + F.setDoesNotRecurse(); + ++NumNoRecurse; + return true; +} + +static bool addNoRecurseAttrs(const CallGraphSCC &SCC) { + // Try and identify functions that do not recurse. + + // If the SCC contains multiple nodes we know for sure there is recursion. + if (!SCC.isSingular()) + return false; + + const CallGraphNode *CGN = *SCC.begin(); + Function *F = CGN->getFunction(); + if (!F || F->isDeclaration() || F->doesNotRecurse()) + return false; + + // If all of the calls in F are identifiable and are to norecurse functions, F + // is norecurse. This check also detects self-recursion as F is not currently + // marked norecurse, so any called from F to F will not be marked norecurse. + if (std::all_of(CGN->begin(), CGN->end(), + [](const CallGraphNode::CallRecord &CR) { + Function *F = CR.second->getFunction(); + return F && F->doesNotRecurse(); + })) + // Function calls a potentially recursive function. + return setDoesNotRecurse(*F); + + // Nothing else we can deduce usefully during the postorder traversal. + return false; +} + +bool PostOrderFunctionAttrs::runOnSCC(CallGraphSCC &SCC) { + TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + bool Changed = false; + + // We compute dedicated AA results for each function in the SCC as needed. We + // use a lambda referencing external objects so that they live long enough to + // be queried, but we re-use them each time. + Optional<BasicAAResult> BAR; + Optional<AAResults> AAR; + auto AARGetter = [&](Function &F) -> AAResults & { + BAR.emplace(createLegacyPMBasicAAResult(*this, F)); + AAR.emplace(createLegacyPMAAResults(*this, F, *BAR)); + return *AAR; + }; + + // Fill SCCNodes with the elements of the SCC. Used for quickly looking up + // whether a given CallGraphNode is in this SCC. Also track whether there are + // any external or opt-none nodes that will prevent us from optimizing any + // part of the SCC. + SCCNodeSet SCCNodes; + bool ExternalNode = false; + for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { + Function *F = (*I)->getFunction(); + if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) { + // External node or function we're trying not to optimize - we both avoid + // transform them and avoid leveraging information they provide. + ExternalNode = true; + continue; + } + + SCCNodes.insert(F); + } + + Changed |= addReadAttrs(SCCNodes, AARGetter); + Changed |= addArgumentAttrs(SCCNodes); + + // If we have no external nodes participating in the SCC, we can deduce some + // more precise attributes as well. + if (!ExternalNode) { + Changed |= addNoAliasAttrs(SCCNodes); + Changed |= addNonNullAttrs(SCCNodes, *TLI); + } + + Changed |= addNoRecurseAttrs(SCC); + return Changed; +} + +namespace { +/// A pass to do RPO deduction and propagation of function attributes. +/// +/// This pass provides a general RPO or "top down" propagation of +/// function attributes. For a few (rare) cases, we can deduce significantly +/// more about function attributes by working in RPO, so this pass +/// provides the compliment to the post-order pass above where the majority of +/// deduction is performed. +// FIXME: Currently there is no RPO CGSCC pass structure to slide into and so +// this is a boring module pass, but eventually it should be an RPO CGSCC pass +// when such infrastructure is available. +struct ReversePostOrderFunctionAttrs : public ModulePass { + static char ID; // Pass identification, replacement for typeid + ReversePostOrderFunctionAttrs() : ModulePass(ID) { + initializeReversePostOrderFunctionAttrsPass(*PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<CallGraphWrapperPass>(); + } +}; +} + +char ReversePostOrderFunctionAttrs::ID = 0; +INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrs, "rpo-functionattrs", + "Deduce function attributes in RPO", false, false) +INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) +INITIALIZE_PASS_END(ReversePostOrderFunctionAttrs, "rpo-functionattrs", + "Deduce function attributes in RPO", false, false) + +Pass *llvm::createReversePostOrderFunctionAttrsPass() { + return new ReversePostOrderFunctionAttrs(); +} + +static bool addNoRecurseAttrsTopDown(Function &F) { + // We check the preconditions for the function prior to calling this to avoid + // the cost of building up a reversible post-order list. We assert them here + // to make sure none of the invariants this relies on were violated. + assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!"); + assert(!F.doesNotRecurse() && + "This function has already been deduced as norecurs!"); + assert(F.hasInternalLinkage() && + "Can only do top-down deduction for internal linkage functions!"); + + // If F is internal and all of its uses are calls from a non-recursive + // functions, then none of its calls could in fact recurse without going + // through a function marked norecurse, and so we can mark this function too + // as norecurse. Note that the uses must actually be calls -- otherwise + // a pointer to this function could be returned from a norecurse function but + // this function could be recursively (indirectly) called. Note that this + // also detects if F is directly recursive as F is not yet marked as + // a norecurse function. + for (auto *U : F.users()) { + auto *I = dyn_cast<Instruction>(U); + if (!I) + return false; + CallSite CS(I); + if (!CS || !CS.getParent()->getParent()->doesNotRecurse()) + return false; + } + return setDoesNotRecurse(F); +} + +bool ReversePostOrderFunctionAttrs::runOnModule(Module &M) { + // We only have a post-order SCC traversal (because SCCs are inherently + // discovered in post-order), so we accumulate them in a vector and then walk + // it in reverse. This is simpler than using the RPO iterator infrastructure + // because we need to combine SCC detection and the PO walk of the call + // graph. We can also cheat egregiously because we're primarily interested in + // synthesizing norecurse and so we can only save the singular SCCs as SCCs + // with multiple functions in them will clearly be recursive. + auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); + SmallVector<Function *, 16> Worklist; + for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { + if (I->size() != 1) + continue; + + Function *F = I->front()->getFunction(); + if (F && !F->isDeclaration() && !F->doesNotRecurse() && + F->hasInternalLinkage()) + Worklist.push_back(F); + } + + bool Changed = false; + for (auto *F : reverse(Worklist)) + Changed |= addNoRecurseAttrsTopDown(*F); + + return Changed; +} |