summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp597
1 files changed, 597 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
new file mode 100644
index 0000000..f3f6228
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/IPO/FunctionAttrs.cpp
@@ -0,0 +1,597 @@
+//===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a simple interprocedural pass which walks the
+// call-graph, looking for functions which do not access or only read
+// non-local memory, and marking them readnone/readonly. In addition,
+// it marks function arguments (of pointer type) 'nocapture' if a call
+// to the function does not create any copies of the pointer value that
+// outlive the call. This more or less means that the pointer is only
+// dereferenced, and not returned from the function or stored in a global.
+// This pass is implemented as a bottom-up traversal of the call-graph.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "functionattrs"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/CallGraphSCCPass.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/ADT/SCCIterator.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/Support/InstIterator.h"
+using namespace llvm;
+
+STATISTIC(NumReadNone, "Number of functions marked readnone");
+STATISTIC(NumReadOnly, "Number of functions marked readonly");
+STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
+STATISTIC(NumNoAlias, "Number of function returns marked noalias");
+
+namespace {
+ struct FunctionAttrs : public CallGraphSCCPass {
+ static char ID; // Pass identification, replacement for typeid
+ FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
+ initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
+ }
+
+ // runOnSCC - Analyze the SCC, performing the transformation if possible.
+ bool runOnSCC(CallGraphSCC &SCC);
+
+ // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
+ bool AddReadAttrs(const CallGraphSCC &SCC);
+
+ // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
+ bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
+
+ // IsFunctionMallocLike - Does this function allocate new memory?
+ bool IsFunctionMallocLike(Function *F,
+ SmallPtrSet<Function*, 8> &) const;
+
+ // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
+ bool AddNoAliasAttrs(const CallGraphSCC &SCC);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AliasAnalysis>();
+ CallGraphSCCPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ AliasAnalysis *AA;
+ };
+}
+
+char FunctionAttrs::ID = 0;
+INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
+ "Deduce function attributes", false, false)
+INITIALIZE_AG_DEPENDENCY(CallGraph)
+INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
+ "Deduce function attributes", false, false)
+
+Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
+
+
+/// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
+bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
+ SmallPtrSet<Function*, 8> SCCNodes;
+
+ // Fill SCCNodes with the elements of the SCC. Used for quickly
+ // looking up whether a given CallGraphNode is in this SCC.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
+ SCCNodes.insert((*I)->getFunction());
+
+ // Check if any of the functions in the SCC read or write memory. If they
+ // write memory then they can't be marked readnone or readonly.
+ bool ReadsMemory = false;
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+
+ if (F == 0)
+ // External node - may write memory. Just give up.
+ return false;
+
+ AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
+ if (MRB == AliasAnalysis::DoesNotAccessMemory)
+ // Already perfect!
+ continue;
+
+ // Definitions with weak linkage may be overridden at linktime with
+ // something that writes memory, so treat them like declarations.
+ if (F->isDeclaration() || F->mayBeOverridden()) {
+ if (!AliasAnalysis::onlyReadsMemory(MRB))
+ // May write memory. Just give up.
+ return false;
+
+ ReadsMemory = true;
+ continue;
+ }
+
+ // Scan the function body for instructions that may read or write memory.
+ for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
+ Instruction *I = &*II;
+
+ // Some instructions can be ignored even if they read or write memory.
+ // Detect these now, skipping to the next instruction if one is found.
+ CallSite CS(cast<Value>(I));
+ if (CS) {
+ // Ignore calls to functions in the same SCC.
+ if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
+ continue;
+ AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
+ // If the call doesn't access arbitrary memory, we may be able to
+ // figure out something.
+ if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
+ // If the call does access argument pointees, check each argument.
+ if (AliasAnalysis::doesAccessArgPointees(MRB))
+ // Check whether all pointer arguments point to local memory, and
+ // ignore calls that only access local memory.
+ for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
+ CI != CE; ++CI) {
+ Value *Arg = *CI;
+ if (Arg->getType()->isPointerTy()) {
+ AliasAnalysis::Location Loc(Arg,
+ AliasAnalysis::UnknownSize,
+ I->getMetadata(LLVMContext::MD_tbaa));
+ if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
+ if (MRB & AliasAnalysis::Mod)
+ // Writes non-local memory. Give up.
+ return false;
+ if (MRB & AliasAnalysis::Ref)
+ // Ok, it reads non-local memory.
+ ReadsMemory = true;
+ }
+ }
+ }
+ continue;
+ }
+ // The call could access any memory. If that includes writes, give up.
+ if (MRB & AliasAnalysis::Mod)
+ return false;
+ // If it reads, note it.
+ if (MRB & AliasAnalysis::Ref)
+ ReadsMemory = true;
+ continue;
+ } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ // Ignore non-volatile loads from local memory. (Atomic is okay here.)
+ if (!LI->isVolatile()) {
+ AliasAnalysis::Location Loc = AA->getLocation(LI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
+ continue;
+ }
+ } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+ // Ignore non-volatile stores to local memory. (Atomic is okay here.)
+ if (!SI->isVolatile()) {
+ AliasAnalysis::Location Loc = AA->getLocation(SI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
+ continue;
+ }
+ } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
+ // Ignore vaargs on local memory.
+ AliasAnalysis::Location Loc = AA->getLocation(VI);
+ if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
+ continue;
+ }
+
+ // Any remaining instructions need to be taken seriously! Check if they
+ // read or write memory.
+ if (I->mayWriteToMemory())
+ // Writes memory. Just give up.
+ return false;
+
+ // If this instruction may read memory, remember that.
+ ReadsMemory |= I->mayReadFromMemory();
+ }
+ }
+
+ // Success! Functions in this SCC do not access memory, or only read memory.
+ // Give them the appropriate attribute.
+ bool MadeChange = false;
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+
+ if (F->doesNotAccessMemory())
+ // Already perfect!
+ continue;
+
+ if (F->onlyReadsMemory() && ReadsMemory)
+ // No change.
+ continue;
+
+ MadeChange = true;
+
+ // Clear out any existing attributes.
+ F->removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
+
+ // Add in the new attribute.
+ F->addAttribute(~0, ReadsMemory? Attribute::ReadOnly : Attribute::ReadNone);
+
+ if (ReadsMemory)
+ ++NumReadOnly;
+ else
+ ++NumReadNone;
+ }
+
+ return MadeChange;
+}
+
+namespace {
+ // For a given pointer Argument, this retains a list of Arguments of functions
+ // in the same SCC that the pointer data flows into. We use this to build an
+ // SCC of the arguments.
+ struct ArgumentGraphNode {
+ Argument *Definition;
+ SmallVector<ArgumentGraphNode*, 4> Uses;
+ };
+
+ class ArgumentGraph {
+ // We store pointers to ArgumentGraphNode objects, so it's important that
+ // that they not move around upon insert.
+ typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
+
+ ArgumentMapTy ArgumentMap;
+
+ // There is no root node for the argument graph, in fact:
+ // void f(int *x, int *y) { if (...) f(x, y); }
+ // is an example where the graph is disconnected. The SCCIterator requires a
+ // single entry point, so we maintain a fake ("synthetic") root node that
+ // uses every node. Because the graph is directed and nothing points into
+ // the root, it will not participate in any SCCs (except for its own).
+ ArgumentGraphNode SyntheticRoot;
+
+ public:
+ ArgumentGraph() { SyntheticRoot.Definition = 0; }
+
+ typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
+
+ iterator begin() { return SyntheticRoot.Uses.begin(); }
+ iterator end() { return SyntheticRoot.Uses.end(); }
+ ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
+
+ ArgumentGraphNode *operator[](Argument *A) {
+ ArgumentGraphNode &Node = ArgumentMap[A];
+ Node.Definition = A;
+ SyntheticRoot.Uses.push_back(&Node);
+ return &Node;
+ }
+ };
+
+ // This tracker checks whether callees are in the SCC, and if so it does not
+ // consider that a capture, instead adding it to the "Uses" list and
+ // continuing with the analysis.
+ struct ArgumentUsesTracker : public CaptureTracker {
+ ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
+ : Captured(false), SCCNodes(SCCNodes) {}
+
+ void tooManyUses() { Captured = true; }
+
+ bool shouldExplore(Use *U) { return true; }
+
+ bool captured(Use *U) {
+ CallSite CS(U->getUser());
+ if (!CS.getInstruction()) { Captured = true; return true; }
+
+ Function *F = CS.getCalledFunction();
+ if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
+
+ Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
+ for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
+ PI != PE; ++PI, ++AI) {
+ if (AI == AE) {
+ assert(F->isVarArg() && "More params than args in non-varargs call");
+ Captured = true;
+ return true;
+ }
+ if (PI == U) {
+ Uses.push_back(AI);
+ break;
+ }
+ }
+ assert(!Uses.empty() && "Capturing call-site captured nothing?");
+ return false;
+ }
+
+ bool Captured; // True only if certainly captured (used outside our SCC).
+ SmallVector<Argument*, 4> Uses; // Uses within our SCC.
+
+ const SmallPtrSet<Function*, 8> &SCCNodes;
+ };
+}
+
+namespace llvm {
+ template<> struct GraphTraits<ArgumentGraphNode*> {
+ typedef ArgumentGraphNode NodeType;
+ typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
+
+ static inline NodeType *getEntryNode(NodeType *A) { return A; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return N->Uses.begin();
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return N->Uses.end();
+ }
+ };
+ template<> struct GraphTraits<ArgumentGraph*>
+ : public GraphTraits<ArgumentGraphNode*> {
+ static NodeType *getEntryNode(ArgumentGraph *AG) {
+ return AG->getEntryNode();
+ }
+ static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
+ return AG->begin();
+ }
+ static ChildIteratorType nodes_end(ArgumentGraph *AG) {
+ return AG->end();
+ }
+ };
+}
+
+/// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
+bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
+ bool Changed = false;
+
+ SmallPtrSet<Function*, 8> SCCNodes;
+
+ // Fill SCCNodes with the elements of the SCC. Used for quickly
+ // looking up whether a given CallGraphNode is in this SCC.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+ if (F && !F->isDeclaration() && !F->mayBeOverridden())
+ SCCNodes.insert(F);
+ }
+
+ ArgumentGraph AG;
+
+ // Check each function in turn, determining which pointer arguments are not
+ // captured.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+
+ if (F == 0)
+ // External node - only a problem for arguments that we pass to it.
+ continue;
+
+ // Definitions with weak linkage may be overridden at linktime with
+ // something that captures pointers, so treat them like declarations.
+ if (F->isDeclaration() || F->mayBeOverridden())
+ continue;
+
+ // Functions that are readonly (or readnone) and nounwind and don't return
+ // a value can't capture arguments. Don't analyze them.
+ if (F->onlyReadsMemory() && F->doesNotThrow() &&
+ F->getReturnType()->isVoidTy()) {
+ for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
+ A != E; ++A) {
+ if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
+ A->addAttr(Attribute::NoCapture);
+ ++NumNoCapture;
+ Changed = true;
+ }
+ }
+ continue;
+ }
+
+ for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
+ if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
+ ArgumentUsesTracker Tracker(SCCNodes);
+ PointerMayBeCaptured(A, &Tracker);
+ if (!Tracker.Captured) {
+ if (Tracker.Uses.empty()) {
+ // If it's trivially not captured, mark it nocapture now.
+ A->addAttr(Attribute::NoCapture);
+ ++NumNoCapture;
+ Changed = true;
+ } else {
+ // If it's not trivially captured and not trivially not captured,
+ // then it must be calling into another function in our SCC. Save
+ // its particulars for Argument-SCC analysis later.
+ ArgumentGraphNode *Node = AG[A];
+ for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
+ UE = Tracker.Uses.end(); UI != UE; ++UI)
+ Node->Uses.push_back(AG[*UI]);
+ }
+ }
+ // Otherwise, it's captured. Don't bother doing SCC analysis on it.
+ }
+ }
+
+ // The graph we've collected is partial because we stopped scanning for
+ // argument uses once we solved the argument trivially. These partial nodes
+ // show up as ArgumentGraphNode objects with an empty Uses list, and for
+ // these nodes the final decision about whether they capture has already been
+ // made. If the definition doesn't have a 'nocapture' attribute by now, it
+ // captures.
+
+ for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
+ I != E; ++I) {
+ std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
+ if (ArgumentSCC.size() == 1) {
+ if (!ArgumentSCC[0]->Definition) continue; // synthetic root node
+
+ // eg. "void f(int* x) { if (...) f(x); }"
+ if (ArgumentSCC[0]->Uses.size() == 1 &&
+ ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
+ ArgumentSCC[0]->Definition->addAttr(Attribute::NoCapture);
+ ++NumNoCapture;
+ Changed = true;
+ }
+ continue;
+ }
+
+ bool SCCCaptured = false;
+ for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
+ E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
+ ArgumentGraphNode *Node = *I;
+ if (Node->Uses.empty()) {
+ if (!Node->Definition->hasNoCaptureAttr())
+ SCCCaptured = true;
+ }
+ }
+ if (SCCCaptured) continue;
+
+ SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
+ // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
+ // quickly looking up whether a given Argument is in this ArgumentSCC.
+ for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
+ E = ArgumentSCC.end(); I != E; ++I) {
+ ArgumentSCCNodes.insert((*I)->Definition);
+ }
+
+ for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
+ E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
+ ArgumentGraphNode *N = *I;
+ for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
+ UE = N->Uses.end(); UI != UE; ++UI) {
+ Argument *A = (*UI)->Definition;
+ if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
+ continue;
+ SCCCaptured = true;
+ break;
+ }
+ }
+ if (SCCCaptured) continue;
+
+ for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
+ Argument *A = ArgumentSCC[i]->Definition;
+ A->addAttr(Attribute::NoCapture);
+ ++NumNoCapture;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// IsFunctionMallocLike - A function is malloc-like if it returns either null
+/// or a pointer that doesn't alias any other pointer visible to the caller.
+bool FunctionAttrs::IsFunctionMallocLike(Function *F,
+ SmallPtrSet<Function*, 8> &SCCNodes) const {
+ UniqueVector<Value *> FlowsToReturn;
+ for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
+ if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
+ FlowsToReturn.insert(Ret->getReturnValue());
+
+ for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
+ Value *RetVal = FlowsToReturn[i+1]; // UniqueVector[0] is reserved.
+
+ if (Constant *C = dyn_cast<Constant>(RetVal)) {
+ if (!C->isNullValue() && !isa<UndefValue>(C))
+ return false;
+
+ continue;
+ }
+
+ if (isa<Argument>(RetVal))
+ return false;
+
+ if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
+ switch (RVI->getOpcode()) {
+ // Extend the analysis by looking upwards.
+ case Instruction::BitCast:
+ case Instruction::GetElementPtr:
+ FlowsToReturn.insert(RVI->getOperand(0));
+ continue;
+ case Instruction::Select: {
+ SelectInst *SI = cast<SelectInst>(RVI);
+ FlowsToReturn.insert(SI->getTrueValue());
+ FlowsToReturn.insert(SI->getFalseValue());
+ continue;
+ }
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(RVI);
+ for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ FlowsToReturn.insert(PN->getIncomingValue(i));
+ continue;
+ }
+
+ // Check whether the pointer came from an allocation.
+ case Instruction::Alloca:
+ break;
+ case Instruction::Call:
+ case Instruction::Invoke: {
+ CallSite CS(RVI);
+ if (CS.paramHasAttr(0, Attribute::NoAlias))
+ break;
+ if (CS.getCalledFunction() &&
+ SCCNodes.count(CS.getCalledFunction()))
+ break;
+ } // fall-through
+ default:
+ return false; // Did not come from an allocation.
+ }
+
+ if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
+ return false;
+ }
+
+ return true;
+}
+
+/// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
+bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
+ SmallPtrSet<Function*, 8> SCCNodes;
+
+ // Fill SCCNodes with the elements of the SCC. Used for quickly
+ // looking up whether a given CallGraphNode is in this SCC.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
+ SCCNodes.insert((*I)->getFunction());
+
+ // Check each function in turn, determining which functions return noalias
+ // pointers.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+
+ if (F == 0)
+ // External node - skip it;
+ return false;
+
+ // Already noalias.
+ if (F->doesNotAlias(0))
+ continue;
+
+ // Definitions with weak linkage may be overridden at linktime, so
+ // treat them like declarations.
+ if (F->isDeclaration() || F->mayBeOverridden())
+ return false;
+
+ // We annotate noalias return values, which are only applicable to
+ // pointer types.
+ if (!F->getReturnType()->isPointerTy())
+ continue;
+
+ if (!IsFunctionMallocLike(F, SCCNodes))
+ return false;
+ }
+
+ bool MadeChange = false;
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ Function *F = (*I)->getFunction();
+ if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
+ continue;
+
+ F->setDoesNotAlias(0);
+ ++NumNoAlias;
+ MadeChange = true;
+ }
+
+ return MadeChange;
+}
+
+bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
+ AA = &getAnalysis<AliasAnalysis>();
+
+ bool Changed = AddReadAttrs(SCC);
+ Changed |= AddNoCaptureAttrs(SCC);
+ Changed |= AddNoAliasAttrs(SCC);
+ return Changed;
+}
OpenPOWER on IntegriCloud