summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp1134
1 files changed, 1134 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
new file mode 100644
index 0000000..76898f2
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/IPO/DeadArgumentElimination.cpp
@@ -0,0 +1,1134 @@
+//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass deletes dead arguments from internal functions. Dead argument
+// elimination removes arguments which are directly dead, as well as arguments
+// only passed into function calls as dead arguments of other functions. This
+// pass also deletes dead return values in a similar way.
+//
+// This pass is often useful as a cleanup pass to run after aggressive
+// interprocedural passes, which add possibly-dead arguments or return values.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/IPO.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <map>
+#include <set>
+#include <tuple>
+using namespace llvm;
+
+#define DEBUG_TYPE "deadargelim"
+
+STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
+STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
+STATISTIC(NumArgumentsReplacedWithUndef,
+ "Number of unread args replaced with undef");
+namespace {
+ /// DAE - The dead argument elimination pass.
+ ///
+ class DAE : public ModulePass {
+ public:
+
+ /// Struct that represents (part of) either a return value or a function
+ /// argument. Used so that arguments and return values can be used
+ /// interchangeably.
+ struct RetOrArg {
+ RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
+ IsArg(IsArg) {}
+ const Function *F;
+ unsigned Idx;
+ bool IsArg;
+
+ /// Make RetOrArg comparable, so we can put it into a map.
+ bool operator<(const RetOrArg &O) const {
+ return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
+ }
+
+ /// Make RetOrArg comparable, so we can easily iterate the multimap.
+ bool operator==(const RetOrArg &O) const {
+ return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
+ }
+
+ std::string getDescription() const {
+ return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
+ " of function " + F->getName()).str();
+ }
+ };
+
+ /// Liveness enum - During our initial pass over the program, we determine
+ /// that things are either alive or maybe alive. We don't mark anything
+ /// explicitly dead (even if we know they are), since anything not alive
+ /// with no registered uses (in Uses) will never be marked alive and will
+ /// thus become dead in the end.
+ enum Liveness { Live, MaybeLive };
+
+ /// Convenience wrapper
+ RetOrArg CreateRet(const Function *F, unsigned Idx) {
+ return RetOrArg(F, Idx, false);
+ }
+ /// Convenience wrapper
+ RetOrArg CreateArg(const Function *F, unsigned Idx) {
+ return RetOrArg(F, Idx, true);
+ }
+
+ typedef std::multimap<RetOrArg, RetOrArg> UseMap;
+ /// This maps a return value or argument to any MaybeLive return values or
+ /// arguments it uses. This allows the MaybeLive values to be marked live
+ /// when any of its users is marked live.
+ /// For example (indices are left out for clarity):
+ /// - Uses[ret F] = ret G
+ /// This means that F calls G, and F returns the value returned by G.
+ /// - Uses[arg F] = ret G
+ /// This means that some function calls G and passes its result as an
+ /// argument to F.
+ /// - Uses[ret F] = arg F
+ /// This means that F returns one of its own arguments.
+ /// - Uses[arg F] = arg G
+ /// This means that G calls F and passes one of its own (G's) arguments
+ /// directly to F.
+ UseMap Uses;
+
+ typedef std::set<RetOrArg> LiveSet;
+ typedef std::set<const Function*> LiveFuncSet;
+
+ /// This set contains all values that have been determined to be live.
+ LiveSet LiveValues;
+ /// This set contains all values that are cannot be changed in any way.
+ LiveFuncSet LiveFunctions;
+
+ typedef SmallVector<RetOrArg, 5> UseVector;
+
+ // Map each LLVM function to corresponding metadata with debug info. If
+ // the function is replaced with another one, we should patch the pointer
+ // to LLVM function in metadata.
+ // As the code generation for module is finished (and DIBuilder is
+ // finalized) we assume that subprogram descriptors won't be changed, and
+ // they are stored in map for short duration anyway.
+ DenseMap<const Function *, DISubprogram *> FunctionDIs;
+
+ protected:
+ // DAH uses this to specify a different ID.
+ explicit DAE(char &ID) : ModulePass(ID) {}
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+ DAE() : ModulePass(ID) {
+ initializeDAEPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnModule(Module &M) override;
+
+ virtual bool ShouldHackArguments() const { return false; }
+
+ private:
+ Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
+ Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
+ unsigned RetValNum = -1U);
+ Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
+
+ void SurveyFunction(const Function &F);
+ void MarkValue(const RetOrArg &RA, Liveness L,
+ const UseVector &MaybeLiveUses);
+ void MarkLive(const RetOrArg &RA);
+ void MarkLive(const Function &F);
+ void PropagateLiveness(const RetOrArg &RA);
+ bool RemoveDeadStuffFromFunction(Function *F);
+ bool DeleteDeadVarargs(Function &Fn);
+ bool RemoveDeadArgumentsFromCallers(Function &Fn);
+ };
+}
+
+
+char DAE::ID = 0;
+INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
+
+namespace {
+ /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
+ /// deletes arguments to functions which are external. This is only for use
+ /// by bugpoint.
+ struct DAH : public DAE {
+ static char ID;
+ DAH() : DAE(ID) {}
+
+ bool ShouldHackArguments() const override { return true; }
+ };
+}
+
+char DAH::ID = 0;
+INITIALIZE_PASS(DAH, "deadarghaX0r",
+ "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
+ false, false)
+
+/// createDeadArgEliminationPass - This pass removes arguments from functions
+/// which are not used by the body of the function.
+///
+ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
+ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
+
+/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
+/// llvm.vastart is never called, the varargs list is dead for the function.
+bool DAE::DeleteDeadVarargs(Function &Fn) {
+ assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
+ if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
+
+ // Ensure that the function is only directly called.
+ if (Fn.hasAddressTaken())
+ return false;
+
+ // Okay, we know we can transform this function if safe. Scan its body
+ // looking for calls marked musttail or calls to llvm.vastart.
+ for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ CallInst *CI = dyn_cast<CallInst>(I);
+ if (!CI)
+ continue;
+ if (CI->isMustTailCall())
+ return false;
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
+ if (II->getIntrinsicID() == Intrinsic::vastart)
+ return false;
+ }
+ }
+ }
+
+ // If we get here, there are no calls to llvm.vastart in the function body,
+ // remove the "..." and adjust all the calls.
+
+ // Start by computing a new prototype for the function, which is the same as
+ // the old function, but doesn't have isVarArg set.
+ FunctionType *FTy = Fn.getFunctionType();
+
+ std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
+ FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
+ Params, false);
+ unsigned NumArgs = Params.size();
+
+ // Create the new function body and insert it into the module...
+ Function *NF = Function::Create(NFTy, Fn.getLinkage());
+ NF->copyAttributesFrom(&Fn);
+ Fn.getParent()->getFunctionList().insert(&Fn, NF);
+ NF->takeName(&Fn);
+
+ // Loop over all of the callers of the function, transforming the call sites
+ // to pass in a smaller number of arguments into the new function.
+ //
+ std::vector<Value*> Args;
+ for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
+ CallSite CS(*I++);
+ if (!CS)
+ continue;
+ Instruction *Call = CS.getInstruction();
+
+ // Pass all the same arguments.
+ Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
+
+ // Drop any attributes that were on the vararg arguments.
+ AttributeSet PAL = CS.getAttributes();
+ if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
+ SmallVector<AttributeSet, 8> AttributesVec;
+ for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
+ AttributesVec.push_back(PAL.getSlotAttributes(i));
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
+ PAL.getFnAttributes()));
+ PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
+ }
+
+ Instruction *New;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
+ Args, "", Call);
+ cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<InvokeInst>(New)->setAttributes(PAL);
+ } else {
+ New = CallInst::Create(NF, Args, "", Call);
+ cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<CallInst>(New)->setAttributes(PAL);
+ if (cast<CallInst>(Call)->isTailCall())
+ cast<CallInst>(New)->setTailCall();
+ }
+ New->setDebugLoc(Call->getDebugLoc());
+
+ Args.clear();
+
+ if (!Call->use_empty())
+ Call->replaceAllUsesWith(New);
+
+ New->takeName(Call);
+
+ // Finally, remove the old call from the program, reducing the use-count of
+ // F.
+ Call->eraseFromParent();
+ }
+
+ // Since we have now created the new function, splice the body of the old
+ // function right into the new function, leaving the old rotting hulk of the
+ // function empty.
+ NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
+
+ // Loop over the argument list, transferring uses of the old arguments over to
+ // the new arguments, also transferring over the names as well. While we're at
+ // it, remove the dead arguments from the DeadArguments list.
+ //
+ for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
+ I2 = NF->arg_begin(); I != E; ++I, ++I2) {
+ // Move the name and users over to the new version.
+ I->replaceAllUsesWith(I2);
+ I2->takeName(I);
+ }
+
+ // Patch the pointer to LLVM function in debug info descriptor.
+ auto DI = FunctionDIs.find(&Fn);
+ if (DI != FunctionDIs.end()) {
+ DISubprogram *SP = DI->second;
+ SP->replaceFunction(NF);
+ // Ensure the map is updated so it can be reused on non-varargs argument
+ // eliminations of the same function.
+ FunctionDIs.erase(DI);
+ FunctionDIs[NF] = SP;
+ }
+
+ // Fix up any BlockAddresses that refer to the function.
+ Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
+ // Delete the bitcast that we just created, so that NF does not
+ // appear to be address-taken.
+ NF->removeDeadConstantUsers();
+ // Finally, nuke the old function.
+ Fn.eraseFromParent();
+ return true;
+}
+
+/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
+/// arguments that are unused, and changes the caller parameters to be undefined
+/// instead.
+bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
+{
+ if (Fn.isDeclaration() || Fn.mayBeOverridden())
+ return false;
+
+ // Functions with local linkage should already have been handled, except the
+ // fragile (variadic) ones which we can improve here.
+ if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
+ return false;
+
+ // If a function seen at compile time is not necessarily the one linked to
+ // the binary being built, it is illegal to change the actual arguments
+ // passed to it. These functions can be captured by isWeakForLinker().
+ // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
+ // doesn't include linkage types like AvailableExternallyLinkage and
+ // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
+ // *EQUIVALENT* globals that can be merged at link-time. However, the
+ // semantic of *EQUIVALENT*-functions includes parameters. Changing
+ // parameters breaks this assumption.
+ //
+ if (Fn.isWeakForLinker())
+ return false;
+
+ if (Fn.use_empty())
+ return false;
+
+ SmallVector<unsigned, 8> UnusedArgs;
+ for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
+ I != E; ++I) {
+ Argument *Arg = I;
+
+ if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
+ UnusedArgs.push_back(Arg->getArgNo());
+ }
+
+ if (UnusedArgs.empty())
+ return false;
+
+ bool Changed = false;
+
+ for (Use &U : Fn.uses()) {
+ CallSite CS(U.getUser());
+ if (!CS || !CS.isCallee(&U))
+ continue;
+
+ // Now go through all unused args and replace them with "undef".
+ for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
+ unsigned ArgNo = UnusedArgs[I];
+
+ Value *Arg = CS.getArgument(ArgNo);
+ CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
+ ++NumArgumentsReplacedWithUndef;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// Convenience function that returns the number of return values. It returns 0
+/// for void functions and 1 for functions not returning a struct. It returns
+/// the number of struct elements for functions returning a struct.
+static unsigned NumRetVals(const Function *F) {
+ Type *RetTy = F->getReturnType();
+ if (RetTy->isVoidTy())
+ return 0;
+ else if (StructType *STy = dyn_cast<StructType>(RetTy))
+ return STy->getNumElements();
+ else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
+ return ATy->getNumElements();
+ else
+ return 1;
+}
+
+/// Returns the sub-type a function will return at a given Idx. Should
+/// correspond to the result type of an ExtractValue instruction executed with
+/// just that one Idx (i.e. only top-level structure is considered).
+static Type *getRetComponentType(const Function *F, unsigned Idx) {
+ Type *RetTy = F->getReturnType();
+ assert(!RetTy->isVoidTy() && "void type has no subtype");
+
+ if (StructType *STy = dyn_cast<StructType>(RetTy))
+ return STy->getElementType(Idx);
+ else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
+ return ATy->getElementType();
+ else
+ return RetTy;
+}
+
+/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
+/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
+/// liveness of Use.
+DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
+ // We're live if our use or its Function is already marked as live.
+ if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
+ return Live;
+
+ // We're maybe live otherwise, but remember that we must become live if
+ // Use becomes live.
+ MaybeLiveUses.push_back(Use);
+ return MaybeLive;
+}
+
+
+/// SurveyUse - This looks at a single use of an argument or return value
+/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
+/// if it causes the used value to become MaybeLive.
+///
+/// RetValNum is the return value number to use when this use is used in a
+/// return instruction. This is used in the recursion, you should always leave
+/// it at 0.
+DAE::Liveness DAE::SurveyUse(const Use *U,
+ UseVector &MaybeLiveUses, unsigned RetValNum) {
+ const User *V = U->getUser();
+ if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
+ // The value is returned from a function. It's only live when the
+ // function's return value is live. We use RetValNum here, for the case
+ // that U is really a use of an insertvalue instruction that uses the
+ // original Use.
+ const Function *F = RI->getParent()->getParent();
+ if (RetValNum != -1U) {
+ RetOrArg Use = CreateRet(F, RetValNum);
+ // We might be live, depending on the liveness of Use.
+ return MarkIfNotLive(Use, MaybeLiveUses);
+ } else {
+ DAE::Liveness Result = MaybeLive;
+ for (unsigned i = 0; i < NumRetVals(F); ++i) {
+ RetOrArg Use = CreateRet(F, i);
+ // We might be live, depending on the liveness of Use. If any
+ // sub-value is live, then the entire value is considered live. This
+ // is a conservative choice, and better tracking is possible.
+ DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
+ if (Result != Live)
+ Result = SubResult;
+ }
+ return Result;
+ }
+ }
+ if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
+ if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
+ && IV->hasIndices())
+ // The use we are examining is inserted into an aggregate. Our liveness
+ // depends on all uses of that aggregate, but if it is used as a return
+ // value, only index at which we were inserted counts.
+ RetValNum = *IV->idx_begin();
+
+ // Note that if we are used as the aggregate operand to the insertvalue,
+ // we don't change RetValNum, but do survey all our uses.
+
+ Liveness Result = MaybeLive;
+ for (const Use &UU : IV->uses()) {
+ Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
+ if (Result == Live)
+ break;
+ }
+ return Result;
+ }
+
+ if (auto CS = ImmutableCallSite(V)) {
+ const Function *F = CS.getCalledFunction();
+ if (F) {
+ // Used in a direct call.
+
+ // Find the argument number. We know for sure that this use is an
+ // argument, since if it was the function argument this would be an
+ // indirect call and the we know can't be looking at a value of the
+ // label type (for the invoke instruction).
+ unsigned ArgNo = CS.getArgumentNo(U);
+
+ if (ArgNo >= F->getFunctionType()->getNumParams())
+ // The value is passed in through a vararg! Must be live.
+ return Live;
+
+ assert(CS.getArgument(ArgNo)
+ == CS->getOperand(U->getOperandNo())
+ && "Argument is not where we expected it");
+
+ // Value passed to a normal call. It's only live when the corresponding
+ // argument to the called function turns out live.
+ RetOrArg Use = CreateArg(F, ArgNo);
+ return MarkIfNotLive(Use, MaybeLiveUses);
+ }
+ }
+ // Used in any other way? Value must be live.
+ return Live;
+}
+
+/// SurveyUses - This looks at all the uses of the given value
+/// Returns the Liveness deduced from the uses of this value.
+///
+/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
+/// the result is Live, MaybeLiveUses might be modified but its content should
+/// be ignored (since it might not be complete).
+DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
+ // Assume it's dead (which will only hold if there are no uses at all..).
+ Liveness Result = MaybeLive;
+ // Check each use.
+ for (const Use &U : V->uses()) {
+ Result = SurveyUse(&U, MaybeLiveUses);
+ if (Result == Live)
+ break;
+ }
+ return Result;
+}
+
+// SurveyFunction - This performs the initial survey of the specified function,
+// checking out whether or not it uses any of its incoming arguments or whether
+// any callers use the return value. This fills in the LiveValues set and Uses
+// map.
+//
+// We consider arguments of non-internal functions to be intrinsically alive as
+// well as arguments to functions which have their "address taken".
+//
+void DAE::SurveyFunction(const Function &F) {
+ // Functions with inalloca parameters are expecting args in a particular
+ // register and memory layout.
+ if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
+ MarkLive(F);
+ return;
+ }
+
+ unsigned RetCount = NumRetVals(&F);
+ // Assume all return values are dead
+ typedef SmallVector<Liveness, 5> RetVals;
+ RetVals RetValLiveness(RetCount, MaybeLive);
+
+ typedef SmallVector<UseVector, 5> RetUses;
+ // These vectors map each return value to the uses that make it MaybeLive, so
+ // we can add those to the Uses map if the return value really turns out to be
+ // MaybeLive. Initialized to a list of RetCount empty lists.
+ RetUses MaybeLiveRetUses(RetCount);
+
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
+ if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
+ != F.getFunctionType()->getReturnType()) {
+ // We don't support old style multiple return values.
+ MarkLive(F);
+ return;
+ }
+
+ if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
+ MarkLive(F);
+ return;
+ }
+
+ DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
+ // Keep track of the number of live retvals, so we can skip checks once all
+ // of them turn out to be live.
+ unsigned NumLiveRetVals = 0;
+ // Loop all uses of the function.
+ for (const Use &U : F.uses()) {
+ // If the function is PASSED IN as an argument, its address has been
+ // taken.
+ ImmutableCallSite CS(U.getUser());
+ if (!CS || !CS.isCallee(&U)) {
+ MarkLive(F);
+ return;
+ }
+
+ // If this use is anything other than a call site, the function is alive.
+ const Instruction *TheCall = CS.getInstruction();
+ if (!TheCall) { // Not a direct call site?
+ MarkLive(F);
+ return;
+ }
+
+ // If we end up here, we are looking at a direct call to our function.
+
+ // Now, check how our return value(s) is/are used in this caller. Don't
+ // bother checking return values if all of them are live already.
+ if (NumLiveRetVals == RetCount)
+ continue;
+
+ // Check all uses of the return value.
+ for (const Use &U : TheCall->uses()) {
+ if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
+ // This use uses a part of our return value, survey the uses of
+ // that part and store the results for this index only.
+ unsigned Idx = *Ext->idx_begin();
+ if (RetValLiveness[Idx] != Live) {
+ RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
+ if (RetValLiveness[Idx] == Live)
+ NumLiveRetVals++;
+ }
+ } else {
+ // Used by something else than extractvalue. Survey, but assume that the
+ // result applies to all sub-values.
+ UseVector MaybeLiveAggregateUses;
+ if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
+ NumLiveRetVals = RetCount;
+ RetValLiveness.assign(RetCount, Live);
+ break;
+ } else {
+ for (unsigned i = 0; i != RetCount; ++i) {
+ if (RetValLiveness[i] != Live)
+ MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
+ MaybeLiveAggregateUses.end());
+ }
+ }
+ }
+ }
+ }
+
+ // Now we've inspected all callers, record the liveness of our return values.
+ for (unsigned i = 0; i != RetCount; ++i)
+ MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
+
+ DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
+
+ // Now, check all of our arguments.
+ unsigned i = 0;
+ UseVector MaybeLiveArgUses;
+ for (Function::const_arg_iterator AI = F.arg_begin(),
+ E = F.arg_end(); AI != E; ++AI, ++i) {
+ Liveness Result;
+ if (F.getFunctionType()->isVarArg()) {
+ // Variadic functions will already have a va_arg function expanded inside
+ // them, making them potentially very sensitive to ABI changes resulting
+ // from removing arguments entirely, so don't. For example AArch64 handles
+ // register and stack HFAs very differently, and this is reflected in the
+ // IR which has already been generated.
+ Result = Live;
+ } else {
+ // See what the effect of this use is (recording any uses that cause
+ // MaybeLive in MaybeLiveArgUses).
+ Result = SurveyUses(AI, MaybeLiveArgUses);
+ }
+
+ // Mark the result.
+ MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
+ // Clear the vector again for the next iteration.
+ MaybeLiveArgUses.clear();
+ }
+}
+
+/// MarkValue - This function marks the liveness of RA depending on L. If L is
+/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
+/// such that RA will be marked live if any use in MaybeLiveUses gets marked
+/// live later on.
+void DAE::MarkValue(const RetOrArg &RA, Liveness L,
+ const UseVector &MaybeLiveUses) {
+ switch (L) {
+ case Live: MarkLive(RA); break;
+ case MaybeLive:
+ {
+ // Note any uses of this value, so this return value can be
+ // marked live whenever one of the uses becomes live.
+ for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
+ UE = MaybeLiveUses.end(); UI != UE; ++UI)
+ Uses.insert(std::make_pair(*UI, RA));
+ break;
+ }
+ }
+}
+
+/// MarkLive - Mark the given Function as alive, meaning that it cannot be
+/// changed in any way. Additionally,
+/// mark any values that are used as this function's parameters or by its return
+/// values (according to Uses) live as well.
+void DAE::MarkLive(const Function &F) {
+ DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
+ // Mark the function as live.
+ LiveFunctions.insert(&F);
+ // Mark all arguments as live.
+ for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
+ PropagateLiveness(CreateArg(&F, i));
+ // Mark all return values as live.
+ for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
+ PropagateLiveness(CreateRet(&F, i));
+}
+
+/// MarkLive - Mark the given return value or argument as live. Additionally,
+/// mark any values that are used by this value (according to Uses) live as
+/// well.
+void DAE::MarkLive(const RetOrArg &RA) {
+ if (LiveFunctions.count(RA.F))
+ return; // Function was already marked Live.
+
+ if (!LiveValues.insert(RA).second)
+ return; // We were already marked Live.
+
+ DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
+ PropagateLiveness(RA);
+}
+
+/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
+/// to any other values it uses (according to Uses).
+void DAE::PropagateLiveness(const RetOrArg &RA) {
+ // We don't use upper_bound (or equal_range) here, because our recursive call
+ // to ourselves is likely to cause the upper_bound (which is the first value
+ // not belonging to RA) to become erased and the iterator invalidated.
+ UseMap::iterator Begin = Uses.lower_bound(RA);
+ UseMap::iterator E = Uses.end();
+ UseMap::iterator I;
+ for (I = Begin; I != E && I->first == RA; ++I)
+ MarkLive(I->second);
+
+ // Erase RA from the Uses map (from the lower bound to wherever we ended up
+ // after the loop).
+ Uses.erase(Begin, I);
+}
+
+// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
+// that are not in LiveValues. Transform the function and all of the callees of
+// the function to not have these arguments and return values.
+//
+bool DAE::RemoveDeadStuffFromFunction(Function *F) {
+ // Don't modify fully live functions
+ if (LiveFunctions.count(F))
+ return false;
+
+ // Start by computing a new prototype for the function, which is the same as
+ // the old function, but has fewer arguments and a different return type.
+ FunctionType *FTy = F->getFunctionType();
+ std::vector<Type*> Params;
+
+ // Keep track of if we have a live 'returned' argument
+ bool HasLiveReturnedArg = false;
+
+ // Set up to build a new list of parameter attributes.
+ SmallVector<AttributeSet, 8> AttributesVec;
+ const AttributeSet &PAL = F->getAttributes();
+
+ // Remember which arguments are still alive.
+ SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
+ // Construct the new parameter list from non-dead arguments. Also construct
+ // a new set of parameter attributes to correspond. Skip the first parameter
+ // attribute, since that belongs to the return value.
+ unsigned i = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++i) {
+ RetOrArg Arg = CreateArg(F, i);
+ if (LiveValues.erase(Arg)) {
+ Params.push_back(I->getType());
+ ArgAlive[i] = true;
+
+ // Get the original parameter attributes (skipping the first one, that is
+ // for the return value.
+ if (PAL.hasAttributes(i + 1)) {
+ AttrBuilder B(PAL, i + 1);
+ if (B.contains(Attribute::Returned))
+ HasLiveReturnedArg = true;
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Params.size(), B));
+ }
+ } else {
+ ++NumArgumentsEliminated;
+ DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
+ << ") from " << F->getName() << "\n");
+ }
+ }
+
+ // Find out the new return value.
+ Type *RetTy = FTy->getReturnType();
+ Type *NRetTy = nullptr;
+ unsigned RetCount = NumRetVals(F);
+
+ // -1 means unused, other numbers are the new index
+ SmallVector<int, 5> NewRetIdxs(RetCount, -1);
+ std::vector<Type*> RetTypes;
+
+ // If there is a function with a live 'returned' argument but a dead return
+ // value, then there are two possible actions:
+ // 1) Eliminate the return value and take off the 'returned' attribute on the
+ // argument.
+ // 2) Retain the 'returned' attribute and treat the return value (but not the
+ // entire function) as live so that it is not eliminated.
+ //
+ // It's not clear in the general case which option is more profitable because,
+ // even in the absence of explicit uses of the return value, code generation
+ // is free to use the 'returned' attribute to do things like eliding
+ // save/restores of registers across calls. Whether or not this happens is
+ // target and ABI-specific as well as depending on the amount of register
+ // pressure, so there's no good way for an IR-level pass to figure this out.
+ //
+ // Fortunately, the only places where 'returned' is currently generated by
+ // the FE are places where 'returned' is basically free and almost always a
+ // performance win, so the second option can just be used always for now.
+ //
+ // This should be revisited if 'returned' is ever applied more liberally.
+ if (RetTy->isVoidTy() || HasLiveReturnedArg) {
+ NRetTy = RetTy;
+ } else {
+ // Look at each of the original return values individually.
+ for (unsigned i = 0; i != RetCount; ++i) {
+ RetOrArg Ret = CreateRet(F, i);
+ if (LiveValues.erase(Ret)) {
+ RetTypes.push_back(getRetComponentType(F, i));
+ NewRetIdxs[i] = RetTypes.size() - 1;
+ } else {
+ ++NumRetValsEliminated;
+ DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
+ << F->getName() << "\n");
+ }
+ }
+ if (RetTypes.size() > 1) {
+ // More than one return type? Reduce it down to size.
+ if (StructType *STy = dyn_cast<StructType>(RetTy)) {
+ // Make the new struct packed if we used to return a packed struct
+ // already.
+ NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
+ } else {
+ assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
+ NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
+ }
+ } else if (RetTypes.size() == 1)
+ // One return type? Just a simple value then, but only if we didn't use to
+ // return a struct with that simple value before.
+ NRetTy = RetTypes.front();
+ else if (RetTypes.size() == 0)
+ // No return types? Make it void, but only if we didn't use to return {}.
+ NRetTy = Type::getVoidTy(F->getContext());
+ }
+
+ assert(NRetTy && "No new return type found?");
+
+ // The existing function return attributes.
+ AttributeSet RAttrs = PAL.getRetAttributes();
+
+ // Remove any incompatible attributes, but only if we removed all return
+ // values. Otherwise, ensure that we don't have any conflicting attributes
+ // here. Currently, this should not be possible, but special handling might be
+ // required when new return value attributes are added.
+ if (NRetTy->isVoidTy())
+ RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
+ AttributeSet::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NRetTy));
+ else
+ assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
+ overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
+ "Return attributes no longer compatible?");
+
+ if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
+
+ if (PAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(F->getContext(),
+ PAL.getFnAttributes()));
+
+ // Reconstruct the AttributesList based on the vector we constructed.
+ AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
+
+ // Create the new function type based on the recomputed parameters.
+ FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
+
+ // No change?
+ if (NFTy == FTy)
+ return false;
+
+ // Create the new function body and insert it into the module...
+ Function *NF = Function::Create(NFTy, F->getLinkage());
+ NF->copyAttributesFrom(F);
+ NF->setAttributes(NewPAL);
+ // Insert the new function before the old function, so we won't be processing
+ // it again.
+ F->getParent()->getFunctionList().insert(F, NF);
+ NF->takeName(F);
+
+ // Loop over all of the callers of the function, transforming the call sites
+ // to pass in a smaller number of arguments into the new function.
+ //
+ std::vector<Value*> Args;
+ while (!F->use_empty()) {
+ CallSite CS(F->user_back());
+ Instruction *Call = CS.getInstruction();
+
+ AttributesVec.clear();
+ const AttributeSet &CallPAL = CS.getAttributes();
+
+ // The call return attributes.
+ AttributeSet RAttrs = CallPAL.getRetAttributes();
+
+ // Adjust in case the function was changed to return void.
+ RAttrs = RAttrs.removeAttributes(NRetTy->getContext(),
+ AttributeSet::ReturnIndex,
+ AttributeFuncs::typeIncompatible(NF->getReturnType()));
+ if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
+ AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
+
+ // Declare these outside of the loops, so we can reuse them for the second
+ // loop, which loops the varargs.
+ CallSite::arg_iterator I = CS.arg_begin();
+ unsigned i = 0;
+ // Loop over those operands, corresponding to the normal arguments to the
+ // original function, and add those that are still alive.
+ for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
+ if (ArgAlive[i]) {
+ Args.push_back(*I);
+ // Get original parameter attributes, but skip return attributes.
+ if (CallPAL.hasAttributes(i + 1)) {
+ AttrBuilder B(CallPAL, i + 1);
+ // If the return type has changed, then get rid of 'returned' on the
+ // call site. The alternative is to make all 'returned' attributes on
+ // call sites keep the return value alive just like 'returned'
+ // attributes on function declaration but it's less clearly a win
+ // and this is not an expected case anyway
+ if (NRetTy != RetTy && B.contains(Attribute::Returned))
+ B.removeAttribute(Attribute::Returned);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
+ }
+
+ // Push any varargs arguments on the list. Don't forget their attributes.
+ for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
+ Args.push_back(*I);
+ if (CallPAL.hasAttributes(i + 1)) {
+ AttrBuilder B(CallPAL, i + 1);
+ AttributesVec.
+ push_back(AttributeSet::get(F->getContext(), Args.size(), B));
+ }
+ }
+
+ if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
+ AttributesVec.push_back(AttributeSet::get(Call->getContext(),
+ CallPAL.getFnAttributes()));
+
+ // Reconstruct the AttributesList based on the vector we constructed.
+ AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
+
+ Instruction *New;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
+ Args, "", Call);
+ cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<InvokeInst>(New)->setAttributes(NewCallPAL);
+ } else {
+ New = CallInst::Create(NF, Args, "", Call);
+ cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<CallInst>(New)->setAttributes(NewCallPAL);
+ if (cast<CallInst>(Call)->isTailCall())
+ cast<CallInst>(New)->setTailCall();
+ }
+ New->setDebugLoc(Call->getDebugLoc());
+
+ Args.clear();
+
+ if (!Call->use_empty()) {
+ if (New->getType() == Call->getType()) {
+ // Return type not changed? Just replace users then.
+ Call->replaceAllUsesWith(New);
+ New->takeName(Call);
+ } else if (New->getType()->isVoidTy()) {
+ // Our return value has uses, but they will get removed later on.
+ // Replace by null for now.
+ if (!Call->getType()->isX86_MMXTy())
+ Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+ } else {
+ assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
+ "Return type changed, but not into a void. The old return type"
+ " must have been a struct or an array!");
+ Instruction *InsertPt = Call;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ BasicBlock::iterator IP = II->getNormalDest()->begin();
+ while (isa<PHINode>(IP)) ++IP;
+ InsertPt = IP;
+ }
+
+ // We used to return a struct or array. Instead of doing smart stuff
+ // with all the uses, we will just rebuild it using extract/insertvalue
+ // chaining and let instcombine clean that up.
+ //
+ // Start out building up our return value from undef
+ Value *RetVal = UndefValue::get(RetTy);
+ for (unsigned i = 0; i != RetCount; ++i)
+ if (NewRetIdxs[i] != -1) {
+ Value *V;
+ if (RetTypes.size() > 1)
+ // We are still returning a struct, so extract the value from our
+ // return value
+ V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
+ InsertPt);
+ else
+ // We are now returning a single element, so just insert that
+ V = New;
+ // Insert the value at the old position
+ RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
+ }
+ // Now, replace all uses of the old call instruction with the return
+ // struct we built
+ Call->replaceAllUsesWith(RetVal);
+ New->takeName(Call);
+ }
+ }
+
+ // Finally, remove the old call from the program, reducing the use-count of
+ // F.
+ Call->eraseFromParent();
+ }
+
+ // Since we have now created the new function, splice the body of the old
+ // function right into the new function, leaving the old rotting hulk of the
+ // function empty.
+ NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
+
+ // Loop over the argument list, transferring uses of the old arguments over to
+ // the new arguments, also transferring over the names as well.
+ i = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
+ I2 = NF->arg_begin(); I != E; ++I, ++i)
+ if (ArgAlive[i]) {
+ // If this is a live argument, move the name and users over to the new
+ // version.
+ I->replaceAllUsesWith(I2);
+ I2->takeName(I);
+ ++I2;
+ } else {
+ // If this argument is dead, replace any uses of it with null constants
+ // (these are guaranteed to become unused later on).
+ if (!I->getType()->isX86_MMXTy())
+ I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
+ }
+
+ // If we change the return value of the function we must rewrite any return
+ // instructions. Check this now.
+ if (F->getReturnType() != NF->getReturnType())
+ for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
+ Value *RetVal;
+
+ if (NFTy->getReturnType()->isVoidTy()) {
+ RetVal = nullptr;
+ } else {
+ assert(RetTy->isStructTy() || RetTy->isArrayTy());
+ // The original return value was a struct or array, insert
+ // extractvalue/insertvalue chains to extract only the values we need
+ // to return and insert them into our new result.
+ // This does generate messy code, but we'll let it to instcombine to
+ // clean that up.
+ Value *OldRet = RI->getOperand(0);
+ // Start out building up our return value from undef
+ RetVal = UndefValue::get(NRetTy);
+ for (unsigned i = 0; i != RetCount; ++i)
+ if (NewRetIdxs[i] != -1) {
+ ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
+ "oldret", RI);
+ if (RetTypes.size() > 1) {
+ // We're still returning a struct, so reinsert the value into
+ // our new return value at the new index
+
+ RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
+ "newret", RI);
+ } else {
+ // We are now only returning a simple value, so just return the
+ // extracted value.
+ RetVal = EV;
+ }
+ }
+ }
+ // Replace the return instruction with one returning the new return
+ // value (possibly 0 if we became void).
+ ReturnInst::Create(F->getContext(), RetVal, RI);
+ BB->getInstList().erase(RI);
+ }
+
+ // Patch the pointer to LLVM function in debug info descriptor.
+ auto DI = FunctionDIs.find(F);
+ if (DI != FunctionDIs.end())
+ DI->second->replaceFunction(NF);
+
+ // Now that the old function is dead, delete it.
+ F->eraseFromParent();
+
+ return true;
+}
+
+bool DAE::runOnModule(Module &M) {
+ bool Changed = false;
+
+ // Collect debug info descriptors for functions.
+ FunctionDIs = makeSubprogramMap(M);
+
+ // First pass: Do a simple check to see if any functions can have their "..."
+ // removed. We can do this if they never call va_start. This loop cannot be
+ // fused with the next loop, because deleting a function invalidates
+ // information computed while surveying other functions.
+ DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
+ Function &F = *I++;
+ if (F.getFunctionType()->isVarArg())
+ Changed |= DeleteDeadVarargs(F);
+ }
+
+ // Second phase:loop through the module, determining which arguments are live.
+ // We assume all arguments are dead unless proven otherwise (allowing us to
+ // determine that dead arguments passed into recursive functions are dead).
+ //
+ DEBUG(dbgs() << "DAE - Determining liveness\n");
+ for (auto &F : M)
+ SurveyFunction(F);
+
+ // Now, remove all dead arguments and return values from each function in
+ // turn.
+ for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
+ // Increment now, because the function will probably get removed (ie.
+ // replaced by a new one).
+ Function *F = I++;
+ Changed |= RemoveDeadStuffFromFunction(F);
+ }
+
+ // Finally, look for any unused parameters in functions with non-local
+ // linkage and replace the passed in parameters with undef.
+ for (auto &F : M)
+ Changed |= RemoveDeadArgumentsFromCallers(F);
+
+ return Changed;
+}
OpenPOWER on IntegriCloud