summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp887
1 files changed, 887 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
new file mode 100644
index 0000000..89f213e
--- /dev/null
+++ b/contrib/llvm/lib/Transforms/IPO/ArgumentPromotion.cpp
@@ -0,0 +1,887 @@
+//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass promotes "by reference" arguments to be "by value" arguments. In
+// practice, this means looking for internal functions that have pointer
+// arguments. If it can prove, through the use of alias analysis, that an
+// argument is *only* loaded, then it can pass the value into the function
+// instead of the address of the value. This can cause recursive simplification
+// of code and lead to the elimination of allocas (especially in C++ template
+// code like the STL).
+//
+// This pass also handles aggregate arguments that are passed into a function,
+// scalarizing them if the elements of the aggregate are only loaded. Note that
+// by default it refuses to scalarize aggregates which would require passing in
+// more than three operands to the function, because passing thousands of
+// operands for a large array or structure is unprofitable! This limit can be
+// configured or disabled, however.
+//
+// Note that this transformation could also be done for arguments that are only
+// stored to (returning the value instead), but does not currently. This case
+// would be best handled when and if LLVM begins supporting multiple return
+// values from functions.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "argpromotion"
+#include "llvm/Transforms/IPO.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/CallGraphSCCPass.h"
+#include "llvm/Instructions.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CallGraph.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include <set>
+using namespace llvm;
+
+STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
+STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
+STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
+STATISTIC(NumArgumentsDead , "Number of dead pointer args eliminated");
+
+namespace {
+ /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
+ ///
+ struct ArgPromotion : public CallGraphSCCPass {
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequired<AliasAnalysis>();
+ CallGraphSCCPass::getAnalysisUsage(AU);
+ }
+
+ virtual bool runOnSCC(CallGraphSCC &SCC);
+ static char ID; // Pass identification, replacement for typeid
+ explicit ArgPromotion(unsigned maxElements = 3)
+ : CallGraphSCCPass(&ID), maxElements(maxElements) {}
+
+ /// A vector used to hold the indices of a single GEP instruction
+ typedef std::vector<uint64_t> IndicesVector;
+
+ private:
+ CallGraphNode *PromoteArguments(CallGraphNode *CGN);
+ bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
+ CallGraphNode *DoPromotion(Function *F,
+ SmallPtrSet<Argument*, 8> &ArgsToPromote,
+ SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
+ /// The maximum number of elements to expand, or 0 for unlimited.
+ unsigned maxElements;
+ };
+}
+
+char ArgPromotion::ID = 0;
+static RegisterPass<ArgPromotion>
+X("argpromotion", "Promote 'by reference' arguments to scalars");
+
+Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
+ return new ArgPromotion(maxElements);
+}
+
+bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
+ bool Changed = false, LocalChange;
+
+ do { // Iterate until we stop promoting from this SCC.
+ LocalChange = false;
+ // Attempt to promote arguments from all functions in this SCC.
+ for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
+ if (CallGraphNode *CGN = PromoteArguments(*I)) {
+ LocalChange = true;
+ SCC.ReplaceNode(*I, CGN);
+ }
+ }
+ Changed |= LocalChange; // Remember that we changed something.
+ } while (LocalChange);
+
+ return Changed;
+}
+
+/// PromoteArguments - This method checks the specified function to see if there
+/// are any promotable arguments and if it is safe to promote the function (for
+/// example, all callers are direct). If safe to promote some arguments, it
+/// calls the DoPromotion method.
+///
+CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
+ Function *F = CGN->getFunction();
+
+ // Make sure that it is local to this module.
+ if (!F || !F->hasLocalLinkage()) return 0;
+
+ // First check: see if there are any pointer arguments! If not, quick exit.
+ SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
+ unsigned ArgNo = 0;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++ArgNo)
+ if (I->getType()->isPointerTy())
+ PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
+ if (PointerArgs.empty()) return 0;
+
+ // Second check: make sure that all callers are direct callers. We can't
+ // transform functions that have indirect callers.
+ if (F->hasAddressTaken())
+ return 0;
+
+ // Check to see which arguments are promotable. If an argument is promotable,
+ // add it to ArgsToPromote.
+ SmallPtrSet<Argument*, 8> ArgsToPromote;
+ SmallPtrSet<Argument*, 8> ByValArgsToTransform;
+ for (unsigned i = 0; i != PointerArgs.size(); ++i) {
+ bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
+
+ // If this is a byval argument, and if the aggregate type is small, just
+ // pass the elements, which is always safe.
+ Argument *PtrArg = PointerArgs[i].first;
+ if (isByVal) {
+ const Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
+ if (const StructType *STy = dyn_cast<StructType>(AgTy)) {
+ if (maxElements > 0 && STy->getNumElements() > maxElements) {
+ DEBUG(dbgs() << "argpromotion disable promoting argument '"
+ << PtrArg->getName() << "' because it would require adding more"
+ << " than " << maxElements << " arguments to the function.\n");
+ } else {
+ // If all the elements are single-value types, we can promote it.
+ bool AllSimple = true;
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ if (!STy->getElementType(i)->isSingleValueType()) {
+ AllSimple = false;
+ break;
+ }
+
+ // Safe to transform, don't even bother trying to "promote" it.
+ // Passing the elements as a scalar will allow scalarrepl to hack on
+ // the new alloca we introduce.
+ if (AllSimple) {
+ ByValArgsToTransform.insert(PtrArg);
+ continue;
+ }
+ }
+ }
+ }
+
+ // Otherwise, see if we can promote the pointer to its value.
+ if (isSafeToPromoteArgument(PtrArg, isByVal))
+ ArgsToPromote.insert(PtrArg);
+ }
+
+ // No promotable pointer arguments.
+ if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
+ return 0;
+
+ return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
+}
+
+/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
+/// to load.
+static bool IsAlwaysValidPointer(Value *V) {
+ if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
+ return IsAlwaysValidPointer(GEP->getOperand(0));
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
+ if (CE->getOpcode() == Instruction::GetElementPtr)
+ return IsAlwaysValidPointer(CE->getOperand(0));
+
+ return false;
+}
+
+/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
+/// all callees pass in a valid pointer for the specified function argument.
+static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
+ Function *Callee = Arg->getParent();
+
+ unsigned ArgNo = std::distance(Callee->arg_begin(),
+ Function::arg_iterator(Arg));
+
+ // Look at all call sites of the function. At this pointer we know we only
+ // have direct callees.
+ for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
+ UI != E; ++UI) {
+ CallSite CS = CallSite::get(*UI);
+ assert(CS.getInstruction() && "Should only have direct calls!");
+
+ if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
+ return false;
+ }
+ return true;
+}
+
+/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
+/// that is greater than or equal to the size of prefix, and each of the
+/// elements in Prefix is the same as the corresponding elements in Longer.
+///
+/// This means it also returns true when Prefix and Longer are equal!
+static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
+ const ArgPromotion::IndicesVector &Longer) {
+ if (Prefix.size() > Longer.size())
+ return false;
+ for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
+ if (Prefix[i] != Longer[i])
+ return false;
+ return true;
+}
+
+
+/// Checks if Indices, or a prefix of Indices, is in Set.
+static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
+ std::set<ArgPromotion::IndicesVector> &Set) {
+ std::set<ArgPromotion::IndicesVector>::iterator Low;
+ Low = Set.upper_bound(Indices);
+ if (Low != Set.begin())
+ Low--;
+ // Low is now the last element smaller than or equal to Indices. This means
+ // it points to a prefix of Indices (possibly Indices itself), if such
+ // prefix exists.
+ //
+ // This load is safe if any prefix of its operands is safe to load.
+ return Low != Set.end() && IsPrefix(*Low, Indices);
+}
+
+/// Mark the given indices (ToMark) as safe in the given set of indices
+/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
+/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
+/// already. Furthermore, any indices that Indices is itself a prefix of, are
+/// removed from Safe (since they are implicitely safe because of Indices now).
+static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
+ std::set<ArgPromotion::IndicesVector> &Safe) {
+ std::set<ArgPromotion::IndicesVector>::iterator Low;
+ Low = Safe.upper_bound(ToMark);
+ // Guard against the case where Safe is empty
+ if (Low != Safe.begin())
+ Low--;
+ // Low is now the last element smaller than or equal to Indices. This
+ // means it points to a prefix of Indices (possibly Indices itself), if
+ // such prefix exists.
+ if (Low != Safe.end()) {
+ if (IsPrefix(*Low, ToMark))
+ // If there is already a prefix of these indices (or exactly these
+ // indices) marked a safe, don't bother adding these indices
+ return;
+
+ // Increment Low, so we can use it as a "insert before" hint
+ ++Low;
+ }
+ // Insert
+ Low = Safe.insert(Low, ToMark);
+ ++Low;
+ // If there we're a prefix of longer index list(s), remove those
+ std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
+ while (Low != End && IsPrefix(ToMark, *Low)) {
+ std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
+ ++Low;
+ Safe.erase(Remove);
+ }
+}
+
+/// isSafeToPromoteArgument - As you might guess from the name of this method,
+/// it checks to see if it is both safe and useful to promote the argument.
+/// This method limits promotion of aggregates to only promote up to three
+/// elements of the aggregate in order to avoid exploding the number of
+/// arguments passed in.
+bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
+ typedef std::set<IndicesVector> GEPIndicesSet;
+
+ // Quick exit for unused arguments
+ if (Arg->use_empty())
+ return true;
+
+ // We can only promote this argument if all of the uses are loads, or are GEP
+ // instructions (with constant indices) that are subsequently loaded.
+ //
+ // Promoting the argument causes it to be loaded in the caller
+ // unconditionally. This is only safe if we can prove that either the load
+ // would have happened in the callee anyway (ie, there is a load in the entry
+ // block) or the pointer passed in at every call site is guaranteed to be
+ // valid.
+ // In the former case, invalid loads can happen, but would have happened
+ // anyway, in the latter case, invalid loads won't happen. This prevents us
+ // from introducing an invalid load that wouldn't have happened in the
+ // original code.
+ //
+ // This set will contain all sets of indices that are loaded in the entry
+ // block, and thus are safe to unconditionally load in the caller.
+ GEPIndicesSet SafeToUnconditionallyLoad;
+
+ // This set contains all the sets of indices that we are planning to promote.
+ // This makes it possible to limit the number of arguments added.
+ GEPIndicesSet ToPromote;
+
+ // If the pointer is always valid, any load with first index 0 is valid.
+ if (isByVal || AllCalleesPassInValidPointerForArgument(Arg))
+ SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
+
+ // First, iterate the entry block and mark loads of (geps of) arguments as
+ // safe.
+ BasicBlock *EntryBlock = Arg->getParent()->begin();
+ // Declare this here so we can reuse it
+ IndicesVector Indices;
+ for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
+ I != E; ++I)
+ if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+ Value *V = LI->getPointerOperand();
+ if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ V = GEP->getPointerOperand();
+ if (V == Arg) {
+ // This load actually loads (part of) Arg? Check the indices then.
+ Indices.reserve(GEP->getNumIndices());
+ for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
+ II != IE; ++II)
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
+ Indices.push_back(CI->getSExtValue());
+ else
+ // We found a non-constant GEP index for this argument? Bail out
+ // right away, can't promote this argument at all.
+ return false;
+
+ // Indices checked out, mark them as safe
+ MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
+ Indices.clear();
+ }
+ } else if (V == Arg) {
+ // Direct loads are equivalent to a GEP with a single 0 index.
+ MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
+ }
+ }
+
+ // Now, iterate all uses of the argument to see if there are any uses that are
+ // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
+ SmallVector<LoadInst*, 16> Loads;
+ IndicesVector Operands;
+ for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
+ UI != E; ++UI) {
+ Operands.clear();
+ if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+ if (LI->isVolatile()) return false; // Don't hack volatile loads
+ Loads.push_back(LI);
+ // Direct loads are equivalent to a GEP with a zero index and then a load.
+ Operands.push_back(0);
+ } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
+ if (GEP->use_empty()) {
+ // Dead GEP's cause trouble later. Just remove them if we run into
+ // them.
+ getAnalysis<AliasAnalysis>().deleteValue(GEP);
+ GEP->eraseFromParent();
+ // TODO: This runs the above loop over and over again for dead GEPS
+ // Couldn't we just do increment the UI iterator earlier and erase the
+ // use?
+ return isSafeToPromoteArgument(Arg, isByVal);
+ }
+
+ // Ensure that all of the indices are constants.
+ for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
+ i != e; ++i)
+ if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
+ Operands.push_back(C->getSExtValue());
+ else
+ return false; // Not a constant operand GEP!
+
+ // Ensure that the only users of the GEP are load instructions.
+ for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
+ UI != E; ++UI)
+ if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
+ if (LI->isVolatile()) return false; // Don't hack volatile loads
+ Loads.push_back(LI);
+ } else {
+ // Other uses than load?
+ return false;
+ }
+ } else {
+ return false; // Not a load or a GEP.
+ }
+
+ // Now, see if it is safe to promote this load / loads of this GEP. Loading
+ // is safe if Operands, or a prefix of Operands, is marked as safe.
+ if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
+ return false;
+
+ // See if we are already promoting a load with these indices. If not, check
+ // to make sure that we aren't promoting too many elements. If so, nothing
+ // to do.
+ if (ToPromote.find(Operands) == ToPromote.end()) {
+ if (maxElements > 0 && ToPromote.size() == maxElements) {
+ DEBUG(dbgs() << "argpromotion not promoting argument '"
+ << Arg->getName() << "' because it would require adding more "
+ << "than " << maxElements << " arguments to the function.\n");
+ // We limit aggregate promotion to only promoting up to a fixed number
+ // of elements of the aggregate.
+ return false;
+ }
+ ToPromote.insert(Operands);
+ }
+ }
+
+ if (Loads.empty()) return true; // No users, this is a dead argument.
+
+ // Okay, now we know that the argument is only used by load instructions and
+ // it is safe to unconditionally perform all of them. Use alias analysis to
+ // check to see if the pointer is guaranteed to not be modified from entry of
+ // the function to each of the load instructions.
+
+ // Because there could be several/many load instructions, remember which
+ // blocks we know to be transparent to the load.
+ SmallPtrSet<BasicBlock*, 16> TranspBlocks;
+
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
+ TargetData *TD = getAnalysisIfAvailable<TargetData>();
+ if (!TD) return false; // Without TargetData, assume the worst.
+
+ for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
+ // Check to see if the load is invalidated from the start of the block to
+ // the load itself.
+ LoadInst *Load = Loads[i];
+ BasicBlock *BB = Load->getParent();
+
+ const PointerType *LoadTy =
+ cast<PointerType>(Load->getPointerOperand()->getType());
+ unsigned LoadSize =(unsigned)TD->getTypeStoreSize(LoadTy->getElementType());
+
+ if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
+ return false; // Pointer is invalidated!
+
+ // Now check every path from the entry block to the load for transparency.
+ // To do this, we perform a depth first search on the inverse CFG from the
+ // loading block.
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+ for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
+ I = idf_ext_begin(*PI, TranspBlocks),
+ E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
+ if (AA.canBasicBlockModify(**I, Arg, LoadSize))
+ return false;
+ }
+
+ // If the path from the entry of the function to each load is free of
+ // instructions that potentially invalidate the load, we can make the
+ // transformation!
+ return true;
+}
+
+/// DoPromotion - This method actually performs the promotion of the specified
+/// arguments, and returns the new function. At this point, we know that it's
+/// safe to do so.
+CallGraphNode *ArgPromotion::DoPromotion(Function *F,
+ SmallPtrSet<Argument*, 8> &ArgsToPromote,
+ SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
+
+ // Start by computing a new prototype for the function, which is the same as
+ // the old function, but has modified arguments.
+ const FunctionType *FTy = F->getFunctionType();
+ std::vector<const Type*> Params;
+
+ typedef std::set<IndicesVector> ScalarizeTable;
+
+ // ScalarizedElements - If we are promoting a pointer that has elements
+ // accessed out of it, keep track of which elements are accessed so that we
+ // can add one argument for each.
+ //
+ // Arguments that are directly loaded will have a zero element value here, to
+ // handle cases where there are both a direct load and GEP accesses.
+ //
+ std::map<Argument*, ScalarizeTable> ScalarizedElements;
+
+ // OriginalLoads - Keep track of a representative load instruction from the
+ // original function so that we can tell the alias analysis implementation
+ // what the new GEP/Load instructions we are inserting look like.
+ std::map<IndicesVector, LoadInst*> OriginalLoads;
+
+ // Attributes - Keep track of the parameter attributes for the arguments
+ // that we are *not* promoting. For the ones that we do promote, the parameter
+ // attributes are lost
+ SmallVector<AttributeWithIndex, 8> AttributesVec;
+ const AttrListPtr &PAL = F->getAttributes();
+
+ // Add any return attributes.
+ if (Attributes attrs = PAL.getRetAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
+
+ // First, determine the new argument list
+ unsigned ArgIndex = 1;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
+ ++I, ++ArgIndex) {
+ if (ByValArgsToTransform.count(I)) {
+ // Simple byval argument? Just add all the struct element types.
+ const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ const StructType *STy = cast<StructType>(AgTy);
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ Params.push_back(STy->getElementType(i));
+ ++NumByValArgsPromoted;
+ } else if (!ArgsToPromote.count(I)) {
+ // Unchanged argument
+ Params.push_back(I->getType());
+ if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
+ AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
+ } else if (I->use_empty()) {
+ // Dead argument (which are always marked as promotable)
+ ++NumArgumentsDead;
+ } else {
+ // Okay, this is being promoted. This means that the only uses are loads
+ // or GEPs which are only used by loads
+
+ // In this table, we will track which indices are loaded from the argument
+ // (where direct loads are tracked as no indices).
+ ScalarizeTable &ArgIndices = ScalarizedElements[I];
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
+ ++UI) {
+ Instruction *User = cast<Instruction>(*UI);
+ assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
+ IndicesVector Indices;
+ Indices.reserve(User->getNumOperands() - 1);
+ // Since loads will only have a single operand, and GEPs only a single
+ // non-index operand, this will record direct loads without any indices,
+ // and gep+loads with the GEP indices.
+ for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
+ II != IE; ++II)
+ Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
+ // GEPs with a single 0 index can be merged with direct loads
+ if (Indices.size() == 1 && Indices.front() == 0)
+ Indices.clear();
+ ArgIndices.insert(Indices);
+ LoadInst *OrigLoad;
+ if (LoadInst *L = dyn_cast<LoadInst>(User))
+ OrigLoad = L;
+ else
+ // Take any load, we will use it only to update Alias Analysis
+ OrigLoad = cast<LoadInst>(User->use_back());
+ OriginalLoads[Indices] = OrigLoad;
+ }
+
+ // Add a parameter to the function for each element passed in.
+ for (ScalarizeTable::iterator SI = ArgIndices.begin(),
+ E = ArgIndices.end(); SI != E; ++SI) {
+ // not allowed to dereference ->begin() if size() is 0
+ Params.push_back(GetElementPtrInst::getIndexedType(I->getType(),
+ SI->begin(),
+ SI->end()));
+ assert(Params.back());
+ }
+
+ if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
+ ++NumArgumentsPromoted;
+ else
+ ++NumAggregatesPromoted;
+ }
+ }
+
+ // Add any function attributes.
+ if (Attributes attrs = PAL.getFnAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
+
+ const Type *RetTy = FTy->getReturnType();
+
+ // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
+ // have zero fixed arguments.
+ bool ExtraArgHack = false;
+ if (Params.empty() && FTy->isVarArg()) {
+ ExtraArgHack = true;
+ Params.push_back(Type::getInt32Ty(F->getContext()));
+ }
+
+ // Construct the new function type using the new arguments.
+ FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
+
+ // Create the new function body and insert it into the module.
+ Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
+ NF->copyAttributesFrom(F);
+
+
+ DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
+ << "From: " << *F);
+
+ // Recompute the parameter attributes list based on the new arguments for
+ // the function.
+ NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
+ AttributesVec.end()));
+ AttributesVec.clear();
+
+ F->getParent()->getFunctionList().insert(F, NF);
+ NF->takeName(F);
+
+ // Get the alias analysis information that we need to update to reflect our
+ // changes.
+ AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
+
+ // Get the callgraph information that we need to update to reflect our
+ // changes.
+ CallGraph &CG = getAnalysis<CallGraph>();
+
+ // Get a new callgraph node for NF.
+ CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
+
+
+ // Loop over all of the callers of the function, transforming the call sites
+ // to pass in the loaded pointers.
+ //
+ SmallVector<Value*, 16> Args;
+ while (!F->use_empty()) {
+ CallSite CS = CallSite::get(F->use_back());
+ assert(CS.getCalledFunction() == F);
+ Instruction *Call = CS.getInstruction();
+ const AttrListPtr &CallPAL = CS.getAttributes();
+
+ // Add any return attributes.
+ if (Attributes attrs = CallPAL.getRetAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
+
+ // Loop over the operands, inserting GEP and loads in the caller as
+ // appropriate.
+ CallSite::arg_iterator AI = CS.arg_begin();
+ ArgIndex = 1;
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I, ++AI, ++ArgIndex)
+ if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
+ Args.push_back(*AI); // Unmodified argument
+
+ if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
+ AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
+
+ } else if (ByValArgsToTransform.count(I)) {
+ // Emit a GEP and load for each element of the struct.
+ const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ const StructType *STy = cast<StructType>(AgTy);
+ Value *Idxs[2] = {
+ ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
+ Value *Idx = GetElementPtrInst::Create(*AI, Idxs, Idxs+2,
+ (*AI)->getName()+"."+utostr(i),
+ Call);
+ // TODO: Tell AA about the new values?
+ Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
+ }
+ } else if (!I->use_empty()) {
+ // Non-dead argument: insert GEPs and loads as appropriate.
+ ScalarizeTable &ArgIndices = ScalarizedElements[I];
+ // Store the Value* version of the indices in here, but declare it now
+ // for reuse.
+ std::vector<Value*> Ops;
+ for (ScalarizeTable::iterator SI = ArgIndices.begin(),
+ E = ArgIndices.end(); SI != E; ++SI) {
+ Value *V = *AI;
+ LoadInst *OrigLoad = OriginalLoads[*SI];
+ if (!SI->empty()) {
+ Ops.reserve(SI->size());
+ const Type *ElTy = V->getType();
+ for (IndicesVector::const_iterator II = SI->begin(),
+ IE = SI->end(); II != IE; ++II) {
+ // Use i32 to index structs, and i64 for others (pointers/arrays).
+ // This satisfies GEP constraints.
+ const Type *IdxTy = (ElTy->isStructTy() ?
+ Type::getInt32Ty(F->getContext()) :
+ Type::getInt64Ty(F->getContext()));
+ Ops.push_back(ConstantInt::get(IdxTy, *II));
+ // Keep track of the type we're currently indexing.
+ ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
+ }
+ // And create a GEP to extract those indices.
+ V = GetElementPtrInst::Create(V, Ops.begin(), Ops.end(),
+ V->getName()+".idx", Call);
+ Ops.clear();
+ AA.copyValue(OrigLoad->getOperand(0), V);
+ }
+ // Since we're replacing a load make sure we take the alignment
+ // of the previous load.
+ LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
+ newLoad->setAlignment(OrigLoad->getAlignment());
+ Args.push_back(newLoad);
+ AA.copyValue(OrigLoad, Args.back());
+ }
+ }
+
+ if (ExtraArgHack)
+ Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
+
+ // Push any varargs arguments on the list.
+ for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
+ Args.push_back(*AI);
+ if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
+ AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
+ }
+
+ // Add any function attributes.
+ if (Attributes attrs = CallPAL.getFnAttributes())
+ AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
+
+ Instruction *New;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
+ New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
+ Args.begin(), Args.end(), "", Call);
+ cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
+ AttributesVec.end()));
+ } else {
+ New = CallInst::Create(NF, Args.begin(), Args.end(), "", Call);
+ cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
+ cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
+ AttributesVec.end()));
+ if (cast<CallInst>(Call)->isTailCall())
+ cast<CallInst>(New)->setTailCall();
+ }
+ Args.clear();
+ AttributesVec.clear();
+
+ // Update the alias analysis implementation to know that we are replacing
+ // the old call with a new one.
+ AA.replaceWithNewValue(Call, New);
+
+ // Update the callgraph to know that the callsite has been transformed.
+ CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
+ CalleeNode->replaceCallEdge(Call, New, NF_CGN);
+
+ if (!Call->use_empty()) {
+ Call->replaceAllUsesWith(New);
+ New->takeName(Call);
+ }
+
+ // Finally, remove the old call from the program, reducing the use-count of
+ // F.
+ Call->eraseFromParent();
+ }
+
+ // Since we have now created the new function, splice the body of the old
+ // function right into the new function, leaving the old rotting hulk of the
+ // function empty.
+ NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
+
+ // Loop over the argument list, transfering uses of the old arguments over to
+ // the new arguments, also transfering over the names as well.
+ //
+ for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
+ I2 = NF->arg_begin(); I != E; ++I) {
+ if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
+ // If this is an unmodified argument, move the name and users over to the
+ // new version.
+ I->replaceAllUsesWith(I2);
+ I2->takeName(I);
+ AA.replaceWithNewValue(I, I2);
+ ++I2;
+ continue;
+ }
+
+ if (ByValArgsToTransform.count(I)) {
+ // In the callee, we create an alloca, and store each of the new incoming
+ // arguments into the alloca.
+ Instruction *InsertPt = NF->begin()->begin();
+
+ // Just add all the struct element types.
+ const Type *AgTy = cast<PointerType>(I->getType())->getElementType();
+ Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
+ const StructType *STy = cast<StructType>(AgTy);
+ Value *Idxs[2] = {
+ ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
+
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
+ Value *Idx =
+ GetElementPtrInst::Create(TheAlloca, Idxs, Idxs+2,
+ TheAlloca->getName()+"."+Twine(i),
+ InsertPt);
+ I2->setName(I->getName()+"."+Twine(i));
+ new StoreInst(I2++, Idx, InsertPt);
+ }
+
+ // Anything that used the arg should now use the alloca.
+ I->replaceAllUsesWith(TheAlloca);
+ TheAlloca->takeName(I);
+ AA.replaceWithNewValue(I, TheAlloca);
+ continue;
+ }
+
+ if (I->use_empty()) {
+ AA.deleteValue(I);
+ continue;
+ }
+
+ // Otherwise, if we promoted this argument, then all users are load
+ // instructions (or GEPs with only load users), and all loads should be
+ // using the new argument that we added.
+ ScalarizeTable &ArgIndices = ScalarizedElements[I];
+
+ while (!I->use_empty()) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
+ assert(ArgIndices.begin()->empty() &&
+ "Load element should sort to front!");
+ I2->setName(I->getName()+".val");
+ LI->replaceAllUsesWith(I2);
+ AA.replaceWithNewValue(LI, I2);
+ LI->eraseFromParent();
+ DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
+ << "' in function '" << F->getName() << "'\n");
+ } else {
+ GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
+ IndicesVector Operands;
+ Operands.reserve(GEP->getNumIndices());
+ for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
+ II != IE; ++II)
+ Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
+
+ // GEPs with a single 0 index can be merged with direct loads
+ if (Operands.size() == 1 && Operands.front() == 0)
+ Operands.clear();
+
+ Function::arg_iterator TheArg = I2;
+ for (ScalarizeTable::iterator It = ArgIndices.begin();
+ *It != Operands; ++It, ++TheArg) {
+ assert(It != ArgIndices.end() && "GEP not handled??");
+ }
+
+ std::string NewName = I->getName();
+ for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
+ NewName += "." + utostr(Operands[i]);
+ }
+ NewName += ".val";
+ TheArg->setName(NewName);
+
+ DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
+ << "' of function '" << NF->getName() << "'\n");
+
+ // All of the uses must be load instructions. Replace them all with
+ // the argument specified by ArgNo.
+ while (!GEP->use_empty()) {
+ LoadInst *L = cast<LoadInst>(GEP->use_back());
+ L->replaceAllUsesWith(TheArg);
+ AA.replaceWithNewValue(L, TheArg);
+ L->eraseFromParent();
+ }
+ AA.deleteValue(GEP);
+ GEP->eraseFromParent();
+ }
+ }
+
+ // Increment I2 past all of the arguments added for this promoted pointer.
+ for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
+ ++I2;
+ }
+
+ // Notify the alias analysis implementation that we inserted a new argument.
+ if (ExtraArgHack)
+ AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())),
+ NF->arg_begin());
+
+
+ // Tell the alias analysis that the old function is about to disappear.
+ AA.replaceWithNewValue(F, NF);
+
+
+ NF_CGN->stealCalledFunctionsFrom(CG[F]);
+
+ // Now that the old function is dead, delete it. If there is a dangling
+ // reference to the CallgraphNode, just leave the dead function around for
+ // someone else to nuke.
+ CallGraphNode *CGN = CG[F];
+ if (CGN->getNumReferences() == 0)
+ delete CG.removeFunctionFromModule(CGN);
+ else
+ F->setLinkage(Function::ExternalLinkage);
+
+ return NF_CGN;
+}
OpenPOWER on IntegriCloud