summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp320
1 files changed, 320 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
new file mode 100644
index 0000000..6925b27
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp
@@ -0,0 +1,320 @@
+//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the pass which inserts x86 AVX vzeroupper instructions
+// before calls to SSE encoded functions. This avoids transition latency
+// penalty when transferring control between AVX encoded instructions and old
+// SSE encoding mode.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrInfo.h"
+#include "X86Subtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-vzeroupper"
+
+STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
+
+namespace {
+
+ class VZeroUpperInserter : public MachineFunctionPass {
+ public:
+
+ VZeroUpperInserter() : MachineFunctionPass(ID) {}
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ const char *getPassName() const override {return "X86 vzeroupper inserter";}
+
+ private:
+
+ void processBasicBlock(MachineBasicBlock &MBB);
+ void insertVZeroUpper(MachineBasicBlock::iterator I,
+ MachineBasicBlock &MBB);
+ void addDirtySuccessor(MachineBasicBlock &MBB);
+
+ typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState;
+ static const char* getBlockExitStateName(BlockExitState ST);
+
+ // Core algorithm state:
+ // BlockState - Each block is either:
+ // - PASS_THROUGH: There are neither YMM dirtying instructions nor
+ // vzeroupper instructions in this block.
+ // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
+ // block that will ensure that YMM is clean on exit.
+ // - EXITS_DIRTY: An instruction in the block dirties YMM and no
+ // subsequent vzeroupper in the block clears it.
+ //
+ // AddedToDirtySuccessors - This flag is raised when a block is added to the
+ // DirtySuccessors list to ensure that it's not
+ // added multiple times.
+ //
+ // FirstUnguardedCall - Records the location of the first unguarded call in
+ // each basic block that may need to be guarded by a
+ // vzeroupper. We won't know whether it actually needs
+ // to be guarded until we discover a predecessor that
+ // is DIRTY_OUT.
+ struct BlockState {
+ BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {}
+ BlockExitState ExitState;
+ bool AddedToDirtySuccessors;
+ MachineBasicBlock::iterator FirstUnguardedCall;
+ };
+ typedef SmallVector<BlockState, 8> BlockStateMap;
+ typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList;
+
+ BlockStateMap BlockStates;
+ DirtySuccessorsWorkList DirtySuccessors;
+ bool EverMadeChange;
+ const TargetInstrInfo *TII;
+
+ static char ID;
+ };
+
+ char VZeroUpperInserter::ID = 0;
+}
+
+FunctionPass *llvm::createX86IssueVZeroUpperPass() {
+ return new VZeroUpperInserter();
+}
+
+const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
+ switch (ST) {
+ case PASS_THROUGH: return "Pass-through";
+ case EXITS_DIRTY: return "Exits-dirty";
+ case EXITS_CLEAN: return "Exits-clean";
+ }
+ llvm_unreachable("Invalid block exit state.");
+}
+
+static bool isYmmReg(unsigned Reg) {
+ return (Reg >= X86::YMM0 && Reg <= X86::YMM15);
+}
+
+static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
+ E = MRI.livein_end(); I != E; ++I)
+ if (isYmmReg(I->first))
+ return true;
+
+ return false;
+}
+
+static bool clobbersAllYmmRegs(const MachineOperand &MO) {
+ for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
+ if (!MO.clobbersPhysReg(reg))
+ return false;
+ }
+ return true;
+}
+
+static bool hasYmmReg(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
+ return true;
+ if (!MO.isReg())
+ continue;
+ if (MO.isDebug())
+ continue;
+ if (isYmmReg(MO.getReg()))
+ return true;
+ }
+ return false;
+}
+
+/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this
+/// instruction.
+static bool callClobbersAnyYmmReg(MachineInstr *MI) {
+ assert(MI->isCall() && "Can only be called on call instructions.");
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isRegMask())
+ continue;
+ for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
+ if (MO.clobbersPhysReg(reg))
+ return true;
+ }
+ }
+ return false;
+}
+
+// Insert a vzeroupper instruction before I.
+void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
+ MachineBasicBlock &MBB) {
+ DebugLoc dl = I->getDebugLoc();
+ BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
+ ++NumVZU;
+ EverMadeChange = true;
+}
+
+// Add MBB to the DirtySuccessors list if it hasn't already been added.
+void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
+ if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
+ DirtySuccessors.push_back(&MBB);
+ BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
+ }
+}
+
+/// processBasicBlock - Loop over all of the instructions in the basic block,
+/// inserting vzeroupper instructions before function calls.
+void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
+
+ // Start by assuming that the block PASS_THROUGH, which implies no unguarded
+ // calls.
+ BlockExitState CurState = PASS_THROUGH;
+ BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
+
+ for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
+ MachineInstr *MI = I;
+ bool isControlFlow = MI->isCall() || MI->isReturn();
+
+ // Shortcut: don't need to check regular instructions in dirty state.
+ if (!isControlFlow && CurState == EXITS_DIRTY)
+ continue;
+
+ if (hasYmmReg(MI)) {
+ // We found a ymm-using instruction; this could be an AVX instruction,
+ // or it could be control flow.
+ CurState = EXITS_DIRTY;
+ continue;
+ }
+
+ // Check for control-flow out of the current function (which might
+ // indirectly execute SSE instructions).
+ if (!isControlFlow)
+ continue;
+
+ // If the call won't clobber any YMM register, skip it as well. It usually
+ // happens on helper function calls (such as '_chkstk', '_ftol2') where
+ // standard calling convention is not used (RegMask is not used to mark
+ // register clobbered and register usage (def/imp-def/use) is well-defined
+ // and explicitly specified.
+ if (MI->isCall() && !callClobbersAnyYmmReg(MI))
+ continue;
+
+ // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
+ // registers. This instruction has zero latency. In addition, the processor
+ // changes back to Clean state, after which execution of Intel SSE
+ // instructions or Intel AVX instructions has no transition penalty. Add
+ // the VZEROUPPER instruction before any function call/return that might
+ // execute SSE code.
+ // FIXME: In some cases, we may want to move the VZEROUPPER into a
+ // predecessor block.
+ if (CurState == EXITS_DIRTY) {
+ // After the inserted VZEROUPPER the state becomes clean again, but
+ // other YMM may appear before other subsequent calls or even before
+ // the end of the BB.
+ insertVZeroUpper(I, MBB);
+ CurState = EXITS_CLEAN;
+ } else if (CurState == PASS_THROUGH) {
+ // If this block is currently in pass-through state and we encounter a
+ // call then whether we need a vzeroupper or not depends on whether this
+ // block has successors that exit dirty. Record the location of the call,
+ // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
+ // It will be inserted later if necessary.
+ BlockStates[MBB.getNumber()].FirstUnguardedCall = I;
+ CurState = EXITS_CLEAN;
+ }
+ }
+
+ DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
+ << getBlockExitStateName(CurState) << '\n');
+
+ if (CurState == EXITS_DIRTY)
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end();
+ SI != SE; ++SI)
+ addDirtySuccessor(**SI);
+
+ BlockStates[MBB.getNumber()].ExitState = CurState;
+}
+
+/// runOnMachineFunction - Loop over all of the basic blocks, inserting
+/// vzeroupper instructions before function calls.
+bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
+ const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
+ if (!ST.hasAVX() || ST.hasAVX512())
+ return false;
+ TII = ST.getInstrInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ EverMadeChange = false;
+
+ bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
+
+ // Fast check: if the function doesn't use any ymm registers, we don't need
+ // to insert any VZEROUPPER instructions. This is constant-time, so it is
+ // cheap in the common case of no ymm use.
+ bool YMMUsed = FnHasLiveInYmm;
+ if (!YMMUsed) {
+ const TargetRegisterClass *RC = &X86::VR256RegClass;
+ for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
+ i++) {
+ if (!MRI.reg_nodbg_empty(*i)) {
+ YMMUsed = true;
+ break;
+ }
+ }
+ }
+ if (!YMMUsed) {
+ return false;
+ }
+
+ assert(BlockStates.empty() && DirtySuccessors.empty() &&
+ "X86VZeroUpper state should be clear");
+ BlockStates.resize(MF.getNumBlockIDs());
+
+ // Process all blocks. This will compute block exit states, record the first
+ // unguarded call in each block, and add successors of dirty blocks to the
+ // DirtySuccessors list.
+ for (MachineBasicBlock &MBB : MF)
+ processBasicBlock(MBB);
+
+ // If any YMM regs are live in to this function, add the entry block to the
+ // DirtySuccessors list
+ if (FnHasLiveInYmm)
+ addDirtySuccessor(MF.front());
+
+ // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add
+ // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
+ // through PASS_THROUGH blocks.
+ while (!DirtySuccessors.empty()) {
+ MachineBasicBlock &MBB = *DirtySuccessors.back();
+ DirtySuccessors.pop_back();
+ BlockState &BBState = BlockStates[MBB.getNumber()];
+
+ // MBB is a successor of a dirty block, so its first call needs to be
+ // guarded.
+ if (BBState.FirstUnguardedCall != MBB.end())
+ insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
+
+ // If this successor was a pass-through block then it is now dirty, and its
+ // successors need to be added to the worklist (if they haven't been
+ // already).
+ if (BBState.ExitState == PASS_THROUGH) {
+ DEBUG(dbgs() << "MBB #" << MBB.getNumber()
+ << " was Pass-through, is now Dirty-out.\n");
+ for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
+ SE = MBB.succ_end();
+ SI != SE; ++SI)
+ addDirtySuccessor(**SI);
+ }
+ }
+
+ BlockStates.clear();
+ return EverMadeChange;
+}
OpenPOWER on IntegriCloud