diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp | 320 |
1 files changed, 320 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp new file mode 100644 index 0000000..6925b27 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86VZeroUpper.cpp @@ -0,0 +1,320 @@ +//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which inserts x86 AVX vzeroupper instructions +// before calls to SSE encoded functions. This avoids transition latency +// penalty when transferring control between AVX encoded instructions and old +// SSE encoding mode. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +using namespace llvm; + +#define DEBUG_TYPE "x86-vzeroupper" + +STATISTIC(NumVZU, "Number of vzeroupper instructions inserted"); + +namespace { + + class VZeroUpperInserter : public MachineFunctionPass { + public: + + VZeroUpperInserter() : MachineFunctionPass(ID) {} + bool runOnMachineFunction(MachineFunction &MF) override; + const char *getPassName() const override {return "X86 vzeroupper inserter";} + + private: + + void processBasicBlock(MachineBasicBlock &MBB); + void insertVZeroUpper(MachineBasicBlock::iterator I, + MachineBasicBlock &MBB); + void addDirtySuccessor(MachineBasicBlock &MBB); + + typedef enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY } BlockExitState; + static const char* getBlockExitStateName(BlockExitState ST); + + // Core algorithm state: + // BlockState - Each block is either: + // - PASS_THROUGH: There are neither YMM dirtying instructions nor + // vzeroupper instructions in this block. + // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this + // block that will ensure that YMM is clean on exit. + // - EXITS_DIRTY: An instruction in the block dirties YMM and no + // subsequent vzeroupper in the block clears it. + // + // AddedToDirtySuccessors - This flag is raised when a block is added to the + // DirtySuccessors list to ensure that it's not + // added multiple times. + // + // FirstUnguardedCall - Records the location of the first unguarded call in + // each basic block that may need to be guarded by a + // vzeroupper. We won't know whether it actually needs + // to be guarded until we discover a predecessor that + // is DIRTY_OUT. + struct BlockState { + BlockState() : ExitState(PASS_THROUGH), AddedToDirtySuccessors(false) {} + BlockExitState ExitState; + bool AddedToDirtySuccessors; + MachineBasicBlock::iterator FirstUnguardedCall; + }; + typedef SmallVector<BlockState, 8> BlockStateMap; + typedef SmallVector<MachineBasicBlock*, 8> DirtySuccessorsWorkList; + + BlockStateMap BlockStates; + DirtySuccessorsWorkList DirtySuccessors; + bool EverMadeChange; + const TargetInstrInfo *TII; + + static char ID; + }; + + char VZeroUpperInserter::ID = 0; +} + +FunctionPass *llvm::createX86IssueVZeroUpperPass() { + return new VZeroUpperInserter(); +} + +const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) { + switch (ST) { + case PASS_THROUGH: return "Pass-through"; + case EXITS_DIRTY: return "Exits-dirty"; + case EXITS_CLEAN: return "Exits-clean"; + } + llvm_unreachable("Invalid block exit state."); +} + +static bool isYmmReg(unsigned Reg) { + return (Reg >= X86::YMM0 && Reg <= X86::YMM15); +} + +static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) { + for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(), + E = MRI.livein_end(); I != E; ++I) + if (isYmmReg(I->first)) + return true; + + return false; +} + +static bool clobbersAllYmmRegs(const MachineOperand &MO) { + for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { + if (!MO.clobbersPhysReg(reg)) + return false; + } + return true; +} + +static bool hasYmmReg(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO)) + return true; + if (!MO.isReg()) + continue; + if (MO.isDebug()) + continue; + if (isYmmReg(MO.getReg())) + return true; + } + return false; +} + +/// clobbersAnyYmmReg() - Check if any YMM register will be clobbered by this +/// instruction. +static bool callClobbersAnyYmmReg(MachineInstr *MI) { + assert(MI->isCall() && "Can only be called on call instructions."); + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isRegMask()) + continue; + for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) { + if (MO.clobbersPhysReg(reg)) + return true; + } + } + return false; +} + +// Insert a vzeroupper instruction before I. +void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I, + MachineBasicBlock &MBB) { + DebugLoc dl = I->getDebugLoc(); + BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER)); + ++NumVZU; + EverMadeChange = true; +} + +// Add MBB to the DirtySuccessors list if it hasn't already been added. +void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) { + if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) { + DirtySuccessors.push_back(&MBB); + BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true; + } +} + +/// processBasicBlock - Loop over all of the instructions in the basic block, +/// inserting vzeroupper instructions before function calls. +void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) { + + // Start by assuming that the block PASS_THROUGH, which implies no unguarded + // calls. + BlockExitState CurState = PASS_THROUGH; + BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end(); + + for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) { + MachineInstr *MI = I; + bool isControlFlow = MI->isCall() || MI->isReturn(); + + // Shortcut: don't need to check regular instructions in dirty state. + if (!isControlFlow && CurState == EXITS_DIRTY) + continue; + + if (hasYmmReg(MI)) { + // We found a ymm-using instruction; this could be an AVX instruction, + // or it could be control flow. + CurState = EXITS_DIRTY; + continue; + } + + // Check for control-flow out of the current function (which might + // indirectly execute SSE instructions). + if (!isControlFlow) + continue; + + // If the call won't clobber any YMM register, skip it as well. It usually + // happens on helper function calls (such as '_chkstk', '_ftol2') where + // standard calling convention is not used (RegMask is not used to mark + // register clobbered and register usage (def/imp-def/use) is well-defined + // and explicitly specified. + if (MI->isCall() && !callClobbersAnyYmmReg(MI)) + continue; + + // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX + // registers. This instruction has zero latency. In addition, the processor + // changes back to Clean state, after which execution of Intel SSE + // instructions or Intel AVX instructions has no transition penalty. Add + // the VZEROUPPER instruction before any function call/return that might + // execute SSE code. + // FIXME: In some cases, we may want to move the VZEROUPPER into a + // predecessor block. + if (CurState == EXITS_DIRTY) { + // After the inserted VZEROUPPER the state becomes clean again, but + // other YMM may appear before other subsequent calls or even before + // the end of the BB. + insertVZeroUpper(I, MBB); + CurState = EXITS_CLEAN; + } else if (CurState == PASS_THROUGH) { + // If this block is currently in pass-through state and we encounter a + // call then whether we need a vzeroupper or not depends on whether this + // block has successors that exit dirty. Record the location of the call, + // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet. + // It will be inserted later if necessary. + BlockStates[MBB.getNumber()].FirstUnguardedCall = I; + CurState = EXITS_CLEAN; + } + } + + DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: " + << getBlockExitStateName(CurState) << '\n'); + + if (CurState == EXITS_DIRTY) + for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), + SE = MBB.succ_end(); + SI != SE; ++SI) + addDirtySuccessor(**SI); + + BlockStates[MBB.getNumber()].ExitState = CurState; +} + +/// runOnMachineFunction - Loop over all of the basic blocks, inserting +/// vzeroupper instructions before function calls. +bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) { + const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); + if (!ST.hasAVX() || ST.hasAVX512()) + return false; + TII = ST.getInstrInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + EverMadeChange = false; + + bool FnHasLiveInYmm = checkFnHasLiveInYmm(MRI); + + // Fast check: if the function doesn't use any ymm registers, we don't need + // to insert any VZEROUPPER instructions. This is constant-time, so it is + // cheap in the common case of no ymm use. + bool YMMUsed = FnHasLiveInYmm; + if (!YMMUsed) { + const TargetRegisterClass *RC = &X86::VR256RegClass; + for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e; + i++) { + if (!MRI.reg_nodbg_empty(*i)) { + YMMUsed = true; + break; + } + } + } + if (!YMMUsed) { + return false; + } + + assert(BlockStates.empty() && DirtySuccessors.empty() && + "X86VZeroUpper state should be clear"); + BlockStates.resize(MF.getNumBlockIDs()); + + // Process all blocks. This will compute block exit states, record the first + // unguarded call in each block, and add successors of dirty blocks to the + // DirtySuccessors list. + for (MachineBasicBlock &MBB : MF) + processBasicBlock(MBB); + + // If any YMM regs are live in to this function, add the entry block to the + // DirtySuccessors list + if (FnHasLiveInYmm) + addDirtySuccessor(MF.front()); + + // Re-visit all blocks that are successors of EXITS_DIRTY bsocks. Add + // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY + // through PASS_THROUGH blocks. + while (!DirtySuccessors.empty()) { + MachineBasicBlock &MBB = *DirtySuccessors.back(); + DirtySuccessors.pop_back(); + BlockState &BBState = BlockStates[MBB.getNumber()]; + + // MBB is a successor of a dirty block, so its first call needs to be + // guarded. + if (BBState.FirstUnguardedCall != MBB.end()) + insertVZeroUpper(BBState.FirstUnguardedCall, MBB); + + // If this successor was a pass-through block then it is now dirty, and its + // successors need to be added to the worklist (if they haven't been + // already). + if (BBState.ExitState == PASS_THROUGH) { + DEBUG(dbgs() << "MBB #" << MBB.getNumber() + << " was Pass-through, is now Dirty-out.\n"); + for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(), + SE = MBB.succ_end(); + SI != SE; ++SI) + addDirtySuccessor(**SI); + } + } + + BlockStates.clear(); + return EverMadeChange; +} |