diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp | 879 |
1 files changed, 608 insertions, 271 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp index 7df7260..2e7bbb2 100644 --- a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp +++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp @@ -21,6 +21,7 @@ #include "llvm/Support/Debug.h" #include "llvm/Target/CostTable.h" #include "llvm/Target/TargetLowering.h" + using namespace llvm; #define DEBUG_TYPE "x86tti" @@ -62,8 +63,8 @@ unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) { if (ST->is64Bit()) return 64; - return 32; + return 32; } unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { @@ -84,12 +85,12 @@ unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) { return 2; } -unsigned X86TTIImpl::getArithmeticInstrCost( +int X86TTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo) { // Legalize the type. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); @@ -101,10 +102,9 @@ unsigned X86TTIImpl::getArithmeticInstrCost( // normally expanded to the sequence SRA + SRL + ADD + SRA. // The OperandValue properties many not be same as that of previous // operation;conservatively assume OP_None. - unsigned Cost = - 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info, - TargetTransformInfo::OP_None, - TargetTransformInfo::OP_None); + int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, + Op2Info, TargetTransformInfo::OP_None, + TargetTransformInfo::OP_None); Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info, TargetTransformInfo::OP_None, TargetTransformInfo::OP_None); @@ -115,8 +115,7 @@ unsigned X86TTIImpl::getArithmeticInstrCost( return Cost; } - static const CostTblEntry<MVT::SimpleValueType> - AVX2UniformConstCostTable[] = { + static const CostTblEntry AVX2UniformConstCostTable[] = { { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle. { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence @@ -127,12 +126,12 @@ unsigned X86TTIImpl::getArithmeticInstrCost( if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && ST->hasAVX2()) { - int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second); - if (Idx != -1) - return LT.first * AVX2UniformConstCostTable[Idx].Cost; + if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD, + LT.second)) + return LT.first * Entry->Cost; } - static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = { + static const CostTblEntry AVX512CostTable[] = { { ISD::SHL, MVT::v16i32, 1 }, { ISD::SRL, MVT::v16i32, 1 }, { ISD::SRA, MVT::v16i32, 1 }, @@ -141,7 +140,12 @@ unsigned X86TTIImpl::getArithmeticInstrCost( { ISD::SRA, MVT::v8i64, 1 }, }; - static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = { + if (ST->hasAVX512()) { + if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second)) + return LT.first * Entry->Cost; + } + + static const CostTblEntry AVX2CostTable[] = { // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to // customize them to detect the cases where shift amount is a scalar one. { ISD::SHL, MVT::v4i32, 1 }, @@ -154,7 +158,57 @@ unsigned X86TTIImpl::getArithmeticInstrCost( { ISD::SRL, MVT::v2i64, 1 }, { ISD::SHL, MVT::v4i64, 1 }, { ISD::SRL, MVT::v4i64, 1 }, + }; + + // Look for AVX2 lowering tricks. + if (ST->hasAVX2()) { + if (ISD == ISD::SHL && LT.second == MVT::v16i16 && + (Op2Info == TargetTransformInfo::OK_UniformConstantValue || + Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) + // On AVX2, a packed v16i16 shift left by a constant build_vector + // is lowered into a vector multiply (vpmullw). + return LT.first; + + if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second)) + return LT.first * Entry->Cost; + } + + static const CostTblEntry XOPCostTable[] = { + // 128bit shifts take 1cy, but right shifts require negation beforehand. + { ISD::SHL, MVT::v16i8, 1 }, + { ISD::SRL, MVT::v16i8, 2 }, + { ISD::SRA, MVT::v16i8, 2 }, + { ISD::SHL, MVT::v8i16, 1 }, + { ISD::SRL, MVT::v8i16, 2 }, + { ISD::SRA, MVT::v8i16, 2 }, + { ISD::SHL, MVT::v4i32, 1 }, + { ISD::SRL, MVT::v4i32, 2 }, + { ISD::SRA, MVT::v4i32, 2 }, + { ISD::SHL, MVT::v2i64, 1 }, + { ISD::SRL, MVT::v2i64, 2 }, + { ISD::SRA, MVT::v2i64, 2 }, + // 256bit shifts require splitting if AVX2 didn't catch them above. + { ISD::SHL, MVT::v32i8, 2 }, + { ISD::SRL, MVT::v32i8, 4 }, + { ISD::SRA, MVT::v32i8, 4 }, + { ISD::SHL, MVT::v16i16, 2 }, + { ISD::SRL, MVT::v16i16, 4 }, + { ISD::SRA, MVT::v16i16, 4 }, + { ISD::SHL, MVT::v8i32, 2 }, + { ISD::SRL, MVT::v8i32, 4 }, + { ISD::SRA, MVT::v8i32, 4 }, + { ISD::SHL, MVT::v4i64, 2 }, + { ISD::SRL, MVT::v4i64, 4 }, + { ISD::SRA, MVT::v4i64, 4 }, + }; + // Look for XOP lowering tricks. + if (ST->hasXOP()) { + if (const auto *Entry = CostTableLookup(XOPCostTable, ISD, LT.second)) + return LT.first * Entry->Cost; + } + + static const CostTblEntry AVX2CustomCostTable[] = { { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence. { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence. @@ -163,7 +217,8 @@ unsigned X86TTIImpl::getArithmeticInstrCost( { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence. { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence. - { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized. + { ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence. + { ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence. // Vectorizing division is a bad idea. See the SSE2 table for more comments. { ISD::SDIV, MVT::v32i8, 32*20 }, @@ -176,44 +231,44 @@ unsigned X86TTIImpl::getArithmeticInstrCost( { ISD::UDIV, MVT::v4i64, 4*20 }, }; - if (ST->hasAVX512()) { - int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second); - if (Idx != -1) - return LT.first * AVX512CostTable[Idx].Cost; - } - // Look for AVX2 lowering tricks. + // Look for AVX2 lowering tricks for custom cases. if (ST->hasAVX2()) { - if (ISD == ISD::SHL && LT.second == MVT::v16i16 && - (Op2Info == TargetTransformInfo::OK_UniformConstantValue || - Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)) - // On AVX2, a packed v16i16 shift left by a constant build_vector - // is lowered into a vector multiply (vpmullw). - return LT.first; - - int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second); - if (Idx != -1) - return LT.first * AVX2CostTable[Idx].Cost; + if (const auto *Entry = CostTableLookup(AVX2CustomCostTable, ISD, + LT.second)) + return LT.first * Entry->Cost; } - static const CostTblEntry<MVT::SimpleValueType> + static const CostTblEntry SSE2UniformConstCostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // Constant splats are cheaper for the following instructions. { ISD::SHL, MVT::v16i8, 1 }, // psllw. + { ISD::SHL, MVT::v32i8, 2 }, // psllw. { ISD::SHL, MVT::v8i16, 1 }, // psllw. + { ISD::SHL, MVT::v16i16, 2 }, // psllw. { ISD::SHL, MVT::v4i32, 1 }, // pslld + { ISD::SHL, MVT::v8i32, 2 }, // pslld { ISD::SHL, MVT::v2i64, 1 }, // psllq. + { ISD::SHL, MVT::v4i64, 2 }, // psllq. { ISD::SRL, MVT::v16i8, 1 }, // psrlw. + { ISD::SRL, MVT::v32i8, 2 }, // psrlw. { ISD::SRL, MVT::v8i16, 1 }, // psrlw. + { ISD::SRL, MVT::v16i16, 2 }, // psrlw. { ISD::SRL, MVT::v4i32, 1 }, // psrld. + { ISD::SRL, MVT::v8i32, 2 }, // psrld. { ISD::SRL, MVT::v2i64, 1 }, // psrlq. + { ISD::SRL, MVT::v4i64, 2 }, // psrlq. { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. + { ISD::SRA, MVT::v32i8, 8 }, // psrlw, pand, pxor, psubb. { ISD::SRA, MVT::v8i16, 1 }, // psraw. + { ISD::SRA, MVT::v16i16, 2 }, // psraw. { ISD::SRA, MVT::v4i32, 1 }, // psrad. + { ISD::SRA, MVT::v8i32, 2 }, // psrad. { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle. + { ISD::SRA, MVT::v4i64, 8 }, // 2 x psrad + shuffle. { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence @@ -227,27 +282,34 @@ unsigned X86TTIImpl::getArithmeticInstrCost( if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41()) return LT.first * 15; - int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second); - if (Idx != -1) - return LT.first * SSE2UniformConstCostTable[Idx].Cost; + if (const auto *Entry = CostTableLookup(SSE2UniformConstCostTable, ISD, + LT.second)) + return LT.first * Entry->Cost; } if (ISD == ISD::SHL && Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) { - EVT VT = LT.second; + MVT VT = LT.second; + // Vector shift left by non uniform constant can be lowered + // into vector multiply (pmullw/pmulld). if ((VT == MVT::v8i16 && ST->hasSSE2()) || (VT == MVT::v4i32 && ST->hasSSE41())) - // Vector shift left by non uniform constant can be lowered - // into vector multiply (pmullw/pmulld). return LT.first; + + // v16i16 and v8i32 shifts by non-uniform constants are lowered into a + // sequence of extract + two vector multiply + insert. + if ((VT == MVT::v8i32 || VT == MVT::v16i16) && + (ST->hasAVX() && !ST->hasAVX2())) + ISD = ISD::MUL; + + // A vector shift left by non uniform constant is converted + // into a vector multiply; the new multiply is eventually + // lowered into a sequence of shuffles and 2 x pmuludq. if (VT == MVT::v4i32 && ST->hasSSE2()) - // A vector shift left by non uniform constant is converted - // into a vector multiply; the new multiply is eventually - // lowered into a sequence of shuffles and 2 x pmuludq. ISD = ISD::MUL; } - static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = { + static const CostTblEntry SSE2CostTable[] = { // We don't correctly identify costs of casts because they are marked as // custom. // For some cases, where the shift amount is a scalar we would be able @@ -257,20 +319,31 @@ unsigned X86TTIImpl::getArithmeticInstrCost( // used for vectorization and we don't want to make vectorized code worse // than scalar code. { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence. + { ISD::SHL, MVT::v32i8, 2*26 }, // cmpgtb sequence. { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence. + { ISD::SHL, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. - { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized. - { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized. + { ISD::SHL, MVT::v8i32, 2*2*5 }, // We optimized this using mul. + { ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence. + { ISD::SHL, MVT::v4i64, 2*4 }, // splat+shuffle sequence. { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence. + { ISD::SRL, MVT::v32i8, 2*26 }, // cmpgtb sequence. { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence. + { ISD::SRL, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend. - { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized. + { ISD::SRL, MVT::v8i32, 2*16 }, // Shift each lane + blend. + { ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence. + { ISD::SRL, MVT::v4i64, 2*4 }, // splat+shuffle sequence. { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence. + { ISD::SRA, MVT::v32i8, 2*54 }, // unpacked cmpgtb sequence. { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence. + { ISD::SRA, MVT::v16i16, 2*32 }, // cmpgtb sequence. { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend. - { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized. + { ISD::SRA, MVT::v8i32, 2*16 }, // Shift each lane + blend. + { ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence. + { ISD::SRA, MVT::v4i64, 2*12 }, // srl/xor/sub sequence. // It is not a good idea to vectorize division. We have to scalarize it and // in the process we will often end up having to spilling regular @@ -289,12 +362,11 @@ unsigned X86TTIImpl::getArithmeticInstrCost( }; if (ST->hasSSE2()) { - int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second); - if (Idx != -1) - return LT.first * SSE2CostTable[Idx].Cost; + if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second)) + return LT.first * Entry->Cost; } - static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = { + static const CostTblEntry AVX1CostTable[] = { // We don't have to scalarize unsupported ops. We can issue two half-sized // operations and we only need to extract the upper YMM half. // Two ops + 1 extract + 1 insert = 4. @@ -314,29 +386,21 @@ unsigned X86TTIImpl::getArithmeticInstrCost( // Look for AVX1 lowering tricks. if (ST->hasAVX() && !ST->hasAVX2()) { - EVT VT = LT.second; + MVT VT = LT.second; - // v16i16 and v8i32 shifts by non-uniform constants are lowered into a - // sequence of extract + two vector multiply + insert. - if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) && - Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) - ISD = ISD::MUL; - - int Idx = CostTableLookup(AVX1CostTable, ISD, VT); - if (Idx != -1) - return LT.first * AVX1CostTable[Idx].Cost; + if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, VT)) + return LT.first * Entry->Cost; } // Custom lowering of vectors. - static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = { + static const CostTblEntry CustomLowered[] = { // A v2i64/v4i64 and multiply is custom lowered as a series of long // multiplies(3), shifts(4) and adds(2). { ISD::MUL, MVT::v2i64, 9 }, { ISD::MUL, MVT::v4i64, 9 }, }; - int Idx = CostTableLookup(CustomLowered, ISD, LT.second); - if (Idx != -1) - return LT.first * CustomLowered[Idx].Cost; + if (const auto *Entry = CostTableLookup(CustomLowered, ISD, LT.second)) + return LT.first * Entry->Cost; // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, // 2x pmuludq, 2x shuffle. @@ -348,15 +412,15 @@ unsigned X86TTIImpl::getArithmeticInstrCost( return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info); } -unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, - Type *SubTp) { +int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) { // We only estimate the cost of reverse and alternate shuffles. if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); if (Kind == TTI::SK_Reverse) { - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); - unsigned Cost = 1; + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + int Cost = 1; if (LT.second.getSizeInBits() > 128) Cost = 3; // Extract + insert + copy. @@ -367,14 +431,14 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, if (Kind == TTI::SK_Alternate) { // 64-bit packed float vectors (v2f32) are widened to type v4f32. // 64-bit packed integer vectors (v2i32) are promoted to type v2i64. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); // The backend knows how to generate a single VEX.256 version of // instruction VPBLENDW if the target supports AVX2. if (ST->hasAVX2() && LT.second == MVT::v16i16) return LT.first; - static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = { + static const CostTblEntry AVXAltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd @@ -390,13 +454,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9} }; - if (ST->hasAVX()) { - int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); - if (Idx != -1) - return LT.first * AVXAltShuffleTbl[Idx].Cost; - } + if (ST->hasAVX()) + if (const auto *Entry = CostTableLookup(AVXAltShuffleTbl, + ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; - static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = { + static const CostTblEntry SSE41AltShuffleTbl[] = { // These are lowered into movsd. {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, @@ -414,13 +477,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} }; - if (ST->hasSSE41()) { - int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); - if (Idx != -1) - return LT.first * SSE41AltShuffleTbl[Idx].Cost; - } + if (ST->hasSSE41()) + if (const auto *Entry = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, + LT.second)) + return LT.first * Entry->Cost; - static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = { + static const CostTblEntry SSSE3AltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd @@ -433,13 +495,12 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or }; - if (ST->hasSSSE3()) { - int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); - if (Idx != -1) - return LT.first * SSSE3AltShuffleTbl[Idx].Cost; - } + if (ST->hasSSSE3()) + if (const auto *Entry = CostTableLookup(SSSE3AltShuffleTbl, + ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; - static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = { + static const CostTblEntry SSEAltShuffleTbl[] = { {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd @@ -454,65 +515,47 @@ unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, }; // Fall-back (SSE3 and SSE2). - int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second); - if (Idx != -1) - return LT.first * SSEAltShuffleTbl[Idx].Cost; + if (const auto *Entry = CostTableLookup(SSEAltShuffleTbl, + ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); } -unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { +int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); - std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); - std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst); - - static const TypeConversionCostTblEntry<MVT::SimpleValueType> - SSE2ConvTbl[] = { - // These are somewhat magic numbers justified by looking at the output of - // Intel's IACA, running some kernels and making sure when we take - // legalization into account the throughput will be overestimated. - { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, - { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, - { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, - { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, - { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, - { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, - { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, - { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, - // There are faster sequences for float conversions. - { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, - { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, - { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, - { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, - { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, - { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 }, - { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, - { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, + // FIXME: Need a better design of the cost table to handle non-simple types of + // potential massive combinations (elem_num x src_type x dst_type). + + static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = { + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 }, + + { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 }, + { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 }, + { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 }, + { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 1 }, + { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 }, + { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 }, }; - if (ST->hasSSE2() && !ST->hasAVX()) { - int Idx = - ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second); - if (Idx != -1) - return LTSrc.first * SSE2ConvTbl[Idx].Cost; - } - - static const TypeConversionCostTblEntry<MVT::SimpleValueType> - AVX512ConversionTbl[] = { + static const TypeConversionCostTblEntry AVX512FConversionTbl[] = { { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 }, { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 }, { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 }, - { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 }, { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 }, { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 }, { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 }, { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, - { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 }, // v16i1 -> v16i32 - load + broadcast { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, @@ -522,33 +565,49 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 }, { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 }, - { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 }, - { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, + { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, - }; - if (ST->hasAVX512()) { - int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second, - LTSrc.second); - if (Idx != -1) - return AVX512ConversionTbl[Idx].Cost; - } - EVT SrcTy = TLI->getValueType(DL, Src); - EVT DstTy = TLI->getValueType(DL, Dst); - - // The function getSimpleVT only handles simple value types. - if (!SrcTy.isSimple() || !DstTy.isSimple()) - return BaseT::getCastInstrCost(Opcode, Dst, Src); + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i8, 2 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 2 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 5 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 12 }, + { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 26 }, + + { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 }, + { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, + { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 }, + { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 }, + }; - static const TypeConversionCostTblEntry<MVT::SimpleValueType> - AVX2ConversionTbl[] = { + static const TypeConversionCostTblEntry AVX2ConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 }, @@ -579,8 +638,7 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 }, }; - static const TypeConversionCostTblEntry<MVT::SimpleValueType> - AVXConversionTbl[] = { + static const TypeConversionCostTblEntry AVXConversionTbl[] = { { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 }, @@ -650,34 +708,158 @@ unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 }, }; + static const TypeConversionCostTblEntry SSE41ConversionTbl[] = { + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 4 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 2 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 1 }, + { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, + { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 }, + { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, + { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 2 }, + + { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 }, + { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 3 }, + { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 30 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, + { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1 }, + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1 }, + { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, + }; + + static const TypeConversionCostTblEntry SSE2ConversionTbl[] = { + // These are somewhat magic numbers justified by looking at the output of + // Intel's IACA, running some kernels and making sure when we take + // legalization into account the throughput will be overestimated. + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 }, + // There are faster sequences for float conversions. + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 }, + + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 2 }, + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 9 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 12 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 6 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 }, + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 3 }, + { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 }, + { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 }, + { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 2 }, + { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i8, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i8, 6 }, + + { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 10 }, + { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 }, + { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 3 }, + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 }, + { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 3 }, + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, + { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 4 }, + }; + + std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src); + std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst); + + if (ST->hasSSE2() && !ST->hasAVX()) { + if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, + LTDest.second, LTSrc.second)) + return LTSrc.first * Entry->Cost; + } + + EVT SrcTy = TLI->getValueType(DL, Src); + EVT DstTy = TLI->getValueType(DL, Dst); + + // The function getSimpleVT only handles simple value types. + if (!SrcTy.isSimple() || !DstTy.isSimple()) + return BaseT::getCastInstrCost(Opcode, Dst, Src); + + if (ST->hasDQI()) + if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + + if (ST->hasAVX512()) + if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + if (ST->hasAVX2()) { - int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD, - DstTy.getSimpleVT(), SrcTy.getSimpleVT()); - if (Idx != -1) - return AVX2ConversionTbl[Idx].Cost; + if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; } if (ST->hasAVX()) { - int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(), - SrcTy.getSimpleVT()); - if (Idx != -1) - return AVXConversionTbl[Idx].Cost; + if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + if (ST->hasSSE41()) { + if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + if (ST->hasSSE2()) { + if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; } return BaseT::getCastInstrCost(Opcode, Dst, Src); } -unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, - Type *CondTy) { +int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { // Legalize the type. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); - static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = { + static const CostTblEntry SSE42CostTbl[] = { { ISD::SETCC, MVT::v2f64, 1 }, { ISD::SETCC, MVT::v4f32, 1 }, { ISD::SETCC, MVT::v2i64, 1 }, @@ -686,7 +868,7 @@ unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, { ISD::SETCC, MVT::v16i8, 1 }, }; - static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = { + static const CostTblEntry AVX1CostTbl[] = { { ISD::SETCC, MVT::v4f64, 1 }, { ISD::SETCC, MVT::v8f32, 1 }, // AVX1 does not support 8-wide integer compare. @@ -696,54 +878,45 @@ unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, { ISD::SETCC, MVT::v32i8, 4 }, }; - static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = { + static const CostTblEntry AVX2CostTbl[] = { { ISD::SETCC, MVT::v4i64, 1 }, { ISD::SETCC, MVT::v8i32, 1 }, { ISD::SETCC, MVT::v16i16, 1 }, { ISD::SETCC, MVT::v32i8, 1 }, }; - static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = { + static const CostTblEntry AVX512CostTbl[] = { { ISD::SETCC, MVT::v8i64, 1 }, { ISD::SETCC, MVT::v16i32, 1 }, { ISD::SETCC, MVT::v8f64, 1 }, { ISD::SETCC, MVT::v16f32, 1 }, }; - if (ST->hasAVX512()) { - int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy); - if (Idx != -1) - return LT.first * AVX512CostTbl[Idx].Cost; - } + if (ST->hasAVX512()) + if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy)) + return LT.first * Entry->Cost; - if (ST->hasAVX2()) { - int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy); - if (Idx != -1) - return LT.first * AVX2CostTbl[Idx].Cost; - } + if (ST->hasAVX2()) + if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy)) + return LT.first * Entry->Cost; - if (ST->hasAVX()) { - int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy); - if (Idx != -1) - return LT.first * AVX1CostTbl[Idx].Cost; - } + if (ST->hasAVX()) + if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy)) + return LT.first * Entry->Cost; - if (ST->hasSSE42()) { - int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy); - if (Idx != -1) - return LT.first * SSE42CostTbl[Idx].Cost; - } + if (ST->hasSSE42()) + if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy)) + return LT.first * Entry->Cost; return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); } -unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, - unsigned Index) { +int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) @@ -761,10 +934,9 @@ unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, return BaseT::getVectorInstrCost(Opcode, Val, Index); } -unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, - bool Extract) { +int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { assert (Ty->isVectorTy() && "Can only scalarize vectors"); - unsigned Cost = 0; + int Cost = 0; for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { if (Insert) @@ -776,9 +948,8 @@ unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, return Cost; } -unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, - unsigned Alignment, - unsigned AddressSpace) { +int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) { // Handle non-power-of-two vectors such as <3 x float> if (VectorType *VTy = dyn_cast<VectorType>(Src)) { unsigned NumElem = VTy->getVectorNumElements(); @@ -796,22 +967,21 @@ unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, // Assume that all other non-power-of-two numbers are scalarized. if (!isPowerOf2_32(NumElem)) { - unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), - Alignment, AddressSpace); - unsigned SplitCost = getScalarizationOverhead(Src, - Opcode == Instruction::Load, - Opcode==Instruction::Store); + int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment, + AddressSpace); + int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load, + Opcode == Instruction::Store); return NumElem * Cost + SplitCost; } } // Legalize the type. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Invalid Opcode"); // Each load/store unit costs 1. - unsigned Cost = LT.first * 1; + int Cost = LT.first * 1; // On Sandybridge 256bit load/stores are double pumped // (but not on Haswell). @@ -821,9 +991,9 @@ unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, return Cost; } -unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, - unsigned Alignment, - unsigned AddressSpace) { +int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, + unsigned Alignment, + unsigned AddressSpace) { VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy); if (!SrcVTy) // To calculate scalar take the regular cost, without mask @@ -832,34 +1002,33 @@ unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, unsigned NumElem = SrcVTy->getVectorNumElements(); VectorType *MaskTy = VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem); - if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) || - (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) || + if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy)) || + (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy)) || !isPowerOf2_32(NumElem)) { // Scalarization - unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true); - unsigned ScalarCompareCost = - getCmpSelInstrCost(Instruction::ICmp, - Type::getInt8Ty(getGlobalContext()), NULL); - unsigned BranchCost = getCFInstrCost(Instruction::Br); - unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); - - unsigned ValueSplitCost = - getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load, - Opcode == Instruction::Store); - unsigned MemopCost = + int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true); + int ScalarCompareCost = getCmpSelInstrCost( + Instruction::ICmp, Type::getInt8Ty(getGlobalContext()), nullptr); + int BranchCost = getCFInstrCost(Instruction::Br); + int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost); + + int ValueSplitCost = getScalarizationOverhead( + SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store); + int MemopCost = NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(), Alignment, AddressSpace); return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost; } // Legalize the type. - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); - unsigned Cost = 0; - if (LT.second != TLI->getValueType(DL, SrcVTy).getSimpleVT() && + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy); + auto VT = TLI->getValueType(DL, SrcVTy); + int Cost = 0; + if (VT.isSimple() && LT.second != VT.getSimpleVT() && LT.second.getVectorNumElements() == NumElem) // Promotion requires expand/truncate for data and a shuffle for mask. - Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) + - getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0); + Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, nullptr) + + getShuffleCost(TTI::SK_Alternate, MaskTy, 0, nullptr); else if (LT.second.getVectorNumElements() > NumElem) { VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(), @@ -874,7 +1043,7 @@ unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, return Cost+LT.first; } -unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { +int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting @@ -887,10 +1056,10 @@ unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { return BaseT::getAddressComputationCost(Ty, IsComplex); } -unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, - bool IsPairwise) { +int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, + bool IsPairwise) { - std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); MVT MTy = LT.second; @@ -900,7 +1069,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput // and make it as the cost. - static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = { + static const CostTblEntry SSE42CostTblPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". @@ -908,7 +1077,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, { ISD::ADD, MVT::v8i16, 5 }, }; - static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = { + static const CostTblEntry AVX1CostTblPairWise[] = { { ISD::FADD, MVT::v4f32, 4 }, { ISD::FADD, MVT::v4f64, 5 }, { ISD::FADD, MVT::v8f32, 7 }, @@ -919,7 +1088,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, { ISD::ADD, MVT::v8i32, 5 }, }; - static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = { + static const CostTblEntry SSE42CostTblNoPairWise[] = { { ISD::FADD, MVT::v2f64, 2 }, { ISD::FADD, MVT::v4f32, 4 }, { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6". @@ -927,7 +1096,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3". }; - static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = { + static const CostTblEntry AVX1CostTblNoPairWise[] = { { ISD::FADD, MVT::v4f32, 3 }, { ISD::FADD, MVT::v4f64, 3 }, { ISD::FADD, MVT::v8f32, 4 }, @@ -939,29 +1108,21 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, }; if (IsPairwise) { - if (ST->hasAVX()) { - int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy); - if (Idx != -1) - return LT.first * AVX1CostTblPairWise[Idx].Cost; - } + if (ST->hasAVX()) + if (const auto *Entry = CostTableLookup(AVX1CostTblPairWise, ISD, MTy)) + return LT.first * Entry->Cost; - if (ST->hasSSE42()) { - int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy); - if (Idx != -1) - return LT.first * SSE42CostTblPairWise[Idx].Cost; - } + if (ST->hasSSE42()) + if (const auto *Entry = CostTableLookup(SSE42CostTblPairWise, ISD, MTy)) + return LT.first * Entry->Cost; } else { - if (ST->hasAVX()) { - int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy); - if (Idx != -1) - return LT.first * AVX1CostTblNoPairWise[Idx].Cost; - } + if (ST->hasAVX()) + if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy)) + return LT.first * Entry->Cost; - if (ST->hasSSE42()) { - int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy); - if (Idx != -1) - return LT.first * SSE42CostTblNoPairWise[Idx].Cost; - } + if (ST->hasSSE42()) + if (const auto *Entry = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy)) + return LT.first * Entry->Cost; } return BaseT::getReductionCost(Opcode, ValTy, IsPairwise); @@ -970,7 +1131,7 @@ unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy, /// \brief Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. -unsigned X86TTIImpl::getIntImmCost(int64_t Val) { +int X86TTIImpl::getIntImmCost(int64_t Val) { if (Val == 0) return TTI::TCC_Free; @@ -980,7 +1141,7 @@ unsigned X86TTIImpl::getIntImmCost(int64_t Val) { return 2 * TTI::TCC_Basic; } -unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { +int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); @@ -1004,18 +1165,18 @@ unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { // Split the constant into 64-bit chunks and calculate the cost for each // chunk. - unsigned Cost = 0; + int Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); int64_t Val = Tmp.getSExtValue(); Cost += getIntImmCost(Val); } // We need at least one instruction to materialze the constant. - return std::max(1U, Cost); + return std::max(1, Cost); } -unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, - const APInt &Imm, Type *Ty) { +int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm, + Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); @@ -1038,6 +1199,26 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, case Instruction::Store: ImmIdx = 0; break; + case Instruction::ICmp: + // This is an imperfect hack to prevent constant hoisting of + // compares that might be trying to check if a 64-bit value fits in + // 32-bits. The backend can optimize these cases using a right shift by 32. + // Ideally we would check the compare predicate here. There also other + // similar immediates the backend can use shifts for. + if (Idx == 1 && Imm.getBitWidth() == 64) { + uint64_t ImmVal = Imm.getZExtValue(); + if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff) + return TTI::TCC_Free; + } + ImmIdx = 1; + break; + case Instruction::And: + // We support 64-bit ANDs with immediates with 32-bits of leading zeroes + // by using a 32-bit operation with implicit zero extension. Detect such + // immediates here as the normal path expects bit 31 to be sign extended. + if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue())) + return TTI::TCC_Free; + // Fallthrough case Instruction::Add: case Instruction::Sub: case Instruction::Mul: @@ -1045,10 +1226,8 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: - case Instruction::And: case Instruction::Or: case Instruction::Xor: - case Instruction::ICmp: ImmIdx = 1; break; // Always return TCC_Free for the shift value of a shift instruction. @@ -1073,18 +1252,18 @@ unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, } if (Idx == ImmIdx) { - unsigned NumConstants = (BitSize + 63) / 64; - unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty); + int NumConstants = (BitSize + 63) / 64; + int Cost = X86TTIImpl::getIntImmCost(Imm, Ty); return (Cost <= NumConstants * TTI::TCC_Basic) - ? static_cast<unsigned>(TTI::TCC_Free) + ? static_cast<int>(TTI::TCC_Free) : Cost; } return X86TTIImpl::getIntImmCost(Imm, Ty); } -unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, - const APInt &Imm, Type *Ty) { +int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, + Type *Ty) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); @@ -1118,23 +1297,181 @@ unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, return X86TTIImpl::getIntImmCost(Imm, Ty); } -bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) { - int DataWidth = DataTy->getPrimitiveSizeInBits(); +// Return an average cost of Gather / Scatter instruction, maybe improved later +int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, Value *Ptr, + unsigned Alignment, unsigned AddressSpace) { + + assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost"); + unsigned VF = SrcVTy->getVectorNumElements(); + + // Try to reduce index size from 64 bit (default for GEP) + // to 32. It is essential for VF 16. If the index can't be reduced to 32, the + // operation will use 16 x 64 indices which do not fit in a zmm and needs + // to split. Also check that the base pointer is the same for all lanes, + // and that there's at most one variable index. + auto getIndexSizeInBits = [](Value *Ptr, const DataLayout& DL) { + unsigned IndexSize = DL.getPointerSizeInBits(); + GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); + if (IndexSize < 64 || !GEP) + return IndexSize; + + unsigned NumOfVarIndices = 0; + Value *Ptrs = GEP->getPointerOperand(); + if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs)) + return IndexSize; + for (unsigned i = 1; i < GEP->getNumOperands(); ++i) { + if (isa<Constant>(GEP->getOperand(i))) + continue; + Type *IndxTy = GEP->getOperand(i)->getType(); + if (IndxTy->isVectorTy()) + IndxTy = IndxTy->getVectorElementType(); + if ((IndxTy->getPrimitiveSizeInBits() == 64 && + !isa<SExtInst>(GEP->getOperand(i))) || + ++NumOfVarIndices > 1) + return IndexSize; // 64 + } + return (unsigned)32; + }; + + + // Trying to reduce IndexSize to 32 bits for vector 16. + // By default the IndexSize is equal to pointer size. + unsigned IndexSize = (VF >= 16) ? getIndexSizeInBits(Ptr, DL) : + DL.getPointerSizeInBits(); + + Type *IndexVTy = VectorType::get(IntegerType::get(getGlobalContext(), + IndexSize), VF); + std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy); + std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy); + int SplitFactor = std::max(IdxsLT.first, SrcLT.first); + if (SplitFactor > 1) { + // Handle splitting of vector of pointers + Type *SplitSrcTy = VectorType::get(SrcVTy->getScalarType(), VF / SplitFactor); + return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment, + AddressSpace); + } + + // The gather / scatter cost is given by Intel architects. It is a rough + // number since we are looking at one instruction in a time. + const int GSOverhead = 2; + return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), + Alignment, AddressSpace); +} + +/// Return the cost of full scalarization of gather / scatter operation. +/// +/// Opcode - Load or Store instruction. +/// SrcVTy - The type of the data vector that should be gathered or scattered. +/// VariableMask - The mask is non-constant at compile time. +/// Alignment - Alignment for one element. +/// AddressSpace - pointer[s] address space. +/// +int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy, + bool VariableMask, unsigned Alignment, + unsigned AddressSpace) { + unsigned VF = SrcVTy->getVectorNumElements(); + + int MaskUnpackCost = 0; + if (VariableMask) { + VectorType *MaskTy = + VectorType::get(Type::getInt1Ty(getGlobalContext()), VF); + MaskUnpackCost = getScalarizationOverhead(MaskTy, false, true); + int ScalarCompareCost = + getCmpSelInstrCost(Instruction::ICmp, Type::getInt1Ty(getGlobalContext()), + nullptr); + int BranchCost = getCFInstrCost(Instruction::Br); + MaskUnpackCost += VF * (BranchCost + ScalarCompareCost); + } - // Todo: AVX512 allows gather/scatter, works with strided and random as well - if ((DataWidth < 32) || (Consecutive == 0)) + // The cost of the scalar loads/stores. + int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(), + Alignment, AddressSpace); + + int InsertExtractCost = 0; + if (Opcode == Instruction::Load) + for (unsigned i = 0; i < VF; ++i) + // Add the cost of inserting each scalar load into the vector + InsertExtractCost += + getVectorInstrCost(Instruction::InsertElement, SrcVTy, i); + else + for (unsigned i = 0; i < VF; ++i) + // Add the cost of extracting each element out of the data vector + InsertExtractCost += + getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i); + + return MemoryOpCost + MaskUnpackCost + InsertExtractCost; +} + +/// Calculate the cost of Gather / Scatter operation +int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy, + Value *Ptr, bool VariableMask, + unsigned Alignment) { + assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter"); + unsigned VF = SrcVTy->getVectorNumElements(); + PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); + if (!PtrTy && Ptr->getType()->isVectorTy()) + PtrTy = dyn_cast<PointerType>(Ptr->getType()->getVectorElementType()); + assert(PtrTy && "Unexpected type for Ptr argument"); + unsigned AddressSpace = PtrTy->getAddressSpace(); + + bool Scalarize = false; + if ((Opcode == Instruction::Load && !isLegalMaskedGather(SrcVTy)) || + (Opcode == Instruction::Store && !isLegalMaskedScatter(SrcVTy))) + Scalarize = true; + // Gather / Scatter for vector 2 is not profitable on KNL / SKX + // Vector-4 of gather/scatter instruction does not exist on KNL. + // We can extend it to 8 elements, but zeroing upper bits of + // the mask vector will add more instructions. Right now we give the scalar + // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction is + // better in the VariableMask case. + if (VF == 2 || (VF == 4 && !ST->hasVLX())) + Scalarize = true; + + if (Scalarize) + return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment, AddressSpace); + + return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace); +} + +bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy) { + Type *ScalarTy = DataTy->getScalarType(); + int DataWidth = isa<PointerType>(ScalarTy) ? + DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits(); + + return (DataWidth >= 32 && ST->hasAVX2()); +} + +bool X86TTIImpl::isLegalMaskedStore(Type *DataType) { + return isLegalMaskedLoad(DataType); +} + +bool X86TTIImpl::isLegalMaskedGather(Type *DataTy) { + // This function is called now in two cases: from the Loop Vectorizer + // and from the Scalarizer. + // When the Loop Vectorizer asks about legality of the feature, + // the vectorization factor is not calculated yet. The Loop Vectorizer + // sends a scalar type and the decision is based on the width of the + // scalar element. + // Later on, the cost model will estimate usage this intrinsic based on + // the vector type. + // The Scalarizer asks again about legality. It sends a vector type. + // In this case we can reject non-power-of-2 vectors. + if (isa<VectorType>(DataTy) && !isPowerOf2_32(DataTy->getVectorNumElements())) return false; - if (ST->hasAVX512() || ST->hasAVX2()) - return true; - return false; + Type *ScalarTy = DataTy->getScalarType(); + int DataWidth = isa<PointerType>(ScalarTy) ? + DL.getPointerSizeInBits() : ScalarTy->getPrimitiveSizeInBits(); + + // AVX-512 allows gather and scatter + return DataWidth >= 32 && ST->hasAVX512(); } -bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) { - return isLegalMaskedLoad(DataType, Consecutive); +bool X86TTIImpl::isLegalMaskedScatter(Type *DataType) { + return isLegalMaskedGather(DataType); } -bool X86TTIImpl::hasCompatibleFunctionAttributes(const Function *Caller, - const Function *Callee) const { +bool X86TTIImpl::areInlineCompatible(const Function *Caller, + const Function *Callee) const { const TargetMachine &TM = getTLI()->getTargetMachine(); // Work this as a subsetting of subtarget features. |