summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp1150
1 files changed, 1150 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
new file mode 100644
index 0000000..7df7260
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp
@@ -0,0 +1,1150 @@
+//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// X86 target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "x86tti"
+
+//===----------------------------------------------------------------------===//
+//
+// X86 cost model.
+//
+//===----------------------------------------------------------------------===//
+
+TargetTransformInfo::PopcntSupportKind
+X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
+ assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
+ // TODO: Currently the __builtin_popcount() implementation using SSE3
+ // instructions is inefficient. Once the problem is fixed, we should
+ // call ST->hasSSE3() instead of ST->hasPOPCNT().
+ return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
+}
+
+unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
+ if (Vector && !ST->hasSSE1())
+ return 0;
+
+ if (ST->is64Bit()) {
+ if (Vector && ST->hasAVX512())
+ return 32;
+ return 16;
+ }
+ return 8;
+}
+
+unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
+ if (Vector) {
+ if (ST->hasAVX512()) return 512;
+ if (ST->hasAVX()) return 256;
+ if (ST->hasSSE1()) return 128;
+ return 0;
+ }
+
+ if (ST->is64Bit())
+ return 64;
+ return 32;
+
+}
+
+unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
+ // If the loop will not be vectorized, don't interleave the loop.
+ // Let regular unroll to unroll the loop, which saves the overflow
+ // check and memory check cost.
+ if (VF == 1)
+ return 1;
+
+ if (ST->isAtom())
+ return 1;
+
+ // Sandybridge and Haswell have multiple execution ports and pipelined
+ // vector units.
+ if (ST->hasAVX())
+ return 4;
+
+ return 2;
+}
+
+unsigned X86TTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
+ TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ if (ISD == ISD::SDIV &&
+ Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
+ // On X86, vector signed division by constants power-of-two are
+ // normally expanded to the sequence SRA + SRL + ADD + SRA.
+ // The OperandValue properties many not be same as that of previous
+ // operation;conservatively assume OP_None.
+ unsigned Cost =
+ 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+ Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
+ TargetTransformInfo::OP_None,
+ TargetTransformInfo::OP_None);
+
+ return Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType>
+ AVX2UniformConstCostTable[] = {
+ { ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
+
+ { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
+ { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
+ { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
+ { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasAVX2()) {
+ int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX2UniformConstCostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
+ { ISD::SHL, MVT::v16i32, 1 },
+ { ISD::SRL, MVT::v16i32, 1 },
+ { ISD::SRA, MVT::v16i32, 1 },
+ { ISD::SHL, MVT::v8i64, 1 },
+ { ISD::SRL, MVT::v8i64, 1 },
+ { ISD::SRA, MVT::v8i64, 1 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
+ // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
+ // customize them to detect the cases where shift amount is a scalar one.
+ { ISD::SHL, MVT::v4i32, 1 },
+ { ISD::SRL, MVT::v4i32, 1 },
+ { ISD::SRA, MVT::v4i32, 1 },
+ { ISD::SHL, MVT::v8i32, 1 },
+ { ISD::SRL, MVT::v8i32, 1 },
+ { ISD::SRA, MVT::v8i32, 1 },
+ { ISD::SHL, MVT::v2i64, 1 },
+ { ISD::SRL, MVT::v2i64, 1 },
+ { ISD::SHL, MVT::v4i64, 1 },
+ { ISD::SRL, MVT::v4i64, 1 },
+
+ { ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
+ { ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
+
+ { ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
+ { ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
+
+ { ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
+ { ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
+ { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
+
+ // Vectorizing division is a bad idea. See the SSE2 table for more comments.
+ { ISD::SDIV, MVT::v32i8, 32*20 },
+ { ISD::SDIV, MVT::v16i16, 16*20 },
+ { ISD::SDIV, MVT::v8i32, 8*20 },
+ { ISD::SDIV, MVT::v4i64, 4*20 },
+ { ISD::UDIV, MVT::v32i8, 32*20 },
+ { ISD::UDIV, MVT::v16i16, 16*20 },
+ { ISD::UDIV, MVT::v8i32, 8*20 },
+ { ISD::UDIV, MVT::v4i64, 4*20 },
+ };
+
+ if (ST->hasAVX512()) {
+ int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX512CostTable[Idx].Cost;
+ }
+ // Look for AVX2 lowering tricks.
+ if (ST->hasAVX2()) {
+ if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
+ (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
+ // On AVX2, a packed v16i16 shift left by a constant build_vector
+ // is lowered into a vector multiply (vpmullw).
+ return LT.first;
+
+ int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * AVX2CostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType>
+ SSE2UniformConstCostTable[] = {
+ // We don't correctly identify costs of casts because they are marked as
+ // custom.
+ // Constant splats are cheaper for the following instructions.
+ { ISD::SHL, MVT::v16i8, 1 }, // psllw.
+ { ISD::SHL, MVT::v8i16, 1 }, // psllw.
+ { ISD::SHL, MVT::v4i32, 1 }, // pslld
+ { ISD::SHL, MVT::v2i64, 1 }, // psllq.
+
+ { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
+ { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
+ { ISD::SRL, MVT::v4i32, 1 }, // psrld.
+ { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
+
+ { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
+ { ISD::SRA, MVT::v8i16, 1 }, // psraw.
+ { ISD::SRA, MVT::v4i32, 1 }, // psrad.
+ { ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
+
+ { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
+ { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
+ { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
+ { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
+ };
+
+ if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
+ ST->hasSSE2()) {
+ // pmuldq sequence.
+ if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
+ return LT.first * 15;
+
+ int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE2UniformConstCostTable[Idx].Cost;
+ }
+
+ if (ISD == ISD::SHL &&
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
+ EVT VT = LT.second;
+ if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
+ (VT == MVT::v4i32 && ST->hasSSE41()))
+ // Vector shift left by non uniform constant can be lowered
+ // into vector multiply (pmullw/pmulld).
+ return LT.first;
+ if (VT == MVT::v4i32 && ST->hasSSE2())
+ // A vector shift left by non uniform constant is converted
+ // into a vector multiply; the new multiply is eventually
+ // lowered into a sequence of shuffles and 2 x pmuludq.
+ ISD = ISD::MUL;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
+ // We don't correctly identify costs of casts because they are marked as
+ // custom.
+ // For some cases, where the shift amount is a scalar we would be able
+ // to generate better code. Unfortunately, when this is the case the value
+ // (the splat) will get hoisted out of the loop, thereby making it invisible
+ // to ISel. The cost model must return worst case assumptions because it is
+ // used for vectorization and we don't want to make vectorized code worse
+ // than scalar code.
+ { ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
+ { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
+ { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
+
+ { ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
+ { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
+
+ { ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
+ { ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
+ { ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
+ { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
+
+ // It is not a good idea to vectorize division. We have to scalarize it and
+ // in the process we will often end up having to spilling regular
+ // registers. The overhead of division is going to dominate most kernels
+ // anyways so try hard to prevent vectorization of division - it is
+ // generally a bad idea. Assume somewhat arbitrarily that we have to be able
+ // to hide "20 cycles" for each lane.
+ { ISD::SDIV, MVT::v16i8, 16*20 },
+ { ISD::SDIV, MVT::v8i16, 8*20 },
+ { ISD::SDIV, MVT::v4i32, 4*20 },
+ { ISD::SDIV, MVT::v2i64, 2*20 },
+ { ISD::UDIV, MVT::v16i8, 16*20 },
+ { ISD::UDIV, MVT::v8i16, 8*20 },
+ { ISD::UDIV, MVT::v4i32, 4*20 },
+ { ISD::UDIV, MVT::v2i64, 2*20 },
+ };
+
+ if (ST->hasSSE2()) {
+ int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE2CostTable[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
+ // We don't have to scalarize unsupported ops. We can issue two half-sized
+ // operations and we only need to extract the upper YMM half.
+ // Two ops + 1 extract + 1 insert = 4.
+ { ISD::MUL, MVT::v16i16, 4 },
+ { ISD::MUL, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v8i32, 4 },
+ { ISD::ADD, MVT::v8i32, 4 },
+ { ISD::SUB, MVT::v4i64, 4 },
+ { ISD::ADD, MVT::v4i64, 4 },
+ // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
+ // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
+ // Because we believe v4i64 to be a legal type, we must also include the
+ // split factor of two in the cost table. Therefore, the cost here is 18
+ // instead of 9.
+ { ISD::MUL, MVT::v4i64, 18 },
+ };
+
+ // Look for AVX1 lowering tricks.
+ if (ST->hasAVX() && !ST->hasAVX2()) {
+ EVT VT = LT.second;
+
+ // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
+ // sequence of extract + two vector multiply + insert.
+ if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
+ Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
+ ISD = ISD::MUL;
+
+ int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
+ if (Idx != -1)
+ return LT.first * AVX1CostTable[Idx].Cost;
+ }
+
+ // Custom lowering of vectors.
+ static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
+ // A v2i64/v4i64 and multiply is custom lowered as a series of long
+ // multiplies(3), shifts(4) and adds(2).
+ { ISD::MUL, MVT::v2i64, 9 },
+ { ISD::MUL, MVT::v4i64, 9 },
+ };
+ int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
+ if (Idx != -1)
+ return LT.first * CustomLowered[Idx].Cost;
+
+ // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
+ // 2x pmuludq, 2x shuffle.
+ if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
+ !ST->hasSSE41())
+ return LT.first * 6;
+
+ // Fallback to the default implementation.
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
+}
+
+unsigned X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ // We only estimate the cost of reverse and alternate shuffles.
+ if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+
+ if (Kind == TTI::SK_Reverse) {
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ unsigned Cost = 1;
+ if (LT.second.getSizeInBits() > 128)
+ Cost = 3; // Extract + insert + copy.
+
+ // Multiple by the number of parts.
+ return Cost * LT.first;
+ }
+
+ if (Kind == TTI::SK_Alternate) {
+ // 64-bit packed float vectors (v2f32) are widened to type v4f32.
+ // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+
+ // The backend knows how to generate a single VEX.256 version of
+ // instruction VPBLENDW if the target supports AVX2.
+ if (ST->hasAVX2() && LT.second == MVT::v16i16)
+ return LT.first;
+
+ static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
+ {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps
+ {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps
+
+ // This shuffle is custom lowered into a sequence of:
+ // 2x vextractf128 , 2x vpblendw , 1x vinsertf128
+ {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
+
+ // This shuffle is custom lowered into a long sequence of:
+ // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128
+ {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
+ };
+
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * AVXAltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
+ // These are lowered into movsd.
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+
+ // packed float vectors with four elements are lowered into BLENDI dag
+ // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
+
+ // This shuffle generates a single pshufw.
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
+
+ // There is no instruction that matches a v16i8 alternate shuffle.
+ // The backend will expand it into the sequence 'pshufb + pshufb + or'.
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
+ };
+
+ if (ST->hasSSE41()) {
+ int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSE41AltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
+
+ // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
+ // the sequence 'shufps + pshufd'
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
+ };
+
+ if (ST->hasSSSE3()) {
+ int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
+ }
+
+ static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
+
+ // This is expanded into a long sequence of four extract + four insert.
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
+
+ // 8 x (pinsrw + pextrw + and + movb + movzb + or)
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
+ };
+
+ // Fall-back (SSE3 and SSE2).
+ int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
+ if (Idx != -1)
+ return LT.first * SSEAltShuffleTbl[Idx].Cost;
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+ }
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+unsigned X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
+ std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ SSE2ConvTbl[] = {
+ // These are somewhat magic numbers justified by looking at the output of
+ // Intel's IACA, running some kernels and making sure when we take
+ // legalization into account the throughput will be overestimated.
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
+ // There are faster sequences for float conversions.
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
+ };
+
+ if (ST->hasSSE2() && !ST->hasAVX()) {
+ int Idx =
+ ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
+ if (Idx != -1)
+ return LTSrc.first * SSE2ConvTbl[Idx].Cost;
+ }
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVX512ConversionTbl[] = {
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
+ { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
+
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
+ { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
+ { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
+
+ // v16i1 -> v16i32 - load + broadcast
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
+
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
+
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
+ };
+
+ if (ST->hasAVX512()) {
+ int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
+ LTSrc.second);
+ if (Idx != -1)
+ return AVX512ConversionTbl[Idx].Cost;
+ }
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ // The function getSimpleVT only handles simple value types.
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVX2ConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
+
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
+
+ { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
+ { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
+ };
+
+ static const TypeConversionCostTblEntry<MVT::SimpleValueType>
+ AVXConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
+
+ { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
+ { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
+ { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
+
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
+
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
+ // The generic code to compute the scalar overhead is currently broken.
+ // Workaround this limitation by estimating the scalarization overhead
+ // here. We have roughly 10 instructions per scalar element.
+ // Multiply that by the vector width.
+ // FIXME: remove that when PR19268 is fixed.
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
+ { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 },
+
+ { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
+ // This node is expanded into scalarized operations but BasicTTI is overly
+ // optimistic estimating its cost. It computes 3 per element (one
+ // vector-extract, one scalar conversion and one vector-insert). The
+ // problem is that the inserts form a read-modify-write chain so latency
+ // should be factored in too. Inflating the cost per element by 1.
+ { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
+ };
+
+ if (ST->hasAVX2()) {
+ int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
+ DstTy.getSimpleVT(), SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return AVX2ConversionTbl[Idx].Cost;
+ }
+
+ if (ST->hasAVX()) {
+ int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT());
+ if (Idx != -1)
+ return AVXConversionTbl[Idx].Cost;
+ }
+
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+}
+
+unsigned X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
+ Type *CondTy) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
+ { ISD::SETCC, MVT::v2f64, 1 },
+ { ISD::SETCC, MVT::v4f32, 1 },
+ { ISD::SETCC, MVT::v2i64, 1 },
+ { ISD::SETCC, MVT::v4i32, 1 },
+ { ISD::SETCC, MVT::v8i16, 1 },
+ { ISD::SETCC, MVT::v16i8, 1 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
+ { ISD::SETCC, MVT::v4f64, 1 },
+ { ISD::SETCC, MVT::v8f32, 1 },
+ // AVX1 does not support 8-wide integer compare.
+ { ISD::SETCC, MVT::v4i64, 4 },
+ { ISD::SETCC, MVT::v8i32, 4 },
+ { ISD::SETCC, MVT::v16i16, 4 },
+ { ISD::SETCC, MVT::v32i8, 4 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
+ { ISD::SETCC, MVT::v4i64, 1 },
+ { ISD::SETCC, MVT::v8i32, 1 },
+ { ISD::SETCC, MVT::v16i16, 1 },
+ { ISD::SETCC, MVT::v32i8, 1 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
+ { ISD::SETCC, MVT::v8i64, 1 },
+ { ISD::SETCC, MVT::v16i32, 1 },
+ { ISD::SETCC, MVT::v8f64, 1 },
+ { ISD::SETCC, MVT::v16f32, 1 },
+ };
+
+ if (ST->hasAVX512()) {
+ int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX512CostTbl[Idx].Cost;
+ }
+
+ if (ST->hasAVX2()) {
+ int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX2CostTbl[Idx].Cost;
+ }
+
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTbl[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTbl[Idx].Cost;
+ }
+
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+unsigned X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
+ unsigned Index) {
+ assert(Val->isVectorTy() && "This must be a vector type");
+
+ if (Index != -1U) {
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
+
+ // This type is legalized to a scalar type.
+ if (!LT.second.isVector())
+ return 0;
+
+ // The type may be split. Normalize the index to the new type.
+ unsigned Width = LT.second.getVectorNumElements();
+ Index = Index % Width;
+
+ // Floating point scalars are already located in index #0.
+ if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
+ return 0;
+ }
+
+ return BaseT::getVectorInstrCost(Opcode, Val, Index);
+}
+
+unsigned X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert,
+ bool Extract) {
+ assert (Ty->isVectorTy() && "Can only scalarize vectors");
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
+ if (Insert)
+ Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+}
+
+unsigned X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ // Handle non-power-of-two vectors such as <3 x float>
+ if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
+ unsigned NumElem = VTy->getVectorNumElements();
+
+ // Handle a few common cases:
+ // <3 x float>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
+ // Cost = 64 bit store + extract + 32 bit store.
+ return 3;
+
+ // <3 x double>
+ if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
+ // Cost = 128 bit store + unpack + 64 bit store.
+ return 3;
+
+ // Assume that all other non-power-of-two numbers are scalarized.
+ if (!isPowerOf2_32(NumElem)) {
+ unsigned Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(),
+ Alignment, AddressSpace);
+ unsigned SplitCost = getScalarizationOverhead(Src,
+ Opcode == Instruction::Load,
+ Opcode==Instruction::Store);
+ return NumElem * Cost + SplitCost;
+ }
+ }
+
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+ assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
+ "Invalid Opcode");
+
+ // Each load/store unit costs 1.
+ unsigned Cost = LT.first * 1;
+
+ // On Sandybridge 256bit load/stores are double pumped
+ // (but not on Haswell).
+ if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
+ Cost*=2;
+
+ return Cost;
+}
+
+unsigned X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
+ if (!SrcVTy)
+ // To calculate scalar take the regular cost, without mask
+ return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
+
+ unsigned NumElem = SrcVTy->getVectorNumElements();
+ VectorType *MaskTy =
+ VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
+ if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
+ (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
+ !isPowerOf2_32(NumElem)) {
+ // Scalarization
+ unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
+ unsigned ScalarCompareCost =
+ getCmpSelInstrCost(Instruction::ICmp,
+ Type::getInt8Ty(getGlobalContext()), NULL);
+ unsigned BranchCost = getCFInstrCost(Instruction::Br);
+ unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
+
+ unsigned ValueSplitCost =
+ getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
+ Opcode == Instruction::Store);
+ unsigned MemopCost =
+ NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
+ Alignment, AddressSpace);
+ return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
+ }
+
+ // Legalize the type.
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
+ unsigned Cost = 0;
+ if (LT.second != TLI->getValueType(DL, SrcVTy).getSimpleVT() &&
+ LT.second.getVectorNumElements() == NumElem)
+ // Promotion requires expand/truncate for data and a shuffle for mask.
+ Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
+ getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
+
+ else if (LT.second.getVectorNumElements() > NumElem) {
+ VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
+ LT.second.getVectorNumElements());
+ // Expanding requires fill mask with zeroes
+ Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
+ }
+ if (!ST->hasAVX512())
+ return Cost + LT.first*4; // Each maskmov costs 4
+
+ // AVX-512 masked load/store is cheapper
+ return Cost+LT.first;
+}
+
+unsigned X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ return BaseT::getAddressComputationCost(Ty, IsComplex);
+}
+
+unsigned X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
+ bool IsPairwise) {
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ MVT MTy = LT.second;
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
+ // and make it as the cost.
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v8i16, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::FADD, MVT::v4f64, 5 },
+ { ISD::FADD, MVT::v8f32, 7 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
+ { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
+ { ISD::ADD, MVT::v8i16, 5 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v2f64, 2 },
+ { ISD::FADD, MVT::v4f32, 4 },
+ { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
+ { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
+ };
+
+ static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
+ { ISD::FADD, MVT::v4f32, 3 },
+ { ISD::FADD, MVT::v4f64, 3 },
+ { ISD::FADD, MVT::v8f32, 4 },
+ { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
+ { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
+ { ISD::ADD, MVT::v4i64, 3 },
+ { ISD::ADD, MVT::v8i16, 4 },
+ { ISD::ADD, MVT::v8i32, 5 },
+ };
+
+ if (IsPairwise) {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblPairWise[Idx].Cost;
+ }
+ } else {
+ if (ST->hasAVX()) {
+ int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
+ }
+
+ if (ST->hasSSE42()) {
+ int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
+ if (Idx != -1)
+ return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
+ }
+ }
+
+ return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
+}
+
+/// \brief Calculate the cost of materializing a 64-bit value. This helper
+/// method might only calculate a fraction of a larger immediate. Therefore it
+/// is valid to return a cost of ZERO.
+unsigned X86TTIImpl::getIntImmCost(int64_t Val) {
+ if (Val == 0)
+ return TTI::TCC_Free;
+
+ if (isInt<32>(Val))
+ return TTI::TCC_Basic;
+
+ return 2 * TTI::TCC_Basic;
+}
+
+unsigned X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0)
+ return ~0U;
+
+ // Never hoist constants larger than 128bit, because this might lead to
+ // incorrect code generation or assertions in codegen.
+ // Fixme: Create a cost model for types larger than i128 once the codegen
+ // issues have been fixed.
+ if (BitSize > 128)
+ return TTI::TCC_Free;
+
+ if (Imm == 0)
+ return TTI::TCC_Free;
+
+ // Sign-extend all constants to a multiple of 64-bit.
+ APInt ImmVal = Imm;
+ if (BitSize & 0x3f)
+ ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
+
+ // Split the constant into 64-bit chunks and calculate the cost for each
+ // chunk.
+ unsigned Cost = 0;
+ for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
+ APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
+ int64_t Val = Tmp.getSExtValue();
+ Cost += getIntImmCost(Val);
+ }
+ // We need at least one instruction to materialze the constant.
+ return std::max(1U, Cost);
+}
+
+unsigned X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ unsigned ImmIdx = ~0U;
+ switch (Opcode) {
+ default:
+ return TTI::TCC_Free;
+ case Instruction::GetElementPtr:
+ // Always hoist the base address of a GetElementPtr. This prevents the
+ // creation of new constants for every base constant that gets constant
+ // folded with the offset.
+ if (Idx == 0)
+ return 2 * TTI::TCC_Basic;
+ return TTI::TCC_Free;
+ case Instruction::Store:
+ ImmIdx = 0;
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::ICmp:
+ ImmIdx = 1;
+ break;
+ // Always return TCC_Free for the shift value of a shift instruction.
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ if (Idx == 1)
+ return TTI::TCC_Free;
+ break;
+ case Instruction::Trunc:
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::IntToPtr:
+ case Instruction::PtrToInt:
+ case Instruction::BitCast:
+ case Instruction::PHI:
+ case Instruction::Call:
+ case Instruction::Select:
+ case Instruction::Ret:
+ case Instruction::Load:
+ break;
+ }
+
+ if (Idx == ImmIdx) {
+ unsigned NumConstants = (BitSize + 63) / 64;
+ unsigned Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
+ return (Cost <= NumConstants * TTI::TCC_Basic)
+ ? static_cast<unsigned>(TTI::TCC_Free)
+ : Cost;
+ }
+
+ return X86TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+unsigned X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
+ const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ // There is no cost model for constants with a bit size of 0. Return TCC_Free
+ // here, so that constant hoisting will ignore this constant.
+ if (BitSize == 0)
+ return TTI::TCC_Free;
+
+ switch (IID) {
+ default:
+ return TTI::TCC_Free;
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow:
+ if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_stackmap:
+ if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ case Intrinsic::experimental_patchpoint_void:
+ case Intrinsic::experimental_patchpoint_i64:
+ if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
+ return TTI::TCC_Free;
+ break;
+ }
+ return X86TTIImpl::getIntImmCost(Imm, Ty);
+}
+
+bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
+ int DataWidth = DataTy->getPrimitiveSizeInBits();
+
+ // Todo: AVX512 allows gather/scatter, works with strided and random as well
+ if ((DataWidth < 32) || (Consecutive == 0))
+ return false;
+ if (ST->hasAVX512() || ST->hasAVX2())
+ return true;
+ return false;
+}
+
+bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
+ return isLegalMaskedLoad(DataType, Consecutive);
+}
+
+bool X86TTIImpl::hasCompatibleFunctionAttributes(const Function *Caller,
+ const Function *Callee) const {
+ const TargetMachine &TM = getTLI()->getTargetMachine();
+
+ // Work this as a subsetting of subtarget features.
+ const FeatureBitset &CallerBits =
+ TM.getSubtargetImpl(*Caller)->getFeatureBits();
+ const FeatureBitset &CalleeBits =
+ TM.getSubtargetImpl(*Callee)->getFeatureBits();
+
+ // FIXME: This is likely too limiting as it will include subtarget features
+ // that we might not care about for inlining, but it is conservatively
+ // correct.
+ return (CallerBits & CalleeBits) == CalleeBits;
+}
OpenPOWER on IntegriCloud