diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp new file mode 100644 index 0000000..a98c699 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86TargetTransformInfo.cpp @@ -0,0 +1,495 @@ +//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +/// \file +/// This file implements a TargetTransformInfo analysis pass specific to the +/// X86 target machine. It uses the target's detailed information to provide +/// more precise answers to certain TTI queries, while letting the target +/// independent and default TTI implementations handle the rest. +/// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86tti" +#include "X86.h" +#include "X86TargetMachine.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/TargetLowering.h" +#include "llvm/Target/CostTable.h" +using namespace llvm; + +// Declare the pass initialization routine locally as target-specific passes +// don't havve a target-wide initialization entry point, and so we rely on the +// pass constructor initialization. +namespace llvm { +void initializeX86TTIPass(PassRegistry &); +} + +namespace { + +class X86TTI : public ImmutablePass, public TargetTransformInfo { + const X86TargetMachine *TM; + const X86Subtarget *ST; + const X86TargetLowering *TLI; + + /// Estimate the overhead of scalarizing an instruction. Insert and Extract + /// are set if the result needs to be inserted and/or extracted from vectors. + unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; + +public: + X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) { + llvm_unreachable("This pass cannot be directly constructed"); + } + + X86TTI(const X86TargetMachine *TM) + : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()), + TLI(TM->getTargetLowering()) { + initializeX86TTIPass(*PassRegistry::getPassRegistry()); + } + + virtual void initializePass() { + pushTTIStack(this); + } + + virtual void finalizePass() { + popTTIStack(); + } + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + TargetTransformInfo::getAnalysisUsage(AU); + } + + /// Pass identification. + static char ID; + + /// Provide necessary pointer adjustments for the two base classes. + virtual void *getAdjustedAnalysisPointer(const void *ID) { + if (ID == &TargetTransformInfo::ID) + return (TargetTransformInfo*)this; + return this; + } + + /// \name Scalar TTI Implementations + /// @{ + virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const; + + /// @} + + /// \name Vector TTI Implementations + /// @{ + + virtual unsigned getNumberOfRegisters(bool Vector) const; + virtual unsigned getRegisterBitWidth(bool Vector) const; + virtual unsigned getMaximumUnrollFactor() const; + virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind, + OperandValueKind) const; + virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp, + int Index, Type *SubTp) const; + virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst, + Type *Src) const; + virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const; + virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const; + virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src, + unsigned Alignment, + unsigned AddressSpace) const; + + /// @} +}; + +} // end anonymous namespace + +INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti", + "X86 Target Transform Info", true, true, false) +char X86TTI::ID = 0; + +ImmutablePass * +llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) { + return new X86TTI(TM); +} + + +//===----------------------------------------------------------------------===// +// +// X86 cost model. +// +//===----------------------------------------------------------------------===// + +X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const { + assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); + // TODO: Currently the __builtin_popcount() implementation using SSE3 + // instructions is inefficient. Once the problem is fixed, we should + // call ST->hasSSE3() instead of ST->hasSSE4(). + return ST->hasSSE41() ? PSK_FastHardware : PSK_Software; +} + +unsigned X86TTI::getNumberOfRegisters(bool Vector) const { + if (Vector && !ST->hasSSE1()) + return 0; + + if (ST->is64Bit()) + return 16; + return 8; +} + +unsigned X86TTI::getRegisterBitWidth(bool Vector) const { + if (Vector) { + if (ST->hasAVX()) return 256; + if (ST->hasSSE1()) return 128; + return 0; + } + + if (ST->is64Bit()) + return 64; + return 32; + +} + +unsigned X86TTI::getMaximumUnrollFactor() const { + if (ST->isAtom()) + return 1; + + // Sandybridge and Haswell have multiple execution ports and pipelined + // vector units. + if (ST->hasAVX()) + return 4; + + return 2; +} + +unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty, + OperandValueKind Op1Info, + OperandValueKind Op2Info) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty); + + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + static const CostTblEntry<MVT> AVX2CostTable[] = { + // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to + // customize them to detect the cases where shift amount is a scalar one. + { ISD::SHL, MVT::v4i32, 1 }, + { ISD::SRL, MVT::v4i32, 1 }, + { ISD::SRA, MVT::v4i32, 1 }, + { ISD::SHL, MVT::v8i32, 1 }, + { ISD::SRL, MVT::v8i32, 1 }, + { ISD::SRA, MVT::v8i32, 1 }, + { ISD::SHL, MVT::v2i64, 1 }, + { ISD::SRL, MVT::v2i64, 1 }, + { ISD::SHL, MVT::v4i64, 1 }, + { ISD::SRL, MVT::v4i64, 1 }, + + { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence. + { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized. + + { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized. + { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized. + + { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized. + { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized. + { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized. + }; + + // Look for AVX2 lowering tricks. + if (ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * AVX2CostTable[Idx].Cost; + } + + static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = { + // We don't correctly identify costs of casts because they are marked as + // custom. + // Constant splats are cheaper for the following instructions. + { ISD::SHL, MVT::v16i8, 1 }, // psllw. + { ISD::SHL, MVT::v8i16, 1 }, // psllw. + { ISD::SHL, MVT::v4i32, 1 }, // pslld + { ISD::SHL, MVT::v2i64, 1 }, // psllq. + + { ISD::SRL, MVT::v16i8, 1 }, // psrlw. + { ISD::SRL, MVT::v8i16, 1 }, // psrlw. + { ISD::SRL, MVT::v4i32, 1 }, // psrld. + { ISD::SRL, MVT::v2i64, 1 }, // psrlq. + + { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb. + { ISD::SRA, MVT::v8i16, 1 }, // psraw. + { ISD::SRA, MVT::v4i32, 1 }, // psrad. + }; + + if (Op2Info == TargetTransformInfo::OK_UniformConstantValue && + ST->hasSSE2()) { + int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable, + array_lengthof(SSE2UniformConstCostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * SSE2UniformConstCostTable[Idx].Cost; + } + + + static const CostTblEntry<MVT> SSE2CostTable[] = { + // We don't correctly identify costs of casts because they are marked as + // custom. + // For some cases, where the shift amount is a scalar we would be able + // to generate better code. Unfortunately, when this is the case the value + // (the splat) will get hoisted out of the loop, thereby making it invisible + // to ISel. The cost model must return worst case assumptions because it is + // used for vectorization and we don't want to make vectorized code worse + // than scalar code. + { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence. + { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul. + { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized. + + { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized. + { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized. + { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized. + + { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized. + { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized. + { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized. + { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized. + }; + + if (ST->hasSSE2()) { + int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * SSE2CostTable[Idx].Cost; + } + + static const CostTblEntry<MVT> AVX1CostTable[] = { + // We don't have to scalarize unsupported ops. We can issue two half-sized + // operations and we only need to extract the upper YMM half. + // Two ops + 1 extract + 1 insert = 4. + { ISD::MUL, MVT::v8i32, 4 }, + { ISD::SUB, MVT::v8i32, 4 }, + { ISD::ADD, MVT::v8i32, 4 }, + { ISD::SUB, MVT::v4i64, 4 }, + { ISD::ADD, MVT::v4i64, 4 }, + // A v4i64 multiply is custom lowered as two split v2i64 vectors that then + // are lowered as a series of long multiplies(3), shifts(4) and adds(2) + // Because we believe v4i64 to be a legal type, we must also include the + // split factor of two in the cost table. Therefore, the cost here is 18 + // instead of 9. + { ISD::MUL, MVT::v4i64, 18 }, + }; + + // Look for AVX1 lowering tricks. + if (ST->hasAVX() && !ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable), + ISD, LT.second); + if (Idx != -1) + return LT.first * AVX1CostTable[Idx].Cost; + } + + // Custom lowering of vectors. + static const CostTblEntry<MVT> CustomLowered[] = { + // A v2i64/v4i64 and multiply is custom lowered as a series of long + // multiplies(3), shifts(4) and adds(2). + { ISD::MUL, MVT::v2i64, 9 }, + { ISD::MUL, MVT::v4i64, 9 }, + }; + int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered), + ISD, LT.second); + if (Idx != -1) + return LT.first * CustomLowered[Idx].Cost; + + // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle, + // 2x pmuludq, 2x shuffle. + if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() && + !ST->hasSSE41()) + return 6; + + // Fallback to the default implementation. + return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info, + Op2Info); +} + +unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) const { + // We only estimate the cost of reverse shuffles. + if (Kind != SK_Reverse) + return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp); + + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp); + unsigned Cost = 1; + if (LT.second.getSizeInBits() > 128) + Cost = 3; // Extract + insert + copy. + + // Multiple by the number of parts. + return Cost * LT.first; +} + +unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + EVT SrcTy = TLI->getValueType(Src); + EVT DstTy = TLI->getValueType(Dst); + + if (!SrcTy.isSimple() || !DstTy.isSimple()) + return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); + + static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = { + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 }, + { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, + { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 }, + + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 }, + { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 }, + + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 }, + + { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 }, + { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 8 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 }, + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 }, + { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 }, + }; + + if (ST->hasAVX()) { + int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl, + array_lengthof(AVXConversionTbl), + ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()); + if (Idx != -1) + return AVXConversionTbl[Idx].Cost; + } + + return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src); +} + +unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, + Type *CondTy) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy); + + MVT MTy = LT.second; + + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + static const CostTblEntry<MVT> SSE42CostTbl[] = { + { ISD::SETCC, MVT::v2f64, 1 }, + { ISD::SETCC, MVT::v4f32, 1 }, + { ISD::SETCC, MVT::v2i64, 1 }, + { ISD::SETCC, MVT::v4i32, 1 }, + { ISD::SETCC, MVT::v8i16, 1 }, + { ISD::SETCC, MVT::v16i8, 1 }, + }; + + static const CostTblEntry<MVT> AVX1CostTbl[] = { + { ISD::SETCC, MVT::v4f64, 1 }, + { ISD::SETCC, MVT::v8f32, 1 }, + // AVX1 does not support 8-wide integer compare. + { ISD::SETCC, MVT::v4i64, 4 }, + { ISD::SETCC, MVT::v8i32, 4 }, + { ISD::SETCC, MVT::v16i16, 4 }, + { ISD::SETCC, MVT::v32i8, 4 }, + }; + + static const CostTblEntry<MVT> AVX2CostTbl[] = { + { ISD::SETCC, MVT::v4i64, 1 }, + { ISD::SETCC, MVT::v8i32, 1 }, + { ISD::SETCC, MVT::v16i16, 1 }, + { ISD::SETCC, MVT::v32i8, 1 }, + }; + + if (ST->hasAVX2()) { + int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * AVX2CostTbl[Idx].Cost; + } + + if (ST->hasAVX()) { + int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * AVX1CostTbl[Idx].Cost; + } + + if (ST->hasSSE42()) { + int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy); + if (Idx != -1) + return LT.first * SSE42CostTbl[Idx].Cost; + } + + return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy); +} + +unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val, + unsigned Index) const { + assert(Val->isVectorTy() && "This must be a vector type"); + + if (Index != -1U) { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val); + + // This type is legalized to a scalar type. + if (!LT.second.isVector()) + return 0; + + // The type may be split. Normalize the index to the new type. + unsigned Width = LT.second.getVectorNumElements(); + Index = Index % Width; + + // Floating point scalars are already located in index #0. + if (Val->getScalarType()->isFloatingPointTy() && Index == 0) + return 0; + } + + return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index); +} + +unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) const { + // Legalize the type. + std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src); + assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && + "Invalid Opcode"); + + // Each load/store unit costs 1. + unsigned Cost = LT.first * 1; + + // On Sandybridge 256bit load/stores are double pumped + // (but not on Haswell). + if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2()) + Cost*=2; + + return Cost; +} |