diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp | 284 |
1 files changed, 284 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp new file mode 100644 index 0000000..b1a0161 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp @@ -0,0 +1,284 @@ +//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the X86SelectionDAGInfo class. +// +//===----------------------------------------------------------------------===// + +#include "X86InstrInfo.h" +#include "X86ISelLowering.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86SelectionDAGInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/Target/TargetLowering.h" + +using namespace llvm; + +#define DEBUG_TYPE "x86-selectiondag-info" + +bool X86SelectionDAGInfo::isBaseRegConflictPossible( + SelectionDAG &DAG, ArrayRef<unsigned> ClobberSet) const { + // We cannot use TRI->hasBasePointer() until *after* we select all basic + // blocks. Legalization may introduce new stack temporaries with large + // alignment requirements. Fall back to generic code if there are any + // dynamic stack adjustments (hopefully rare) and the base pointer would + // conflict if we had to use it. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + if (!MFI->hasVarSizedObjects() && !MFI->hasOpaqueSPAdjustment()) + return false; + + const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>( + DAG.getSubtarget().getRegisterInfo()); + unsigned BaseReg = TRI->getBaseRegister(); + for (unsigned R : ClobberSet) + if (BaseReg == R) + return true; + return false; +} + +SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset( + SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src, + SDValue Size, unsigned Align, bool isVolatile, + MachinePointerInfo DstPtrInfo) const { + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + const X86Subtarget &Subtarget = + DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + +#ifndef NDEBUG + // If the base register might conflict with our physical registers, bail out. + const unsigned ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI, + X86::ECX, X86::EAX, X86::EDI}; + assert(!isBaseRegConflictPossible(DAG, ClobberSet)); +#endif + + // If to a segment-relative address space, use the default lowering. + if (DstPtrInfo.getAddrSpace() >= 256) + return SDValue(); + + // If not DWORD aligned or size is more than the threshold, call the library. + // The libc version is likely to be faster for these cases. It can use the + // address value and run time information about the CPU. + if ((Align & 3) != 0 || !ConstantSize || + ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) { + // Check to see if there is a specialized entry-point for memory zeroing. + ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); + + if (const char *bzeroEntry = V && + V->isNullValue() ? Subtarget.getBZeroEntry() : nullptr) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); + Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + Entry.Node = Dst; + Entry.Ty = IntPtrTy; + Args.push_back(Entry); + Entry.Node = Size; + Args.push_back(Entry); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(Chain) + .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), + DAG.getExternalSymbol(bzeroEntry, IntPtr), std::move(Args), + 0) + .setDiscardResult(); + + std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI); + return CallResult.second; + } + + // Otherwise have the target-independent code call memset. + return SDValue(); + } + + uint64_t SizeVal = ConstantSize->getZExtValue(); + SDValue InFlag; + EVT AVT; + SDValue Count; + ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); + unsigned BytesLeft = 0; + bool TwoRepStos = false; + if (ValC) { + unsigned ValReg; + uint64_t Val = ValC->getZExtValue() & 255; + + // If the value is a constant, then we can potentially use larger sets. + switch (Align & 3) { + case 2: // WORD aligned + AVT = MVT::i16; + ValReg = X86::AX; + Val = (Val << 8) | Val; + break; + case 0: // DWORD aligned + AVT = MVT::i32; + ValReg = X86::EAX; + Val = (Val << 8) | Val; + Val = (Val << 16) | Val; + if (Subtarget.is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned + AVT = MVT::i64; + ValReg = X86::RAX; + Val = (Val << 32) | Val; + } + break; + default: // Byte aligned + AVT = MVT::i8; + ValReg = X86::AL; + Count = DAG.getIntPtrConstant(SizeVal, dl); + break; + } + + if (AVT.bitsGT(MVT::i8)) { + unsigned UBytes = AVT.getSizeInBits() / 8; + Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl); + BytesLeft = SizeVal % UBytes; + } + + Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT), + InFlag); + InFlag = Chain.getValue(1); + } else { + AVT = MVT::i8; + Count = DAG.getIntPtrConstant(SizeVal, dl); + Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag); + InFlag = Chain.getValue(1); + } + + Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX : X86::ECX, + Count, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI : X86::EDI, + Dst, InFlag); + InFlag = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; + Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); + + if (TwoRepStos) { + InFlag = Chain.getValue(1); + Count = Size; + EVT CVT = Count.getValueType(); + SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count, + DAG.getConstant((AVT == MVT::i64) ? 7 : 3, dl, + CVT)); + Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX : X86::ECX, + Left, InFlag); + InFlag = Chain.getValue(1); + Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag }; + Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops); + } else if (BytesLeft) { + // Handle the last 1 - 7 bytes. + unsigned Offset = SizeVal - BytesLeft; + EVT AddrVT = Dst.getValueType(); + EVT SizeVT = Size.getValueType(); + + Chain = DAG.getMemset(Chain, dl, + DAG.getNode(ISD::ADD, dl, AddrVT, Dst, + DAG.getConstant(Offset, dl, AddrVT)), + Src, + DAG.getConstant(BytesLeft, dl, SizeVT), + Align, isVolatile, false, + DstPtrInfo.getWithOffset(Offset)); + } + + // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. + return Chain; +} + +SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy( + SelectionDAG &DAG, SDLoc dl, SDValue Chain, SDValue Dst, SDValue Src, + SDValue Size, unsigned Align, bool isVolatile, bool AlwaysInline, + MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const { + // This requires the copy size to be a constant, preferably + // within a subtarget-specific limit. + ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); + const X86Subtarget &Subtarget = + DAG.getMachineFunction().getSubtarget<X86Subtarget>(); + if (!ConstantSize) + return SDValue(); + uint64_t SizeVal = ConstantSize->getZExtValue(); + if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold()) + return SDValue(); + + /// If not DWORD aligned, it is more efficient to call the library. However + /// if calling the library is not allowed (AlwaysInline), then soldier on as + /// the code generated here is better than the long load-store sequence we + /// would otherwise get. + if (!AlwaysInline && (Align & 3) != 0) + return SDValue(); + + // If to a segment-relative address space, use the default lowering. + if (DstPtrInfo.getAddrSpace() >= 256 || + SrcPtrInfo.getAddrSpace() >= 256) + return SDValue(); + + // If the base register might conflict with our physical registers, bail out. + const unsigned ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI, + X86::ECX, X86::ESI, X86::EDI}; + if (isBaseRegConflictPossible(DAG, ClobberSet)) + return SDValue(); + + MVT AVT; + if (Align & 1) + AVT = MVT::i8; + else if (Align & 2) + AVT = MVT::i16; + else if (Align & 4) + // DWORD aligned + AVT = MVT::i32; + else + // QWORD aligned + AVT = Subtarget.is64Bit() ? MVT::i64 : MVT::i32; + + unsigned UBytes = AVT.getSizeInBits() / 8; + unsigned CountVal = SizeVal / UBytes; + SDValue Count = DAG.getIntPtrConstant(CountVal, dl); + unsigned BytesLeft = SizeVal % UBytes; + + SDValue InFlag; + Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RCX : X86::ECX, + Count, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RDI : X86::EDI, + Dst, InFlag); + InFlag = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, dl, Subtarget.is64Bit() ? X86::RSI : X86::ESI, + Src, InFlag); + InFlag = Chain.getValue(1); + + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag }; + SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops); + + SmallVector<SDValue, 4> Results; + Results.push_back(RepMovs); + if (BytesLeft) { + // Handle the last 1 - 7 bytes. + unsigned Offset = SizeVal - BytesLeft; + EVT DstVT = Dst.getValueType(); + EVT SrcVT = Src.getValueType(); + EVT SizeVT = Size.getValueType(); + Results.push_back(DAG.getMemcpy(Chain, dl, + DAG.getNode(ISD::ADD, dl, DstVT, Dst, + DAG.getConstant(Offset, dl, + DstVT)), + DAG.getNode(ISD::ADD, dl, SrcVT, Src, + DAG.getConstant(Offset, dl, + SrcVT)), + DAG.getConstant(BytesLeft, dl, SizeVT), + Align, isVolatile, AlwaysInline, false, + DstPtrInfo.getWithOffset(Offset), + SrcPtrInfo.getWithOffset(Offset))); + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results); +} |