diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp new file mode 100644 index 0000000..58020d9 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp @@ -0,0 +1,326 @@ +//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that performs some optimizations with LEA +// instructions in order to improve code size. +// Currently, it does one thing: +// 1) Address calculations in load and store instructions are replaced by +// existing LEA def registers where possible. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "x86-optimize-LEAs" + +static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden, + cl::desc("X86: Enable LEA optimizations."), + cl::init(false)); + +STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); + +namespace { +class OptimizeLEAPass : public MachineFunctionPass { +public: + OptimizeLEAPass() : MachineFunctionPass(ID) {} + + const char *getPassName() const override { return "X86 LEA Optimize"; } + + /// \brief Loop over all of the basic blocks, replacing address + /// calculations in load and store instructions, if it's already + /// been calculated by LEA. Also, remove redundant LEAs. + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + /// \brief Returns a distance between two instructions inside one basic block. + /// Negative result means, that instructions occur in reverse order. + int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); + + /// \brief Choose the best \p LEA instruction from the \p List to replace + /// address calculation in \p MI instruction. Return the address displacement + /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift + /// and \p Dist. + bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, MachineInstr *&LEA, + int64_t &AddrDispShift, int &Dist); + + /// \brief Returns true if two machine operand are identical and they are not + /// physical registers. + bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); + + /// \brief Returns true if the instruction is LEA. + bool isLEA(const MachineInstr &MI); + + /// \brief Returns true if two instructions have memory operands that only + /// differ by displacement. The numbers of the first memory operands for both + /// instructions are specified through \p N1 and \p N2. The address + /// displacement is returned through AddrDispShift. + bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, unsigned N2, + int64_t &AddrDispShift); + + /// \brief Find all LEA instructions in the basic block. + void findLEAs(const MachineBasicBlock &MBB, + SmallVectorImpl<MachineInstr *> &List); + + /// \brief Removes redundant address calculations. + bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List); + + MachineRegisterInfo *MRI; + const X86InstrInfo *TII; + const X86RegisterInfo *TRI; + + static char ID; +}; +char OptimizeLEAPass::ID = 0; +} + +FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } + +int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, + const MachineInstr &Last) { + const MachineBasicBlock *MBB = First.getParent(); + + // Both instructions must be in the same basic block. + assert(Last.getParent() == MBB && + "Instructions are in different basic blocks"); + + return std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&Last)) - + std::distance(MBB->begin(), MachineBasicBlock::const_iterator(&First)); +} + +// Find the best LEA instruction in the List to replace address recalculation in +// MI. Such LEA must meet these requirements: +// 1) The address calculated by the LEA differs only by the displacement from +// the address used in MI. +// 2) The register class of the definition of the LEA is compatible with the +// register class of the address base register of MI. +// 3) Displacement of the new memory operand should fit in 1 byte if possible. +// 4) The LEA should be as close to MI as possible, and prior to it if +// possible. +bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, MachineInstr *&LEA, + int64_t &AddrDispShift, int &Dist) { + const MachineFunction *MF = MI.getParent()->getParent(); + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + + X86II::getOperandBias(Desc); + + LEA = nullptr; + + // Loop over all LEA instructions. + for (auto DefMI : List) { + int64_t AddrDispShiftTemp = 0; + + // Compare instructions memory operands. + if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp)) + continue; + + // Make sure address displacement fits 4 bytes. + if (!isInt<32>(AddrDispShiftTemp)) + continue; + + // Check that LEA def register can be used as MI address base. Some + // instructions can use a limited set of registers as address base, for + // example MOV8mr_NOREX. We could constrain the register class of the LEA + // def to suit MI, however since this case is very rare and hard to + // reproduce in a test it's just more reliable to skip the LEA. + if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != + MRI->getRegClass(DefMI->getOperand(0).getReg())) + continue; + + // Choose the closest LEA instruction from the list, prior to MI if + // possible. Note that we took into account resulting address displacement + // as well. Also note that the list is sorted by the order in which the LEAs + // occur, so the break condition is pretty simple. + int DistTemp = calcInstrDist(*DefMI, MI); + assert(DistTemp != 0 && + "The distance between two different instructions cannot be zero"); + if (DistTemp > 0 || LEA == nullptr) { + // Do not update return LEA, if the current one provides a displacement + // which fits in 1 byte, while the new candidate does not. + if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) && + isInt<8>(AddrDispShift)) + continue; + + LEA = DefMI; + AddrDispShift = AddrDispShiftTemp; + Dist = DistTemp; + } + + // FIXME: Maybe we should not always stop at the first LEA after MI. + if (DistTemp < 0) + break; + } + + return LEA != nullptr; +} + +bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1, + const MachineOperand &MO2) { + return MO1.isIdenticalTo(MO2) && + (!MO1.isReg() || + !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); +} + +bool OptimizeLEAPass::isLEA(const MachineInstr &MI) { + unsigned Opcode = MI.getOpcode(); + return Opcode == X86::LEA16r || Opcode == X86::LEA32r || + Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; +} + +// Check if MI1 and MI2 have memory operands which represent addresses that +// differ only by displacement. +bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, unsigned N2, + int64_t &AddrDispShift) { + // Address base, scale, index and segment operands must be identical. + static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt, + X86::AddrIndexReg, X86::AddrSegmentReg}; + for (auto &N : IdenticalOpNums) + if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N))) + return false; + + // Address displacement operands may differ by a constant. + const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp); + const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp); + if (!isIdenticalOp(*Op1, *Op2)) { + if (Op1->isImm() && Op2->isImm()) + AddrDispShift = Op1->getImm() - Op2->getImm(); + else if (Op1->isGlobal() && Op2->isGlobal() && + Op1->getGlobal() == Op2->getGlobal()) + AddrDispShift = Op1->getOffset() - Op2->getOffset(); + else + return false; + } + + return true; +} + +void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, + SmallVectorImpl<MachineInstr *> &List) { + for (auto &MI : MBB) { + if (isLEA(MI)) + List.push_back(const_cast<MachineInstr *>(&MI)); + } +} + +// Try to find load and store instructions which recalculate addresses already +// calculated by some LEA and replace their memory operands with its def +// register. +bool OptimizeLEAPass::removeRedundantAddrCalc( + const SmallVectorImpl<MachineInstr *> &List) { + bool Changed = false; + + assert(List.size() > 0); + MachineBasicBlock *MBB = List[0]->getParent(); + + // Process all instructions in basic block. + for (auto I = MBB->begin(), E = MBB->end(); I != E;) { + MachineInstr &MI = *I++; + unsigned Opcode = MI.getOpcode(); + + // Instruction must be load or store. + if (!MI.mayLoadOrStore()) + continue; + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode); + + // If instruction has no memory operand - skip it. + if (MemOpNo < 0) + continue; + + MemOpNo += X86II::getOperandBias(Desc); + + // Get the best LEA instruction to replace address calculation. + MachineInstr *DefMI; + int64_t AddrDispShift; + int Dist; + if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist)) + continue; + + // If LEA occurs before current instruction, we can freely replace + // the instruction. If LEA occurs after, we can lift LEA above the + // instruction and this way to be able to replace it. Since LEA and the + // instruction have similar memory operands (thus, the same def + // instructions for these operands), we can always do that, without + // worries of using registers before their defs. + if (Dist < 0) { + DefMI->removeFromParent(); + MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); + } + + // Since we can possibly extend register lifetime, clear kill flags. + MRI->clearKillFlags(DefMI->getOperand(0).getReg()); + + ++NumSubstLEAs; + DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); + + // Change instruction operands. + MI.getOperand(MemOpNo + X86::AddrBaseReg) + .ChangeToRegister(DefMI->getOperand(0).getReg(), false); + MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); + MI.getOperand(MemOpNo + X86::AddrIndexReg) + .ChangeToRegister(X86::NoRegister, false); + MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); + MI.getOperand(MemOpNo + X86::AddrSegmentReg) + .ChangeToRegister(X86::NoRegister, false); + + DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); + + Changed = true; + } + + return Changed; +} + +bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { + bool Changed = false; + + // Perform this optimization only if we care about code size. + if (!EnableX86LEAOpt || !MF.getFunction()->optForSize()) + return false; + + MRI = &MF.getRegInfo(); + TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); + TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); + + // Process all basic blocks. + for (auto &MBB : MF) { + SmallVector<MachineInstr *, 16> LEAs; + + // Find all LEA instructions in basic block. + findLEAs(MBB, LEAs); + + // If current basic block has no LEAs, move on to the next one. + if (LEAs.empty()) + continue; + + // Remove redundant address calculations. + Changed |= removeRedundantAddrCalc(LEAs); + } + + return Changed; +} |