diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp | 503 |
1 files changed, 503 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp b/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp new file mode 100644 index 0000000..45cc0ae --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86OptimizeLEAs.cpp @@ -0,0 +1,503 @@ +//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that performs some optimizations with LEA +// instructions in order to improve code size. +// Currently, it does two things: +// 1) If there are two LEA instructions calculating addresses which only differ +// by displacement inside a basic block, one of them is removed. +// 2) Address calculations in load and store instructions are replaced by +// existing LEA def registers where possible. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/IR/Function.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" + +using namespace llvm; + +#define DEBUG_TYPE "x86-optimize-LEAs" + +static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden, + cl::desc("X86: Enable LEA optimizations."), + cl::init(false)); + +STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions"); +STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed"); + +namespace { +class OptimizeLEAPass : public MachineFunctionPass { +public: + OptimizeLEAPass() : MachineFunctionPass(ID) {} + + const char *getPassName() const override { return "X86 LEA Optimize"; } + + /// \brief Loop over all of the basic blocks, replacing address + /// calculations in load and store instructions, if it's already + /// been calculated by LEA. Also, remove redundant LEAs. + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + /// \brief Returns a distance between two instructions inside one basic block. + /// Negative result means, that instructions occur in reverse order. + int calcInstrDist(const MachineInstr &First, const MachineInstr &Last); + + /// \brief Choose the best \p LEA instruction from the \p List to replace + /// address calculation in \p MI instruction. Return the address displacement + /// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift + /// and \p Dist. + bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, MachineInstr *&LEA, + int64_t &AddrDispShift, int &Dist); + + /// \brief Returns true if two machine operand are identical and they are not + /// physical registers. + bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2); + + /// \brief Returns true if the instruction is LEA. + bool isLEA(const MachineInstr &MI); + + /// \brief Returns true if the \p Last LEA instruction can be replaced by the + /// \p First. The difference between displacements of the addresses calculated + /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper + /// replacement of the \p Last LEA's uses with the \p First's def register. + bool isReplaceable(const MachineInstr &First, const MachineInstr &Last, + int64_t &AddrDispShift); + + /// \brief Returns true if two instructions have memory operands that only + /// differ by displacement. The numbers of the first memory operands for both + /// instructions are specified through \p N1 and \p N2. The address + /// displacement is returned through AddrDispShift. + bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, unsigned N2, + int64_t &AddrDispShift); + + /// \brief Find all LEA instructions in the basic block. Also, assign position + /// numbers to all instructions in the basic block to speed up calculation of + /// distance between them. + void findLEAs(const MachineBasicBlock &MBB, + SmallVectorImpl<MachineInstr *> &List); + + /// \brief Removes redundant address calculations. + bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List); + + /// \brief Removes LEAs which calculate similar addresses. + bool removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List); + + DenseMap<const MachineInstr *, unsigned> InstrPos; + + MachineRegisterInfo *MRI; + const X86InstrInfo *TII; + const X86RegisterInfo *TRI; + + static char ID; +}; +char OptimizeLEAPass::ID = 0; +} + +FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); } + +int OptimizeLEAPass::calcInstrDist(const MachineInstr &First, + const MachineInstr &Last) { + // Both instructions must be in the same basic block and they must be + // presented in InstrPos. + assert(Last.getParent() == First.getParent() && + "Instructions are in different basic blocks"); + assert(InstrPos.find(&First) != InstrPos.end() && + InstrPos.find(&Last) != InstrPos.end() && + "Instructions' positions are undefined"); + + return InstrPos[&Last] - InstrPos[&First]; +} + +// Find the best LEA instruction in the List to replace address recalculation in +// MI. Such LEA must meet these requirements: +// 1) The address calculated by the LEA differs only by the displacement from +// the address used in MI. +// 2) The register class of the definition of the LEA is compatible with the +// register class of the address base register of MI. +// 3) Displacement of the new memory operand should fit in 1 byte if possible. +// 4) The LEA should be as close to MI as possible, and prior to it if +// possible. +bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List, + const MachineInstr &MI, MachineInstr *&LEA, + int64_t &AddrDispShift, int &Dist) { + const MachineFunction *MF = MI.getParent()->getParent(); + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + + X86II::getOperandBias(Desc); + + LEA = nullptr; + + // Loop over all LEA instructions. + for (auto DefMI : List) { + int64_t AddrDispShiftTemp = 0; + + // Compare instructions memory operands. + if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp)) + continue; + + // Make sure address displacement fits 4 bytes. + if (!isInt<32>(AddrDispShiftTemp)) + continue; + + // Check that LEA def register can be used as MI address base. Some + // instructions can use a limited set of registers as address base, for + // example MOV8mr_NOREX. We could constrain the register class of the LEA + // def to suit MI, however since this case is very rare and hard to + // reproduce in a test it's just more reliable to skip the LEA. + if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) != + MRI->getRegClass(DefMI->getOperand(0).getReg())) + continue; + + // Choose the closest LEA instruction from the list, prior to MI if + // possible. Note that we took into account resulting address displacement + // as well. Also note that the list is sorted by the order in which the LEAs + // occur, so the break condition is pretty simple. + int DistTemp = calcInstrDist(*DefMI, MI); + assert(DistTemp != 0 && + "The distance between two different instructions cannot be zero"); + if (DistTemp > 0 || LEA == nullptr) { + // Do not update return LEA, if the current one provides a displacement + // which fits in 1 byte, while the new candidate does not. + if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) && + isInt<8>(AddrDispShift)) + continue; + + LEA = DefMI; + AddrDispShift = AddrDispShiftTemp; + Dist = DistTemp; + } + + // FIXME: Maybe we should not always stop at the first LEA after MI. + if (DistTemp < 0) + break; + } + + return LEA != nullptr; +} + +bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1, + const MachineOperand &MO2) { + return MO1.isIdenticalTo(MO2) && + (!MO1.isReg() || + !TargetRegisterInfo::isPhysicalRegister(MO1.getReg())); +} + +bool OptimizeLEAPass::isLEA(const MachineInstr &MI) { + unsigned Opcode = MI.getOpcode(); + return Opcode == X86::LEA16r || Opcode == X86::LEA32r || + Opcode == X86::LEA64r || Opcode == X86::LEA64_32r; +} + +// Check that the Last LEA can be replaced by the First LEA. To be so, +// these requirements must be met: +// 1) Addresses calculated by LEAs differ only by displacement. +// 2) Def registers of LEAs belong to the same class. +// 3) All uses of the Last LEA def register are replaceable, thus the +// register is used only as address base. +bool OptimizeLEAPass::isReplaceable(const MachineInstr &First, + const MachineInstr &Last, + int64_t &AddrDispShift) { + assert(isLEA(First) && isLEA(Last) && + "The function works only with LEA instructions"); + + // Compare instructions' memory operands. + if (!isSimilarMemOp(Last, 1, First, 1, AddrDispShift)) + return false; + + // Make sure that LEA def registers belong to the same class. There may be + // instructions (like MOV8mr_NOREX) which allow a limited set of registers to + // be used as their operands, so we must be sure that replacing one LEA + // with another won't lead to putting a wrong register in the instruction. + if (MRI->getRegClass(First.getOperand(0).getReg()) != + MRI->getRegClass(Last.getOperand(0).getReg())) + return false; + + // Loop over all uses of the Last LEA to check that its def register is + // used only as address base for memory accesses. If so, it can be + // replaced, otherwise - no. + for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) { + MachineInstr &MI = *MO.getParent(); + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()); + + // If the use instruction has no memory operand - the LEA is not + // replaceable. + if (MemOpNo < 0) + return false; + + MemOpNo += X86II::getOperandBias(Desc); + + // If the address base of the use instruction is not the LEA def register - + // the LEA is not replaceable. + if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO)) + return false; + + // If the LEA def register is used as any other operand of the use + // instruction - the LEA is not replaceable. + for (unsigned i = 0; i < MI.getNumOperands(); i++) + if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) && + isIdenticalOp(MI.getOperand(i), MO)) + return false; + + // Check that the new address displacement will fit 4 bytes. + if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() && + !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() + + AddrDispShift)) + return false; + } + + return true; +} + +// Check if MI1 and MI2 have memory operands which represent addresses that +// differ only by displacement. +bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1, + const MachineInstr &MI2, unsigned N2, + int64_t &AddrDispShift) { + // Address base, scale, index and segment operands must be identical. + static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt, + X86::AddrIndexReg, X86::AddrSegmentReg}; + for (auto &N : IdenticalOpNums) + if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N))) + return false; + + // Address displacement operands may differ by a constant. + const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp); + const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp); + if (!isIdenticalOp(*Op1, *Op2)) { + if (Op1->isImm() && Op2->isImm()) + AddrDispShift = Op1->getImm() - Op2->getImm(); + else if (Op1->isGlobal() && Op2->isGlobal() && + Op1->getGlobal() == Op2->getGlobal()) + AddrDispShift = Op1->getOffset() - Op2->getOffset(); + else + return false; + } + + return true; +} + +void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, + SmallVectorImpl<MachineInstr *> &List) { + unsigned Pos = 0; + for (auto &MI : MBB) { + // Assign the position number to the instruction. Note that we are going to + // move some instructions during the optimization however there will never + // be a need to move two instructions before any selected instruction. So to + // avoid multiple positions' updates during moves we just increase position + // counter by two leaving a free space for instructions which will be moved. + InstrPos[&MI] = Pos += 2; + + if (isLEA(MI)) + List.push_back(const_cast<MachineInstr *>(&MI)); + } +} + +// Try to find load and store instructions which recalculate addresses already +// calculated by some LEA and replace their memory operands with its def +// register. +bool OptimizeLEAPass::removeRedundantAddrCalc( + const SmallVectorImpl<MachineInstr *> &List) { + bool Changed = false; + + assert(List.size() > 0); + MachineBasicBlock *MBB = List[0]->getParent(); + + // Process all instructions in basic block. + for (auto I = MBB->begin(), E = MBB->end(); I != E;) { + MachineInstr &MI = *I++; + unsigned Opcode = MI.getOpcode(); + + // Instruction must be load or store. + if (!MI.mayLoadOrStore()) + continue; + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode); + + // If instruction has no memory operand - skip it. + if (MemOpNo < 0) + continue; + + MemOpNo += X86II::getOperandBias(Desc); + + // Get the best LEA instruction to replace address calculation. + MachineInstr *DefMI; + int64_t AddrDispShift; + int Dist; + if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist)) + continue; + + // If LEA occurs before current instruction, we can freely replace + // the instruction. If LEA occurs after, we can lift LEA above the + // instruction and this way to be able to replace it. Since LEA and the + // instruction have similar memory operands (thus, the same def + // instructions for these operands), we can always do that, without + // worries of using registers before their defs. + if (Dist < 0) { + DefMI->removeFromParent(); + MBB->insert(MachineBasicBlock::iterator(&MI), DefMI); + InstrPos[DefMI] = InstrPos[&MI] - 1; + + // Make sure the instructions' position numbers are sane. + assert(((InstrPos[DefMI] == 1 && DefMI == MBB->begin()) || + InstrPos[DefMI] > + InstrPos[std::prev(MachineBasicBlock::iterator(DefMI))]) && + "Instruction positioning is broken"); + } + + // Since we can possibly extend register lifetime, clear kill flags. + MRI->clearKillFlags(DefMI->getOperand(0).getReg()); + + ++NumSubstLEAs; + DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump();); + + // Change instruction operands. + MI.getOperand(MemOpNo + X86::AddrBaseReg) + .ChangeToRegister(DefMI->getOperand(0).getReg(), false); + MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1); + MI.getOperand(MemOpNo + X86::AddrIndexReg) + .ChangeToRegister(X86::NoRegister, false); + MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift); + MI.getOperand(MemOpNo + X86::AddrSegmentReg) + .ChangeToRegister(X86::NoRegister, false); + + DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump();); + + Changed = true; + } + + return Changed; +} + +// Try to find similar LEAs in the list and replace one with another. +bool +OptimizeLEAPass::removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List) { + bool Changed = false; + + // Loop over all LEA pairs. + auto I1 = List.begin(); + while (I1 != List.end()) { + MachineInstr &First = **I1; + auto I2 = std::next(I1); + while (I2 != List.end()) { + MachineInstr &Last = **I2; + int64_t AddrDispShift; + + // LEAs should be in occurence order in the list, so we can freely + // replace later LEAs with earlier ones. + assert(calcInstrDist(First, Last) > 0 && + "LEAs must be in occurence order in the list"); + + // Check that the Last LEA instruction can be replaced by the First. + if (!isReplaceable(First, Last, AddrDispShift)) { + ++I2; + continue; + } + + // Loop over all uses of the Last LEA and update their operands. Note that + // the correctness of this has already been checked in the isReplaceable + // function. + for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()), + UE = MRI->use_end(); + UI != UE;) { + MachineOperand &MO = *UI++; + MachineInstr &MI = *MO.getParent(); + + // Get the number of the first memory operand. + const MCInstrDesc &Desc = MI.getDesc(); + int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) + + X86II::getOperandBias(Desc); + + // Update address base. + MO.setReg(First.getOperand(0).getReg()); + + // Update address disp. + MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp); + if (Op->isImm()) + Op->setImm(Op->getImm() + AddrDispShift); + else if (Op->isGlobal()) + Op->setOffset(Op->getOffset() + AddrDispShift); + else + llvm_unreachable("Invalid address displacement operand"); + } + + // Since we can possibly extend register lifetime, clear kill flags. + MRI->clearKillFlags(First.getOperand(0).getReg()); + + ++NumRedundantLEAs; + DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump();); + + // By this moment, all of the Last LEA's uses must be replaced. So we can + // freely remove it. + assert(MRI->use_empty(Last.getOperand(0).getReg()) && + "The LEA's def register must have no uses"); + Last.eraseFromParent(); + + // Erase removed LEA from the list. + I2 = List.erase(I2); + + Changed = true; + } + ++I1; + } + + return Changed; +} + +bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) { + bool Changed = false; + + // Perform this optimization only if we care about code size. + if (!EnableX86LEAOpt || !MF.getFunction()->optForSize()) + return false; + + MRI = &MF.getRegInfo(); + TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); + TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo(); + + // Process all basic blocks. + for (auto &MBB : MF) { + SmallVector<MachineInstr *, 16> LEAs; + InstrPos.clear(); + + // Find all LEA instructions in basic block. + findLEAs(MBB, LEAs); + + // If current basic block has no LEAs, move on to the next one. + if (LEAs.empty()) + continue; + + // Remove redundant LEA instructions. The optimization may have a negative + // effect on performance, so do it only for -Oz. + if (MF.getFunction()->optForMinSize()) + Changed |= removeRedundantLEAs(LEAs); + + // Remove redundant address calculations. + Changed |= removeRedundantAddrCalc(LEAs); + } + + return Changed; +} |