summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86MCInstLower.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86MCInstLower.cpp1340
1 files changed, 1340 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
new file mode 100644
index 0000000..3415ced
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86MCInstLower.cpp
@@ -0,0 +1,1340 @@
+//===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains code to lower X86 MachineInstrs to their corresponding
+// MCInst records.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86AsmPrinter.h"
+#include "X86RegisterInfo.h"
+#include "InstPrinter/X86ATTInstPrinter.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "Utils/X86ShuffleDecode.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineModuleInfoImpls.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Mangler.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCFixup.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/TargetRegistry.h"
+using namespace llvm;
+
+namespace {
+
+/// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
+class X86MCInstLower {
+ MCContext &Ctx;
+ const MachineFunction &MF;
+ const TargetMachine &TM;
+ const MCAsmInfo &MAI;
+ X86AsmPrinter &AsmPrinter;
+public:
+ X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
+
+ Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
+ const MachineOperand &MO) const;
+ void Lower(const MachineInstr *MI, MCInst &OutMI) const;
+
+ MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
+ MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
+
+private:
+ MachineModuleInfoMachO &getMachOMMI() const;
+ Mangler *getMang() const {
+ return AsmPrinter.Mang;
+ }
+};
+
+} // end anonymous namespace
+
+// Emit a minimal sequence of nops spanning NumBytes bytes.
+static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
+ const MCSubtargetInfo &STI);
+
+namespace llvm {
+ X86AsmPrinter::StackMapShadowTracker::StackMapShadowTracker(TargetMachine &TM)
+ : TM(TM), InShadow(false), RequiredShadowSize(0), CurrentShadowSize(0) {}
+
+ X86AsmPrinter::StackMapShadowTracker::~StackMapShadowTracker() {}
+
+ void
+ X86AsmPrinter::StackMapShadowTracker::startFunction(MachineFunction &F) {
+ MF = &F;
+ CodeEmitter.reset(TM.getTarget().createMCCodeEmitter(
+ *MF->getSubtarget().getInstrInfo(),
+ *MF->getSubtarget().getRegisterInfo(), MF->getContext()));
+ }
+
+ void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
+ const MCSubtargetInfo &STI) {
+ if (InShadow) {
+ SmallString<256> Code;
+ SmallVector<MCFixup, 4> Fixups;
+ raw_svector_ostream VecOS(Code);
+ CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
+ VecOS.flush();
+ CurrentShadowSize += Code.size();
+ if (CurrentShadowSize >= RequiredShadowSize)
+ InShadow = false; // The shadow is big enough. Stop counting.
+ }
+ }
+
+ void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
+ MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
+ if (InShadow && CurrentShadowSize < RequiredShadowSize) {
+ InShadow = false;
+ EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
+ MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
+ }
+ }
+
+ void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
+ OutStreamer->EmitInstruction(Inst, getSubtargetInfo());
+ SMShadowTracker.count(Inst, getSubtargetInfo());
+ }
+} // end llvm namespace
+
+X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
+ X86AsmPrinter &asmprinter)
+ : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
+ AsmPrinter(asmprinter) {}
+
+MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
+ return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
+}
+
+
+/// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
+/// operand to an MCSymbol.
+MCSymbol *X86MCInstLower::
+GetSymbolFromOperand(const MachineOperand &MO) const {
+ const DataLayout *DL = TM.getDataLayout();
+ assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
+
+ MCSymbol *Sym = nullptr;
+ SmallString<128> Name;
+ StringRef Suffix;
+
+ switch (MO.getTargetFlags()) {
+ case X86II::MO_DLLIMPORT:
+ // Handle dllimport linkage.
+ Name += "__imp_";
+ break;
+ case X86II::MO_DARWIN_STUB:
+ Suffix = "$stub";
+ break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ Suffix = "$non_lazy_ptr";
+ break;
+ }
+
+ if (!Suffix.empty())
+ Name += DL->getPrivateGlobalPrefix();
+
+ unsigned PrefixLen = Name.size();
+
+ if (MO.isGlobal()) {
+ const GlobalValue *GV = MO.getGlobal();
+ AsmPrinter.getNameWithPrefix(Name, GV);
+ } else if (MO.isSymbol()) {
+ Mangler::getNameWithPrefix(Name, MO.getSymbolName(), *DL);
+ } else if (MO.isMBB()) {
+ assert(Suffix.empty());
+ Sym = MO.getMBB()->getSymbol();
+ }
+ unsigned OrigLen = Name.size() - PrefixLen;
+
+ Name += Suffix;
+ if (!Sym)
+ Sym = Ctx.getOrCreateSymbol(Name);
+
+ StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
+
+ // If the target flags on the operand changes the name of the symbol, do that
+ // before we return the symbol.
+ switch (MO.getTargetFlags()) {
+ default: break;
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getGVStubEntry(Sym);
+ if (!StubSym.getPointer()) {
+ assert(MO.isGlobal() && "Extern symbol not handled yet");
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ }
+ break;
+ }
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getHiddenGVStubEntry(Sym);
+ if (!StubSym.getPointer()) {
+ assert(MO.isGlobal() && "Extern symbol not handled yet");
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ }
+ break;
+ }
+ case X86II::MO_DARWIN_STUB: {
+ MachineModuleInfoImpl::StubValueTy &StubSym =
+ getMachOMMI().getFnStubEntry(Sym);
+ if (StubSym.getPointer())
+ return Sym;
+
+ if (MO.isGlobal()) {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
+ !MO.getGlobal()->hasInternalLinkage());
+ } else {
+ StubSym =
+ MachineModuleInfoImpl::
+ StubValueTy(Ctx.getOrCreateSymbol(OrigName), false);
+ }
+ break;
+ }
+ }
+
+ return Sym;
+}
+
+MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
+ MCSymbol *Sym) const {
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ const MCExpr *Expr = nullptr;
+ MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
+
+ switch (MO.getTargetFlags()) {
+ default: llvm_unreachable("Unknown target flag on GV operand");
+ case X86II::MO_NO_FLAG: // No flag.
+ // These affect the name of the symbol, not any suffix.
+ case X86II::MO_DARWIN_NONLAZY:
+ case X86II::MO_DLLIMPORT:
+ case X86II::MO_DARWIN_STUB:
+ break;
+
+ case X86II::MO_TLVP: RefKind = MCSymbolRefExpr::VK_TLVP; break;
+ case X86II::MO_TLVP_PIC_BASE:
+ Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
+ // Subtract the pic base.
+ Expr = MCBinaryExpr::createSub(Expr,
+ MCSymbolRefExpr::create(MF.getPICBaseSymbol(),
+ Ctx),
+ Ctx);
+ break;
+ case X86II::MO_SECREL: RefKind = MCSymbolRefExpr::VK_SECREL; break;
+ case X86II::MO_TLSGD: RefKind = MCSymbolRefExpr::VK_TLSGD; break;
+ case X86II::MO_TLSLD: RefKind = MCSymbolRefExpr::VK_TLSLD; break;
+ case X86II::MO_TLSLDM: RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
+ case X86II::MO_GOTTPOFF: RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
+ case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
+ case X86II::MO_TPOFF: RefKind = MCSymbolRefExpr::VK_TPOFF; break;
+ case X86II::MO_DTPOFF: RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
+ case X86II::MO_NTPOFF: RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
+ case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
+ case X86II::MO_GOTPCREL: RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
+ case X86II::MO_GOT: RefKind = MCSymbolRefExpr::VK_GOT; break;
+ case X86II::MO_GOTOFF: RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
+ case X86II::MO_PLT: RefKind = MCSymbolRefExpr::VK_PLT; break;
+ case X86II::MO_PIC_BASE_OFFSET:
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
+ Expr = MCSymbolRefExpr::create(Sym, Ctx);
+ // Subtract the pic base.
+ Expr = MCBinaryExpr::createSub(Expr,
+ MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx),
+ Ctx);
+ if (MO.isJTI()) {
+ assert(MAI.doesSetDirectiveSuppressesReloc());
+ // If .set directive is supported, use it to reduce the number of
+ // relocations the assembler will generate for differences between
+ // local labels. This is only safe when the symbols are in the same
+ // section so we are restricting it to jumptable references.
+ MCSymbol *Label = Ctx.createTempSymbol();
+ AsmPrinter.OutStreamer->EmitAssignment(Label, Expr);
+ Expr = MCSymbolRefExpr::create(Label, Ctx);
+ }
+ break;
+ }
+
+ if (!Expr)
+ Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
+
+ if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
+ Expr = MCBinaryExpr::createAdd(Expr,
+ MCConstantExpr::create(MO.getOffset(), Ctx),
+ Ctx);
+ return MCOperand::createExpr(Expr);
+}
+
+
+/// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
+/// a short fixed-register form.
+static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
+ unsigned ImmOp = Inst.getNumOperands() - 1;
+ assert(Inst.getOperand(0).isReg() &&
+ (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
+ ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
+ Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
+ Inst.getNumOperands() == 2) && "Unexpected instruction!");
+
+ // Check whether the destination register can be fixed.
+ unsigned Reg = Inst.getOperand(0).getReg();
+ if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
+ return;
+
+ // If so, rewrite the instruction.
+ MCOperand Saved = Inst.getOperand(ImmOp);
+ Inst = MCInst();
+ Inst.setOpcode(Opcode);
+ Inst.addOperand(Saved);
+}
+
+/// \brief If a movsx instruction has a shorter encoding for the used register
+/// simplify the instruction to use it instead.
+static void SimplifyMOVSX(MCInst &Inst) {
+ unsigned NewOpcode = 0;
+ unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
+ switch (Inst.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected instruction!");
+ case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
+ if (Op0 == X86::AX && Op1 == X86::AL)
+ NewOpcode = X86::CBW;
+ break;
+ case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
+ if (Op0 == X86::EAX && Op1 == X86::AX)
+ NewOpcode = X86::CWDE;
+ break;
+ case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
+ if (Op0 == X86::RAX && Op1 == X86::EAX)
+ NewOpcode = X86::CDQE;
+ break;
+ }
+
+ if (NewOpcode != 0) {
+ Inst = MCInst();
+ Inst.setOpcode(NewOpcode);
+ }
+}
+
+/// \brief Simplify things like MOV32rm to MOV32o32a.
+static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
+ unsigned Opcode) {
+ // Don't make these simplifications in 64-bit mode; other assemblers don't
+ // perform them because they make the code larger.
+ if (Printer.getSubtarget().is64Bit())
+ return;
+
+ bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
+ unsigned AddrBase = IsStore;
+ unsigned RegOp = IsStore ? 0 : 5;
+ unsigned AddrOp = AddrBase + 3;
+ assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
+ Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
+ Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
+ (Inst.getOperand(AddrOp).isExpr() ||
+ Inst.getOperand(AddrOp).isImm()) &&
+ "Unexpected instruction!");
+
+ // Check whether the destination register can be fixed.
+ unsigned Reg = Inst.getOperand(RegOp).getReg();
+ if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
+ return;
+
+ // Check whether this is an absolute address.
+ // FIXME: We know TLVP symbol refs aren't, but there should be a better way
+ // to do this here.
+ bool Absolute = true;
+ if (Inst.getOperand(AddrOp).isExpr()) {
+ const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
+ if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
+ if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
+ Absolute = false;
+ }
+
+ if (Absolute &&
+ (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
+ Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
+ Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
+ return;
+
+ // If so, rewrite the instruction.
+ MCOperand Saved = Inst.getOperand(AddrOp);
+ MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
+ Inst = MCInst();
+ Inst.setOpcode(Opcode);
+ Inst.addOperand(Saved);
+ Inst.addOperand(Seg);
+}
+
+static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
+ return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
+}
+
+Optional<MCOperand>
+X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
+ const MachineOperand &MO) const {
+ switch (MO.getType()) {
+ default:
+ MI->dump();
+ llvm_unreachable("unknown operand type");
+ case MachineOperand::MO_Register:
+ // Ignore all implicit register operands.
+ if (MO.isImplicit())
+ return None;
+ return MCOperand::createReg(MO.getReg());
+ case MachineOperand::MO_Immediate:
+ return MCOperand::createImm(MO.getImm());
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
+ case MachineOperand::MO_MCSymbol:
+ return LowerSymbolOperand(MO, MO.getMCSymbol());
+ case MachineOperand::MO_JumpTableIndex:
+ return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
+ case MachineOperand::MO_ConstantPoolIndex:
+ return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
+ case MachineOperand::MO_BlockAddress:
+ return LowerSymbolOperand(
+ MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
+ case MachineOperand::MO_RegisterMask:
+ // Ignore call clobbers.
+ return None;
+ }
+}
+
+void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
+ OutMI.setOpcode(MI->getOpcode());
+
+ for (const MachineOperand &MO : MI->operands())
+ if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
+ OutMI.addOperand(MaybeMCOp.getValue());
+
+ // Handle a few special cases to eliminate operand modifiers.
+ReSimplify:
+ switch (OutMI.getOpcode()) {
+ case X86::LEA64_32r:
+ case X86::LEA64r:
+ case X86::LEA16r:
+ case X86::LEA32r:
+ // LEA should have a segment register, but it must be empty.
+ assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
+ "Unexpected # of LEA operands");
+ assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
+ "LEA has segment specified!");
+ break;
+
+ case X86::MOV32ri64:
+ OutMI.setOpcode(X86::MOV32ri);
+ break;
+
+ // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
+ // if one of the registers is extended, but other isn't.
+ case X86::VMOVAPDrr:
+ case X86::VMOVAPDYrr:
+ case X86::VMOVAPSrr:
+ case X86::VMOVAPSYrr:
+ case X86::VMOVDQArr:
+ case X86::VMOVDQAYrr:
+ case X86::VMOVDQUrr:
+ case X86::VMOVDQUYrr:
+ case X86::VMOVUPDrr:
+ case X86::VMOVUPDYrr:
+ case X86::VMOVUPSrr:
+ case X86::VMOVUPSYrr: {
+ if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
+ X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
+ unsigned NewOpc;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
+ case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
+ case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
+ case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
+ case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
+ case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
+ case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
+ case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
+ case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
+ case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
+ case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
+ case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
+ }
+ OutMI.setOpcode(NewOpc);
+ }
+ break;
+ }
+ case X86::VMOVSDrr:
+ case X86::VMOVSSrr: {
+ if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
+ X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
+ unsigned NewOpc;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
+ case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
+ }
+ OutMI.setOpcode(NewOpc);
+ }
+ break;
+ }
+
+ // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
+ // inputs modeled as normal uses instead of implicit uses. As such, truncate
+ // off all but the first operand (the callee). FIXME: Change isel.
+ case X86::TAILJMPr64:
+ case X86::TAILJMPr64_REX:
+ case X86::CALL64r:
+ case X86::CALL64pcrel32: {
+ unsigned Opcode = OutMI.getOpcode();
+ MCOperand Saved = OutMI.getOperand(0);
+ OutMI = MCInst();
+ OutMI.setOpcode(Opcode);
+ OutMI.addOperand(Saved);
+ break;
+ }
+
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ OutMI = MCInst();
+ OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
+ break;
+ }
+
+ // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
+ case X86::TAILJMPr:
+ case X86::TAILJMPd:
+ case X86::TAILJMPd64: {
+ unsigned Opcode;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::TAILJMPr: Opcode = X86::JMP32r; break;
+ case X86::TAILJMPd:
+ case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
+ }
+
+ MCOperand Saved = OutMI.getOperand(0);
+ OutMI = MCInst();
+ OutMI.setOpcode(Opcode);
+ OutMI.addOperand(Saved);
+ break;
+ }
+
+ case X86::DEC16r:
+ case X86::DEC32r:
+ case X86::INC16r:
+ case X86::INC32r:
+ // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
+ if (!AsmPrinter.getSubtarget().is64Bit()) {
+ unsigned Opcode;
+ switch (OutMI.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
+ case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
+ case X86::INC16r: Opcode = X86::INC16r_alt; break;
+ case X86::INC32r: Opcode = X86::INC32r_alt; break;
+ }
+ OutMI.setOpcode(Opcode);
+ }
+ break;
+
+ // These are pseudo-ops for OR to help with the OR->ADD transformation. We do
+ // this with an ugly goto in case the resultant OR uses EAX and needs the
+ // short form.
+ case X86::ADD16rr_DB: OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
+ case X86::ADD32rr_DB: OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
+ case X86::ADD64rr_DB: OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
+ case X86::ADD16ri_DB: OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
+ case X86::ADD32ri_DB: OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
+ case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
+ case X86::ADD16ri8_DB: OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
+ case X86::ADD32ri8_DB: OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
+ case X86::ADD64ri8_DB: OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
+
+ // Atomic load and store require a separate pseudo-inst because Acquire
+ // implies mayStore and Release implies mayLoad; fix these to regular MOV
+ // instructions here
+ case X86::ACQUIRE_MOV8rm: OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
+ case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
+ case X86::RELEASE_MOV8mr: OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
+ case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
+ case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
+ case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
+ case X86::RELEASE_MOV8mi: OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
+ case X86::RELEASE_MOV16mi: OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
+ case X86::RELEASE_MOV32mi: OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
+ case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
+ case X86::RELEASE_ADD8mi: OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
+ case X86::RELEASE_ADD32mi: OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
+ case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
+ case X86::RELEASE_AND8mi: OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
+ case X86::RELEASE_AND32mi: OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
+ case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
+ case X86::RELEASE_OR8mi: OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
+ case X86::RELEASE_OR32mi: OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
+ case X86::RELEASE_OR64mi32: OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
+ case X86::RELEASE_XOR8mi: OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
+ case X86::RELEASE_XOR32mi: OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
+ case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
+ case X86::RELEASE_INC8m: OutMI.setOpcode(X86::INC8m); goto ReSimplify;
+ case X86::RELEASE_INC16m: OutMI.setOpcode(X86::INC16m); goto ReSimplify;
+ case X86::RELEASE_INC32m: OutMI.setOpcode(X86::INC32m); goto ReSimplify;
+ case X86::RELEASE_INC64m: OutMI.setOpcode(X86::INC64m); goto ReSimplify;
+ case X86::RELEASE_DEC8m: OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
+ case X86::RELEASE_DEC16m: OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
+ case X86::RELEASE_DEC32m: OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
+ case X86::RELEASE_DEC64m: OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
+
+ // We don't currently select the correct instruction form for instructions
+ // which have a short %eax, etc. form. Handle this by custom lowering, for
+ // now.
+ //
+ // Note, we are currently not handling the following instructions:
+ // MOV64ao8, MOV64o8a
+ // XCHG16ar, XCHG32ar, XCHG64ar
+ case X86::MOV8mr_NOREX:
+ case X86::MOV8mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
+ case X86::MOV8rm_NOREX:
+ case X86::MOV8rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
+ case X86::MOV16mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
+ case X86::MOV16rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
+ case X86::MOV32mr: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
+ case X86::MOV32rm: SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
+
+ case X86::ADC8ri: SimplifyShortImmForm(OutMI, X86::ADC8i8); break;
+ case X86::ADC16ri: SimplifyShortImmForm(OutMI, X86::ADC16i16); break;
+ case X86::ADC32ri: SimplifyShortImmForm(OutMI, X86::ADC32i32); break;
+ case X86::ADC64ri32: SimplifyShortImmForm(OutMI, X86::ADC64i32); break;
+ case X86::ADD8ri: SimplifyShortImmForm(OutMI, X86::ADD8i8); break;
+ case X86::ADD16ri: SimplifyShortImmForm(OutMI, X86::ADD16i16); break;
+ case X86::ADD32ri: SimplifyShortImmForm(OutMI, X86::ADD32i32); break;
+ case X86::ADD64ri32: SimplifyShortImmForm(OutMI, X86::ADD64i32); break;
+ case X86::AND8ri: SimplifyShortImmForm(OutMI, X86::AND8i8); break;
+ case X86::AND16ri: SimplifyShortImmForm(OutMI, X86::AND16i16); break;
+ case X86::AND32ri: SimplifyShortImmForm(OutMI, X86::AND32i32); break;
+ case X86::AND64ri32: SimplifyShortImmForm(OutMI, X86::AND64i32); break;
+ case X86::CMP8ri: SimplifyShortImmForm(OutMI, X86::CMP8i8); break;
+ case X86::CMP16ri: SimplifyShortImmForm(OutMI, X86::CMP16i16); break;
+ case X86::CMP32ri: SimplifyShortImmForm(OutMI, X86::CMP32i32); break;
+ case X86::CMP64ri32: SimplifyShortImmForm(OutMI, X86::CMP64i32); break;
+ case X86::OR8ri: SimplifyShortImmForm(OutMI, X86::OR8i8); break;
+ case X86::OR16ri: SimplifyShortImmForm(OutMI, X86::OR16i16); break;
+ case X86::OR32ri: SimplifyShortImmForm(OutMI, X86::OR32i32); break;
+ case X86::OR64ri32: SimplifyShortImmForm(OutMI, X86::OR64i32); break;
+ case X86::SBB8ri: SimplifyShortImmForm(OutMI, X86::SBB8i8); break;
+ case X86::SBB16ri: SimplifyShortImmForm(OutMI, X86::SBB16i16); break;
+ case X86::SBB32ri: SimplifyShortImmForm(OutMI, X86::SBB32i32); break;
+ case X86::SBB64ri32: SimplifyShortImmForm(OutMI, X86::SBB64i32); break;
+ case X86::SUB8ri: SimplifyShortImmForm(OutMI, X86::SUB8i8); break;
+ case X86::SUB16ri: SimplifyShortImmForm(OutMI, X86::SUB16i16); break;
+ case X86::SUB32ri: SimplifyShortImmForm(OutMI, X86::SUB32i32); break;
+ case X86::SUB64ri32: SimplifyShortImmForm(OutMI, X86::SUB64i32); break;
+ case X86::TEST8ri: SimplifyShortImmForm(OutMI, X86::TEST8i8); break;
+ case X86::TEST16ri: SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
+ case X86::TEST32ri: SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
+ case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
+ case X86::XOR8ri: SimplifyShortImmForm(OutMI, X86::XOR8i8); break;
+ case X86::XOR16ri: SimplifyShortImmForm(OutMI, X86::XOR16i16); break;
+ case X86::XOR32ri: SimplifyShortImmForm(OutMI, X86::XOR32i32); break;
+ case X86::XOR64ri32: SimplifyShortImmForm(OutMI, X86::XOR64i32); break;
+
+ // Try to shrink some forms of movsx.
+ case X86::MOVSX16rr8:
+ case X86::MOVSX32rr16:
+ case X86::MOVSX64rr32:
+ SimplifyMOVSX(OutMI);
+ break;
+ }
+}
+
+void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
+ const MachineInstr &MI) {
+
+ bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
+ MI.getOpcode() == X86::TLS_base_addr64;
+
+ bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
+
+ MCContext &context = OutStreamer->getContext();
+
+ if (needsPadding)
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
+
+ MCSymbolRefExpr::VariantKind SRVK;
+ switch (MI.getOpcode()) {
+ case X86::TLS_addr32:
+ case X86::TLS_addr64:
+ SRVK = MCSymbolRefExpr::VK_TLSGD;
+ break;
+ case X86::TLS_base_addr32:
+ SRVK = MCSymbolRefExpr::VK_TLSLDM;
+ break;
+ case X86::TLS_base_addr64:
+ SRVK = MCSymbolRefExpr::VK_TLSLD;
+ break;
+ default:
+ llvm_unreachable("unexpected opcode");
+ }
+
+ MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
+ const MCSymbolRefExpr *symRef = MCSymbolRefExpr::create(sym, SRVK, context);
+
+ MCInst LEA;
+ if (is64Bits) {
+ LEA.setOpcode(X86::LEA64r);
+ LEA.addOperand(MCOperand::createReg(X86::RDI)); // dest
+ LEA.addOperand(MCOperand::createReg(X86::RIP)); // base
+ LEA.addOperand(MCOperand::createImm(1)); // scale
+ LEA.addOperand(MCOperand::createReg(0)); // index
+ LEA.addOperand(MCOperand::createExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::createReg(0)); // seg
+ } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
+ LEA.setOpcode(X86::LEA32r);
+ LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
+ LEA.addOperand(MCOperand::createReg(X86::EBX)); // base
+ LEA.addOperand(MCOperand::createImm(1)); // scale
+ LEA.addOperand(MCOperand::createReg(0)); // index
+ LEA.addOperand(MCOperand::createExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::createReg(0)); // seg
+ } else {
+ LEA.setOpcode(X86::LEA32r);
+ LEA.addOperand(MCOperand::createReg(X86::EAX)); // dest
+ LEA.addOperand(MCOperand::createReg(0)); // base
+ LEA.addOperand(MCOperand::createImm(1)); // scale
+ LEA.addOperand(MCOperand::createReg(X86::EBX)); // index
+ LEA.addOperand(MCOperand::createExpr(symRef)); // disp
+ LEA.addOperand(MCOperand::createReg(0)); // seg
+ }
+ EmitAndCountInstruction(LEA);
+
+ if (needsPadding) {
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
+ EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
+ EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
+ }
+
+ StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
+ MCSymbol *tlsGetAddr = context.getOrCreateSymbol(name);
+ const MCSymbolRefExpr *tlsRef =
+ MCSymbolRefExpr::create(tlsGetAddr,
+ MCSymbolRefExpr::VK_PLT,
+ context);
+
+ EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
+ : X86::CALLpcrel32)
+ .addExpr(tlsRef));
+}
+
+/// \brief Emit the optimal amount of multi-byte nops on X86.
+static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) {
+ // This works only for 64bit. For 32bit we have to do additional checking if
+ // the CPU supports multi-byte nops.
+ assert(Is64Bit && "EmitNops only supports X86-64");
+ while (NumBytes) {
+ unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
+ Opc = IndexReg = Displacement = SegmentReg = 0;
+ BaseReg = X86::RAX; ScaleVal = 1;
+ switch (NumBytes) {
+ case 0: llvm_unreachable("Zero nops?"); break;
+ case 1: NumBytes -= 1; Opc = X86::NOOP; break;
+ case 2: NumBytes -= 2; Opc = X86::XCHG16ar; break;
+ case 3: NumBytes -= 3; Opc = X86::NOOPL; break;
+ case 4: NumBytes -= 4; Opc = X86::NOOPL; Displacement = 8; break;
+ case 5: NumBytes -= 5; Opc = X86::NOOPL; Displacement = 8;
+ IndexReg = X86::RAX; break;
+ case 6: NumBytes -= 6; Opc = X86::NOOPW; Displacement = 8;
+ IndexReg = X86::RAX; break;
+ case 7: NumBytes -= 7; Opc = X86::NOOPL; Displacement = 512; break;
+ case 8: NumBytes -= 8; Opc = X86::NOOPL; Displacement = 512;
+ IndexReg = X86::RAX; break;
+ case 9: NumBytes -= 9; Opc = X86::NOOPW; Displacement = 512;
+ IndexReg = X86::RAX; break;
+ default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512;
+ IndexReg = X86::RAX; SegmentReg = X86::CS; break;
+ }
+
+ unsigned NumPrefixes = std::min(NumBytes, 5U);
+ NumBytes -= NumPrefixes;
+ for (unsigned i = 0; i != NumPrefixes; ++i)
+ OS.EmitBytes("\x66");
+
+ switch (Opc) {
+ default: llvm_unreachable("Unexpected opcode"); break;
+ case X86::NOOP:
+ OS.EmitInstruction(MCInstBuilder(Opc), STI);
+ break;
+ case X86::XCHG16ar:
+ OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
+ break;
+ case X86::NOOPL:
+ case X86::NOOPW:
+ OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg)
+ .addImm(ScaleVal).addReg(IndexReg)
+ .addImm(Displacement).addReg(SegmentReg), STI);
+ break;
+ }
+ } // while (NumBytes)
+}
+
+void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
+ X86MCInstLower &MCIL) {
+ assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
+
+ StatepointOpers SOpers(&MI);
+ if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
+ EmitNops(*OutStreamer, PatchBytes, Subtarget->is64Bit(),
+ getSubtargetInfo());
+ } else {
+ // Lower call target and choose correct opcode
+ const MachineOperand &CallTarget = SOpers.getCallTarget();
+ MCOperand CallTargetMCOp;
+ unsigned CallOpcode;
+ switch (CallTarget.getType()) {
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ CallTargetMCOp = MCIL.LowerSymbolOperand(
+ CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
+ CallOpcode = X86::CALL64pcrel32;
+ // Currently, we only support relative addressing with statepoints.
+ // Otherwise, we'll need a scratch register to hold the target
+ // address. You'll fail asserts during load & relocation if this
+ // symbol is to far away. (TODO: support non-relative addressing)
+ break;
+ case MachineOperand::MO_Immediate:
+ CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
+ CallOpcode = X86::CALL64pcrel32;
+ // Currently, we only support relative addressing with statepoints.
+ // Otherwise, we'll need a scratch register to hold the target
+ // immediate. You'll fail asserts during load & relocation if this
+ // address is to far away. (TODO: support non-relative addressing)
+ break;
+ case MachineOperand::MO_Register:
+ CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
+ CallOpcode = X86::CALL64r;
+ break;
+ default:
+ llvm_unreachable("Unsupported operand type in statepoint call target");
+ break;
+ }
+
+ // Emit call
+ MCInst CallInst;
+ CallInst.setOpcode(CallOpcode);
+ CallInst.addOperand(CallTargetMCOp);
+ OutStreamer->EmitInstruction(CallInst, getSubtargetInfo());
+ }
+
+ // Record our statepoint node in the same section used by STACKMAP
+ // and PATCHPOINT
+ SM.recordStatepoint(MI);
+}
+
+void X86AsmPrinter::LowerFAULTING_LOAD_OP(const MachineInstr &MI,
+ X86MCInstLower &MCIL) {
+ // FAULTING_LOAD_OP <def>, <handler label>, <load opcode>, <load operands>
+
+ unsigned LoadDefRegister = MI.getOperand(0).getReg();
+ MCSymbol *HandlerLabel = MI.getOperand(1).getMCSymbol();
+ unsigned LoadOpcode = MI.getOperand(2).getImm();
+ unsigned LoadOperandsBeginIdx = 3;
+
+ FM.recordFaultingOp(FaultMaps::FaultingLoad, HandlerLabel);
+
+ MCInst LoadMI;
+ LoadMI.setOpcode(LoadOpcode);
+ LoadMI.addOperand(MCOperand::createReg(LoadDefRegister));
+ for (auto I = MI.operands_begin() + LoadOperandsBeginIdx,
+ E = MI.operands_end();
+ I != E; ++I)
+ if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, *I))
+ LoadMI.addOperand(MaybeOperand.getValue());
+
+ OutStreamer->EmitInstruction(LoadMI, getSubtargetInfo());
+}
+
+// Lower a stackmap of the form:
+// <id>, <shadowBytes>, ...
+void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
+ SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
+ SM.recordStackMap(MI);
+ unsigned NumShadowBytes = MI.getOperand(1).getImm();
+ SMShadowTracker.reset(NumShadowBytes);
+}
+
+// Lower a patchpoint of the form:
+// [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
+void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
+ X86MCInstLower &MCIL) {
+ assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
+
+ SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
+
+ SM.recordPatchPoint(MI);
+
+ PatchPointOpers opers(&MI);
+ unsigned ScratchIdx = opers.getNextScratchIdx();
+ unsigned EncodedBytes = 0;
+ const MachineOperand &CalleeMO =
+ opers.getMetaOper(PatchPointOpers::TargetPos);
+
+ // Check for null target. If target is non-null (i.e. is non-zero or is
+ // symbolic) then emit a call.
+ if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
+ MCOperand CalleeMCOp;
+ switch (CalleeMO.getType()) {
+ default:
+ /// FIXME: Add a verifier check for bad callee types.
+ llvm_unreachable("Unrecognized callee operand type.");
+ case MachineOperand::MO_Immediate:
+ if (CalleeMO.getImm())
+ CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
+ break;
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_GlobalAddress:
+ CalleeMCOp =
+ MCIL.LowerSymbolOperand(CalleeMO,
+ MCIL.GetSymbolFromOperand(CalleeMO));
+ break;
+ }
+
+ // Emit MOV to materialize the target address and the CALL to target.
+ // This is encoded with 12-13 bytes, depending on which register is used.
+ unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
+ if (X86II::isX86_64ExtendedReg(ScratchReg))
+ EncodedBytes = 13;
+ else
+ EncodedBytes = 12;
+
+ EmitAndCountInstruction(
+ MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
+ EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
+ }
+
+ // Emit padding.
+ unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
+ assert(NumBytes >= EncodedBytes &&
+ "Patchpoint can't request size less than the length of a call.");
+
+ EmitNops(*OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
+ getSubtargetInfo());
+}
+
+// Returns instruction preceding MBBI in MachineFunction.
+// If MBBI is the first instruction of the first basic block, returns null.
+static MachineBasicBlock::const_iterator
+PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
+ const MachineBasicBlock *MBB = MBBI->getParent();
+ while (MBBI == MBB->begin()) {
+ if (MBB == MBB->getParent()->begin())
+ return nullptr;
+ MBB = MBB->getPrevNode();
+ MBBI = MBB->end();
+ }
+ return --MBBI;
+}
+
+static const Constant *getConstantFromPool(const MachineInstr &MI,
+ const MachineOperand &Op) {
+ if (!Op.isCPI())
+ return nullptr;
+
+ ArrayRef<MachineConstantPoolEntry> Constants =
+ MI.getParent()->getParent()->getConstantPool()->getConstants();
+ const MachineConstantPoolEntry &ConstantEntry =
+ Constants[Op.getIndex()];
+
+ // Bail if this is a machine constant pool entry, we won't be able to dig out
+ // anything useful.
+ if (ConstantEntry.isMachineConstantPoolEntry())
+ return nullptr;
+
+ auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
+ assert((!C || ConstantEntry.getType() == C->getType()) &&
+ "Expected a constant of the same type!");
+ return C;
+}
+
+static std::string getShuffleComment(const MachineOperand &DstOp,
+ const MachineOperand &SrcOp,
+ ArrayRef<int> Mask) {
+ std::string Comment;
+
+ // Compute the name for a register. This is really goofy because we have
+ // multiple instruction printers that could (in theory) use different
+ // names. Fortunately most people use the ATT style (outside of Windows)
+ // and they actually agree on register naming here. Ultimately, this is
+ // a comment, and so its OK if it isn't perfect.
+ auto GetRegisterName = [](unsigned RegNum) -> StringRef {
+ return X86ATTInstPrinter::getRegisterName(RegNum);
+ };
+
+ StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
+ StringRef SrcName = SrcOp.isReg() ? GetRegisterName(SrcOp.getReg()) : "mem";
+
+ raw_string_ostream CS(Comment);
+ CS << DstName << " = ";
+ bool NeedComma = false;
+ bool InSrc = false;
+ for (int M : Mask) {
+ // Wrap up any prior entry...
+ if (M == SM_SentinelZero && InSrc) {
+ InSrc = false;
+ CS << "]";
+ }
+ if (NeedComma)
+ CS << ",";
+ else
+ NeedComma = true;
+
+ // Print this shuffle...
+ if (M == SM_SentinelZero) {
+ CS << "zero";
+ } else {
+ if (!InSrc) {
+ InSrc = true;
+ CS << SrcName << "[";
+ }
+ if (M == SM_SentinelUndef)
+ CS << "u";
+ else
+ CS << M;
+ }
+ }
+ if (InSrc)
+ CS << "]";
+ CS.flush();
+
+ return Comment;
+}
+
+void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
+ X86MCInstLower MCInstLowering(*MF, *this);
+ const X86RegisterInfo *RI = MF->getSubtarget<X86Subtarget>().getRegisterInfo();
+
+ switch (MI->getOpcode()) {
+ case TargetOpcode::DBG_VALUE:
+ llvm_unreachable("Should be handled target independently");
+
+ // Emit nothing here but a comment if we can.
+ case X86::Int_MemBarrier:
+ OutStreamer->emitRawComment("MEMBARRIER");
+ return;
+
+
+ case X86::EH_RETURN:
+ case X86::EH_RETURN64: {
+ // Lower these as normal, but add some comments.
+ unsigned Reg = MI->getOperand(0).getReg();
+ OutStreamer->AddComment(StringRef("eh_return, addr: %") +
+ X86ATTInstPrinter::getRegisterName(Reg));
+ break;
+ }
+ case X86::TAILJMPr:
+ case X86::TAILJMPm:
+ case X86::TAILJMPd:
+ case X86::TAILJMPr64:
+ case X86::TAILJMPm64:
+ case X86::TAILJMPd64:
+ case X86::TAILJMPr64_REX:
+ case X86::TAILJMPm64_REX:
+ case X86::TAILJMPd64_REX:
+ // Lower these as normal, but add some comments.
+ OutStreamer->AddComment("TAILCALL");
+ break;
+
+ case X86::TLS_addr32:
+ case X86::TLS_addr64:
+ case X86::TLS_base_addr32:
+ case X86::TLS_base_addr64:
+ return LowerTlsAddr(MCInstLowering, *MI);
+
+ case X86::MOVPC32r: {
+ // This is a pseudo op for a two instruction sequence with a label, which
+ // looks like:
+ // call "L1$pb"
+ // "L1$pb":
+ // popl %esi
+
+ // Emit the call.
+ MCSymbol *PICBase = MF->getPICBaseSymbol();
+ // FIXME: We would like an efficient form for this, so we don't have to do a
+ // lot of extra uniquing.
+ EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
+ .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
+
+ // Emit the label.
+ OutStreamer->EmitLabel(PICBase);
+
+ // popl $reg
+ EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
+ .addReg(MI->getOperand(0).getReg()));
+ return;
+ }
+
+ case X86::ADD32ri: {
+ // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
+ if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
+ break;
+
+ // Okay, we have something like:
+ // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
+
+ // For this, we want to print something like:
+ // MYGLOBAL + (. - PICBASE)
+ // However, we can't generate a ".", so just emit a new label here and refer
+ // to it.
+ MCSymbol *DotSym = OutContext.createTempSymbol();
+ OutStreamer->EmitLabel(DotSym);
+
+ // Now that we have emitted the label, lower the complex operand expression.
+ MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
+
+ const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
+ const MCExpr *PICBase =
+ MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
+ DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
+
+ DotExpr = MCBinaryExpr::createAdd(MCSymbolRefExpr::create(OpSym,OutContext),
+ DotExpr, OutContext);
+
+ EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
+ .addReg(MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg())
+ .addExpr(DotExpr));
+ return;
+ }
+ case TargetOpcode::STATEPOINT:
+ return LowerSTATEPOINT(*MI, MCInstLowering);
+
+ case TargetOpcode::FAULTING_LOAD_OP:
+ return LowerFAULTING_LOAD_OP(*MI, MCInstLowering);
+
+ case TargetOpcode::STACKMAP:
+ return LowerSTACKMAP(*MI);
+
+ case TargetOpcode::PATCHPOINT:
+ return LowerPATCHPOINT(*MI, MCInstLowering);
+
+ case X86::MORESTACK_RET:
+ EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
+ return;
+
+ case X86::MORESTACK_RET_RESTORE_R10:
+ // Return, then restore R10.
+ EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
+ EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
+ .addReg(X86::R10)
+ .addReg(X86::RAX));
+ return;
+
+ case X86::SEH_PushReg:
+ OutStreamer->EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
+ return;
+
+ case X86::SEH_SaveReg:
+ OutStreamer->EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_SaveXMM:
+ OutStreamer->EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_StackAlloc:
+ OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
+ return;
+
+ case X86::SEH_SetFrame:
+ OutStreamer->EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
+ MI->getOperand(1).getImm());
+ return;
+
+ case X86::SEH_PushFrame:
+ OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
+ return;
+
+ case X86::SEH_EndPrologue:
+ OutStreamer->EmitWinCFIEndProlog();
+ return;
+
+ case X86::SEH_Epilogue: {
+ MachineBasicBlock::const_iterator MBBI(MI);
+ // Check if preceded by a call and emit nop if so.
+ for (MBBI = PrevCrossBBInst(MBBI); MBBI; MBBI = PrevCrossBBInst(MBBI)) {
+ // Conservatively assume that pseudo instructions don't emit code and keep
+ // looking for a call. We may emit an unnecessary nop in some cases.
+ if (!MBBI->isPseudo()) {
+ if (MBBI->isCall())
+ EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
+ break;
+ }
+ }
+ return;
+ }
+
+ // Lower PSHUFB and VPERMILP normally but add a comment if we can find
+ // a constant shuffle mask. We won't be able to do this at the MC layer
+ // because the mask isn't an immediate.
+ case X86::PSHUFBrm:
+ case X86::VPSHUFBrm:
+ case X86::VPSHUFBYrm: {
+ if (!OutStreamer->isVerboseAsm())
+ break;
+ assert(MI->getNumOperands() > 5 &&
+ "We should always have at least 5 operands!");
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ const MachineOperand &MaskOp = MI->getOperand(5);
+
+ if (auto *C = getConstantFromPool(*MI, MaskOp)) {
+ SmallVector<int, 16> Mask;
+ DecodePSHUFBMask(C, Mask);
+ if (!Mask.empty())
+ OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, Mask));
+ }
+ break;
+ }
+ case X86::VPERMILPSrm:
+ case X86::VPERMILPDrm:
+ case X86::VPERMILPSYrm:
+ case X86::VPERMILPDYrm: {
+ if (!OutStreamer->isVerboseAsm())
+ break;
+ assert(MI->getNumOperands() > 5 &&
+ "We should always have at least 5 operands!");
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ const MachineOperand &MaskOp = MI->getOperand(5);
+
+ if (auto *C = getConstantFromPool(*MI, MaskOp)) {
+ SmallVector<int, 16> Mask;
+ DecodeVPERMILPMask(C, Mask);
+ if (!Mask.empty())
+ OutStreamer->AddComment(getShuffleComment(DstOp, SrcOp, Mask));
+ }
+ break;
+ }
+
+ // For loads from a constant pool to a vector register, print the constant
+ // loaded.
+ case X86::MOVAPDrm:
+ case X86::VMOVAPDrm:
+ case X86::VMOVAPDYrm:
+ case X86::MOVUPDrm:
+ case X86::VMOVUPDrm:
+ case X86::VMOVUPDYrm:
+ case X86::MOVAPSrm:
+ case X86::VMOVAPSrm:
+ case X86::VMOVAPSYrm:
+ case X86::MOVUPSrm:
+ case X86::VMOVUPSrm:
+ case X86::VMOVUPSYrm:
+ case X86::MOVDQArm:
+ case X86::VMOVDQArm:
+ case X86::VMOVDQAYrm:
+ case X86::MOVDQUrm:
+ case X86::VMOVDQUrm:
+ case X86::VMOVDQUYrm:
+ if (!OutStreamer->isVerboseAsm())
+ break;
+ if (MI->getNumOperands() > 4)
+ if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
+ std::string Comment;
+ raw_string_ostream CS(Comment);
+ const MachineOperand &DstOp = MI->getOperand(0);
+ CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
+ if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
+ CS << "[";
+ for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
+ if (i != 0)
+ CS << ",";
+ if (CDS->getElementType()->isIntegerTy())
+ CS << CDS->getElementAsInteger(i);
+ else if (CDS->getElementType()->isFloatTy())
+ CS << CDS->getElementAsFloat(i);
+ else if (CDS->getElementType()->isDoubleTy())
+ CS << CDS->getElementAsDouble(i);
+ else
+ CS << "?";
+ }
+ CS << "]";
+ OutStreamer->AddComment(CS.str());
+ } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
+ CS << "<";
+ for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
+ if (i != 0)
+ CS << ",";
+ Constant *COp = CV->getOperand(i);
+ if (isa<UndefValue>(COp)) {
+ CS << "u";
+ } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
+ CS << CI->getZExtValue();
+ } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
+ SmallString<32> Str;
+ CF->getValueAPF().toString(Str);
+ CS << Str;
+ } else {
+ CS << "?";
+ }
+ }
+ CS << ">";
+ OutStreamer->AddComment(CS.str());
+ }
+ }
+ break;
+ }
+
+ MCInst TmpInst;
+ MCInstLowering.Lower(MI, TmpInst);
+
+ // Stackmap shadows cannot include branch targets, so we can count the bytes
+ // in a call towards the shadow, but must ensure that the no thread returns
+ // in to the stackmap shadow. The only way to achieve this is if the call
+ // is at the end of the shadow.
+ if (MI->isCall()) {
+ // Count then size of the call towards the shadow
+ SMShadowTracker.count(TmpInst, getSubtargetInfo());
+ // Then flush the shadow so that we fill with nops before the call, not
+ // after it.
+ SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
+ // Then emit the call
+ OutStreamer->EmitInstruction(TmpInst, getSubtargetInfo());
+ return;
+ }
+
+ EmitAndCountInstruction(TmpInst);
+}
OpenPOWER on IntegriCloud