diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86MCCodeEmitter.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86MCCodeEmitter.cpp | 659 |
1 files changed, 659 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86MCCodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86MCCodeEmitter.cpp new file mode 100644 index 0000000..a9681e6 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86MCCodeEmitter.cpp @@ -0,0 +1,659 @@ +//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the X86MCCodeEmitter class. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-emitter" +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86FixupKinds.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +namespace { +class X86MCCodeEmitter : public MCCodeEmitter { + X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT + void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT + const TargetMachine &TM; + const TargetInstrInfo &TII; + MCContext &Ctx; + bool Is64BitMode; +public: + X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit) + : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) { + Is64BitMode = is64Bit; + } + + ~X86MCCodeEmitter() {} + + unsigned getNumFixupKinds() const { + return 4; + } + + const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { + const static MCFixupKindInfo Infos[] = { + { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, + { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel }, + { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, + { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel } + }; + + if (Kind < FirstTargetFixupKind) + return MCCodeEmitter::getFixupKindInfo(Kind); + + assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && + "Invalid kind!"); + return Infos[Kind - FirstTargetFixupKind]; + } + + static unsigned GetX86RegNum(const MCOperand &MO) { + return X86RegisterInfo::getX86RegNum(MO.getReg()); + } + + void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { + OS << (char)C; + ++CurByte; + } + + void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, + raw_ostream &OS) const { + // Output the constant in little endian byte order. + for (unsigned i = 0; i != Size; ++i) { + EmitByte(Val & 255, CurByte, OS); + Val >>= 8; + } + } + + void EmitImmediate(const MCOperand &Disp, + unsigned ImmSize, MCFixupKind FixupKind, + unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups, + int ImmOffset = 0) const; + + inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, + unsigned RM) { + assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); + return RM | (RegOpcode << 3) | (Mod << 6); + } + + void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, + unsigned &CurByte, raw_ostream &OS) const { + EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); + } + + void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, + unsigned &CurByte, raw_ostream &OS) const { + // SIB byte is in the same format as the ModRMByte. + EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); + } + + + void EmitMemModRMByte(const MCInst &MI, unsigned Op, + unsigned RegOpcodeField, + unsigned TSFlags, unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const; + + void EncodeInstruction(const MCInst &MI, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const; + +}; + +} // end anonymous namespace + + +MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &, + TargetMachine &TM, + MCContext &Ctx) { + return new X86MCCodeEmitter(TM, Ctx, false); +} + +MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &, + TargetMachine &TM, + MCContext &Ctx) { + return new X86MCCodeEmitter(TM, Ctx, true); +} + + +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. +static bool isDisp8(int Value) { + return Value == (signed char)Value; +} + +/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate +/// in an instruction with the specified TSFlags. +static MCFixupKind getImmFixupKind(unsigned TSFlags) { + unsigned Size = X86II::getSizeOfImm(TSFlags); + bool isPCRel = X86II::isImmPCRel(TSFlags); + + switch (Size) { + default: assert(0 && "Unknown immediate size"); + case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1; + case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4; + case 2: assert(!isPCRel); return FK_Data_2; + case 8: assert(!isPCRel); return FK_Data_8; + } +} + + +void X86MCCodeEmitter:: +EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind, + unsigned &CurByte, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { + // If this is a simple integer displacement that doesn't require a relocation, + // emit it now. + if (DispOp.isImm()) { + // FIXME: is this right for pc-rel encoding?? Probably need to emit this as + // a fixup if so. + EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); + return; + } + + // If we have an immoffset, add it to the expression. + const MCExpr *Expr = DispOp.getExpr(); + + // If the fixup is pc-relative, we need to bias the value to be relative to + // the start of the field, not the end of the field. + if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) || + FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || + FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) + ImmOffset -= 4; + if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte)) + ImmOffset -= 1; + + if (ImmOffset) + Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), + Ctx); + + // Emit a symbolic constant as a fixup and 4 zeros. + Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind)); + EmitConstant(0, Size, CurByte, OS); +} + + +void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, + unsigned RegOpcodeField, + unsigned TSFlags, unsigned &CurByte, + raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const{ + const MCOperand &Disp = MI.getOperand(Op+3); + const MCOperand &Base = MI.getOperand(Op); + const MCOperand &Scale = MI.getOperand(Op+1); + const MCOperand &IndexReg = MI.getOperand(Op+2); + unsigned BaseReg = Base.getReg(); + + // Handle %rip relative addressing. + if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode + assert(IndexReg.getReg() == 0 && Is64BitMode && + "Invalid rip-relative address"); + EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); + + unsigned FixupKind = X86::reloc_riprel_4byte; + + // movq loads are handled with a special relocation form which allows the + // linker to eliminate some loads for GOT references which end up in the + // same linkage unit. + if (MI.getOpcode() == X86::MOV64rm || + MI.getOpcode() == X86::MOV64rm_TC) + FixupKind = X86::reloc_riprel_4byte_movq_load; + + // rip-relative addressing is actually relative to the *next* instruction. + // Since an immediate can follow the mod/rm byte for an instruction, this + // means that we need to bias the immediate field of the instruction with + // the size of the immediate field. If we have this case, add it into the + // expression to emit. + int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; + + EmitImmediate(Disp, 4, MCFixupKind(FixupKind), + CurByte, OS, Fixups, -ImmSize); + return; + } + + unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; + + // Determine whether a SIB byte is needed. + // If no BaseReg, issue a RIP relative instruction only if the MCE can + // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table + // 2-7) and absolute references. + + if (// The SIB byte must be used if there is an index register. + IndexReg.getReg() == 0 && + // The SIB byte must be used if the base is ESP/RSP/R12, all of which + // encode to an R/M value of 4, which indicates that a SIB byte is + // present. + BaseRegNo != N86::ESP && + // If there is no base register and we're in 64-bit mode, we need a SIB + // byte to emit an addr that is just 'disp32' (the non-RIP relative form). + (!Is64BitMode || BaseReg != 0)) { + + if (BaseReg == 0) { // [disp32] in X86-32 mode + EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); + EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); + return; + } + + // If the base is not EBP/ESP and there is no displacement, use simple + // indirect register encoding, this handles addresses like [EAX]. The + // encoding for [EBP] with no displacement means [disp32] so we handle it + // by emitting a displacement of 0 below. + if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { + EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); + return; + } + + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. + if (Disp.isImm() && isDisp8(Disp.getImm())) { + EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); + EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); + return; + } + + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] + EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); + EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); + return; + } + + // We need a SIB byte, so start by outputting the ModR/M byte first + assert(IndexReg.getReg() != X86::ESP && + IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + + bool ForceDisp32 = false; + bool ForceDisp8 = false; + if (BaseReg == 0) { + // If there is no base register, we emit the special case SIB byte with + // MOD=0, BASE=5, to JUST get the index, scale, and displacement. + EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); + ForceDisp32 = true; + } else if (!Disp.isImm()) { + // Emit the normal disp32 encoding. + EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); + ForceDisp32 = true; + } else if (Disp.getImm() == 0 && + // Base reg can't be anything that ends up with '5' as the base + // reg, it is the magic [*] nomenclature that indicates no base. + BaseRegNo != N86::EBP) { + // Emit no displacement ModR/M byte + EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); + } else if (isDisp8(Disp.getImm())) { + // Emit the disp8 encoding. + EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); + ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP + } else { + // Emit the normal disp32 encoding. + EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); + } + + // Calculate what the SS field value should be... + static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; + unsigned SS = SSTable[Scale.getImm()]; + + if (BaseReg == 0) { + // Handle the SIB byte for the case where there is no base, see Intel + // Manual 2A, table 2-7. The displacement has already been output. + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = GetX86RegNum(IndexReg); + else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) + IndexRegNo = 4; + EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); + } else { + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = GetX86RegNum(IndexReg); + else + IndexRegNo = 4; // For example [ESP+1*<noreg>+4] + EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); + } + + // Do we need to output a displacement? + if (ForceDisp8) + EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); + else if (ForceDisp32 || Disp.getImm() != 0) + EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); +} + +/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 +/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand +/// size, and 3) use of X86-64 extended registers. +static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags, + const TargetInstrDesc &Desc) { + // Pseudo instructions never have a rex byte. + if ((TSFlags & X86II::FormMask) == X86II::Pseudo) + return 0; + + unsigned REX = 0; + if (TSFlags & X86II::REX_W) + REX |= 1 << 3; + + if (MI.getNumOperands() == 0) return REX; + + unsigned NumOps = MI.getNumOperands(); + // FIXME: MCInst should explicitize the two-addrness. + bool isTwoAddr = NumOps > 1 && + Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; + + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. + unsigned i = isTwoAddr ? 1 : 0; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue; + // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything + // that returns non-zero. + REX |= 0x40; + break; + } + + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); + case X86II::MRMSrcReg: + if (MI.getOperand(0).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 2; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << 0; + } + break; + case X86II::MRMSrcMem: { + if (MI.getOperand(0).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 2; + unsigned Bit = 0; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: { + unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); + i = isTwoAddr ? 1 : 0; + if (NumOps > e && MI.getOperand(e).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg())) + REX |= 1 << 2; + unsigned Bit = 0; + for (; i != e; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg()) { + if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + default: + if (MI.getOperand(0).isReg() && + X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg())) + REX |= 1 << 0; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MCOperand &MO = MI.getOperand(i); + if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg())) + REX |= 1 << 2; + } + break; + } + return REX; +} + +void X86MCCodeEmitter:: +EncodeInstruction(const MCInst &MI, raw_ostream &OS, + SmallVectorImpl<MCFixup> &Fixups) const { + unsigned Opcode = MI.getOpcode(); + const TargetInstrDesc &Desc = TII.get(Opcode); + unsigned TSFlags = Desc.TSFlags; + + // Keep track of the current byte being emitted. + unsigned CurByte = 0; + + // FIXME: We should emit the prefixes in exactly the same order as GAS does, + // in order to provide diffability. + + // Emit the lock opcode prefix as needed. + if (TSFlags & X86II::LOCK) + EmitByte(0xF0, CurByte, OS); + + // Emit segment override opcode prefix as needed. + switch (TSFlags & X86II::SegOvrMask) { + default: assert(0 && "Invalid segment!"); + case 0: break; // No segment override! + case X86II::FS: + EmitByte(0x64, CurByte, OS); + break; + case X86II::GS: + EmitByte(0x65, CurByte, OS); + break; + } + + // Emit the repeat opcode prefix as needed. + if ((TSFlags & X86II::Op0Mask) == X86II::REP) + EmitByte(0xF3, CurByte, OS); + + // Emit the operand size opcode prefix as needed. + if (TSFlags & X86II::OpSize) + EmitByte(0x66, CurByte, OS); + + // Emit the address size opcode prefix as needed. + if (TSFlags & X86II::AdSize) + EmitByte(0x67, CurByte, OS); + + bool Need0FPrefix = false; + switch (TSFlags & X86II::Op0Mask) { + default: assert(0 && "Invalid prefix!"); + case 0: break; // No prefix! + case X86II::REP: break; // already handled. + case X86II::TB: // Two-byte opcode prefix + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A + Need0FPrefix = true; + break; + case X86II::TF: // F2 0F 38 + EmitByte(0xF2, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::XS: // F3 0F + EmitByte(0xF3, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::XD: // F2 0F + EmitByte(0xF2, CurByte, OS); + Need0FPrefix = true; + break; + case X86II::D8: EmitByte(0xD8, CurByte, OS); break; + case X86II::D9: EmitByte(0xD9, CurByte, OS); break; + case X86II::DA: EmitByte(0xDA, CurByte, OS); break; + case X86II::DB: EmitByte(0xDB, CurByte, OS); break; + case X86II::DC: EmitByte(0xDC, CurByte, OS); break; + case X86II::DD: EmitByte(0xDD, CurByte, OS); break; + case X86II::DE: EmitByte(0xDE, CurByte, OS); break; + case X86II::DF: EmitByte(0xDF, CurByte, OS); break; + } + + // Handle REX prefix. + // FIXME: Can this come before F2 etc to simplify emission? + if (Is64BitMode) { + if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) + EmitByte(0x40 | REX, CurByte, OS); + } + + // 0x0F escape code must be emitted just before the opcode. + if (Need0FPrefix) + EmitByte(0x0F, CurByte, OS); + + // FIXME: Pull this up into previous switch if REX can be moved earlier. + switch (TSFlags & X86II::Op0Mask) { + case X86II::TF: // F2 0F 38 + case X86II::T8: // 0F 38 + EmitByte(0x38, CurByte, OS); + break; + case X86II::TA: // 0F 3A + EmitByte(0x3A, CurByte, OS); + break; + } + + // If this is a two-address instruction, skip one of the register operands. + unsigned NumOps = Desc.getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1) + ++CurOp; + else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) + // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 + --NumOps; + + unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); + switch (TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: + assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); + default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; + assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); + case X86II::Pseudo: return; // Pseudo instructions encode to nothing. + case X86II::RawFrm: + EmitByte(BaseOpcode, CurByte, OS); + break; + + case X86II::AddRegFrm: + EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); + break; + + case X86II::MRMDestReg: + EmitByte(BaseOpcode, CurByte, OS); + EmitRegModRMByte(MI.getOperand(CurOp), + GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); + CurOp += 2; + break; + + case X86II::MRMDestMem: + EmitByte(BaseOpcode, CurByte, OS); + EmitMemModRMByte(MI, CurOp, + GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)), + TSFlags, CurByte, OS, Fixups); + CurOp += X86AddrNumOperands + 1; + break; + + case X86II::MRMSrcReg: + EmitByte(BaseOpcode, CurByte, OS); + EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)), + CurByte, OS); + CurOp += 2; + break; + + case X86II::MRMSrcMem: { + EmitByte(BaseOpcode, CurByte, OS); + + // FIXME: Maybe lea should have its own form? This is a horrible hack. + int AddrOperands; + if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || + Opcode == X86::LEA16r || Opcode == X86::LEA32r) + AddrOperands = X86AddrNumOperands - 1; // No segment register + else + AddrOperands = X86AddrNumOperands; + + EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)), + TSFlags, CurByte, OS, Fixups); + CurOp += AddrOperands + 1; + break; + } + + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + EmitByte(BaseOpcode, CurByte, OS); + EmitRegModRMByte(MI.getOperand(CurOp++), + (TSFlags & X86II::FormMask)-X86II::MRM0r, + CurByte, OS); + break; + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + EmitByte(BaseOpcode, CurByte, OS); + EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, + TSFlags, CurByte, OS, Fixups); + CurOp += X86AddrNumOperands; + break; + case X86II::MRM_C1: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC1, CurByte, OS); + break; + case X86II::MRM_C2: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC2, CurByte, OS); + break; + case X86II::MRM_C3: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC3, CurByte, OS); + break; + case X86II::MRM_C4: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC4, CurByte, OS); + break; + case X86II::MRM_C8: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC8, CurByte, OS); + break; + case X86II::MRM_C9: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xC9, CurByte, OS); + break; + case X86II::MRM_E8: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xE8, CurByte, OS); + break; + case X86II::MRM_F0: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xF0, CurByte, OS); + break; + case X86II::MRM_F8: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xF8, CurByte, OS); + break; + case X86II::MRM_F9: + EmitByte(BaseOpcode, CurByte, OS); + EmitByte(0xF9, CurByte, OS); + break; + } + + // If there is a remaining operand, it must be a trailing immediate. Emit it + // according to the right size for the instruction. + if (CurOp != NumOps) + EmitImmediate(MI.getOperand(CurOp++), + X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), + CurByte, OS, Fixups); + +#ifndef NDEBUG + // FIXME: Verify. + if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { + errs() << "Cannot encode all operands of: "; + MI.dump(); + errs() << '\n'; + abort(); + } +#endif +} |