summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86InstrInfo.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.h')
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.h575
1 files changed, 575 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.h b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
new file mode 100644
index 0000000..9d40334
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.h
@@ -0,0 +1,575 @@
+//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
+#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86RegisterInfo.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "X86GenInstrInfo.inc"
+
+namespace llvm {
+ class MachineInstrBuilder;
+ class X86RegisterInfo;
+ class X86Subtarget;
+
+namespace X86 {
+ // X86 specific condition code. These correspond to X86_*_COND in
+ // X86InstrInfo.td. They must be kept in synch.
+ enum CondCode {
+ COND_A = 0,
+ COND_AE = 1,
+ COND_B = 2,
+ COND_BE = 3,
+ COND_E = 4,
+ COND_G = 5,
+ COND_GE = 6,
+ COND_L = 7,
+ COND_LE = 8,
+ COND_NE = 9,
+ COND_NO = 10,
+ COND_NP = 11,
+ COND_NS = 12,
+ COND_O = 13,
+ COND_P = 14,
+ COND_S = 15,
+ LAST_VALID_COND = COND_S,
+
+ // Artificial condition codes. These are used by AnalyzeBranch
+ // to indicate a block terminated with two conditional branches to
+ // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
+ // which can't be represented on x86 with a single condition. These
+ // are never used in MachineInstrs.
+ COND_NE_OR_P,
+ COND_NP_OR_E,
+
+ COND_INVALID
+ };
+
+ // Turn condition code into conditional branch opcode.
+ unsigned GetCondBranchFromCond(CondCode CC);
+
+ /// \brief Return a set opcode for the given condition and whether it has
+ /// a memory operand.
+ unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false);
+
+ /// \brief Return a cmov opcode for the given condition, register size in
+ /// bytes, and operand type.
+ unsigned getCMovFromCond(CondCode CC, unsigned RegBytes,
+ bool HasMemoryOperand = false);
+
+ // Turn CMov opcode into condition code.
+ CondCode getCondFromCMovOpc(unsigned Opc);
+
+ /// GetOppositeBranchCondition - Return the inverse of the specified cond,
+ /// e.g. turning COND_E to COND_NE.
+ CondCode GetOppositeBranchCondition(CondCode CC);
+} // end namespace X86;
+
+
+/// isGlobalStubReference - Return true if the specified TargetFlag operand is
+/// a reference to a stub for a global, not the global itself.
+inline static bool isGlobalStubReference(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_DLLIMPORT: // dllimport stub.
+ case X86II::MO_GOTPCREL: // rip-relative GOT reference.
+ case X86II::MO_GOT: // normal GOT reference.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
+ return true;
+ default:
+ return false;
+ }
+}
+
+/// isGlobalRelativeToPICBase - Return true if the specified global value
+/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
+/// is true, the addressing mode has the PIC base register added in (e.g. EBX).
+inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
+ switch (TargetFlag) {
+ case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
+ case X86II::MO_GOT: // isPICStyleGOT: other global.
+ case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
+ case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
+ case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
+ case X86II::MO_TLVP: // ??? Pretty sure..
+ return true;
+ default:
+ return false;
+ }
+}
+
+inline static bool isScale(const MachineOperand &MO) {
+ return MO.isImm() &&
+ (MO.getImm() == 1 || MO.getImm() == 2 ||
+ MO.getImm() == 4 || MO.getImm() == 8);
+}
+
+inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+X86::AddrSegmentReg <= MI->getNumOperands() &&
+ MI->getOperand(Op+X86::AddrBaseReg).isReg() &&
+ isScale(MI->getOperand(Op+X86::AddrScaleAmt)) &&
+ MI->getOperand(Op+X86::AddrIndexReg).isReg() &&
+ (MI->getOperand(Op+X86::AddrDisp).isImm() ||
+ MI->getOperand(Op+X86::AddrDisp).isGlobal() ||
+ MI->getOperand(Op+X86::AddrDisp).isCPI() ||
+ MI->getOperand(Op+X86::AddrDisp).isJTI());
+}
+
+inline static bool isMem(const MachineInstr *MI, unsigned Op) {
+ if (MI->getOperand(Op).isFI()) return true;
+ return Op+X86::AddrNumOperands <= MI->getNumOperands() &&
+ MI->getOperand(Op+X86::AddrSegmentReg).isReg() &&
+ isLeaMem(MI, Op);
+}
+
+class X86InstrInfo final : public X86GenInstrInfo {
+ X86Subtarget &Subtarget;
+ const X86RegisterInfo RI;
+
+ /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
+ /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps.
+ ///
+ typedef DenseMap<unsigned,
+ std::pair<unsigned, unsigned> > RegOp2MemOpTableType;
+ RegOp2MemOpTableType RegOp2MemOpTable2Addr;
+ RegOp2MemOpTableType RegOp2MemOpTable0;
+ RegOp2MemOpTableType RegOp2MemOpTable1;
+ RegOp2MemOpTableType RegOp2MemOpTable2;
+ RegOp2MemOpTableType RegOp2MemOpTable3;
+ RegOp2MemOpTableType RegOp2MemOpTable4;
+
+ /// MemOp2RegOpTable - Load / store unfolding opcode map.
+ ///
+ typedef DenseMap<unsigned,
+ std::pair<unsigned, unsigned> > MemOp2RegOpTableType;
+ MemOp2RegOpTableType MemOp2RegOpTable;
+
+ static void AddTableEntry(RegOp2MemOpTableType &R2MTable,
+ MemOp2RegOpTableType &M2RTable,
+ unsigned RegOp, unsigned MemOp, unsigned Flags);
+
+ virtual void anchor();
+
+ bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ SmallVectorImpl<MachineInstr *> &CondBranches,
+ bool AllowModify) const;
+
+public:
+ explicit X86InstrInfo(X86Subtarget &STI);
+
+ /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
+ /// such, whenever a client has an instance of instruction info, it should
+ /// always be able to get register info as well (through this method).
+ ///
+ const X86RegisterInfo &getRegisterInfo() const { return RI; }
+
+ /// getSPAdjust - This returns the stack pointer adjustment made by
+ /// this instruction. For x86, we need to handle more complex call
+ /// sequences involving PUSHes.
+ int getSPAdjust(const MachineInstr *MI) const override;
+
+ /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
+ /// extension instruction. That is, it's like a copy where it's legal for the
+ /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
+ /// true, then it's expected the pre-extension value is available as a subreg
+ /// of the result register. This also returns the sub-register index in
+ /// SubIdx.
+ bool isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const override;
+
+ unsigned isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
+ /// stack locations as well. This uses a heuristic so it isn't
+ /// reliable for correctness.
+ unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ unsigned isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const override;
+ /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
+ /// stack locations as well. This uses a heuristic so it isn't
+ /// reliable for correctness.
+ unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const override;
+
+ bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const override;
+ void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo &TRI) const override;
+
+ /// Given an operand within a MachineInstr, insert preceding code to put it
+ /// into the right format for a particular kind of LEA instruction. This may
+ /// involve using an appropriate super-register instead (with an implicit use
+ /// of the original) or creating a new virtual register and inserting COPY
+ /// instructions to get the data into the right class.
+ ///
+ /// Reference parameters are set to indicate how caller should add this
+ /// operand to the LEA instruction.
+ bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src,
+ unsigned LEAOpcode, bool AllowSP,
+ unsigned &NewSrc, bool &isKill,
+ bool &isUndef, MachineOperand &ImplicitOp) const;
+
+ /// convertToThreeAddress - This method must be implemented by targets that
+ /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+ /// may be able to convert a two-address instruction into a true
+ /// three-address instruction on demand. This allows the X86 target (for
+ /// example) to convert ADD and SHL instructions into LEA instructions if they
+ /// would require register copies due to two-addressness.
+ ///
+ /// This method returns a null pointer if the transformation cannot be
+ /// performed, otherwise it returns the new instruction.
+ ///
+ MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const override;
+
+ /// Returns true iff the routine could find two commutable operands in the
+ /// given machine instruction.
+ /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
+ /// input values can be re-defined in this method only if the input values
+ /// are not pre-defined, which is designated by the special value
+ /// 'CommuteAnyOperandIndex' assigned to it.
+ /// If both of indices are pre-defined and refer to some operands, then the
+ /// method simply returns true if the corresponding operands are commutable
+ /// and returns false otherwise.
+ ///
+ /// For example, calling this method this way:
+ /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
+ /// findCommutedOpIndices(MI, Op1, Op2);
+ /// can be interpreted as a query asking to find an operand that would be
+ /// commutable with the operand#1.
+ bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const override;
+
+ /// Returns true if the routine could find two commutable operands
+ /// in the given FMA instruction. Otherwise, returns false.
+ ///
+ /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments.
+ /// The output indices of the commuted operands are returned in these
+ /// arguments. Also, the input values of these arguments may be preset either
+ /// to indices of operands that must be commuted or be equal to a special
+ /// value 'CommuteAnyOperandIndex' which means that the corresponding
+ /// operand index is not set and this method is free to pick any of
+ /// available commutable operands.
+ ///
+ /// For example, calling this method this way:
+ /// unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex;
+ /// findFMA3CommutedOpIndices(MI, Idx1, Idx2);
+ /// can be interpreted as a query asking if the operand #1 can be swapped
+ /// with any other available operand (e.g. operand #2, operand #3, etc.).
+ ///
+ /// The returned FMA opcode may differ from the opcode in the given MI.
+ /// For example, commuting the operands #1 and #3 in the following FMA
+ /// FMA213 #1, #2, #3
+ /// results into instruction with adjusted opcode:
+ /// FMA231 #3, #2, #1
+ bool findFMA3CommutedOpIndices(MachineInstr *MI,
+ unsigned &SrcOpIdx1,
+ unsigned &SrcOpIdx2) const;
+
+ /// Returns an adjusted FMA opcode that must be used in FMA instruction that
+ /// performs the same computations as the given MI but which has the operands
+ /// \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
+ /// It may return 0 if it is unsafe to commute the operands.
+ ///
+ /// The returned FMA opcode may differ from the opcode in the given \p MI.
+ /// For example, commuting the operands #1 and #3 in the following FMA
+ /// FMA213 #1, #2, #3
+ /// results into instruction with adjusted opcode:
+ /// FMA231 #3, #2, #1
+ unsigned getFMA3OpcodeToCommuteOperands(MachineInstr *MI,
+ unsigned SrcOpIdx1,
+ unsigned SrcOpIdx2) const;
+
+ // Branch analysis.
+ bool isUnpredicatedTerminator(const MachineInstr* MI) const override;
+ bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const override;
+
+ bool getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg,
+ unsigned &Offset,
+ const TargetRegisterInfo *TRI) const override;
+ bool AnalyzeBranchPredicate(MachineBasicBlock &MBB,
+ TargetInstrInfo::MachineBranchPredicate &MBP,
+ bool AllowModify = false) const override;
+
+ unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
+ unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
+ DebugLoc DL) const override;
+ bool canInsertSelect(const MachineBasicBlock&, ArrayRef<MachineOperand> Cond,
+ unsigned, unsigned, int&, int&, int&) const override;
+ void insertSelect(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DstReg, ArrayRef<MachineOperand> Cond,
+ unsigned TrueReg, unsigned FalseReg) const override;
+ void copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const override;
+ void storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ void loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIndex,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const override;
+
+ void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const;
+
+ bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
+
+ /// foldMemoryOperand - If this target supports it, fold a load or store of
+ /// the specified stack slot into the specified machine instruction for the
+ /// specified operand(s). If this is possible, the target should perform the
+ /// folding and return true, otherwise it should return false. If it folds
+ /// the instruction, it is likely that the MachineInstruction the iterator
+ /// references has been changed.
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ ArrayRef<unsigned> Ops,
+ MachineBasicBlock::iterator InsertPt,
+ int FrameIndex) const override;
+
+ /// foldMemoryOperand - Same as the previous version except it allows folding
+ /// of any load and store from / to any address, not just from a specific
+ /// stack slot.
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ ArrayRef<unsigned> Ops,
+ MachineBasicBlock::iterator InsertPt,
+ MachineInstr *LoadMI) const override;
+
+ /// unfoldMemoryOperand - Separate a single instruction which folded a load or
+ /// a store or a load and a store into two or more instruction. If this is
+ /// possible, returns true as well as the new instructions by reference.
+ bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const override;
+
+ bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const override;
+
+ /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
+ /// instruction after load / store are unfolded from an instruction of the
+ /// specified opcode. It returns zero if the specified unfolding is not
+ /// possible. If LoadRegIndex is non-null, it is filled in with the operand
+ /// index of the operand which will hold the register holding the loaded
+ /// value.
+ unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex = nullptr) const override;
+
+ /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
+ /// to determine if two loads are loading from the same base address. It
+ /// should only return true if the base pointers are the same and the
+ /// only differences between the two addresses are the offset. It also returns
+ /// the offsets by reference.
+ bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1,
+ int64_t &Offset2) const override;
+
+ /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+ /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+ /// be scheduled togther. On some targets if two loads are loading from
+ /// addresses in the same cache line, it's better if they are scheduled
+ /// together. This function takes two integers that represent the load offsets
+ /// from the common base address. It returns true if it decides it's desirable
+ /// to schedule the two loads together. "NumLoads" is the number of loads that
+ /// have already been scheduled after Load1.
+ bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const override;
+
+ bool shouldScheduleAdjacent(MachineInstr* First,
+ MachineInstr *Second) const override;
+
+ void getNoopForMachoTarget(MCInst &NopInst) const override;
+
+ bool
+ ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+
+ /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
+ /// instruction that defines the specified register class.
+ bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override;
+
+ /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha
+ /// would clobber the EFLAGS condition register. Note the result may be
+ /// conservative. If it cannot definitely determine the safety after visiting
+ /// a few instructions in each direction it assumes it's not safe.
+ bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) const;
+
+ /// True if MI has a condition code def, e.g. EFLAGS, that is
+ /// not marked dead.
+ bool hasLiveCondCodeDef(MachineInstr *MI) const;
+
+ /// getGlobalBaseReg - Return a virtual register initialized with the
+ /// the global base register value. Output instructions required to
+ /// initialize the register in the function entry block, if necessary.
+ ///
+ unsigned getGlobalBaseReg(MachineFunction *MF) const;
+
+ std::pair<uint16_t, uint16_t>
+ getExecutionDomain(const MachineInstr *MI) const override;
+
+ void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override;
+
+ unsigned
+ getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const override;
+ unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum,
+ const TargetRegisterInfo *TRI) const override;
+ void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const override;
+
+ MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
+ unsigned OpNum,
+ ArrayRef<MachineOperand> MOs,
+ MachineBasicBlock::iterator InsertPt,
+ unsigned Size, unsigned Alignment,
+ bool AllowCommute) const;
+
+ void
+ getUnconditionalBranch(MCInst &Branch,
+ const MCSymbolRefExpr *BranchTarget) const override;
+
+ void getTrap(MCInst &MI) const override;
+
+ unsigned getJumpInstrTableEntryBound() const override;
+
+ bool isHighLatencyDef(int opc) const override;
+
+ bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr *DefMI, unsigned DefIdx,
+ const MachineInstr *UseMI,
+ unsigned UseIdx) const override;
+
+ bool useMachineCombiner() const override {
+ return true;
+ }
+
+ bool isAssociativeAndCommutative(const MachineInstr &Inst) const override;
+
+ bool hasReassociableOperands(const MachineInstr &Inst,
+ const MachineBasicBlock *MBB) const override;
+
+ void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
+ MachineInstr &NewMI1,
+ MachineInstr &NewMI2) const override;
+
+ /// analyzeCompare - For a comparison instruction, return the source registers
+ /// in SrcReg and SrcReg2 if having two register operands, and the value it
+ /// compares against in CmpValue. Return true if the comparison instruction
+ /// can be analyzed.
+ bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg,
+ unsigned &SrcReg2, int &CmpMask,
+ int &CmpValue) const override;
+
+ /// optimizeCompareInstr - Check if there exists an earlier instruction that
+ /// operates on the same source operands and sets flags in the same way as
+ /// Compare; remove Compare if possible.
+ bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg,
+ unsigned SrcReg2, int CmpMask, int CmpValue,
+ const MachineRegisterInfo *MRI) const override;
+
+ /// optimizeLoadInstr - Try to remove the load by folding it to a register
+ /// operand at the use. We fold the load instructions if and only if the
+ /// def and use are in the same BB. We only look at one load and see
+ /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
+ /// defined by the load we are trying to fold. DefMI returns the machine
+ /// instruction that defines FoldAsLoadDefReg, and the function returns
+ /// the machine instruction generated due to folding.
+ MachineInstr* optimizeLoadInstr(MachineInstr *MI,
+ const MachineRegisterInfo *MRI,
+ unsigned &FoldAsLoadDefReg,
+ MachineInstr *&DefMI) const override;
+
+ std::pair<unsigned, unsigned>
+ decomposeMachineOperandsTargetFlags(unsigned TF) const override;
+
+ ArrayRef<std::pair<unsigned, const char *>>
+ getSerializableDirectMachineOperandTargetFlags() const override;
+
+protected:
+ /// Commutes the operands in the given instruction by changing the operands
+ /// order and/or changing the instruction's opcode and/or the immediate value
+ /// operand.
+ ///
+ /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
+ /// to be commuted.
+ ///
+ /// Do not call this method for a non-commutable instruction or
+ /// non-commutable operands.
+ /// Even though the instruction is commutable, the method may still
+ /// fail to commute the operands, null pointer is returned in such cases.
+ MachineInstr *commuteInstructionImpl(MachineInstr *MI, bool NewMI,
+ unsigned CommuteOpIdx1,
+ unsigned CommuteOpIdx2) const override;
+
+private:
+ MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
+ MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const;
+
+ /// Handles memory folding for special case instructions, for instance those
+ /// requiring custom manipulation of the address.
+ MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr *MI,
+ unsigned OpNum,
+ ArrayRef<MachineOperand> MOs,
+ MachineBasicBlock::iterator InsertPt,
+ unsigned Size, unsigned Align) const;
+
+ /// isFrameOperand - Return true and the FrameIndex if the specified
+ /// operand and follow operands form a reference to the stack frame.
+ bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
+ int &FrameIndex) const;
+
+ /// Expand the MOVImmSExti8 pseudo-instructions.
+ bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const;
+};
+
+} // End llvm namespace
+
+#endif
OpenPOWER on IntegriCloud