diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.h')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86InstrInfo.h | 575 |
1 files changed, 575 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.h b/contrib/llvm/lib/Target/X86/X86InstrInfo.h new file mode 100644 index 0000000..9d40334 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.h @@ -0,0 +1,575 @@ +//===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H +#define LLVM_LIB_TARGET_X86_X86INSTRINFO_H + +#include "MCTargetDesc/X86BaseInfo.h" +#include "X86RegisterInfo.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/Target/TargetInstrInfo.h" + +#define GET_INSTRINFO_HEADER +#include "X86GenInstrInfo.inc" + +namespace llvm { + class MachineInstrBuilder; + class X86RegisterInfo; + class X86Subtarget; + +namespace X86 { + // X86 specific condition code. These correspond to X86_*_COND in + // X86InstrInfo.td. They must be kept in synch. + enum CondCode { + COND_A = 0, + COND_AE = 1, + COND_B = 2, + COND_BE = 3, + COND_E = 4, + COND_G = 5, + COND_GE = 6, + COND_L = 7, + COND_LE = 8, + COND_NE = 9, + COND_NO = 10, + COND_NP = 11, + COND_NS = 12, + COND_O = 13, + COND_P = 14, + COND_S = 15, + LAST_VALID_COND = COND_S, + + // Artificial condition codes. These are used by AnalyzeBranch + // to indicate a block terminated with two conditional branches to + // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, + // which can't be represented on x86 with a single condition. These + // are never used in MachineInstrs. + COND_NE_OR_P, + COND_NP_OR_E, + + COND_INVALID + }; + + // Turn condition code into conditional branch opcode. + unsigned GetCondBranchFromCond(CondCode CC); + + /// \brief Return a set opcode for the given condition and whether it has + /// a memory operand. + unsigned getSETFromCond(CondCode CC, bool HasMemoryOperand = false); + + /// \brief Return a cmov opcode for the given condition, register size in + /// bytes, and operand type. + unsigned getCMovFromCond(CondCode CC, unsigned RegBytes, + bool HasMemoryOperand = false); + + // Turn CMov opcode into condition code. + CondCode getCondFromCMovOpc(unsigned Opc); + + /// GetOppositeBranchCondition - Return the inverse of the specified cond, + /// e.g. turning COND_E to COND_NE. + CondCode GetOppositeBranchCondition(CondCode CC); +} // end namespace X86; + + +/// isGlobalStubReference - Return true if the specified TargetFlag operand is +/// a reference to a stub for a global, not the global itself. +inline static bool isGlobalStubReference(unsigned char TargetFlag) { + switch (TargetFlag) { + case X86II::MO_DLLIMPORT: // dllimport stub. + case X86II::MO_GOTPCREL: // rip-relative GOT reference. + case X86II::MO_GOT: // normal GOT reference. + case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. + case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. + case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. + return true; + default: + return false; + } +} + +/// isGlobalRelativeToPICBase - Return true if the specified global value +/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this +/// is true, the addressing mode has the PIC base register added in (e.g. EBX). +inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { + switch (TargetFlag) { + case X86II::MO_GOTOFF: // isPICStyleGOT: local global. + case X86II::MO_GOT: // isPICStyleGOT: other global. + case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. + case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. + case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. + case X86II::MO_TLVP: // ??? Pretty sure.. + return true; + default: + return false; + } +} + +inline static bool isScale(const MachineOperand &MO) { + return MO.isImm() && + (MO.getImm() == 1 || MO.getImm() == 2 || + MO.getImm() == 4 || MO.getImm() == 8); +} + +inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { + if (MI->getOperand(Op).isFI()) return true; + return Op+X86::AddrSegmentReg <= MI->getNumOperands() && + MI->getOperand(Op+X86::AddrBaseReg).isReg() && + isScale(MI->getOperand(Op+X86::AddrScaleAmt)) && + MI->getOperand(Op+X86::AddrIndexReg).isReg() && + (MI->getOperand(Op+X86::AddrDisp).isImm() || + MI->getOperand(Op+X86::AddrDisp).isGlobal() || + MI->getOperand(Op+X86::AddrDisp).isCPI() || + MI->getOperand(Op+X86::AddrDisp).isJTI()); +} + +inline static bool isMem(const MachineInstr *MI, unsigned Op) { + if (MI->getOperand(Op).isFI()) return true; + return Op+X86::AddrNumOperands <= MI->getNumOperands() && + MI->getOperand(Op+X86::AddrSegmentReg).isReg() && + isLeaMem(MI, Op); +} + +class X86InstrInfo final : public X86GenInstrInfo { + X86Subtarget &Subtarget; + const X86RegisterInfo RI; + + /// RegOp2MemOpTable3Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, + /// RegOp2MemOpTable2, RegOp2MemOpTable3 - Load / store folding opcode maps. + /// + typedef DenseMap<unsigned, + std::pair<unsigned, unsigned> > RegOp2MemOpTableType; + RegOp2MemOpTableType RegOp2MemOpTable2Addr; + RegOp2MemOpTableType RegOp2MemOpTable0; + RegOp2MemOpTableType RegOp2MemOpTable1; + RegOp2MemOpTableType RegOp2MemOpTable2; + RegOp2MemOpTableType RegOp2MemOpTable3; + RegOp2MemOpTableType RegOp2MemOpTable4; + + /// MemOp2RegOpTable - Load / store unfolding opcode map. + /// + typedef DenseMap<unsigned, + std::pair<unsigned, unsigned> > MemOp2RegOpTableType; + MemOp2RegOpTableType MemOp2RegOpTable; + + static void AddTableEntry(RegOp2MemOpTableType &R2MTable, + MemOp2RegOpTableType &M2RTable, + unsigned RegOp, unsigned MemOp, unsigned Flags); + + virtual void anchor(); + + bool AnalyzeBranchImpl(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + SmallVectorImpl<MachineInstr *> &CondBranches, + bool AllowModify) const; + +public: + explicit X86InstrInfo(X86Subtarget &STI); + + /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As + /// such, whenever a client has an instance of instruction info, it should + /// always be able to get register info as well (through this method). + /// + const X86RegisterInfo &getRegisterInfo() const { return RI; } + + /// getSPAdjust - This returns the stack pointer adjustment made by + /// this instruction. For x86, we need to handle more complex call + /// sequences involving PUSHes. + int getSPAdjust(const MachineInstr *MI) const override; + + /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" + /// extension instruction. That is, it's like a copy where it's legal for the + /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns + /// true, then it's expected the pre-extension value is available as a subreg + /// of the result register. This also returns the sub-register index in + /// SubIdx. + bool isCoalescableExtInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SubIdx) const override; + + unsigned isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const override; + /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination + /// stack locations as well. This uses a heuristic so it isn't + /// reliable for correctness. + unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const override; + + unsigned isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const override; + /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination + /// stack locations as well. This uses a heuristic so it isn't + /// reliable for correctness. + unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const override; + + bool isReallyTriviallyReMaterializable(const MachineInstr *MI, + AliasAnalysis *AA) const override; + void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SubIdx, + const MachineInstr *Orig, + const TargetRegisterInfo &TRI) const override; + + /// Given an operand within a MachineInstr, insert preceding code to put it + /// into the right format for a particular kind of LEA instruction. This may + /// involve using an appropriate super-register instead (with an implicit use + /// of the original) or creating a new virtual register and inserting COPY + /// instructions to get the data into the right class. + /// + /// Reference parameters are set to indicate how caller should add this + /// operand to the LEA instruction. + bool classifyLEAReg(MachineInstr *MI, const MachineOperand &Src, + unsigned LEAOpcode, bool AllowSP, + unsigned &NewSrc, bool &isKill, + bool &isUndef, MachineOperand &ImplicitOp) const; + + /// convertToThreeAddress - This method must be implemented by targets that + /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target + /// may be able to convert a two-address instruction into a true + /// three-address instruction on demand. This allows the X86 target (for + /// example) to convert ADD and SHL instructions into LEA instructions if they + /// would require register copies due to two-addressness. + /// + /// This method returns a null pointer if the transformation cannot be + /// performed, otherwise it returns the new instruction. + /// + MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const override; + + /// Returns true iff the routine could find two commutable operands in the + /// given machine instruction. + /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their + /// input values can be re-defined in this method only if the input values + /// are not pre-defined, which is designated by the special value + /// 'CommuteAnyOperandIndex' assigned to it. + /// If both of indices are pre-defined and refer to some operands, then the + /// method simply returns true if the corresponding operands are commutable + /// and returns false otherwise. + /// + /// For example, calling this method this way: + /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; + /// findCommutedOpIndices(MI, Op1, Op2); + /// can be interpreted as a query asking to find an operand that would be + /// commutable with the operand#1. + bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const override; + + /// Returns true if the routine could find two commutable operands + /// in the given FMA instruction. Otherwise, returns false. + /// + /// \p SrcOpIdx1 and \p SrcOpIdx2 are INPUT and OUTPUT arguments. + /// The output indices of the commuted operands are returned in these + /// arguments. Also, the input values of these arguments may be preset either + /// to indices of operands that must be commuted or be equal to a special + /// value 'CommuteAnyOperandIndex' which means that the corresponding + /// operand index is not set and this method is free to pick any of + /// available commutable operands. + /// + /// For example, calling this method this way: + /// unsigned Idx1 = 1, Idx2 = CommuteAnyOperandIndex; + /// findFMA3CommutedOpIndices(MI, Idx1, Idx2); + /// can be interpreted as a query asking if the operand #1 can be swapped + /// with any other available operand (e.g. operand #2, operand #3, etc.). + /// + /// The returned FMA opcode may differ from the opcode in the given MI. + /// For example, commuting the operands #1 and #3 in the following FMA + /// FMA213 #1, #2, #3 + /// results into instruction with adjusted opcode: + /// FMA231 #3, #2, #1 + bool findFMA3CommutedOpIndices(MachineInstr *MI, + unsigned &SrcOpIdx1, + unsigned &SrcOpIdx2) const; + + /// Returns an adjusted FMA opcode that must be used in FMA instruction that + /// performs the same computations as the given MI but which has the operands + /// \p SrcOpIdx1 and \p SrcOpIdx2 commuted. + /// It may return 0 if it is unsafe to commute the operands. + /// + /// The returned FMA opcode may differ from the opcode in the given \p MI. + /// For example, commuting the operands #1 and #3 in the following FMA + /// FMA213 #1, #2, #3 + /// results into instruction with adjusted opcode: + /// FMA231 #3, #2, #1 + unsigned getFMA3OpcodeToCommuteOperands(MachineInstr *MI, + unsigned SrcOpIdx1, + unsigned SrcOpIdx2) const; + + // Branch analysis. + bool isUnpredicatedTerminator(const MachineInstr* MI) const override; + bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const override; + + bool getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, + unsigned &Offset, + const TargetRegisterInfo *TRI) const override; + bool AnalyzeBranchPredicate(MachineBasicBlock &MBB, + TargetInstrInfo::MachineBranchPredicate &MBP, + bool AllowModify = false) const override; + + unsigned RemoveBranch(MachineBasicBlock &MBB) const override; + unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, + DebugLoc DL) const override; + bool canInsertSelect(const MachineBasicBlock&, ArrayRef<MachineOperand> Cond, + unsigned, unsigned, int&, int&, int&) const override; + void insertSelect(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, DebugLoc DL, + unsigned DstReg, ArrayRef<MachineOperand> Cond, + unsigned TrueReg, unsigned FalseReg) const override; + void copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, DebugLoc DL, + unsigned DestReg, unsigned SrcReg, + bool KillSrc) const override; + void storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIndex, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const override; + + void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const; + + void loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIndex, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const override; + + void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const; + + bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override; + + /// foldMemoryOperand - If this target supports it, fold a load or store of + /// the specified stack slot into the specified machine instruction for the + /// specified operand(s). If this is possible, the target should perform the + /// folding and return true, otherwise it should return false. If it folds + /// the instruction, it is likely that the MachineInstruction the iterator + /// references has been changed. + MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, + ArrayRef<unsigned> Ops, + MachineBasicBlock::iterator InsertPt, + int FrameIndex) const override; + + /// foldMemoryOperand - Same as the previous version except it allows folding + /// of any load and store from / to any address, not just from a specific + /// stack slot. + MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, + ArrayRef<unsigned> Ops, + MachineBasicBlock::iterator InsertPt, + MachineInstr *LoadMI) const override; + + /// unfoldMemoryOperand - Separate a single instruction which folded a load or + /// a store or a load and a store into two or more instruction. If this is + /// possible, returns true as well as the new instructions by reference. + bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, + unsigned Reg, bool UnfoldLoad, bool UnfoldStore, + SmallVectorImpl<MachineInstr*> &NewMIs) const override; + + bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, + SmallVectorImpl<SDNode*> &NewNodes) const override; + + /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new + /// instruction after load / store are unfolded from an instruction of the + /// specified opcode. It returns zero if the specified unfolding is not + /// possible. If LoadRegIndex is non-null, it is filled in with the operand + /// index of the operand which will hold the register holding the loaded + /// value. + unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, + bool UnfoldLoad, bool UnfoldStore, + unsigned *LoadRegIndex = nullptr) const override; + + /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler + /// to determine if two loads are loading from the same base address. It + /// should only return true if the base pointers are the same and the + /// only differences between the two addresses are the offset. It also returns + /// the offsets by reference. + bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, + int64_t &Offset2) const override; + + /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to + /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should + /// be scheduled togther. On some targets if two loads are loading from + /// addresses in the same cache line, it's better if they are scheduled + /// together. This function takes two integers that represent the load offsets + /// from the common base address. It returns true if it decides it's desirable + /// to schedule the two loads together. "NumLoads" is the number of loads that + /// have already been scheduled after Load1. + bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, + int64_t Offset1, int64_t Offset2, + unsigned NumLoads) const override; + + bool shouldScheduleAdjacent(MachineInstr* First, + MachineInstr *Second) const override; + + void getNoopForMachoTarget(MCInst &NopInst) const override; + + bool + ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override; + + /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine + /// instruction that defines the specified register class. + bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const override; + + /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction tha + /// would clobber the EFLAGS condition register. Note the result may be + /// conservative. If it cannot definitely determine the safety after visiting + /// a few instructions in each direction it assumes it's not safe. + bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) const; + + /// True if MI has a condition code def, e.g. EFLAGS, that is + /// not marked dead. + bool hasLiveCondCodeDef(MachineInstr *MI) const; + + /// getGlobalBaseReg - Return a virtual register initialized with the + /// the global base register value. Output instructions required to + /// initialize the register in the function entry block, if necessary. + /// + unsigned getGlobalBaseReg(MachineFunction *MF) const; + + std::pair<uint16_t, uint16_t> + getExecutionDomain(const MachineInstr *MI) const override; + + void setExecutionDomain(MachineInstr *MI, unsigned Domain) const override; + + unsigned + getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum, + const TargetRegisterInfo *TRI) const override; + unsigned getUndefRegClearance(const MachineInstr *MI, unsigned &OpNum, + const TargetRegisterInfo *TRI) const override; + void breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum, + const TargetRegisterInfo *TRI) const override; + + MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI, + unsigned OpNum, + ArrayRef<MachineOperand> MOs, + MachineBasicBlock::iterator InsertPt, + unsigned Size, unsigned Alignment, + bool AllowCommute) const; + + void + getUnconditionalBranch(MCInst &Branch, + const MCSymbolRefExpr *BranchTarget) const override; + + void getTrap(MCInst &MI) const override; + + unsigned getJumpInstrTableEntryBound() const override; + + bool isHighLatencyDef(int opc) const override; + + bool hasHighOperandLatency(const TargetSchedModel &SchedModel, + const MachineRegisterInfo *MRI, + const MachineInstr *DefMI, unsigned DefIdx, + const MachineInstr *UseMI, + unsigned UseIdx) const override; + + bool useMachineCombiner() const override { + return true; + } + + bool isAssociativeAndCommutative(const MachineInstr &Inst) const override; + + bool hasReassociableOperands(const MachineInstr &Inst, + const MachineBasicBlock *MBB) const override; + + void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, + MachineInstr &NewMI1, + MachineInstr &NewMI2) const override; + + /// analyzeCompare - For a comparison instruction, return the source registers + /// in SrcReg and SrcReg2 if having two register operands, and the value it + /// compares against in CmpValue. Return true if the comparison instruction + /// can be analyzed. + bool analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, + unsigned &SrcReg2, int &CmpMask, + int &CmpValue) const override; + + /// optimizeCompareInstr - Check if there exists an earlier instruction that + /// operates on the same source operands and sets flags in the same way as + /// Compare; remove Compare if possible. + bool optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, + unsigned SrcReg2, int CmpMask, int CmpValue, + const MachineRegisterInfo *MRI) const override; + + /// optimizeLoadInstr - Try to remove the load by folding it to a register + /// operand at the use. We fold the load instructions if and only if the + /// def and use are in the same BB. We only look at one load and see + /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register + /// defined by the load we are trying to fold. DefMI returns the machine + /// instruction that defines FoldAsLoadDefReg, and the function returns + /// the machine instruction generated due to folding. + MachineInstr* optimizeLoadInstr(MachineInstr *MI, + const MachineRegisterInfo *MRI, + unsigned &FoldAsLoadDefReg, + MachineInstr *&DefMI) const override; + + std::pair<unsigned, unsigned> + decomposeMachineOperandsTargetFlags(unsigned TF) const override; + + ArrayRef<std::pair<unsigned, const char *>> + getSerializableDirectMachineOperandTargetFlags() const override; + +protected: + /// Commutes the operands in the given instruction by changing the operands + /// order and/or changing the instruction's opcode and/or the immediate value + /// operand. + /// + /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands + /// to be commuted. + /// + /// Do not call this method for a non-commutable instruction or + /// non-commutable operands. + /// Even though the instruction is commutable, the method may still + /// fail to commute the operands, null pointer is returned in such cases. + MachineInstr *commuteInstructionImpl(MachineInstr *MI, bool NewMI, + unsigned CommuteOpIdx1, + unsigned CommuteOpIdx2) const override; + +private: + MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, + MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const; + + /// Handles memory folding for special case instructions, for instance those + /// requiring custom manipulation of the address. + MachineInstr *foldMemoryOperandCustom(MachineFunction &MF, MachineInstr *MI, + unsigned OpNum, + ArrayRef<MachineOperand> MOs, + MachineBasicBlock::iterator InsertPt, + unsigned Size, unsigned Align) const; + + /// isFrameOperand - Return true and the FrameIndex if the specified + /// operand and follow operands form a reference to the stack frame. + bool isFrameOperand(const MachineInstr *MI, unsigned int Op, + int &FrameIndex) const; + + /// Expand the MOVImmSExti8 pseudo-instructions. + bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB) const; +}; + +} // End llvm namespace + +#endif |