diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.h')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86InstrInfo.h | 762 |
1 files changed, 762 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.h b/contrib/llvm/lib/Target/X86/X86InstrInfo.h new file mode 100644 index 0000000..62d7c74 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.h @@ -0,0 +1,762 @@ +//===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#ifndef X86INSTRUCTIONINFO_H +#define X86INSTRUCTIONINFO_H + +#include "llvm/Target/TargetInstrInfo.h" +#include "X86.h" +#include "X86RegisterInfo.h" +#include "llvm/ADT/DenseMap.h" + +namespace llvm { + class X86RegisterInfo; + class X86TargetMachine; + +namespace X86 { + // X86 specific condition code. These correspond to X86_*_COND in + // X86InstrInfo.td. They must be kept in synch. + enum CondCode { + COND_A = 0, + COND_AE = 1, + COND_B = 2, + COND_BE = 3, + COND_E = 4, + COND_G = 5, + COND_GE = 6, + COND_L = 7, + COND_LE = 8, + COND_NE = 9, + COND_NO = 10, + COND_NP = 11, + COND_NS = 12, + COND_O = 13, + COND_P = 14, + COND_S = 15, + + // Artificial condition codes. These are used by AnalyzeBranch + // to indicate a block terminated with two conditional branches to + // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE, + // which can't be represented on x86 with a single condition. These + // are never used in MachineInstrs. + COND_NE_OR_P, + COND_NP_OR_E, + + COND_INVALID + }; + + // Turn condition code into conditional branch opcode. + unsigned GetCondBranchFromCond(CondCode CC); + + /// GetOppositeBranchCondition - Return the inverse of the specified cond, + /// e.g. turning COND_E to COND_NE. + CondCode GetOppositeBranchCondition(X86::CondCode CC); + +} + +/// X86II - This namespace holds all of the target specific flags that +/// instruction info tracks. +/// +namespace X86II { + /// Target Operand Flag enum. + enum TOF { + //===------------------------------------------------------------------===// + // X86 Specific MachineOperand flags. + + MO_NO_FLAG, + + /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a + /// relocation of: + /// SYMBOL_LABEL + [. - PICBASELABEL] + MO_GOT_ABSOLUTE_ADDRESS, + + /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the + /// immediate should get the value of the symbol minus the PIC base label: + /// SYMBOL_LABEL - PICBASELABEL + MO_PIC_BASE_OFFSET, + + /// MO_GOT - On a symbol operand this indicates that the immediate is the + /// offset to the GOT entry for the symbol name from the base of the GOT. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOT + MO_GOT, + + /// MO_GOTOFF - On a symbol operand this indicates that the immediate is + /// the offset to the location of the symbol name from the base of the GOT. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOTOFF + MO_GOTOFF, + + /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is + /// offset to the GOT entry for the symbol name from the current code + /// location. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @GOTPCREL + MO_GOTPCREL, + + /// MO_PLT - On a symbol operand this indicates that the immediate is + /// offset to the PLT entry of symbol name from the current code location. + /// + /// See the X86-64 ELF ABI supplement for more details. + /// SYMBOL_LABEL @PLT + MO_PLT, + + /// MO_TLSGD - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TLSGD + MO_TLSGD, + + /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @GOTTPOFF + MO_GOTTPOFF, + + /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @INDNTPOFF + MO_INDNTPOFF, + + /// MO_TPOFF - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @TPOFF + MO_TPOFF, + + /// MO_NTPOFF - On a symbol operand this indicates that the immediate is + /// some TLS offset. + /// + /// See 'ELF Handling for Thread-Local Storage' for more details. + /// SYMBOL_LABEL @NTPOFF + MO_NTPOFF, + + /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the + /// reference is actually to the "__imp_FOO" symbol. This is used for + /// dllimport linkage on windows. + MO_DLLIMPORT, + + /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the + /// reference is actually to the "FOO$stub" symbol. This is used for calls + /// and jumps to external functions on Tiger and before. + MO_DARWIN_STUB, + + /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the + /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a + /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub. + MO_DARWIN_NONLAZY, + + /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates + /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is + /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub. + MO_DARWIN_NONLAZY_PIC_BASE, + + /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this + /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE", + /// which is a PIC-base-relative reference to a hidden dyld lazy pointer + /// stub. + MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE + }; +} + +/// isGlobalStubReference - Return true if the specified TargetFlag operand is +/// a reference to a stub for a global, not the global itself. +inline static bool isGlobalStubReference(unsigned char TargetFlag) { + switch (TargetFlag) { + case X86II::MO_DLLIMPORT: // dllimport stub. + case X86II::MO_GOTPCREL: // rip-relative GOT reference. + case X86II::MO_GOT: // normal GOT reference. + case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref. + case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref. + case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref. + return true; + default: + return false; + } +} + +/// isGlobalRelativeToPICBase - Return true if the specified global value +/// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this +/// is true, the addressing mode has the PIC base register added in (e.g. EBX). +inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) { + switch (TargetFlag) { + case X86II::MO_GOTOFF: // isPICStyleGOT: local global. + case X86II::MO_GOT: // isPICStyleGOT: other global. + case X86II::MO_PIC_BASE_OFFSET: // Darwin local global. + case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global. + case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global. + return true; + default: + return false; + } +} + +/// X86II - This namespace holds all of the target specific flags that +/// instruction info tracks. +/// +namespace X86II { + enum { + //===------------------------------------------------------------------===// + // Instruction encodings. These are the standard/most common forms for X86 + // instructions. + // + + // PseudoFrm - This represents an instruction that is a pseudo instruction + // or one that has not been implemented yet. It is illegal to code generate + // it, but tolerated for intermediate implementation stages. + Pseudo = 0, + + /// Raw - This form is for instructions that don't have any operands, so + /// they are just a fixed opcode value, like 'leave'. + RawFrm = 1, + + /// AddRegFrm - This form is used for instructions like 'push r32' that have + /// their one register operand added to their opcode. + AddRegFrm = 2, + + /// MRMDestReg - This form is used for instructions that use the Mod/RM byte + /// to specify a destination, which in this case is a register. + /// + MRMDestReg = 3, + + /// MRMDestMem - This form is used for instructions that use the Mod/RM byte + /// to specify a destination, which in this case is memory. + /// + MRMDestMem = 4, + + /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte + /// to specify a source, which in this case is a register. + /// + MRMSrcReg = 5, + + /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte + /// to specify a source, which in this case is memory. + /// + MRMSrcMem = 6, + + /// MRM[0-7][rm] - These forms are used to represent instructions that use + /// a Mod/RM byte, and use the middle field to hold extended opcode + /// information. In the intel manual these are represented as /0, /1, ... + /// + + // First, instructions that operate on a register r/m operand... + MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3 + MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7 + + // Next, instructions that operate on a memory r/m operand... + MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3 + MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7 + + // MRMInitReg - This form is used for instructions whose source and + // destinations are the same register. + MRMInitReg = 32, + + //// MRM_C1 - A mod/rm byte of exactly 0xC1. + MRM_C1 = 33, + MRM_C2 = 34, + MRM_C3 = 35, + MRM_C4 = 36, + MRM_C8 = 37, + MRM_C9 = 38, + MRM_E8 = 39, + MRM_F0 = 40, + MRM_F8 = 41, + MRM_F9 = 42, + + FormMask = 63, + + //===------------------------------------------------------------------===// + // Actual flags... + + // OpSize - Set if this instruction requires an operand size prefix (0x66), + // which most often indicates that the instruction operates on 16 bit data + // instead of 32 bit data. + OpSize = 1 << 6, + + // AsSize - Set if this instruction requires an operand size prefix (0x67), + // which most often indicates that the instruction address 16 bit address + // instead of 32 bit address (or 32 bit address in 64 bit mode). + AdSize = 1 << 7, + + //===------------------------------------------------------------------===// + // Op0Mask - There are several prefix bytes that are used to form two byte + // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is + // used to obtain the setting of this field. If no bits in this field is + // set, there is no prefix byte for obtaining a multibyte opcode. + // + Op0Shift = 8, + Op0Mask = 0xF << Op0Shift, + + // TB - TwoByte - Set if this instruction has a two byte opcode, which + // starts with a 0x0F byte before the real opcode. + TB = 1 << Op0Shift, + + // REP - The 0xF3 prefix byte indicating repetition of the following + // instruction. + REP = 2 << Op0Shift, + + // D8-DF - These escape opcodes are used by the floating point unit. These + // values must remain sequential. + D8 = 3 << Op0Shift, D9 = 4 << Op0Shift, + DA = 5 << Op0Shift, DB = 6 << Op0Shift, + DC = 7 << Op0Shift, DD = 8 << Op0Shift, + DE = 9 << Op0Shift, DF = 10 << Op0Shift, + + // XS, XD - These prefix codes are for single and double precision scalar + // floating point operations performed in the SSE registers. + XD = 11 << Op0Shift, XS = 12 << Op0Shift, + + // T8, TA - Prefix after the 0x0F prefix. + T8 = 13 << Op0Shift, TA = 14 << Op0Shift, + + // TF - Prefix before and after 0x0F + TF = 15 << Op0Shift, + + //===------------------------------------------------------------------===// + // REX_W - REX prefixes are instruction prefixes used in 64-bit mode. + // They are used to specify GPRs and SSE registers, 64-bit operand size, + // etc. We only cares about REX.W and REX.R bits and only the former is + // statically determined. + // + REXShift = 12, + REX_W = 1 << REXShift, + + //===------------------------------------------------------------------===// + // This three-bit field describes the size of an immediate operand. Zero is + // unused so that we can tell if we forgot to set a value. + ImmShift = 13, + ImmMask = 7 << ImmShift, + Imm8 = 1 << ImmShift, + Imm8PCRel = 2 << ImmShift, + Imm16 = 3 << ImmShift, + Imm32 = 4 << ImmShift, + Imm32PCRel = 5 << ImmShift, + Imm64 = 6 << ImmShift, + + //===------------------------------------------------------------------===// + // FP Instruction Classification... Zero is non-fp instruction. + + // FPTypeMask - Mask for all of the FP types... + FPTypeShift = 16, + FPTypeMask = 7 << FPTypeShift, + + // NotFP - The default, set for instructions that do not use FP registers. + NotFP = 0 << FPTypeShift, + + // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0 + ZeroArgFP = 1 << FPTypeShift, + + // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst + OneArgFP = 2 << FPTypeShift, + + // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a + // result back to ST(0). For example, fcos, fsqrt, etc. + // + OneArgFPRW = 3 << FPTypeShift, + + // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an + // explicit argument, storing the result to either ST(0) or the implicit + // argument. For example: fadd, fsub, fmul, etc... + TwoArgFP = 4 << FPTypeShift, + + // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an + // explicit argument, but have no destination. Example: fucom, fucomi, ... + CompareFP = 5 << FPTypeShift, + + // CondMovFP - "2 operand" floating point conditional move instructions. + CondMovFP = 6 << FPTypeShift, + + // SpecialFP - Special instruction forms. Dispatch by opcode explicitly. + SpecialFP = 7 << FPTypeShift, + + // Lock prefix + LOCKShift = 19, + LOCK = 1 << LOCKShift, + + // Segment override prefixes. Currently we just need ability to address + // stuff in gs and fs segments. + SegOvrShift = 20, + SegOvrMask = 3 << SegOvrShift, + FS = 1 << SegOvrShift, + GS = 2 << SegOvrShift, + + // Execution domain for SSE instructions in bits 22, 23. + // 0 in bits 22-23 means normal, non-SSE instruction. + SSEDomainShift = 22, + + OpcodeShift = 24, + OpcodeMask = 0xFF << OpcodeShift + }; + + // getBaseOpcodeFor - This function returns the "base" X86 opcode for the + // specified machine instruction. + // + static inline unsigned char getBaseOpcodeFor(unsigned TSFlags) { + return TSFlags >> X86II::OpcodeShift; + } + + static inline bool hasImm(unsigned TSFlags) { + return (TSFlags & X86II::ImmMask) != 0; + } + + /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field + /// of the specified instruction. + static inline unsigned getSizeOfImm(unsigned TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: assert(0 && "Unknown immediate size"); + case X86II::Imm8: + case X86II::Imm8PCRel: return 1; + case X86II::Imm16: return 2; + case X86II::Imm32: + case X86II::Imm32PCRel: return 4; + case X86II::Imm64: return 8; + } + } + + /// isImmPCRel - Return true if the immediate of the specified instruction's + /// TSFlags indicates that it is pc relative. + static inline unsigned isImmPCRel(unsigned TSFlags) { + switch (TSFlags & X86II::ImmMask) { + default: assert(0 && "Unknown immediate size"); + case X86II::Imm8PCRel: + case X86II::Imm32PCRel: + return true; + case X86II::Imm8: + case X86II::Imm16: + case X86II::Imm32: + case X86II::Imm64: + return false; + } + } +} + +const int X86AddrNumOperands = 5; + +inline static bool isScale(const MachineOperand &MO) { + return MO.isImm() && + (MO.getImm() == 1 || MO.getImm() == 2 || + MO.getImm() == 4 || MO.getImm() == 8); +} + +inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) { + if (MI->getOperand(Op).isFI()) return true; + return Op+4 <= MI->getNumOperands() && + MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) && + MI->getOperand(Op+2).isReg() && + (MI->getOperand(Op+3).isImm() || + MI->getOperand(Op+3).isGlobal() || + MI->getOperand(Op+3).isCPI() || + MI->getOperand(Op+3).isJTI()); +} + +inline static bool isMem(const MachineInstr *MI, unsigned Op) { + if (MI->getOperand(Op).isFI()) return true; + return Op+5 <= MI->getNumOperands() && + MI->getOperand(Op+4).isReg() && + isLeaMem(MI, Op); +} + +class X86InstrInfo : public TargetInstrInfoImpl { + X86TargetMachine &TM; + const X86RegisterInfo RI; + + /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1, + /// RegOp2MemOpTable2 - Load / store folding opcode maps. + /// + DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr; + DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable0; + DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable1; + DenseMap<unsigned*, std::pair<unsigned,unsigned> > RegOp2MemOpTable2; + + /// MemOp2RegOpTable - Load / store unfolding opcode map. + /// + DenseMap<unsigned*, std::pair<unsigned, unsigned> > MemOp2RegOpTable; + +public: + explicit X86InstrInfo(X86TargetMachine &tm); + + /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As + /// such, whenever a client has an instance of instruction info, it should + /// always be able to get register info as well (through this method). + /// + virtual const X86RegisterInfo &getRegisterInfo() const { return RI; } + + /// Return true if the instruction is a register to register move and return + /// the source and dest operands and their sub-register indices by reference. + virtual bool isMoveInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SrcSubIdx, unsigned &DstSubIdx) const; + + /// isCoalescableExtInstr - Return true if the instruction is a "coalescable" + /// extension instruction. That is, it's like a copy where it's legal for the + /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns + /// true, then it's expected the pre-extension value is available as a subreg + /// of the result register. This also returns the sub-register index in + /// SubIdx. + virtual bool isCoalescableExtInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SubIdx) const; + + unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const; + /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination + /// stack locations as well. This uses a heuristic so it isn't + /// reliable for correctness. + unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const; + + /// hasLoadFromStackSlot - If the specified machine instruction has + /// a load from a stack slot, return true along with the FrameIndex + /// of the loaded stack slot and the machine mem operand containing + /// the reference. If not, return false. Unlike + /// isLoadFromStackSlot, this returns true for any instructions that + /// loads from the stack. This is a hint only and may not catch all + /// cases. + bool hasLoadFromStackSlot(const MachineInstr *MI, + const MachineMemOperand *&MMO, + int &FrameIndex) const; + + unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const; + /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination + /// stack locations as well. This uses a heuristic so it isn't + /// reliable for correctness. + unsigned isStoreToStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const; + + /// hasStoreToStackSlot - If the specified machine instruction has a + /// store to a stack slot, return true along with the FrameIndex of + /// the loaded stack slot and the machine mem operand containing the + /// reference. If not, return false. Unlike isStoreToStackSlot, + /// this returns true for any instructions that loads from the + /// stack. This is a hint only and may not catch all cases. + bool hasStoreToStackSlot(const MachineInstr *MI, + const MachineMemOperand *&MMO, + int &FrameIndex) const; + + bool isReallyTriviallyReMaterializable(const MachineInstr *MI, + AliasAnalysis *AA) const; + void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SubIdx, + const MachineInstr *Orig, + const TargetRegisterInfo *TRI) const; + + /// convertToThreeAddress - This method must be implemented by targets that + /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target + /// may be able to convert a two-address instruction into a true + /// three-address instruction on demand. This allows the X86 target (for + /// example) to convert ADD and SHL instructions into LEA instructions if they + /// would require register copies due to two-addressness. + /// + /// This method returns a null pointer if the transformation cannot be + /// performed, otherwise it returns the new instruction. + /// + virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const; + + /// commuteInstruction - We have a few instructions that must be hacked on to + /// commute them. + /// + virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const; + + // Branch analysis. + virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const; + virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const; + virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const; + virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond) const; + virtual bool copyRegToReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SrcReg, + const TargetRegisterClass *DestRC, + const TargetRegisterClass *SrcRC, + DebugLoc DL) const; + virtual void storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIndex, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const; + + virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const; + + virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIndex, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const; + + virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const; + + virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo *TRI) const; + + virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo *TRI) const; + + virtual + MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF, + int FrameIx, uint64_t Offset, + const MDNode *MDPtr, + DebugLoc DL) const; + + /// foldMemoryOperand - If this target supports it, fold a load or store of + /// the specified stack slot into the specified machine instruction for the + /// specified operand(s). If this is possible, the target should perform the + /// folding and return true, otherwise it should return false. If it folds + /// the instruction, it is likely that the MachineInstruction the iterator + /// references has been changed. + virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const; + + /// foldMemoryOperand - Same as the previous version except it allows folding + /// of any load and store from / to any address, not just from a specific + /// stack slot. + virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr* LoadMI) const; + + /// canFoldMemoryOperand - Returns true if the specified load / store is + /// folding is possible. + virtual bool canFoldMemoryOperand(const MachineInstr*, + const SmallVectorImpl<unsigned> &) const; + + /// unfoldMemoryOperand - Separate a single instruction which folded a load or + /// a store or a load and a store into two or more instruction. If this is + /// possible, returns true as well as the new instructions by reference. + virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, + unsigned Reg, bool UnfoldLoad, bool UnfoldStore, + SmallVectorImpl<MachineInstr*> &NewMIs) const; + + virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, + SmallVectorImpl<SDNode*> &NewNodes) const; + + /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new + /// instruction after load / store are unfolded from an instruction of the + /// specified opcode. It returns zero if the specified unfolding is not + /// possible. If LoadRegIndex is non-null, it is filled in with the operand + /// index of the operand which will hold the register holding the loaded + /// value. + virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, + bool UnfoldLoad, bool UnfoldStore, + unsigned *LoadRegIndex = 0) const; + + /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler + /// to determine if two loads are loading from the same base address. It + /// should only return true if the base pointers are the same and the + /// only differences between the two addresses are the offset. It also returns + /// the offsets by reference. + virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, + int64_t &Offset1, int64_t &Offset2) const; + + /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to + /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should + /// be scheduled togther. On some targets if two loads are loading from + /// addresses in the same cache line, it's better if they are scheduled + /// together. This function takes two integers that represent the load offsets + /// from the common base address. It returns true if it decides it's desirable + /// to schedule the two loads together. "NumLoads" is the number of loads that + /// have already been scheduled after Load1. + virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, + int64_t Offset1, int64_t Offset2, + unsigned NumLoads) const; + + virtual void getNoopForMachoTarget(MCInst &NopInst) const; + + virtual + bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const; + + /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine + /// instruction that defines the specified register class. + bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const; + + static bool isX86_64NonExtLowByteReg(unsigned reg) { + return (reg == X86::SPL || reg == X86::BPL || + reg == X86::SIL || reg == X86::DIL); + } + + static bool isX86_64ExtendedReg(const MachineOperand &MO) { + if (!MO.isReg()) return false; + return isX86_64ExtendedReg(MO.getReg()); + } + static unsigned determineREX(const MachineInstr &MI); + + /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or + /// higher) register? e.g. r8, xmm8, xmm13, etc. + static bool isX86_64ExtendedReg(unsigned RegNo); + + /// GetInstSize - Returns the size of the specified MachineInstr. + /// + virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const; + + /// getGlobalBaseReg - Return a virtual register initialized with the + /// the global base register value. Output instructions required to + /// initialize the register in the function entry block, if necessary. + /// + unsigned getGlobalBaseReg(MachineFunction *MF) const; + + /// GetSSEDomain - Return the SSE execution domain of MI as the first element, + /// and a bitmask of possible arguments to SetSSEDomain ase the second. + std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const; + + /// SetSSEDomain - Set the SSEDomain of MI. + void SetSSEDomain(MachineInstr *MI, unsigned Domain) const; + +private: + MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc, + MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const; + + MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + unsigned OpNum, + const SmallVectorImpl<MachineOperand> &MOs, + unsigned Size, unsigned Alignment) const; + + /// isFrameOperand - Return true and the FrameIndex if the specified + /// operand and follow operands form a reference to the stack frame. + bool isFrameOperand(const MachineInstr *MI, unsigned int Op, + int &FrameIndex) const; +}; + +} // End llvm namespace + +#endif |