diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86InstrInfo.cpp | 3786 |
1 files changed, 3786 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp new file mode 100644 index 0000000..34e12ca --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp @@ -0,0 +1,3786 @@ +//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the X86 implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "X86InstrInfo.h" +#include "X86.h" +#include "X86GenInstrInfo.inc" +#include "X86InstrBuilder.h" +#include "X86MachineFunctionInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/DerivedTypes.h" +#include "llvm/LLVMContext.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/MC/MCAsmInfo.h" + +#include <limits> + +using namespace llvm; + +static cl::opt<bool> +NoFusing("disable-spill-fusing", + cl::desc("Disable fusing of spill code into instructions")); +static cl::opt<bool> +PrintFailedFusing("print-failed-fuse-candidates", + cl::desc("Print instructions that the allocator wants to" + " fuse, but the X86 backend currently can't"), + cl::Hidden); +static cl::opt<bool> +ReMatPICStubLoad("remat-pic-stub-load", + cl::desc("Re-materialize load from stub in PIC mode"), + cl::init(false), cl::Hidden); + +X86InstrInfo::X86InstrInfo(X86TargetMachine &tm) + : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)), + TM(tm), RI(tm, *this) { + SmallVector<unsigned,16> AmbEntries; + static const unsigned OpTbl2Addr[][2] = { + { X86::ADC32ri, X86::ADC32mi }, + { X86::ADC32ri8, X86::ADC32mi8 }, + { X86::ADC32rr, X86::ADC32mr }, + { X86::ADC64ri32, X86::ADC64mi32 }, + { X86::ADC64ri8, X86::ADC64mi8 }, + { X86::ADC64rr, X86::ADC64mr }, + { X86::ADD16ri, X86::ADD16mi }, + { X86::ADD16ri8, X86::ADD16mi8 }, + { X86::ADD16rr, X86::ADD16mr }, + { X86::ADD32ri, X86::ADD32mi }, + { X86::ADD32ri8, X86::ADD32mi8 }, + { X86::ADD32rr, X86::ADD32mr }, + { X86::ADD64ri32, X86::ADD64mi32 }, + { X86::ADD64ri8, X86::ADD64mi8 }, + { X86::ADD64rr, X86::ADD64mr }, + { X86::ADD8ri, X86::ADD8mi }, + { X86::ADD8rr, X86::ADD8mr }, + { X86::AND16ri, X86::AND16mi }, + { X86::AND16ri8, X86::AND16mi8 }, + { X86::AND16rr, X86::AND16mr }, + { X86::AND32ri, X86::AND32mi }, + { X86::AND32ri8, X86::AND32mi8 }, + { X86::AND32rr, X86::AND32mr }, + { X86::AND64ri32, X86::AND64mi32 }, + { X86::AND64ri8, X86::AND64mi8 }, + { X86::AND64rr, X86::AND64mr }, + { X86::AND8ri, X86::AND8mi }, + { X86::AND8rr, X86::AND8mr }, + { X86::DEC16r, X86::DEC16m }, + { X86::DEC32r, X86::DEC32m }, + { X86::DEC64_16r, X86::DEC64_16m }, + { X86::DEC64_32r, X86::DEC64_32m }, + { X86::DEC64r, X86::DEC64m }, + { X86::DEC8r, X86::DEC8m }, + { X86::INC16r, X86::INC16m }, + { X86::INC32r, X86::INC32m }, + { X86::INC64_16r, X86::INC64_16m }, + { X86::INC64_32r, X86::INC64_32m }, + { X86::INC64r, X86::INC64m }, + { X86::INC8r, X86::INC8m }, + { X86::NEG16r, X86::NEG16m }, + { X86::NEG32r, X86::NEG32m }, + { X86::NEG64r, X86::NEG64m }, + { X86::NEG8r, X86::NEG8m }, + { X86::NOT16r, X86::NOT16m }, + { X86::NOT32r, X86::NOT32m }, + { X86::NOT64r, X86::NOT64m }, + { X86::NOT8r, X86::NOT8m }, + { X86::OR16ri, X86::OR16mi }, + { X86::OR16ri8, X86::OR16mi8 }, + { X86::OR16rr, X86::OR16mr }, + { X86::OR32ri, X86::OR32mi }, + { X86::OR32ri8, X86::OR32mi8 }, + { X86::OR32rr, X86::OR32mr }, + { X86::OR64ri32, X86::OR64mi32 }, + { X86::OR64ri8, X86::OR64mi8 }, + { X86::OR64rr, X86::OR64mr }, + { X86::OR8ri, X86::OR8mi }, + { X86::OR8rr, X86::OR8mr }, + { X86::ROL16r1, X86::ROL16m1 }, + { X86::ROL16rCL, X86::ROL16mCL }, + { X86::ROL16ri, X86::ROL16mi }, + { X86::ROL32r1, X86::ROL32m1 }, + { X86::ROL32rCL, X86::ROL32mCL }, + { X86::ROL32ri, X86::ROL32mi }, + { X86::ROL64r1, X86::ROL64m1 }, + { X86::ROL64rCL, X86::ROL64mCL }, + { X86::ROL64ri, X86::ROL64mi }, + { X86::ROL8r1, X86::ROL8m1 }, + { X86::ROL8rCL, X86::ROL8mCL }, + { X86::ROL8ri, X86::ROL8mi }, + { X86::ROR16r1, X86::ROR16m1 }, + { X86::ROR16rCL, X86::ROR16mCL }, + { X86::ROR16ri, X86::ROR16mi }, + { X86::ROR32r1, X86::ROR32m1 }, + { X86::ROR32rCL, X86::ROR32mCL }, + { X86::ROR32ri, X86::ROR32mi }, + { X86::ROR64r1, X86::ROR64m1 }, + { X86::ROR64rCL, X86::ROR64mCL }, + { X86::ROR64ri, X86::ROR64mi }, + { X86::ROR8r1, X86::ROR8m1 }, + { X86::ROR8rCL, X86::ROR8mCL }, + { X86::ROR8ri, X86::ROR8mi }, + { X86::SAR16r1, X86::SAR16m1 }, + { X86::SAR16rCL, X86::SAR16mCL }, + { X86::SAR16ri, X86::SAR16mi }, + { X86::SAR32r1, X86::SAR32m1 }, + { X86::SAR32rCL, X86::SAR32mCL }, + { X86::SAR32ri, X86::SAR32mi }, + { X86::SAR64r1, X86::SAR64m1 }, + { X86::SAR64rCL, X86::SAR64mCL }, + { X86::SAR64ri, X86::SAR64mi }, + { X86::SAR8r1, X86::SAR8m1 }, + { X86::SAR8rCL, X86::SAR8mCL }, + { X86::SAR8ri, X86::SAR8mi }, + { X86::SBB32ri, X86::SBB32mi }, + { X86::SBB32ri8, X86::SBB32mi8 }, + { X86::SBB32rr, X86::SBB32mr }, + { X86::SBB64ri32, X86::SBB64mi32 }, + { X86::SBB64ri8, X86::SBB64mi8 }, + { X86::SBB64rr, X86::SBB64mr }, + { X86::SHL16rCL, X86::SHL16mCL }, + { X86::SHL16ri, X86::SHL16mi }, + { X86::SHL32rCL, X86::SHL32mCL }, + { X86::SHL32ri, X86::SHL32mi }, + { X86::SHL64rCL, X86::SHL64mCL }, + { X86::SHL64ri, X86::SHL64mi }, + { X86::SHL8rCL, X86::SHL8mCL }, + { X86::SHL8ri, X86::SHL8mi }, + { X86::SHLD16rrCL, X86::SHLD16mrCL }, + { X86::SHLD16rri8, X86::SHLD16mri8 }, + { X86::SHLD32rrCL, X86::SHLD32mrCL }, + { X86::SHLD32rri8, X86::SHLD32mri8 }, + { X86::SHLD64rrCL, X86::SHLD64mrCL }, + { X86::SHLD64rri8, X86::SHLD64mri8 }, + { X86::SHR16r1, X86::SHR16m1 }, + { X86::SHR16rCL, X86::SHR16mCL }, + { X86::SHR16ri, X86::SHR16mi }, + { X86::SHR32r1, X86::SHR32m1 }, + { X86::SHR32rCL, X86::SHR32mCL }, + { X86::SHR32ri, X86::SHR32mi }, + { X86::SHR64r1, X86::SHR64m1 }, + { X86::SHR64rCL, X86::SHR64mCL }, + { X86::SHR64ri, X86::SHR64mi }, + { X86::SHR8r1, X86::SHR8m1 }, + { X86::SHR8rCL, X86::SHR8mCL }, + { X86::SHR8ri, X86::SHR8mi }, + { X86::SHRD16rrCL, X86::SHRD16mrCL }, + { X86::SHRD16rri8, X86::SHRD16mri8 }, + { X86::SHRD32rrCL, X86::SHRD32mrCL }, + { X86::SHRD32rri8, X86::SHRD32mri8 }, + { X86::SHRD64rrCL, X86::SHRD64mrCL }, + { X86::SHRD64rri8, X86::SHRD64mri8 }, + { X86::SUB16ri, X86::SUB16mi }, + { X86::SUB16ri8, X86::SUB16mi8 }, + { X86::SUB16rr, X86::SUB16mr }, + { X86::SUB32ri, X86::SUB32mi }, + { X86::SUB32ri8, X86::SUB32mi8 }, + { X86::SUB32rr, X86::SUB32mr }, + { X86::SUB64ri32, X86::SUB64mi32 }, + { X86::SUB64ri8, X86::SUB64mi8 }, + { X86::SUB64rr, X86::SUB64mr }, + { X86::SUB8ri, X86::SUB8mi }, + { X86::SUB8rr, X86::SUB8mr }, + { X86::XOR16ri, X86::XOR16mi }, + { X86::XOR16ri8, X86::XOR16mi8 }, + { X86::XOR16rr, X86::XOR16mr }, + { X86::XOR32ri, X86::XOR32mi }, + { X86::XOR32ri8, X86::XOR32mi8 }, + { X86::XOR32rr, X86::XOR32mr }, + { X86::XOR64ri32, X86::XOR64mi32 }, + { X86::XOR64ri8, X86::XOR64mi8 }, + { X86::XOR64rr, X86::XOR64mr }, + { X86::XOR8ri, X86::XOR8mi }, + { X86::XOR8rr, X86::XOR8mr } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) { + unsigned RegOp = OpTbl2Addr[i][0]; + unsigned MemOp = OpTbl2Addr[i][1]; + if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, + std::make_pair(MemOp,0))).second) + assert(false && "Duplicated entries?"); + // Index 0, folded load and store, no alignment requirement. + unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); + if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, + std::make_pair(RegOp, + AuxInfo))).second) + AmbEntries.push_back(MemOp); + } + + // If the third value is 1, then it's folding either a load or a store. + static const unsigned OpTbl0[][4] = { + { X86::BT16ri8, X86::BT16mi8, 1, 0 }, + { X86::BT32ri8, X86::BT32mi8, 1, 0 }, + { X86::BT64ri8, X86::BT64mi8, 1, 0 }, + { X86::CALL32r, X86::CALL32m, 1, 0 }, + { X86::CALL64r, X86::CALL64m, 1, 0 }, + { X86::CMP16ri, X86::CMP16mi, 1, 0 }, + { X86::CMP16ri8, X86::CMP16mi8, 1, 0 }, + { X86::CMP16rr, X86::CMP16mr, 1, 0 }, + { X86::CMP32ri, X86::CMP32mi, 1, 0 }, + { X86::CMP32ri8, X86::CMP32mi8, 1, 0 }, + { X86::CMP32rr, X86::CMP32mr, 1, 0 }, + { X86::CMP64ri32, X86::CMP64mi32, 1, 0 }, + { X86::CMP64ri8, X86::CMP64mi8, 1, 0 }, + { X86::CMP64rr, X86::CMP64mr, 1, 0 }, + { X86::CMP8ri, X86::CMP8mi, 1, 0 }, + { X86::CMP8rr, X86::CMP8mr, 1, 0 }, + { X86::DIV16r, X86::DIV16m, 1, 0 }, + { X86::DIV32r, X86::DIV32m, 1, 0 }, + { X86::DIV64r, X86::DIV64m, 1, 0 }, + { X86::DIV8r, X86::DIV8m, 1, 0 }, + { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 }, + { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 }, + { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 }, + { X86::IDIV16r, X86::IDIV16m, 1, 0 }, + { X86::IDIV32r, X86::IDIV32m, 1, 0 }, + { X86::IDIV64r, X86::IDIV64m, 1, 0 }, + { X86::IDIV8r, X86::IDIV8m, 1, 0 }, + { X86::IMUL16r, X86::IMUL16m, 1, 0 }, + { X86::IMUL32r, X86::IMUL32m, 1, 0 }, + { X86::IMUL64r, X86::IMUL64m, 1, 0 }, + { X86::IMUL8r, X86::IMUL8m, 1, 0 }, + { X86::JMP32r, X86::JMP32m, 1, 0 }, + { X86::JMP64r, X86::JMP64m, 1, 0 }, + { X86::MOV16ri, X86::MOV16mi, 0, 0 }, + { X86::MOV16rr, X86::MOV16mr, 0, 0 }, + { X86::MOV32ri, X86::MOV32mi, 0, 0 }, + { X86::MOV32rr, X86::MOV32mr, 0, 0 }, + { X86::MOV32rr_TC, X86::MOV32mr_TC, 0, 0 }, + { X86::MOV64ri32, X86::MOV64mi32, 0, 0 }, + { X86::MOV64rr, X86::MOV64mr, 0, 0 }, + { X86::MOV8ri, X86::MOV8mi, 0, 0 }, + { X86::MOV8rr, X86::MOV8mr, 0, 0 }, + { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 }, + { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 }, + { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 }, + { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 }, + { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 }, + { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 }, + { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 }, + { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 }, + { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 }, + { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 }, + { X86::MUL16r, X86::MUL16m, 1, 0 }, + { X86::MUL32r, X86::MUL32m, 1, 0 }, + { X86::MUL64r, X86::MUL64m, 1, 0 }, + { X86::MUL8r, X86::MUL8m, 1, 0 }, + { X86::SETAEr, X86::SETAEm, 0, 0 }, + { X86::SETAr, X86::SETAm, 0, 0 }, + { X86::SETBEr, X86::SETBEm, 0, 0 }, + { X86::SETBr, X86::SETBm, 0, 0 }, + { X86::SETEr, X86::SETEm, 0, 0 }, + { X86::SETGEr, X86::SETGEm, 0, 0 }, + { X86::SETGr, X86::SETGm, 0, 0 }, + { X86::SETLEr, X86::SETLEm, 0, 0 }, + { X86::SETLr, X86::SETLm, 0, 0 }, + { X86::SETNEr, X86::SETNEm, 0, 0 }, + { X86::SETNOr, X86::SETNOm, 0, 0 }, + { X86::SETNPr, X86::SETNPm, 0, 0 }, + { X86::SETNSr, X86::SETNSm, 0, 0 }, + { X86::SETOr, X86::SETOm, 0, 0 }, + { X86::SETPr, X86::SETPm, 0, 0 }, + { X86::SETSr, X86::SETSm, 0, 0 }, + { X86::TAILJMPr, X86::TAILJMPm, 1, 0 }, + { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 }, + { X86::TEST16ri, X86::TEST16mi, 1, 0 }, + { X86::TEST32ri, X86::TEST32mi, 1, 0 }, + { X86::TEST64ri32, X86::TEST64mi32, 1, 0 }, + { X86::TEST8ri, X86::TEST8mi, 1, 0 } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) { + unsigned RegOp = OpTbl0[i][0]; + unsigned MemOp = OpTbl0[i][1]; + unsigned Align = OpTbl0[i][3]; + if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, + std::make_pair(MemOp,Align))).second) + assert(false && "Duplicated entries?"); + unsigned FoldedLoad = OpTbl0[i][2]; + // Index 0, folded load or store. + unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5); + if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr) + if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, + std::make_pair(RegOp, AuxInfo))).second) + AmbEntries.push_back(MemOp); + } + + static const unsigned OpTbl1[][3] = { + { X86::CMP16rr, X86::CMP16rm, 0 }, + { X86::CMP32rr, X86::CMP32rm, 0 }, + { X86::CMP64rr, X86::CMP64rm, 0 }, + { X86::CMP8rr, X86::CMP8rm, 0 }, + { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 }, + { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 }, + { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 }, + { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 }, + { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 }, + { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 }, + { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 }, + { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 }, + { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 }, + { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 }, + { X86::FsMOVAPDrr, X86::MOVSDrm, 0 }, + { X86::FsMOVAPSrr, X86::MOVSSrm, 0 }, + { X86::IMUL16rri, X86::IMUL16rmi, 0 }, + { X86::IMUL16rri8, X86::IMUL16rmi8, 0 }, + { X86::IMUL32rri, X86::IMUL32rmi, 0 }, + { X86::IMUL32rri8, X86::IMUL32rmi8, 0 }, + { X86::IMUL64rri32, X86::IMUL64rmi32, 0 }, + { X86::IMUL64rri8, X86::IMUL64rmi8, 0 }, + { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 }, + { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 }, + { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 }, + { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 }, + { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 }, + { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 }, + { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 }, + { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 }, + { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 }, + { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 }, + { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 }, + { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 }, + { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 }, + { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 }, + { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 }, + { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 }, + { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 }, + { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 }, + { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 }, + { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 }, + { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 }, + { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 }, + { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 }, + { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 }, + { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 }, + { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 }, + { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 }, + { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 }, + { X86::MOV16rr, X86::MOV16rm, 0 }, + { X86::MOV32rr, X86::MOV32rm, 0 }, + { X86::MOV32rr_TC, X86::MOV32rm_TC, 0 }, + { X86::MOV64rr, X86::MOV64rm, 0 }, + { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 }, + { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 }, + { X86::MOV8rr, X86::MOV8rm, 0 }, + { X86::MOVAPDrr, X86::MOVAPDrm, 16 }, + { X86::MOVAPSrr, X86::MOVAPSrm, 16 }, + { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 }, + { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 }, + { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 }, + { X86::MOVDQArr, X86::MOVDQArm, 16 }, + { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 }, + { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 }, + { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 }, + { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 }, + { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 }, + { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 }, + { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 }, + { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 }, + { X86::MOVUPDrr, X86::MOVUPDrm, 16 }, + { X86::MOVUPSrr, X86::MOVUPSrm, 0 }, + { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 }, + { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 }, + { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 }, + { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 }, + { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 }, + { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 }, + { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 }, + { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 }, + { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 }, + { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 }, + { X86::PSHUFDri, X86::PSHUFDmi, 16 }, + { X86::PSHUFHWri, X86::PSHUFHWmi, 16 }, + { X86::PSHUFLWri, X86::PSHUFLWmi, 16 }, + { X86::RCPPSr, X86::RCPPSm, 16 }, + { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 }, + { X86::RSQRTPSr, X86::RSQRTPSm, 16 }, + { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 }, + { X86::RSQRTSSr, X86::RSQRTSSm, 0 }, + { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 }, + { X86::SQRTPDr, X86::SQRTPDm, 16 }, + { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 }, + { X86::SQRTPSr, X86::SQRTPSm, 16 }, + { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 }, + { X86::SQRTSDr, X86::SQRTSDm, 0 }, + { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 }, + { X86::SQRTSSr, X86::SQRTSSm, 0 }, + { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 }, + { X86::TEST16rr, X86::TEST16rm, 0 }, + { X86::TEST32rr, X86::TEST32rm, 0 }, + { X86::TEST64rr, X86::TEST64rm, 0 }, + { X86::TEST8rr, X86::TEST8rm, 0 }, + // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0 + { X86::UCOMISDrr, X86::UCOMISDrm, 0 }, + { X86::UCOMISSrr, X86::UCOMISSrm, 0 } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) { + unsigned RegOp = OpTbl1[i][0]; + unsigned MemOp = OpTbl1[i][1]; + unsigned Align = OpTbl1[i][2]; + if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, + std::make_pair(MemOp,Align))).second) + assert(false && "Duplicated entries?"); + // Index 1, folded load + unsigned AuxInfo = 1 | (1 << 4); + if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr) + if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, + std::make_pair(RegOp, AuxInfo))).second) + AmbEntries.push_back(MemOp); + } + + static const unsigned OpTbl2[][3] = { + { X86::ADC32rr, X86::ADC32rm, 0 }, + { X86::ADC64rr, X86::ADC64rm, 0 }, + { X86::ADD16rr, X86::ADD16rm, 0 }, + { X86::ADD32rr, X86::ADD32rm, 0 }, + { X86::ADD64rr, X86::ADD64rm, 0 }, + { X86::ADD8rr, X86::ADD8rm, 0 }, + { X86::ADDPDrr, X86::ADDPDrm, 16 }, + { X86::ADDPSrr, X86::ADDPSrm, 16 }, + { X86::ADDSDrr, X86::ADDSDrm, 0 }, + { X86::ADDSSrr, X86::ADDSSrm, 0 }, + { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 }, + { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 }, + { X86::AND16rr, X86::AND16rm, 0 }, + { X86::AND32rr, X86::AND32rm, 0 }, + { X86::AND64rr, X86::AND64rm, 0 }, + { X86::AND8rr, X86::AND8rm, 0 }, + { X86::ANDNPDrr, X86::ANDNPDrm, 16 }, + { X86::ANDNPSrr, X86::ANDNPSrm, 16 }, + { X86::ANDPDrr, X86::ANDPDrm, 16 }, + { X86::ANDPSrr, X86::ANDPSrm, 16 }, + { X86::CMOVA16rr, X86::CMOVA16rm, 0 }, + { X86::CMOVA32rr, X86::CMOVA32rm, 0 }, + { X86::CMOVA64rr, X86::CMOVA64rm, 0 }, + { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 }, + { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 }, + { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 }, + { X86::CMOVB16rr, X86::CMOVB16rm, 0 }, + { X86::CMOVB32rr, X86::CMOVB32rm, 0 }, + { X86::CMOVB64rr, X86::CMOVB64rm, 0 }, + { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 }, + { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 }, + { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 }, + { X86::CMOVE16rr, X86::CMOVE16rm, 0 }, + { X86::CMOVE32rr, X86::CMOVE32rm, 0 }, + { X86::CMOVE64rr, X86::CMOVE64rm, 0 }, + { X86::CMOVG16rr, X86::CMOVG16rm, 0 }, + { X86::CMOVG32rr, X86::CMOVG32rm, 0 }, + { X86::CMOVG64rr, X86::CMOVG64rm, 0 }, + { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 }, + { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 }, + { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 }, + { X86::CMOVL16rr, X86::CMOVL16rm, 0 }, + { X86::CMOVL32rr, X86::CMOVL32rm, 0 }, + { X86::CMOVL64rr, X86::CMOVL64rm, 0 }, + { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 }, + { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 }, + { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 }, + { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 }, + { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 }, + { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 }, + { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 }, + { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 }, + { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 }, + { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 }, + { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 }, + { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 }, + { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 }, + { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 }, + { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 }, + { X86::CMOVO16rr, X86::CMOVO16rm, 0 }, + { X86::CMOVO32rr, X86::CMOVO32rm, 0 }, + { X86::CMOVO64rr, X86::CMOVO64rm, 0 }, + { X86::CMOVP16rr, X86::CMOVP16rm, 0 }, + { X86::CMOVP32rr, X86::CMOVP32rm, 0 }, + { X86::CMOVP64rr, X86::CMOVP64rm, 0 }, + { X86::CMOVS16rr, X86::CMOVS16rm, 0 }, + { X86::CMOVS32rr, X86::CMOVS32rm, 0 }, + { X86::CMOVS64rr, X86::CMOVS64rm, 0 }, + { X86::CMPPDrri, X86::CMPPDrmi, 16 }, + { X86::CMPPSrri, X86::CMPPSrmi, 16 }, + { X86::CMPSDrr, X86::CMPSDrm, 0 }, + { X86::CMPSSrr, X86::CMPSSrm, 0 }, + { X86::DIVPDrr, X86::DIVPDrm, 16 }, + { X86::DIVPSrr, X86::DIVPSrm, 16 }, + { X86::DIVSDrr, X86::DIVSDrm, 0 }, + { X86::DIVSSrr, X86::DIVSSrm, 0 }, + { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 }, + { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 }, + { X86::FsANDPDrr, X86::FsANDPDrm, 16 }, + { X86::FsANDPSrr, X86::FsANDPSrm, 16 }, + { X86::FsORPDrr, X86::FsORPDrm, 16 }, + { X86::FsORPSrr, X86::FsORPSrm, 16 }, + { X86::FsXORPDrr, X86::FsXORPDrm, 16 }, + { X86::FsXORPSrr, X86::FsXORPSrm, 16 }, + { X86::HADDPDrr, X86::HADDPDrm, 16 }, + { X86::HADDPSrr, X86::HADDPSrm, 16 }, + { X86::HSUBPDrr, X86::HSUBPDrm, 16 }, + { X86::HSUBPSrr, X86::HSUBPSrm, 16 }, + { X86::IMUL16rr, X86::IMUL16rm, 0 }, + { X86::IMUL32rr, X86::IMUL32rm, 0 }, + { X86::IMUL64rr, X86::IMUL64rm, 0 }, + { X86::MAXPDrr, X86::MAXPDrm, 16 }, + { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 }, + { X86::MAXPSrr, X86::MAXPSrm, 16 }, + { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 }, + { X86::MAXSDrr, X86::MAXSDrm, 0 }, + { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 }, + { X86::MAXSSrr, X86::MAXSSrm, 0 }, + { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 }, + { X86::MINPDrr, X86::MINPDrm, 16 }, + { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 }, + { X86::MINPSrr, X86::MINPSrm, 16 }, + { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 }, + { X86::MINSDrr, X86::MINSDrm, 0 }, + { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 }, + { X86::MINSSrr, X86::MINSSrm, 0 }, + { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 }, + { X86::MULPDrr, X86::MULPDrm, 16 }, + { X86::MULPSrr, X86::MULPSrm, 16 }, + { X86::MULSDrr, X86::MULSDrm, 0 }, + { X86::MULSSrr, X86::MULSSrm, 0 }, + { X86::OR16rr, X86::OR16rm, 0 }, + { X86::OR32rr, X86::OR32rm, 0 }, + { X86::OR64rr, X86::OR64rm, 0 }, + { X86::OR8rr, X86::OR8rm, 0 }, + { X86::ORPDrr, X86::ORPDrm, 16 }, + { X86::ORPSrr, X86::ORPSrm, 16 }, + { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 }, + { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 }, + { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 }, + { X86::PADDBrr, X86::PADDBrm, 16 }, + { X86::PADDDrr, X86::PADDDrm, 16 }, + { X86::PADDQrr, X86::PADDQrm, 16 }, + { X86::PADDSBrr, X86::PADDSBrm, 16 }, + { X86::PADDSWrr, X86::PADDSWrm, 16 }, + { X86::PADDWrr, X86::PADDWrm, 16 }, + { X86::PANDNrr, X86::PANDNrm, 16 }, + { X86::PANDrr, X86::PANDrm, 16 }, + { X86::PAVGBrr, X86::PAVGBrm, 16 }, + { X86::PAVGWrr, X86::PAVGWrm, 16 }, + { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 }, + { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 }, + { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 }, + { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 }, + { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 }, + { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 }, + { X86::PINSRWrri, X86::PINSRWrmi, 16 }, + { X86::PMADDWDrr, X86::PMADDWDrm, 16 }, + { X86::PMAXSWrr, X86::PMAXSWrm, 16 }, + { X86::PMAXUBrr, X86::PMAXUBrm, 16 }, + { X86::PMINSWrr, X86::PMINSWrm, 16 }, + { X86::PMINUBrr, X86::PMINUBrm, 16 }, + { X86::PMULDQrr, X86::PMULDQrm, 16 }, + { X86::PMULHUWrr, X86::PMULHUWrm, 16 }, + { X86::PMULHWrr, X86::PMULHWrm, 16 }, + { X86::PMULLDrr, X86::PMULLDrm, 16 }, + { X86::PMULLWrr, X86::PMULLWrm, 16 }, + { X86::PMULUDQrr, X86::PMULUDQrm, 16 }, + { X86::PORrr, X86::PORrm, 16 }, + { X86::PSADBWrr, X86::PSADBWrm, 16 }, + { X86::PSLLDrr, X86::PSLLDrm, 16 }, + { X86::PSLLQrr, X86::PSLLQrm, 16 }, + { X86::PSLLWrr, X86::PSLLWrm, 16 }, + { X86::PSRADrr, X86::PSRADrm, 16 }, + { X86::PSRAWrr, X86::PSRAWrm, 16 }, + { X86::PSRLDrr, X86::PSRLDrm, 16 }, + { X86::PSRLQrr, X86::PSRLQrm, 16 }, + { X86::PSRLWrr, X86::PSRLWrm, 16 }, + { X86::PSUBBrr, X86::PSUBBrm, 16 }, + { X86::PSUBDrr, X86::PSUBDrm, 16 }, + { X86::PSUBSBrr, X86::PSUBSBrm, 16 }, + { X86::PSUBSWrr, X86::PSUBSWrm, 16 }, + { X86::PSUBWrr, X86::PSUBWrm, 16 }, + { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 }, + { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 }, + { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 }, + { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 }, + { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 }, + { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 }, + { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 }, + { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 }, + { X86::PXORrr, X86::PXORrm, 16 }, + { X86::SBB32rr, X86::SBB32rm, 0 }, + { X86::SBB64rr, X86::SBB64rm, 0 }, + { X86::SHUFPDrri, X86::SHUFPDrmi, 16 }, + { X86::SHUFPSrri, X86::SHUFPSrmi, 16 }, + { X86::SUB16rr, X86::SUB16rm, 0 }, + { X86::SUB32rr, X86::SUB32rm, 0 }, + { X86::SUB64rr, X86::SUB64rm, 0 }, + { X86::SUB8rr, X86::SUB8rm, 0 }, + { X86::SUBPDrr, X86::SUBPDrm, 16 }, + { X86::SUBPSrr, X86::SUBPSrm, 16 }, + { X86::SUBSDrr, X86::SUBSDrm, 0 }, + { X86::SUBSSrr, X86::SUBSSrm, 0 }, + // FIXME: TEST*rr -> swapped operand of TEST*mr. + { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 }, + { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 }, + { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 }, + { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 }, + { X86::XOR16rr, X86::XOR16rm, 0 }, + { X86::XOR32rr, X86::XOR32rm, 0 }, + { X86::XOR64rr, X86::XOR64rm, 0 }, + { X86::XOR8rr, X86::XOR8rm, 0 }, + { X86::XORPDrr, X86::XORPDrm, 16 }, + { X86::XORPSrr, X86::XORPSrm, 16 } + }; + + for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) { + unsigned RegOp = OpTbl2[i][0]; + unsigned MemOp = OpTbl2[i][1]; + unsigned Align = OpTbl2[i][2]; + if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, + std::make_pair(MemOp,Align))).second) + assert(false && "Duplicated entries?"); + // Index 2, folded load + unsigned AuxInfo = 2 | (1 << 4); + if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp, + std::make_pair(RegOp, AuxInfo))).second) + AmbEntries.push_back(MemOp); + } + + // Remove ambiguous entries. + assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?"); +} + +bool X86InstrInfo::isMoveInstr(const MachineInstr& MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SrcSubIdx, unsigned &DstSubIdx) const { + switch (MI.getOpcode()) { + default: + return false; + case X86::MOV8rr: + case X86::MOV8rr_NOREX: + case X86::MOV16rr: + case X86::MOV32rr: + case X86::MOV64rr: + case X86::MOV32rr_TC: + case X86::MOV64rr_TC: + + // FP Stack register class copies + case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080: + case X86::MOV_Fp3264: case X86::MOV_Fp3280: + case X86::MOV_Fp6432: case X86::MOV_Fp8032: + + // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64 + // copies are done with FsMOVAPSrr and FsMOVAPDrr. + + case X86::FsMOVAPSrr: + case X86::FsMOVAPDrr: + case X86::MOVAPSrr: + case X86::MOVAPDrr: + case X86::MOVDQArr: + case X86::MMX_MOVQ64rr: + assert(MI.getNumOperands() >= 2 && + MI.getOperand(0).isReg() && + MI.getOperand(1).isReg() && + "invalid register-register move instruction"); + SrcReg = MI.getOperand(1).getReg(); + DstReg = MI.getOperand(0).getReg(); + SrcSubIdx = MI.getOperand(1).getSubReg(); + DstSubIdx = MI.getOperand(0).getSubReg(); + return true; + } +} + +bool +X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, + unsigned &SrcReg, unsigned &DstReg, + unsigned &SubIdx) const { + switch (MI.getOpcode()) { + default: break; + case X86::MOVSX16rr8: + case X86::MOVZX16rr8: + case X86::MOVSX32rr8: + case X86::MOVZX32rr8: + case X86::MOVSX64rr8: + case X86::MOVZX64rr8: + if (!TM.getSubtarget<X86Subtarget>().is64Bit()) + // It's not always legal to reference the low 8-bit of the larger + // register in 32-bit mode. + return false; + case X86::MOVSX32rr16: + case X86::MOVZX32rr16: + case X86::MOVSX64rr16: + case X86::MOVZX64rr16: + case X86::MOVSX64rr32: + case X86::MOVZX64rr32: { + if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) + // Be conservative. + return false; + SrcReg = MI.getOperand(1).getReg(); + DstReg = MI.getOperand(0).getReg(); + switch (MI.getOpcode()) { + default: + llvm_unreachable(0); + break; + case X86::MOVSX16rr8: + case X86::MOVZX16rr8: + case X86::MOVSX32rr8: + case X86::MOVZX32rr8: + case X86::MOVSX64rr8: + case X86::MOVZX64rr8: + SubIdx = X86::sub_8bit; + break; + case X86::MOVSX32rr16: + case X86::MOVZX32rr16: + case X86::MOVSX64rr16: + case X86::MOVZX64rr16: + SubIdx = X86::sub_16bit; + break; + case X86::MOVSX64rr32: + case X86::MOVZX64rr32: + SubIdx = X86::sub_32bit; + break; + } + return true; + } + } + return false; +} + +/// isFrameOperand - Return true and the FrameIndex if the specified +/// operand and follow operands form a reference to the stack frame. +bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op, + int &FrameIndex) const { + if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() && + MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() && + MI->getOperand(Op+1).getImm() == 1 && + MI->getOperand(Op+2).getReg() == 0 && + MI->getOperand(Op+3).getImm() == 0) { + FrameIndex = MI->getOperand(Op).getIndex(); + return true; + } + return false; +} + +static bool isFrameLoadOpcode(int Opcode) { + switch (Opcode) { + default: break; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp64m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MOVAPSrm: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + return true; + break; + } + return false; +} + +static bool isFrameStoreOpcode(int Opcode) { + switch (Opcode) { + default: break; + case X86::MOV8mr: + case X86::MOV16mr: + case X86::MOV32mr: + case X86::MOV64mr: + case X86::ST_FpP64m: + case X86::MOVSSmr: + case X86::MOVSDmr: + case X86::MOVAPSmr: + case X86::MOVAPDmr: + case X86::MOVDQAmr: + case X86::MMX_MOVD64mr: + case X86::MMX_MOVQ64mr: + case X86::MMX_MOVNTQmr: + return true; + } + return false; +} + +unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameLoadOpcode(MI->getOpcode())) + if (isFrameOperand(MI, 1, FrameIndex)) + return MI->getOperand(0).getReg(); + return 0; +} + +unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameLoadOpcode(MI->getOpcode())) { + unsigned Reg; + if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) + return Reg; + // Check for post-frame index elimination operations + const MachineMemOperand *Dummy; + return hasLoadFromStackSlot(MI, Dummy, FrameIndex); + } + return 0; +} + +bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, + const MachineMemOperand *&MMO, + int &FrameIndex) const { + for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), + oe = MI->memoperands_end(); + o != oe; + ++o) { + if ((*o)->isLoad() && (*o)->getValue()) + if (const FixedStackPseudoSourceValue *Value = + dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { + FrameIndex = Value->getFrameIndex(); + MMO = *o; + return true; + } + } + return false; +} + +unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameStoreOpcode(MI->getOpcode())) + if (isFrameOperand(MI, 0, FrameIndex)) + return MI->getOperand(X86AddrNumOperands).getReg(); + return 0; +} + +unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI, + int &FrameIndex) const { + if (isFrameStoreOpcode(MI->getOpcode())) { + unsigned Reg; + if ((Reg = isStoreToStackSlot(MI, FrameIndex))) + return Reg; + // Check for post-frame index elimination operations + const MachineMemOperand *Dummy; + return hasStoreToStackSlot(MI, Dummy, FrameIndex); + } + return 0; +} + +bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI, + const MachineMemOperand *&MMO, + int &FrameIndex) const { + for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), + oe = MI->memoperands_end(); + o != oe; + ++o) { + if ((*o)->isStore() && (*o)->getValue()) + if (const FixedStackPseudoSourceValue *Value = + dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { + FrameIndex = Value->getFrameIndex(); + MMO = *o; + return true; + } + } + return false; +} + +/// regIsPICBase - Return true if register is PIC base (i.e.g defined by +/// X86::MOVPC32r. +static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { + bool isPICBase = false; + for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), + E = MRI.def_end(); I != E; ++I) { + MachineInstr *DefMI = I.getOperand().getParent(); + if (DefMI->getOpcode() != X86::MOVPC32r) + return false; + assert(!isPICBase && "More than one PIC base?"); + isPICBase = true; + } + return isPICBase; +} + +bool +X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, + AliasAnalysis *AA) const { + switch (MI->getOpcode()) { + default: break; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp64m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVUPSrm_Int: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: { + // Loads from constant pools are trivially rematerializable. + if (MI->getOperand(1).isReg() && + MI->getOperand(2).isImm() && + MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && + MI->isInvariantLoad(AA)) { + unsigned BaseReg = MI->getOperand(1).getReg(); + if (BaseReg == 0 || BaseReg == X86::RIP) + return true; + // Allow re-materialization of PIC load. + if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal()) + return false; + const MachineFunction &MF = *MI->getParent()->getParent(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + bool isPICBase = false; + for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg), + E = MRI.def_end(); I != E; ++I) { + MachineInstr *DefMI = I.getOperand().getParent(); + if (DefMI->getOpcode() != X86::MOVPC32r) + return false; + assert(!isPICBase && "More than one PIC base?"); + isPICBase = true; + } + return isPICBase; + } + return false; + } + + case X86::LEA32r: + case X86::LEA64r: { + if (MI->getOperand(2).isImm() && + MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 && + !MI->getOperand(4).isReg()) { + // lea fi#, lea GV, etc. are all rematerializable. + if (!MI->getOperand(1).isReg()) + return true; + unsigned BaseReg = MI->getOperand(1).getReg(); + if (BaseReg == 0) + return true; + // Allow re-materialization of lea PICBase + x. + const MachineFunction &MF = *MI->getParent()->getParent(); + const MachineRegisterInfo &MRI = MF.getRegInfo(); + return regIsPICBase(BaseReg, MRI); + } + return false; + } + } + + // All other instructions marked M_REMATERIALIZABLE are always trivially + // rematerializable. + return true; +} + +/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that +/// would clobber the EFLAGS condition register. Note the result may be +/// conservative. If it cannot definitely determine the safety after visiting +/// a few instructions in each direction it assumes it's not safe. +static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I) { + MachineBasicBlock::iterator E = MBB.end(); + + // It's always safe to clobber EFLAGS at the end of a block. + if (I == E) + return true; + + // For compile time consideration, if we are not able to determine the + // safety after visiting 4 instructions in each direction, we will assume + // it's not safe. + MachineBasicBlock::iterator Iter = I; + for (unsigned i = 0; i < 4; ++i) { + bool SeenDef = false; + for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { + MachineOperand &MO = Iter->getOperand(j); + if (!MO.isReg()) + continue; + if (MO.getReg() == X86::EFLAGS) { + if (MO.isUse()) + return false; + SeenDef = true; + } + } + + if (SeenDef) + // This instruction defines EFLAGS, no need to look any further. + return true; + ++Iter; + // Skip over DBG_VALUE. + while (Iter != E && Iter->isDebugValue()) + ++Iter; + + // If we make it to the end of the block, it's safe to clobber EFLAGS. + if (Iter == E) + return true; + } + + MachineBasicBlock::iterator B = MBB.begin(); + Iter = I; + for (unsigned i = 0; i < 4; ++i) { + // If we make it to the beginning of the block, it's safe to clobber + // EFLAGS iff EFLAGS is not live-in. + if (Iter == B) + return !MBB.isLiveIn(X86::EFLAGS); + + --Iter; + // Skip over DBG_VALUE. + while (Iter != B && Iter->isDebugValue()) + --Iter; + + bool SawKill = false; + for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { + MachineOperand &MO = Iter->getOperand(j); + if (MO.isReg() && MO.getReg() == X86::EFLAGS) { + if (MO.isDef()) return MO.isDead(); + if (MO.isKill()) SawKill = true; + } + } + + if (SawKill) + // This instruction kills EFLAGS and doesn't redefine it, so + // there's no need to look further. + return true; + } + + // Conservative answer. + return false; +} + +void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned DestReg, unsigned SubIdx, + const MachineInstr *Orig, + const TargetRegisterInfo *TRI) const { + DebugLoc DL = Orig->getDebugLoc(); + + if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) { + DestReg = TRI->getSubReg(DestReg, SubIdx); + SubIdx = 0; + } + + // MOV32r0 etc. are implemented with xor which clobbers condition code. + // Re-materialize them as movri instructions to avoid side effects. + bool Clone = true; + unsigned Opc = Orig->getOpcode(); + switch (Opc) { + default: break; + case X86::MOV8r0: + case X86::MOV16r0: + case X86::MOV32r0: + case X86::MOV64r0: { + if (!isSafeToClobberEFLAGS(MBB, I)) { + switch (Opc) { + default: break; + case X86::MOV8r0: Opc = X86::MOV8ri; break; + case X86::MOV16r0: Opc = X86::MOV16ri; break; + case X86::MOV32r0: Opc = X86::MOV32ri; break; + case X86::MOV64r0: Opc = X86::MOV64ri64i32; break; + } + Clone = false; + } + break; + } + } + + if (Clone) { + MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); + MI->getOperand(0).setReg(DestReg); + MBB.insert(I, MI); + } else { + BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0); + } + + MachineInstr *NewMI = prior(I); + NewMI->getOperand(0).setSubReg(SubIdx); +} + +/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that +/// is not marked dead. +static bool hasLiveCondCodeDef(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && + MO.getReg() == X86::EFLAGS && !MO.isDead()) { + return true; + } + } + return false; +} + +/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when +/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting +/// to a 32-bit superregister and then truncating back down to a 16-bit +/// subregister. +MachineInstr * +X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, + MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const { + MachineInstr *MI = MBBI; + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Src = MI->getOperand(1).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isKill = MI->getOperand(1).isKill(); + + unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() + ? X86::LEA64_32r : X86::LEA32r; + MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); + unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); + unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); + + // Build and insert into an implicit UNDEF value. This is OK because + // well be shifting and then extracting the lower 16-bits. + // This has the potential to cause partial register stall. e.g. + // movw (%rbp,%rcx,2), %dx + // leal -65(%rdx), %esi + // But testing has shown this *does* help performance in 64-bit mode (at + // least on modern x86 machines). + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); + MachineInstr *InsMI = + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg) + .addReg(leaInReg) + .addReg(Src, getKillRegState(isKill)) + .addImm(X86::sub_16bit); + + MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(), + get(Opc), leaOutReg); + switch (MIOpc) { + default: + llvm_unreachable(0); + break; + case X86::SHL16ri: { + unsigned ShAmt = MI->getOperand(2).getImm(); + MIB.addReg(0).addImm(1 << ShAmt) + .addReg(leaInReg, RegState::Kill).addImm(0); + break; + } + case X86::INC16r: + case X86::INC64_16r: + addLeaRegOffset(MIB, leaInReg, true, 1); + break; + case X86::DEC16r: + case X86::DEC64_16r: + addLeaRegOffset(MIB, leaInReg, true, -1); + break; + case X86::ADD16ri: + case X86::ADD16ri8: + addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm()); + break; + case X86::ADD16rr: { + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + unsigned leaInReg2 = 0; + MachineInstr *InsMI2 = 0; + if (Src == Src2) { + // ADD16rr %reg1028<kill>, %reg1028 + // just a single insert_subreg. + addRegReg(MIB, leaInReg, true, leaInReg, false); + } else { + leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass); + // Build and insert into an implicit UNDEF value. This is OK because + // well be shifting and then extracting the lower 16-bits. + BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); + InsMI2 = + BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2) + .addReg(leaInReg2) + .addReg(Src2, getKillRegState(isKill2)) + .addImm(X86::sub_16bit); + addRegReg(MIB, leaInReg, true, leaInReg2, true); + } + if (LV && isKill2 && InsMI2) + LV->replaceKillInstruction(Src2, MI, InsMI2); + break; + } + } + + MachineInstr *NewMI = MIB; + MachineInstr *ExtMI = + BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG)) + .addReg(Dest, RegState::Define | getDeadRegState(isDead)) + .addReg(leaOutReg, RegState::Kill) + .addImm(X86::sub_16bit); + + if (LV) { + // Update live variables + LV->getVarInfo(leaInReg).Kills.push_back(NewMI); + LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); + if (isKill) + LV->replaceKillInstruction(Src, MI, InsMI); + if (isDead) + LV->replaceKillInstruction(Dest, MI, ExtMI); + } + + return ExtMI; +} + +/// convertToThreeAddress - This method must be implemented by targets that +/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target +/// may be able to convert a two-address instruction into a true +/// three-address instruction on demand. This allows the X86 target (for +/// example) to convert ADD and SHL instructions into LEA instructions if they +/// would require register copies due to two-addressness. +/// +/// This method returns a null pointer if the transformation cannot be +/// performed, otherwise it returns the new instruction. +/// +MachineInstr * +X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI, + LiveVariables *LV) const { + MachineInstr *MI = MBBI; + MachineFunction &MF = *MI->getParent()->getParent(); + // All instructions input are two-addr instructions. Get the known operands. + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Src = MI->getOperand(1).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isKill = MI->getOperand(1).isKill(); + + MachineInstr *NewMI = NULL; + // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When + // we have better subtarget support, enable the 16-bit LEA generation here. + // 16-bit LEA is also slow on Core2. + bool DisableLEA16 = true; + bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); + + unsigned MIOpc = MI->getOpcode(); + switch (MIOpc) { + case X86::SHUFPSrri: { + assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!"); + if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0; + + unsigned B = MI->getOperand(1).getReg(); + unsigned C = MI->getOperand(2).getReg(); + if (B != C) return 0; + unsigned A = MI->getOperand(0).getReg(); + unsigned M = MI->getOperand(3).getImm(); + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri)) + .addReg(A, RegState::Define | getDeadRegState(isDead)) + .addReg(B, getKillRegState(isKill)).addImm(M); + break; + } + case X86::SHL64ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) + .addReg(Dest, RegState::Define | getDeadRegState(isDead)) + .addReg(0).addImm(1 << ShAmt) + .addReg(Src, getKillRegState(isKill)) + .addImm(0); + break; + } + case X86::SHL32ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; + NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addReg(Dest, RegState::Define | getDeadRegState(isDead)) + .addReg(0).addImm(1 << ShAmt) + .addReg(Src, getKillRegState(isKill)).addImm(0); + break; + } + case X86::SHL16ri: { + assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!"); + // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses + // the flags produced by a shift yet, so this is safe. + unsigned ShAmt = MI->getOperand(2).getImm(); + if (ShAmt == 0 || ShAmt >= 4) return 0; + + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addReg(Dest, RegState::Define | getDeadRegState(isDead)) + .addReg(0).addImm(1 << ShAmt) + .addReg(Src, getKillRegState(isKill)) + .addImm(0); + break; + } + default: { + // The following opcodes also sets the condition code register(s). Only + // convert them to equivalent lea if the condition code register def's + // are dead! + if (hasLiveCondCodeDef(MI)) + return 0; + + switch (MIOpc) { + default: return 0; + case X86::INC64r: + case X86::INC32r: + case X86::INC64_32r: { + assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); + unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r + : (is64Bit ? X86::LEA64_32r : X86::LEA32r); + NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, 1); + break; + } + case X86::INC16r: + case X86::INC64_16r: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!"); + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, 1); + break; + case X86::DEC64r: + case X86::DEC32r: + case X86::DEC64_32r: { + assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); + unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r + : (is64Bit ? X86::LEA64_32r : X86::LEA32r); + NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, -1); + break; + } + case X86::DEC16r: + case X86::DEC64_16r: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!"); + NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, -1); + break; + case X86::ADD64rr: + case X86::ADD32rr: { + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r + : (is64Bit ? X86::LEA64_32r : X86::LEA32r); + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, Src2, isKill2); + if (LV && isKill2) + LV->replaceKillInstruction(Src2, MI, NewMI); + break; + } + case X86::ADD16rr: { + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Src2 = MI->getOperand(2).getReg(); + bool isKill2 = MI->getOperand(2).isKill(); + NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, Src2, isKill2); + if (LV && isKill2) + LV->replaceKillInstruction(Src2, MI, NewMI); + break; + } + case X86::ADD64ri32: + case X86::ADD64ri8: + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, MI->getOperand(2).getImm()); + break; + case X86::ADD32ri: + case X86::ADD32ri8: { + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; + NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, MI->getOperand(2).getImm()); + break; + } + case X86::ADD16ri: + case X86::ADD16ri8: + if (DisableLEA16) + return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0; + assert(MI->getNumOperands() >= 3 && "Unknown add instruction!"); + NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r)) + .addReg(Dest, RegState::Define | + getDeadRegState(isDead)), + Src, isKill, MI->getOperand(2).getImm()); + break; + } + } + } + + if (!NewMI) return 0; + + if (LV) { // Update live variables + if (isKill) + LV->replaceKillInstruction(Src, MI, NewMI); + if (isDead) + LV->replaceKillInstruction(Dest, MI, NewMI); + } + + MFI->insert(MBBI, NewMI); // Insert the new inst + return NewMI; +} + +/// commuteInstruction - We have a few instructions that must be hacked on to +/// commute them. +/// +MachineInstr * +X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { + switch (MI->getOpcode()) { + case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) + case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) + case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) + case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) + case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) + case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) + unsigned Opc; + unsigned Size; + switch (MI->getOpcode()) { + default: llvm_unreachable("Unreachable!"); + case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; + case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; + case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; + case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; + case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; + case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; + } + unsigned Amt = MI->getOperand(3).getImm(); + if (NewMI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MI = MF.CloneMachineInstr(MI); + NewMI = false; + } + MI->setDesc(get(Opc)); + MI->getOperand(3).setImm(Size-Amt); + return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + } + case X86::CMOVB16rr: + case X86::CMOVB32rr: + case X86::CMOVB64rr: + case X86::CMOVAE16rr: + case X86::CMOVAE32rr: + case X86::CMOVAE64rr: + case X86::CMOVE16rr: + case X86::CMOVE32rr: + case X86::CMOVE64rr: + case X86::CMOVNE16rr: + case X86::CMOVNE32rr: + case X86::CMOVNE64rr: + case X86::CMOVBE16rr: + case X86::CMOVBE32rr: + case X86::CMOVBE64rr: + case X86::CMOVA16rr: + case X86::CMOVA32rr: + case X86::CMOVA64rr: + case X86::CMOVL16rr: + case X86::CMOVL32rr: + case X86::CMOVL64rr: + case X86::CMOVGE16rr: + case X86::CMOVGE32rr: + case X86::CMOVGE64rr: + case X86::CMOVLE16rr: + case X86::CMOVLE32rr: + case X86::CMOVLE64rr: + case X86::CMOVG16rr: + case X86::CMOVG32rr: + case X86::CMOVG64rr: + case X86::CMOVS16rr: + case X86::CMOVS32rr: + case X86::CMOVS64rr: + case X86::CMOVNS16rr: + case X86::CMOVNS32rr: + case X86::CMOVNS64rr: + case X86::CMOVP16rr: + case X86::CMOVP32rr: + case X86::CMOVP64rr: + case X86::CMOVNP16rr: + case X86::CMOVNP32rr: + case X86::CMOVNP64rr: + case X86::CMOVO16rr: + case X86::CMOVO32rr: + case X86::CMOVO64rr: + case X86::CMOVNO16rr: + case X86::CMOVNO32rr: + case X86::CMOVNO64rr: { + unsigned Opc = 0; + switch (MI->getOpcode()) { + default: break; + case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; + case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; + case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; + case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; + case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; + case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; + case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; + case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; + case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; + case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; + case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; + case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; + case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; + case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; + case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; + case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; + case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; + case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; + case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; + case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; + case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; + case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; + case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; + case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; + case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; + case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; + case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; + case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; + case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; + case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; + case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; + case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; + case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; + case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; + case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; + case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; + case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; + case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; + case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; + case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; + case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; + case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; + case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; + case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; + case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; + case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; + case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; + case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; + } + if (NewMI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MI = MF.CloneMachineInstr(MI); + NewMI = false; + } + MI->setDesc(get(Opc)); + // Fallthrough intended. + } + default: + return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + } +} + +static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) { + switch (BrOpc) { + default: return X86::COND_INVALID; + case X86::JE_4: return X86::COND_E; + case X86::JNE_4: return X86::COND_NE; + case X86::JL_4: return X86::COND_L; + case X86::JLE_4: return X86::COND_LE; + case X86::JG_4: return X86::COND_G; + case X86::JGE_4: return X86::COND_GE; + case X86::JB_4: return X86::COND_B; + case X86::JBE_4: return X86::COND_BE; + case X86::JA_4: return X86::COND_A; + case X86::JAE_4: return X86::COND_AE; + case X86::JS_4: return X86::COND_S; + case X86::JNS_4: return X86::COND_NS; + case X86::JP_4: return X86::COND_P; + case X86::JNP_4: return X86::COND_NP; + case X86::JO_4: return X86::COND_O; + case X86::JNO_4: return X86::COND_NO; + } +} + +unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Illegal condition code!"); + case X86::COND_E: return X86::JE_4; + case X86::COND_NE: return X86::JNE_4; + case X86::COND_L: return X86::JL_4; + case X86::COND_LE: return X86::JLE_4; + case X86::COND_G: return X86::JG_4; + case X86::COND_GE: return X86::JGE_4; + case X86::COND_B: return X86::JB_4; + case X86::COND_BE: return X86::JBE_4; + case X86::COND_A: return X86::JA_4; + case X86::COND_AE: return X86::JAE_4; + case X86::COND_S: return X86::JS_4; + case X86::COND_NS: return X86::JNS_4; + case X86::COND_P: return X86::JP_4; + case X86::COND_NP: return X86::JNP_4; + case X86::COND_O: return X86::JO_4; + case X86::COND_NO: return X86::JNO_4; + } +} + +/// GetOppositeBranchCondition - Return the inverse of the specified condition, +/// e.g. turning COND_E to COND_NE. +X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Illegal condition code!"); + case X86::COND_E: return X86::COND_NE; + case X86::COND_NE: return X86::COND_E; + case X86::COND_L: return X86::COND_GE; + case X86::COND_LE: return X86::COND_G; + case X86::COND_G: return X86::COND_LE; + case X86::COND_GE: return X86::COND_L; + case X86::COND_B: return X86::COND_AE; + case X86::COND_BE: return X86::COND_A; + case X86::COND_A: return X86::COND_BE; + case X86::COND_AE: return X86::COND_B; + case X86::COND_S: return X86::COND_NS; + case X86::COND_NS: return X86::COND_S; + case X86::COND_P: return X86::COND_NP; + case X86::COND_NP: return X86::COND_P; + case X86::COND_O: return X86::COND_NO; + case X86::COND_NO: return X86::COND_O; + } +} + +bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { + const TargetInstrDesc &TID = MI->getDesc(); + if (!TID.isTerminator()) return false; + + // Conditional branch is a special case. + if (TID.isBranch() && !TID.isBarrier()) + return true; + if (!TID.isPredicable()) + return true; + return !isPredicated(MI); +} + +// For purposes of branch analysis do not count FP_REG_KILL as a terminator. +static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI, + const X86InstrInfo &TII) { + if (MI->getOpcode() == X86::FP_REG_KILL) + return false; + return TII.isUnpredicatedTerminator(MI); +} + +bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + // Start from the bottom of the block and work up, examining the + // terminator instructions. + MachineBasicBlock::iterator I = MBB.end(); + MachineBasicBlock::iterator UnCondBrIter = MBB.end(); + while (I != MBB.begin()) { + --I; + if (I->isDebugValue()) + continue; + + // Working from the bottom, when we see a non-terminator instruction, we're + // done. + if (!isBrAnalysisUnpredicatedTerminator(I, *this)) + break; + + // A terminator that isn't a branch can't easily be handled by this + // analysis. + if (!I->getDesc().isBranch()) + return true; + + // Handle unconditional branches. + if (I->getOpcode() == X86::JMP_4) { + UnCondBrIter = I; + + if (!AllowModify) { + TBB = I->getOperand(0).getMBB(); + continue; + } + + // If the block has any instructions after a JMP, delete them. + while (llvm::next(I) != MBB.end()) + llvm::next(I)->eraseFromParent(); + + Cond.clear(); + FBB = 0; + + // Delete the JMP if it's equivalent to a fall-through. + if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { + TBB = 0; + I->eraseFromParent(); + I = MBB.end(); + UnCondBrIter = MBB.end(); + continue; + } + + // TBB is used to indicate the unconditional destination. + TBB = I->getOperand(0).getMBB(); + continue; + } + + // Handle conditional branches. + X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode()); + if (BranchCode == X86::COND_INVALID) + return true; // Can't handle indirect branch. + + // Working from the bottom, handle the first conditional branch. + if (Cond.empty()) { + MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); + if (AllowModify && UnCondBrIter != MBB.end() && + MBB.isLayoutSuccessor(TargetBB)) { + // If we can modify the code and it ends in something like: + // + // jCC L1 + // jmp L2 + // L1: + // ... + // L2: + // + // Then we can change this to: + // + // jnCC L2 + // L1: + // ... + // L2: + // + // Which is a bit more efficient. + // We conditionally jump to the fall-through block. + BranchCode = GetOppositeBranchCondition(BranchCode); + unsigned JNCC = GetCondBranchFromCond(BranchCode); + MachineBasicBlock::iterator OldInst = I; + + BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) + .addMBB(UnCondBrIter->getOperand(0).getMBB()); + BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4)) + .addMBB(TargetBB); + MBB.addSuccessor(TargetBB); + + OldInst->eraseFromParent(); + UnCondBrIter->eraseFromParent(); + + // Restart the analysis. + UnCondBrIter = MBB.end(); + I = MBB.end(); + continue; + } + + FBB = TBB; + TBB = I->getOperand(0).getMBB(); + Cond.push_back(MachineOperand::CreateImm(BranchCode)); + continue; + } + + // Handle subsequent conditional branches. Only handle the case where all + // conditional branches branch to the same destination and their condition + // opcodes fit one of the special multi-branch idioms. + assert(Cond.size() == 1); + assert(TBB); + + // Only handle the case where all conditional branches branch to the same + // destination. + if (TBB != I->getOperand(0).getMBB()) + return true; + + // If the conditions are the same, we can leave them alone. + X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); + if (OldBranchCode == BranchCode) + continue; + + // If they differ, see if they fit one of the known patterns. Theoretically, + // we could handle more patterns here, but we shouldn't expect to see them + // if instruction selection has done a reasonable job. + if ((OldBranchCode == X86::COND_NP && + BranchCode == X86::COND_E) || + (OldBranchCode == X86::COND_E && + BranchCode == X86::COND_NP)) + BranchCode = X86::COND_NP_OR_E; + else if ((OldBranchCode == X86::COND_P && + BranchCode == X86::COND_NE) || + (OldBranchCode == X86::COND_NE && + BranchCode == X86::COND_P)) + BranchCode = X86::COND_NE_OR_P; + else + return true; + + // Update the MachineOperand. + Cond[0].setImm(BranchCode); + } + + return false; +} + +unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { + MachineBasicBlock::iterator I = MBB.end(); + unsigned Count = 0; + + while (I != MBB.begin()) { + --I; + if (I->isDebugValue()) + continue; + if (I->getOpcode() != X86::JMP_4 && + GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) + break; + // Remove the branch. + I->eraseFromParent(); + I = MBB.end(); + ++Count; + } + + return Count; +} + +unsigned +X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond) const { + // FIXME this should probably have a DebugLoc operand + DebugLoc dl; + // Shouldn't be a fall through. + assert(TBB && "InsertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 1 || Cond.size() == 0) && + "X86 branch conditions have one component!"); + + if (Cond.empty()) { + // Unconditional branch? + assert(!FBB && "Unconditional branch with multiple successors!"); + BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB); + return 1; + } + + // Conditional branch. + unsigned Count = 0; + X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); + switch (CC) { + case X86::COND_NP_OR_E: + // Synthesize NP_OR_E with two branches. + BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB); + ++Count; + BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB); + ++Count; + break; + case X86::COND_NE_OR_P: + // Synthesize NE_OR_P with two branches. + BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB); + ++Count; + BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB); + ++Count; + break; + default: { + unsigned Opc = GetCondBranchFromCond(CC); + BuildMI(&MBB, dl, get(Opc)).addMBB(TBB); + ++Count; + } + } + if (FBB) { + // Two-way Conditional branch. Insert the second branch. + BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB); + ++Count; + } + return Count; +} + +/// isHReg - Test if the given register is a physical h register. +static bool isHReg(unsigned Reg) { + return X86::GR8_ABCD_HRegClass.contains(Reg); +} + +bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SrcReg, + const TargetRegisterClass *DestRC, + const TargetRegisterClass *SrcRC, + DebugLoc DL) const { + + // Determine if DstRC and SrcRC have a common superclass in common. + const TargetRegisterClass *CommonRC = DestRC; + if (DestRC == SrcRC) + /* Source and destination have the same register class. */; + else if (CommonRC->hasSuperClass(SrcRC)) + CommonRC = SrcRC; + else if (!DestRC->hasSubClass(SrcRC)) { + // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other, + // but we want to copy them as GR64. Similarly, for GR32_NOREX and + // GR32_NOSP, copy as GR32. + if (SrcRC->hasSuperClass(&X86::GR64RegClass) && + DestRC->hasSuperClass(&X86::GR64RegClass)) + CommonRC = &X86::GR64RegClass; + else if (SrcRC->hasSuperClass(&X86::GR32RegClass) && + DestRC->hasSuperClass(&X86::GR32RegClass)) + CommonRC = &X86::GR32RegClass; + else + CommonRC = 0; + } + + if (CommonRC) { + unsigned Opc; + if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) { + Opc = X86::MOV64rr; + } else if (CommonRC == &X86::GR32RegClass || + CommonRC == &X86::GR32_NOSPRegClass) { + Opc = X86::MOV32rr; + } else if (CommonRC == &X86::GR16RegClass) { + Opc = X86::MOV16rr; + } else if (CommonRC == &X86::GR8RegClass) { + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if ((isHReg(DestReg) || isHReg(SrcReg)) && + TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8rr_NOREX; + else + Opc = X86::MOV8rr; + } else if (CommonRC == &X86::GR64_ABCDRegClass) { + Opc = X86::MOV64rr; + } else if (CommonRC == &X86::GR32_ABCDRegClass) { + Opc = X86::MOV32rr; + } else if (CommonRC == &X86::GR16_ABCDRegClass) { + Opc = X86::MOV16rr; + } else if (CommonRC == &X86::GR8_ABCD_LRegClass) { + Opc = X86::MOV8rr; + } else if (CommonRC == &X86::GR8_ABCD_HRegClass) { + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8rr_NOREX; + else + Opc = X86::MOV8rr; + } else if (CommonRC == &X86::GR64_NOREXRegClass || + CommonRC == &X86::GR64_NOREX_NOSPRegClass) { + Opc = X86::MOV64rr; + } else if (CommonRC == &X86::GR32_NOREXRegClass) { + Opc = X86::MOV32rr; + } else if (CommonRC == &X86::GR16_NOREXRegClass) { + Opc = X86::MOV16rr; + } else if (CommonRC == &X86::GR8_NOREXRegClass) { + Opc = X86::MOV8rr; + } else if (CommonRC == &X86::GR64_TCRegClass) { + Opc = X86::MOV64rr_TC; + } else if (CommonRC == &X86::GR32_TCRegClass) { + Opc = X86::MOV32rr_TC; + } else if (CommonRC == &X86::RFP32RegClass) { + Opc = X86::MOV_Fp3232; + } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) { + Opc = X86::MOV_Fp6464; + } else if (CommonRC == &X86::RFP80RegClass) { + Opc = X86::MOV_Fp8080; + } else if (CommonRC == &X86::FR32RegClass) { + Opc = X86::FsMOVAPSrr; + } else if (CommonRC == &X86::FR64RegClass) { + Opc = X86::FsMOVAPDrr; + } else if (CommonRC == &X86::VR128RegClass) { + Opc = X86::MOVAPSrr; + } else if (CommonRC == &X86::VR64RegClass) { + Opc = X86::MMX_MOVQ64rr; + } else { + return false; + } + BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg); + return true; + } + + // Moving EFLAGS to / from another register requires a push and a pop. + if (SrcRC == &X86::CCRRegClass) { + if (SrcReg != X86::EFLAGS) + return false; + if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { + BuildMI(MBB, MI, DL, get(X86::PUSHF64)); + BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg); + return true; + } else if (DestRC == &X86::GR32RegClass || + DestRC == &X86::GR32_NOSPRegClass) { + BuildMI(MBB, MI, DL, get(X86::PUSHF32)); + BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg); + return true; + } + } else if (DestRC == &X86::CCRRegClass) { + if (DestReg != X86::EFLAGS) + return false; + if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) { + BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg); + BuildMI(MBB, MI, DL, get(X86::POPF64)); + return true; + } else if (SrcRC == &X86::GR32RegClass || + DestRC == &X86::GR32_NOSPRegClass) { + BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg); + BuildMI(MBB, MI, DL, get(X86::POPF32)); + return true; + } + } + + // Moving from ST(0) turns into FpGET_ST0_32 etc. + if (SrcRC == &X86::RSTRegClass) { + // Copying from ST(0)/ST(1). + if (SrcReg != X86::ST0 && SrcReg != X86::ST1) + // Can only copy from ST(0)/ST(1) right now + return false; + bool isST0 = SrcReg == X86::ST0; + unsigned Opc; + if (DestRC == &X86::RFP32RegClass) + Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32; + else if (DestRC == &X86::RFP64RegClass) + Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64; + else { + if (DestRC != &X86::RFP80RegClass) + return false; + Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80; + } + BuildMI(MBB, MI, DL, get(Opc), DestReg); + return true; + } + + // Moving to ST(0) turns into FpSET_ST0_32 etc. + if (DestRC == &X86::RSTRegClass) { + // Copying to ST(0) / ST(1). + if (DestReg != X86::ST0 && DestReg != X86::ST1) + // Can only copy to TOS right now + return false; + bool isST0 = DestReg == X86::ST0; + unsigned Opc; + if (SrcRC == &X86::RFP32RegClass) + Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32; + else if (SrcRC == &X86::RFP64RegClass) + Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64; + else { + if (SrcRC != &X86::RFP80RegClass) + return false; + Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80; + } + BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg); + return true; + } + + // Not yet supported! + return false; +} + +static unsigned getStoreRegOpcode(unsigned SrcReg, + const TargetRegisterClass *RC, + bool isStackAligned, + TargetMachine &TM) { + unsigned Opc = 0; + if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { + Opc = X86::MOV64mr; + } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { + Opc = X86::MOV32mr; + } else if (RC == &X86::GR16RegClass) { + Opc = X86::MOV16mr; + } else if (RC == &X86::GR8RegClass) { + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if (isHReg(SrcReg) && + TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8mr_NOREX; + else + Opc = X86::MOV8mr; + } else if (RC == &X86::GR64_ABCDRegClass) { + Opc = X86::MOV64mr; + } else if (RC == &X86::GR32_ABCDRegClass) { + Opc = X86::MOV32mr; + } else if (RC == &X86::GR16_ABCDRegClass) { + Opc = X86::MOV16mr; + } else if (RC == &X86::GR8_ABCD_LRegClass) { + Opc = X86::MOV8mr; + } else if (RC == &X86::GR8_ABCD_HRegClass) { + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8mr_NOREX; + else + Opc = X86::MOV8mr; + } else if (RC == &X86::GR64_NOREXRegClass || + RC == &X86::GR64_NOREX_NOSPRegClass) { + Opc = X86::MOV64mr; + } else if (RC == &X86::GR32_NOREXRegClass) { + Opc = X86::MOV32mr; + } else if (RC == &X86::GR16_NOREXRegClass) { + Opc = X86::MOV16mr; + } else if (RC == &X86::GR8_NOREXRegClass) { + Opc = X86::MOV8mr; + } else if (RC == &X86::GR64_TCRegClass) { + Opc = X86::MOV64mr_TC; + } else if (RC == &X86::GR32_TCRegClass) { + Opc = X86::MOV32mr_TC; + } else if (RC == &X86::RFP80RegClass) { + Opc = X86::ST_FpP80m; // pops + } else if (RC == &X86::RFP64RegClass) { + Opc = X86::ST_Fp64m; + } else if (RC == &X86::RFP32RegClass) { + Opc = X86::ST_Fp32m; + } else if (RC == &X86::FR32RegClass) { + Opc = X86::MOVSSmr; + } else if (RC == &X86::FR64RegClass) { + Opc = X86::MOVSDmr; + } else if (RC == &X86::VR128RegClass) { + // If stack is realigned we can use aligned stores. + Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr; + } else if (RC == &X86::VR64RegClass) { + Opc = X86::MMX_MOVQ64mr; + } else { + llvm_unreachable("Unknown regclass"); + } + + return Opc; +} + +void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + const MachineFunction &MF = *MBB.getParent(); + bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF); + unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); + DebugLoc DL = MBB.findDebugLoc(MI); + addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) + .addReg(SrcReg, getKillRegState(isKill)); +} + +void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, + bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + bool isAligned = (*MMOBegin)->getAlignment() >= 16; + unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM); + DebugLoc DL; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); + for (unsigned i = 0, e = Addr.size(); i != e; ++i) + MIB.addOperand(Addr[i]); + MIB.addReg(SrcReg, getKillRegState(isKill)); + (*MIB).setMemRefs(MMOBegin, MMOEnd); + NewMIs.push_back(MIB); +} + +static unsigned getLoadRegOpcode(unsigned DestReg, + const TargetRegisterClass *RC, + bool isStackAligned, + const TargetMachine &TM) { + unsigned Opc = 0; + if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) { + Opc = X86::MOV64rm; + } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) { + Opc = X86::MOV32rm; + } else if (RC == &X86::GR16RegClass) { + Opc = X86::MOV16rm; + } else if (RC == &X86::GR8RegClass) { + // Copying to or from a physical H register on x86-64 requires a NOREX + // move. Otherwise use a normal move. + if (isHReg(DestReg) && + TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8rm_NOREX; + else + Opc = X86::MOV8rm; + } else if (RC == &X86::GR64_ABCDRegClass) { + Opc = X86::MOV64rm; + } else if (RC == &X86::GR32_ABCDRegClass) { + Opc = X86::MOV32rm; + } else if (RC == &X86::GR16_ABCDRegClass) { + Opc = X86::MOV16rm; + } else if (RC == &X86::GR8_ABCD_LRegClass) { + Opc = X86::MOV8rm; + } else if (RC == &X86::GR8_ABCD_HRegClass) { + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + Opc = X86::MOV8rm_NOREX; + else + Opc = X86::MOV8rm; + } else if (RC == &X86::GR64_NOREXRegClass || + RC == &X86::GR64_NOREX_NOSPRegClass) { + Opc = X86::MOV64rm; + } else if (RC == &X86::GR32_NOREXRegClass) { + Opc = X86::MOV32rm; + } else if (RC == &X86::GR16_NOREXRegClass) { + Opc = X86::MOV16rm; + } else if (RC == &X86::GR8_NOREXRegClass) { + Opc = X86::MOV8rm; + } else if (RC == &X86::GR64_TCRegClass) { + Opc = X86::MOV64rm_TC; + } else if (RC == &X86::GR32_TCRegClass) { + Opc = X86::MOV32rm_TC; + } else if (RC == &X86::RFP80RegClass) { + Opc = X86::LD_Fp80m; + } else if (RC == &X86::RFP64RegClass) { + Opc = X86::LD_Fp64m; + } else if (RC == &X86::RFP32RegClass) { + Opc = X86::LD_Fp32m; + } else if (RC == &X86::FR32RegClass) { + Opc = X86::MOVSSrm; + } else if (RC == &X86::FR64RegClass) { + Opc = X86::MOVSDrm; + } else if (RC == &X86::VR128RegClass) { + // If stack is realigned we can use aligned loads. + Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm; + } else if (RC == &X86::VR64RegClass) { + Opc = X86::MMX_MOVQ64rm; + } else { + llvm_unreachable("Unknown regclass"); + } + + return Opc; +} + +void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + const MachineFunction &MF = *MBB.getParent(); + bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF); + unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); + DebugLoc DL = MBB.findDebugLoc(MI); + addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); +} + +void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + MachineInstr::mmo_iterator MMOBegin, + MachineInstr::mmo_iterator MMOEnd, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + bool isAligned = (*MMOBegin)->getAlignment() >= 16; + unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM); + DebugLoc DL; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); + for (unsigned i = 0, e = Addr.size(); i != e; ++i) + MIB.addOperand(Addr[i]); + (*MIB).setMemRefs(MMOBegin, MMOEnd); + NewMIs.push_back(MIB); +} + +bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo *TRI) const { + if (CSI.empty()) + return false; + + DebugLoc DL = MBB.findDebugLoc(MI); + + bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); + bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64(); + unsigned SlotSize = is64Bit ? 8 : 4; + + MachineFunction &MF = *MBB.getParent(); + unsigned FPReg = RI.getFrameRegister(MF); + X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); + unsigned CalleeFrameSize = 0; + + unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r; + for (unsigned i = CSI.size(); i != 0; --i) { + unsigned Reg = CSI[i-1].getReg(); + const TargetRegisterClass *RegClass = CSI[i-1].getRegClass(); + // Add the callee-saved register as live-in. It's killed at the spill. + MBB.addLiveIn(Reg); + if (Reg == FPReg) + // X86RegisterInfo::emitPrologue will handle spilling of frame register. + continue; + if (RegClass != &X86::VR128RegClass && !isWin64) { + CalleeFrameSize += SlotSize; + BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill); + } else { + storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass, + &RI); + } + } + + X86FI->setCalleeSavedFrameSize(CalleeFrameSize); + return true; +} + +bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo *TRI) const { + if (CSI.empty()) + return false; + + DebugLoc DL = MBB.findDebugLoc(MI); + + MachineFunction &MF = *MBB.getParent(); + unsigned FPReg = RI.getFrameRegister(MF); + bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); + bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64(); + unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r; + for (unsigned i = 0, e = CSI.size(); i != e; ++i) { + unsigned Reg = CSI[i].getReg(); + if (Reg == FPReg) + // X86RegisterInfo::emitEpilogue will handle restoring of frame register. + continue; + const TargetRegisterClass *RegClass = CSI[i].getRegClass(); + if (RegClass != &X86::VR128RegClass && !isWin64) { + BuildMI(MBB, MI, DL, get(Opc), Reg); + } else { + loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass, &RI); + } + } + return true; +} + +MachineInstr* +X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, + int FrameIx, uint64_t Offset, + const MDNode *MDPtr, + DebugLoc DL) const { + X86AddressMode AM; + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = FrameIx; + MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE)); + addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr); + return &*MIB; +} + +static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI, + const TargetInstrInfo &TII) { + // Create the base instruction with the memory operand as the first part. + MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), + MI->getDebugLoc(), true); + MachineInstrBuilder MIB(NewMI); + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + + // Loop over the rest of the ri operands, converting them over. + unsigned NumOps = MI->getDesc().getNumOperands()-2; + for (unsigned i = 0; i != NumOps; ++i) { + MachineOperand &MO = MI->getOperand(i+2); + MIB.addOperand(MO); + } + for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + MIB.addOperand(MO); + } + return MIB; +} + +static MachineInstr *FuseInst(MachineFunction &MF, + unsigned Opcode, unsigned OpNo, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI, const TargetInstrInfo &TII) { + MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), + MI->getDebugLoc(), true); + MachineInstrBuilder MIB(NewMI); + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (i == OpNo) { + assert(MO.isReg() && "Expected to fold into reg operand!"); + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + } else { + MIB.addOperand(MO); + } + } + return MIB; +} + +static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, + const SmallVectorImpl<MachineOperand> &MOs, + MachineInstr *MI) { + MachineFunction &MF = *MI->getParent()->getParent(); + MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode)); + + unsigned NumAddrOps = MOs.size(); + for (unsigned i = 0; i != NumAddrOps; ++i) + MIB.addOperand(MOs[i]); + if (NumAddrOps < 4) // FrameIndex only + addOffset(MIB, 0); + return MIB.addImm(0); +} + +MachineInstr* +X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, unsigned i, + const SmallVectorImpl<MachineOperand> &MOs, + unsigned Size, unsigned Align) const { + const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL; + bool isTwoAddrFold = false; + unsigned NumOps = MI->getDesc().getNumOperands(); + bool isTwoAddr = NumOps > 1 && + MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; + + MachineInstr *NewMI = NULL; + // Folding a memory location into the two-address part of a two-address + // instruction is different than folding it other places. It requires + // replacing the *two* registers with the memory location. + if (isTwoAddr && NumOps >= 2 && i < 2 && + MI->getOperand(0).isReg() && + MI->getOperand(1).isReg() && + MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) { + OpcodeTablePtr = &RegOp2MemOpTable2Addr; + isTwoAddrFold = true; + } else if (i == 0) { // If operand 0 + if (MI->getOpcode() == X86::MOV64r0) + NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI); + else if (MI->getOpcode() == X86::MOV32r0) + NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI); + else if (MI->getOpcode() == X86::MOV16r0) + NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI); + else if (MI->getOpcode() == X86::MOV8r0) + NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI); + if (NewMI) + return NewMI; + + OpcodeTablePtr = &RegOp2MemOpTable0; + } else if (i == 1) { + OpcodeTablePtr = &RegOp2MemOpTable1; + } else if (i == 2) { + OpcodeTablePtr = &RegOp2MemOpTable2; + } + + // If table selected... + if (OpcodeTablePtr) { + // Find the Opcode to fuse + DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I = + OpcodeTablePtr->find((unsigned*)MI->getOpcode()); + if (I != OpcodeTablePtr->end()) { + unsigned Opcode = I->second.first; + unsigned MinAlign = I->second.second; + if (Align < MinAlign) + return NULL; + bool NarrowToMOV32rm = false; + if (Size) { + unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize(); + if (Size < RCSize) { + // Check if it's safe to fold the load. If the size of the object is + // narrower than the load width, then it's not. + if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) + return NULL; + // If this is a 64-bit load, but the spill slot is 32, then we can do + // a 32-bit load which is implicitly zero-extended. This likely is due + // to liveintervalanalysis remat'ing a load from stack slot. + if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg()) + return NULL; + Opcode = X86::MOV32rm; + NarrowToMOV32rm = true; + } + } + + if (isTwoAddrFold) + NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this); + else + NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this); + + if (NarrowToMOV32rm) { + // If this is the special case where we use a MOV32rm to load a 32-bit + // value and zero-extend the top bits. Change the destination register + // to a 32-bit one. + unsigned DstReg = NewMI->getOperand(0).getReg(); + if (TargetRegisterInfo::isPhysicalRegister(DstReg)) + NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, + X86::sub_32bit)); + else + NewMI->getOperand(0).setSubReg(X86::sub_32bit); + } + return NewMI; + } + } + + // No fusion + if (PrintFailedFusing) + dbgs() << "We failed to fuse operand " << i << " in " << *MI; + return NULL; +} + + +MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const { + // Check switch flag + if (NoFusing) return NULL; + + if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) + switch (MI->getOpcode()) { + case X86::CVTSD2SSrr: + case X86::Int_CVTSD2SSrr: + case X86::CVTSS2SDrr: + case X86::Int_CVTSS2SDrr: + case X86::RCPSSr: + case X86::RCPSSr_Int: + case X86::ROUNDSDr_Int: + case X86::ROUNDSSr_Int: + case X86::RSQRTSSr: + case X86::RSQRTSSr_Int: + case X86::SQRTSSr: + case X86::SQRTSSr_Int: + return 0; + } + + const MachineFrameInfo *MFI = MF.getFrameInfo(); + unsigned Size = MFI->getObjectSize(FrameIndex); + unsigned Alignment = MFI->getObjectAlignment(FrameIndex); + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + unsigned NewOpc = 0; + unsigned RCSize = 0; + switch (MI->getOpcode()) { + default: return NULL; + case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; + case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; + case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; + case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; + } + // Check if it's safe to fold the load. If the size of the object is + // narrower than the load width, then it's not. + if (Size < RCSize) + return NULL; + // Change to CMPXXri r, 0 first. + MI->setDesc(get(NewOpc)); + MI->getOperand(1).ChangeToImmediate(0); + } else if (Ops.size() != 1) + return NULL; + + SmallVector<MachineOperand,4> MOs; + MOs.push_back(MachineOperand::CreateFI(FrameIndex)); + return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment); +} + +MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + MachineInstr *LoadMI) const { + // Check switch flag + if (NoFusing) return NULL; + + if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize)) + switch (MI->getOpcode()) { + case X86::CVTSD2SSrr: + case X86::Int_CVTSD2SSrr: + case X86::CVTSS2SDrr: + case X86::Int_CVTSS2SDrr: + case X86::RCPSSr: + case X86::RCPSSr_Int: + case X86::ROUNDSDr_Int: + case X86::ROUNDSSr_Int: + case X86::RSQRTSSr: + case X86::RSQRTSSr_Int: + case X86::SQRTSSr: + case X86::SQRTSSr_Int: + return 0; + } + + // Determine the alignment of the load. + unsigned Alignment = 0; + if (LoadMI->hasOneMemOperand()) + Alignment = (*LoadMI->memoperands_begin())->getAlignment(); + else + switch (LoadMI->getOpcode()) { + case X86::V_SET0PS: + case X86::V_SET0PD: + case X86::V_SET0PI: + case X86::V_SETALLONES: + Alignment = 16; + break; + case X86::FsFLD0SD: + Alignment = 8; + break; + case X86::FsFLD0SS: + Alignment = 4; + break; + default: + llvm_unreachable("Don't know how to fold this instruction!"); + } + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + unsigned NewOpc = 0; + switch (MI->getOpcode()) { + default: return NULL; + case X86::TEST8rr: NewOpc = X86::CMP8ri; break; + case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; + case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; + case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; + } + // Change to CMPXXri r, 0 first. + MI->setDesc(get(NewOpc)); + MI->getOperand(1).ChangeToImmediate(0); + } else if (Ops.size() != 1) + return NULL; + + SmallVector<MachineOperand,X86AddrNumOperands> MOs; + switch (LoadMI->getOpcode()) { + case X86::V_SET0PS: + case X86::V_SET0PD: + case X86::V_SET0PI: + case X86::V_SETALLONES: + case X86::FsFLD0SD: + case X86::FsFLD0SS: { + // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure. + // Create a constant-pool entry and operands to load from it. + + // Medium and large mode can't fold loads this way. + if (TM.getCodeModel() != CodeModel::Small && + TM.getCodeModel() != CodeModel::Kernel) + return NULL; + + // x86-32 PIC requires a PIC base register for constant pools. + unsigned PICBase = 0; + if (TM.getRelocationModel() == Reloc::PIC_) { + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + PICBase = X86::RIP; + else + // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF); + // This doesn't work for several reasons. + // 1. GlobalBaseReg may have been spilled. + // 2. It may not be live at MI. + return NULL; + } + + // Create a constant-pool entry. + MachineConstantPool &MCP = *MF.getConstantPool(); + const Type *Ty; + if (LoadMI->getOpcode() == X86::FsFLD0SS) + Ty = Type::getFloatTy(MF.getFunction()->getContext()); + else if (LoadMI->getOpcode() == X86::FsFLD0SD) + Ty = Type::getDoubleTy(MF.getFunction()->getContext()); + else + Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4); + const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ? + Constant::getAllOnesValue(Ty) : + Constant::getNullValue(Ty); + unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); + + // Create operands to load from the constant pool entry. + MOs.push_back(MachineOperand::CreateReg(PICBase, false)); + MOs.push_back(MachineOperand::CreateImm(1)); + MOs.push_back(MachineOperand::CreateReg(0, false)); + MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); + MOs.push_back(MachineOperand::CreateReg(0, false)); + break; + } + default: { + // Folding a normal load. Just copy the load's address operands. + unsigned NumOps = LoadMI->getDesc().getNumOperands(); + for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i) + MOs.push_back(LoadMI->getOperand(i)); + break; + } + } + return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment); +} + + +bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops) const { + // Check switch flag + if (NoFusing) return 0; + + if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { + switch (MI->getOpcode()) { + default: return false; + case X86::TEST8rr: + case X86::TEST16rr: + case X86::TEST32rr: + case X86::TEST64rr: + return true; + } + } + + if (Ops.size() != 1) + return false; + + unsigned OpNum = Ops[0]; + unsigned Opc = MI->getOpcode(); + unsigned NumOps = MI->getDesc().getNumOperands(); + bool isTwoAddr = NumOps > 1 && + MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1; + + // Folding a memory location into the two-address part of a two-address + // instruction is different than folding it other places. It requires + // replacing the *two* registers with the memory location. + const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL; + if (isTwoAddr && NumOps >= 2 && OpNum < 2) { + OpcodeTablePtr = &RegOp2MemOpTable2Addr; + } else if (OpNum == 0) { // If operand 0 + switch (Opc) { + case X86::MOV8r0: + case X86::MOV16r0: + case X86::MOV32r0: + case X86::MOV64r0: + return true; + default: break; + } + OpcodeTablePtr = &RegOp2MemOpTable0; + } else if (OpNum == 1) { + OpcodeTablePtr = &RegOp2MemOpTable1; + } else if (OpNum == 2) { + OpcodeTablePtr = &RegOp2MemOpTable2; + } + + if (OpcodeTablePtr) { + // Find the Opcode to fuse + DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I = + OpcodeTablePtr->find((unsigned*)Opc); + if (I != OpcodeTablePtr->end()) + return true; + } + return false; +} + +bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, + unsigned Reg, bool UnfoldLoad, bool UnfoldStore, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find((unsigned*)MI->getOpcode()); + if (I == MemOp2RegOpTable.end()) + return false; + unsigned Opc = I->second.first; + unsigned Index = I->second.second & 0xf; + bool FoldedLoad = I->second.second & (1 << 4); + bool FoldedStore = I->second.second & (1 << 5); + if (UnfoldLoad && !FoldedLoad) + return false; + UnfoldLoad &= FoldedLoad; + if (UnfoldStore && !FoldedStore) + return false; + UnfoldStore &= FoldedStore; + + const TargetInstrDesc &TID = get(Opc); + const TargetOperandInfo &TOI = TID.OpInfo[Index]; + const TargetRegisterClass *RC = TOI.getRegClass(&RI); + SmallVector<MachineOperand, X86AddrNumOperands> AddrOps; + SmallVector<MachineOperand,2> BeforeOps; + SmallVector<MachineOperand,2> AfterOps; + SmallVector<MachineOperand,4> ImpOps; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (i >= Index && i < Index + X86AddrNumOperands) + AddrOps.push_back(Op); + else if (Op.isReg() && Op.isImplicit()) + ImpOps.push_back(Op); + else if (i < Index) + BeforeOps.push_back(Op); + else if (i > Index) + AfterOps.push_back(Op); + } + + // Emit the load instruction. + if (UnfoldLoad) { + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractLoadMemRefs(MI->memoperands_begin(), + MI->memoperands_end()); + loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); + if (UnfoldStore) { + // Address operands cannot be marked isKill. + for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) { + MachineOperand &MO = NewMIs[0]->getOperand(i); + if (MO.isReg()) + MO.setIsKill(false); + } + } + } + + // Emit the data processing instruction. + MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true); + MachineInstrBuilder MIB(DataMI); + + if (FoldedStore) + MIB.addReg(Reg, RegState::Define); + for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i) + MIB.addOperand(BeforeOps[i]); + if (FoldedLoad) + MIB.addReg(Reg); + for (unsigned i = 0, e = AfterOps.size(); i != e; ++i) + MIB.addOperand(AfterOps[i]); + for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) { + MachineOperand &MO = ImpOps[i]; + MIB.addReg(MO.getReg(), + getDefRegState(MO.isDef()) | + RegState::Implicit | + getKillRegState(MO.isKill()) | + getDeadRegState(MO.isDead()) | + getUndefRegState(MO.isUndef())); + } + // Change CMP32ri r, 0 back to TEST32rr r, r, etc. + unsigned NewOpc = 0; + switch (DataMI->getOpcode()) { + default: break; + case X86::CMP64ri32: + case X86::CMP64ri8: + case X86::CMP32ri: + case X86::CMP32ri8: + case X86::CMP16ri: + case X86::CMP16ri8: + case X86::CMP8ri: { + MachineOperand &MO0 = DataMI->getOperand(0); + MachineOperand &MO1 = DataMI->getOperand(1); + if (MO1.getImm() == 0) { + switch (DataMI->getOpcode()) { + default: break; + case X86::CMP64ri8: + case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; + case X86::CMP32ri8: + case X86::CMP32ri: NewOpc = X86::TEST32rr; break; + case X86::CMP16ri8: + case X86::CMP16ri: NewOpc = X86::TEST16rr; break; + case X86::CMP8ri: NewOpc = X86::TEST8rr; break; + } + DataMI->setDesc(get(NewOpc)); + MO1.ChangeToRegister(MO0.getReg(), false); + } + } + } + NewMIs.push_back(DataMI); + + // Emit the store instruction. + if (UnfoldStore) { + const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractStoreMemRefs(MI->memoperands_begin(), + MI->memoperands_end()); + storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); + } + + return true; +} + +bool +X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, + SmallVectorImpl<SDNode*> &NewNodes) const { + if (!N->isMachineOpcode()) + return false; + + DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode()); + if (I == MemOp2RegOpTable.end()) + return false; + unsigned Opc = I->second.first; + unsigned Index = I->second.second & 0xf; + bool FoldedLoad = I->second.second & (1 << 4); + bool FoldedStore = I->second.second & (1 << 5); + const TargetInstrDesc &TID = get(Opc); + const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI); + unsigned NumDefs = TID.NumDefs; + std::vector<SDValue> AddrOps; + std::vector<SDValue> BeforeOps; + std::vector<SDValue> AfterOps; + DebugLoc dl = N->getDebugLoc(); + unsigned NumOps = N->getNumOperands(); + for (unsigned i = 0; i != NumOps-1; ++i) { + SDValue Op = N->getOperand(i); + if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands) + AddrOps.push_back(Op); + else if (i < Index-NumDefs) + BeforeOps.push_back(Op); + else if (i > Index-NumDefs) + AfterOps.push_back(Op); + } + SDValue Chain = N->getOperand(NumOps-1); + AddrOps.push_back(Chain); + + // Emit the load instruction. + SDNode *Load = 0; + MachineFunction &MF = DAG.getMachineFunction(); + if (FoldedLoad) { + EVT VT = *RC->vt_begin(); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), + cast<MachineSDNode>(N)->memoperands_end()); + bool isAligned = (*MMOs.first)->getAlignment() >= 16; + Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl, + VT, MVT::Other, &AddrOps[0], AddrOps.size()); + NewNodes.push_back(Load); + + // Preserve memory reference information. + cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); + } + + // Emit the data processing instruction. + std::vector<EVT> VTs; + const TargetRegisterClass *DstRC = 0; + if (TID.getNumDefs() > 0) { + DstRC = TID.OpInfo[0].getRegClass(&RI); + VTs.push_back(*DstRC->vt_begin()); + } + for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { + EVT VT = N->getValueType(i); + if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs()) + VTs.push_back(VT); + } + if (Load) + BeforeOps.push_back(SDValue(Load, 0)); + std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps)); + SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0], + BeforeOps.size()); + NewNodes.push_back(NewNode); + + // Emit the store instruction. + if (FoldedStore) { + AddrOps.pop_back(); + AddrOps.push_back(SDValue(NewNode, 0)); + AddrOps.push_back(Chain); + std::pair<MachineInstr::mmo_iterator, + MachineInstr::mmo_iterator> MMOs = + MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), + cast<MachineSDNode>(N)->memoperands_end()); + bool isAligned = (*MMOs.first)->getAlignment() >= 16; + SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, + isAligned, TM), + dl, MVT::Other, + &AddrOps[0], AddrOps.size()); + NewNodes.push_back(Store); + + // Preserve memory reference information. + cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); + } + + return true; +} + +unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, + bool UnfoldLoad, bool UnfoldStore, + unsigned *LoadRegIndex) const { + DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I = + MemOp2RegOpTable.find((unsigned*)Opc); + if (I == MemOp2RegOpTable.end()) + return 0; + bool FoldedLoad = I->second.second & (1 << 4); + bool FoldedStore = I->second.second & (1 << 5); + if (UnfoldLoad && !FoldedLoad) + return 0; + if (UnfoldStore && !FoldedStore) + return 0; + if (LoadRegIndex) + *LoadRegIndex = I->second.second & 0xf; + return I->second.first; +} + +bool +X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, + int64_t &Offset1, int64_t &Offset2) const { + if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) + return false; + unsigned Opc1 = Load1->getMachineOpcode(); + unsigned Opc2 = Load2->getMachineOpcode(); + switch (Opc1) { + default: return false; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVUPSrm_Int: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MOVDQUrm: + case X86::MOVDQUrm_Int: + break; + } + switch (Opc2) { + default: return false; + case X86::MOV8rm: + case X86::MOV16rm: + case X86::MOV32rm: + case X86::MOV64rm: + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MOVSSrm: + case X86::MOVSDrm: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + case X86::FsMOVAPSrm: + case X86::FsMOVAPDrm: + case X86::MOVAPSrm: + case X86::MOVUPSrm: + case X86::MOVUPSrm_Int: + case X86::MOVAPDrm: + case X86::MOVDQArm: + case X86::MOVDQUrm: + case X86::MOVDQUrm_Int: + break; + } + + // Check if chain operands and base addresses match. + if (Load1->getOperand(0) != Load2->getOperand(0) || + Load1->getOperand(5) != Load2->getOperand(5)) + return false; + // Segment operands should match as well. + if (Load1->getOperand(4) != Load2->getOperand(4)) + return false; + // Scale should be 1, Index should be Reg0. + if (Load1->getOperand(1) == Load2->getOperand(1) && + Load1->getOperand(2) == Load2->getOperand(2)) { + if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1) + return false; + + // Now let's examine the displacements. + if (isa<ConstantSDNode>(Load1->getOperand(3)) && + isa<ConstantSDNode>(Load2->getOperand(3))) { + Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue(); + Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue(); + return true; + } + } + return false; +} + +bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, + int64_t Offset1, int64_t Offset2, + unsigned NumLoads) const { + assert(Offset2 > Offset1); + if ((Offset2 - Offset1) / 8 > 64) + return false; + + unsigned Opc1 = Load1->getMachineOpcode(); + unsigned Opc2 = Load2->getMachineOpcode(); + if (Opc1 != Opc2) + return false; // FIXME: overly conservative? + + switch (Opc1) { + default: break; + case X86::LD_Fp32m: + case X86::LD_Fp64m: + case X86::LD_Fp80m: + case X86::MMX_MOVD64rm: + case X86::MMX_MOVQ64rm: + return false; + } + + EVT VT = Load1->getValueType(0); + switch (VT.getSimpleVT().SimpleTy) { + default: { + // XMM registers. In 64-bit mode we can be a bit more aggressive since we + // have 16 of them to play with. + if (TM.getSubtargetImpl()->is64Bit()) { + if (NumLoads >= 3) + return false; + } else if (NumLoads) + return false; + break; + } + case MVT::i8: + case MVT::i16: + case MVT::i32: + case MVT::i64: + case MVT::f32: + case MVT::f64: + if (NumLoads) + return false; + } + + return true; +} + + +bool X86InstrInfo:: +ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 1 && "Invalid X86 branch condition!"); + X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); + if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E) + return true; + Cond[0].setImm(GetOppositeBranchCondition(CC)); + return false; +} + +bool X86InstrInfo:: +isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { + // FIXME: Return false for x87 stack register classes for now. We can't + // allow any loads of these registers before FpGet_ST0_80. + return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass || + RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); +} + + +/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher) +/// register? e.g. r8, xmm8, xmm13, etc. +bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) { + switch (RegNo) { + default: break; + case X86::R8: case X86::R9: case X86::R10: case X86::R11: + case X86::R12: case X86::R13: case X86::R14: case X86::R15: + case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D: + case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D: + case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W: + case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W: + case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B: + case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B: + case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: + case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: + return true; + } + return false; +} + + +/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64 +/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand +/// size, and 3) use of X86-64 extended registers. +unsigned X86InstrInfo::determineREX(const MachineInstr &MI) { + unsigned REX = 0; + const TargetInstrDesc &Desc = MI.getDesc(); + + // Pseudo instructions do not need REX prefix byte. + if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo) + return 0; + if (Desc.TSFlags & X86II::REX_W) + REX |= 1 << 3; + + unsigned NumOps = Desc.getNumOperands(); + if (NumOps) { + bool isTwoAddr = NumOps > 1 && + Desc.getOperandConstraint(1, TOI::TIED_TO) != -1; + + // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. + unsigned i = isTwoAddr ? 1 : 0; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + unsigned Reg = MO.getReg(); + if (isX86_64NonExtLowByteReg(Reg)) + REX |= 0x40; + } + } + + switch (Desc.TSFlags & X86II::FormMask) { + case X86II::MRMInitReg: + if (isX86_64ExtendedReg(MI.getOperand(0))) + REX |= (1 << 0) | (1 << 2); + break; + case X86II::MRMSrcReg: { + if (isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (isX86_64ExtendedReg(MO)) + REX |= 1 << 0; + } + break; + } + case X86II::MRMSrcMem: { + if (isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 2; + unsigned Bit = 0; + i = isTwoAddr ? 2 : 1; + for (; i != NumOps; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: + case X86II::MRMDestMem: { + unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands); + i = isTwoAddr ? 1 : 0; + if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e))) + REX |= 1 << 2; + unsigned Bit = 0; + for (; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (MO.isReg()) { + if (isX86_64ExtendedReg(MO)) + REX |= 1 << Bit; + Bit++; + } + } + break; + } + default: { + if (isX86_64ExtendedReg(MI.getOperand(0))) + REX |= 1 << 0; + i = isTwoAddr ? 2 : 1; + for (unsigned e = NumOps; i != e; ++i) { + const MachineOperand& MO = MI.getOperand(i); + if (isX86_64ExtendedReg(MO)) + REX |= 1 << 2; + } + break; + } + } + } + return REX; +} + +/// sizePCRelativeBlockAddress - This method returns the size of a PC +/// relative block address instruction +/// +static unsigned sizePCRelativeBlockAddress() { + return 4; +} + +/// sizeGlobalAddress - Give the size of the emission of this global address +/// +static unsigned sizeGlobalAddress(bool dword) { + return dword ? 8 : 4; +} + +/// sizeConstPoolAddress - Give the size of the emission of this constant +/// pool address +/// +static unsigned sizeConstPoolAddress(bool dword) { + return dword ? 8 : 4; +} + +/// sizeExternalSymbolAddress - Give the size of the emission of this external +/// symbol +/// +static unsigned sizeExternalSymbolAddress(bool dword) { + return dword ? 8 : 4; +} + +/// sizeJumpTableAddress - Give the size of the emission of this jump +/// table address +/// +static unsigned sizeJumpTableAddress(bool dword) { + return dword ? 8 : 4; +} + +static unsigned sizeConstant(unsigned Size) { + return Size; +} + +static unsigned sizeRegModRMByte(){ + return 1; +} + +static unsigned sizeSIBByte(){ + return 1; +} + +static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) { + unsigned FinalSize = 0; + // If this is a simple integer displacement that doesn't require a relocation. + if (!RelocOp) { + FinalSize += sizeConstant(4); + return FinalSize; + } + + // Otherwise, this is something that requires a relocation. + if (RelocOp->isGlobal()) { + FinalSize += sizeGlobalAddress(false); + } else if (RelocOp->isCPI()) { + FinalSize += sizeConstPoolAddress(false); + } else if (RelocOp->isJTI()) { + FinalSize += sizeJumpTableAddress(false); + } else { + llvm_unreachable("Unknown value to relocate!"); + } + return FinalSize; +} + +static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op, + bool IsPIC, bool Is64BitMode) { + const MachineOperand &Op3 = MI.getOperand(Op+3); + int DispVal = 0; + const MachineOperand *DispForReloc = 0; + unsigned FinalSize = 0; + + // Figure out what sort of displacement we have to handle here. + if (Op3.isGlobal()) { + DispForReloc = &Op3; + } else if (Op3.isCPI()) { + if (Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal = 1; + } + } else if (Op3.isJTI()) { + if (Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal = 1; + } + } else { + DispVal = 1; + } + + const MachineOperand &Base = MI.getOperand(Op); + const MachineOperand &IndexReg = MI.getOperand(Op+2); + + unsigned BaseReg = Base.getReg(); + + // Is a SIB byte needed? + if ((!Is64BitMode || DispForReloc || BaseReg != 0) && + IndexReg.getReg() == 0 && + (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) { + if (BaseReg == 0) { // Just a displacement? + // Emit special case [disp32] encoding + ++FinalSize; + FinalSize += getDisplacementFieldSize(DispForReloc); + } else { + unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg); + if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { + // Emit simple indirect register encoding... [EAX] f.e. + ++FinalSize; + // Be pessimistic and assume it's a disp32, not a disp8 + } else { + // Emit the most general non-SIB encoding: [REG+disp32] + ++FinalSize; + FinalSize += getDisplacementFieldSize(DispForReloc); + } + } + + } else { // We need a SIB byte, so start by outputting the ModR/M byte first + assert(IndexReg.getReg() != X86::ESP && + IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + + bool ForceDisp32 = false; + if (BaseReg == 0 || DispForReloc) { + // Emit the normal disp32 encoding. + ++FinalSize; + ForceDisp32 = true; + } else { + ++FinalSize; + } + + FinalSize += sizeSIBByte(); + + // Do we need to output a displacement? + if (DispVal != 0 || ForceDisp32) { + FinalSize += getDisplacementFieldSize(DispForReloc); + } + } + return FinalSize; +} + + +static unsigned GetInstSizeWithDesc(const MachineInstr &MI, + const TargetInstrDesc *Desc, + bool IsPIC, bool Is64BitMode) { + + unsigned Opcode = Desc->Opcode; + unsigned FinalSize = 0; + + // Emit the lock opcode prefix as needed. + if (Desc->TSFlags & X86II::LOCK) ++FinalSize; + + // Emit segment override opcode prefix as needed. + switch (Desc->TSFlags & X86II::SegOvrMask) { + case X86II::FS: + case X86II::GS: + ++FinalSize; + break; + default: llvm_unreachable("Invalid segment!"); + case 0: break; // No segment override! + } + + // Emit the repeat opcode prefix as needed. + if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize; + + // Emit the operand size opcode prefix as needed. + if (Desc->TSFlags & X86II::OpSize) ++FinalSize; + + // Emit the address size opcode prefix as needed. + if (Desc->TSFlags & X86II::AdSize) ++FinalSize; + + bool Need0FPrefix = false; + switch (Desc->TSFlags & X86II::Op0Mask) { + case X86II::TB: // Two-byte opcode prefix + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A + Need0FPrefix = true; + break; + case X86II::TF: // F2 0F 38 + ++FinalSize; + Need0FPrefix = true; + break; + case X86II::REP: break; // already handled. + case X86II::XS: // F3 0F + ++FinalSize; + Need0FPrefix = true; + break; + case X86II::XD: // F2 0F + ++FinalSize; + Need0FPrefix = true; + break; + case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: + case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: + ++FinalSize; + break; // Two-byte opcode prefix + default: llvm_unreachable("Invalid prefix!"); + case 0: break; // No prefix! + } + + if (Is64BitMode) { + // REX prefix + unsigned REX = X86InstrInfo::determineREX(MI); + if (REX) + ++FinalSize; + } + + // 0x0F escape code must be emitted just before the opcode. + if (Need0FPrefix) + ++FinalSize; + + switch (Desc->TSFlags & X86II::Op0Mask) { + case X86II::T8: // 0F 38 + ++FinalSize; + break; + case X86II::TA: // 0F 3A + ++FinalSize; + break; + case X86II::TF: // F2 0F 38 + ++FinalSize; + break; + } + + // If this is a two-address instruction, skip one of the register operands. + unsigned NumOps = Desc->getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) + CurOp++; + else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) + // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 + --NumOps; + + switch (Desc->TSFlags & X86II::FormMask) { + default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); + case X86II::Pseudo: + // Remember the current PC offset, this is the PIC relocation + // base address. + switch (Opcode) { + default: + break; + case TargetOpcode::INLINEASM: { + const MachineFunction *MF = MI.getParent()->getParent(); + const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); + FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(), + *MF->getTarget().getMCAsmInfo()); + break; + } + case TargetOpcode::DBG_LABEL: + case TargetOpcode::EH_LABEL: + case TargetOpcode::DBG_VALUE: + break; + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + case X86::FP_REG_KILL: + break; + case X86::MOVPC32r: { + // This emits the "call" portion of this pseudo instruction. + ++FinalSize; + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + } + CurOp = NumOps; + break; + case X86II::RawFrm: + ++FinalSize; + + if (CurOp != NumOps) { + const MachineOperand &MO = MI.getOperand(CurOp++); + if (MO.isMBB()) { + FinalSize += sizePCRelativeBlockAddress(); + } else if (MO.isGlobal()) { + FinalSize += sizeGlobalAddress(false); + } else if (MO.isSymbol()) { + FinalSize += sizeExternalSymbolAddress(false); + } else if (MO.isImm()) { + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + } else { + llvm_unreachable("Unknown RawFrm operand!"); + } + } + break; + + case X86II::AddRegFrm: + ++FinalSize; + ++CurOp; + + if (CurOp != NumOps) { + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) + FinalSize += sizeConstant(Size); + else { + bool dword = false; + if (Opcode == X86::MOV64ri) + dword = true; + if (MO1.isGlobal()) { + FinalSize += sizeGlobalAddress(dword); + } else if (MO1.isSymbol()) + FinalSize += sizeExternalSymbolAddress(dword); + else if (MO1.isCPI()) + FinalSize += sizeConstPoolAddress(dword); + else if (MO1.isJTI()) + FinalSize += sizeJumpTableAddress(dword); + } + } + break; + + case X86II::MRMDestReg: { + ++FinalSize; + FinalSize += sizeRegModRMByte(); + CurOp += 2; + if (CurOp != NumOps) { + ++CurOp; + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + } + break; + } + case X86II::MRMDestMem: { + ++FinalSize; + FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); + CurOp += X86AddrNumOperands + 1; + if (CurOp != NumOps) { + ++CurOp; + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + } + break; + } + + case X86II::MRMSrcReg: + ++FinalSize; + FinalSize += sizeRegModRMByte(); + CurOp += 2; + if (CurOp != NumOps) { + ++CurOp; + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + } + break; + + case X86II::MRMSrcMem: { + int AddrOperands; + if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || + Opcode == X86::LEA16r || Opcode == X86::LEA32r) + AddrOperands = X86AddrNumOperands - 1; // No segment register + else + AddrOperands = X86AddrNumOperands; + + ++FinalSize; + FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode); + CurOp += AddrOperands + 1; + if (CurOp != NumOps) { + ++CurOp; + FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags)); + } + break; + } + + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: + ++FinalSize; + if (Desc->getOpcode() == X86::LFENCE || + Desc->getOpcode() == X86::MFENCE) { + // Special handling of lfence and mfence; + FinalSize += sizeRegModRMByte(); + } else if (Desc->getOpcode() == X86::MONITOR || + Desc->getOpcode() == X86::MWAIT) { + // Special handling of monitor and mwait. + FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode. + } else { + ++CurOp; + FinalSize += sizeRegModRMByte(); + } + + if (CurOp != NumOps) { + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) + FinalSize += sizeConstant(Size); + else { + bool dword = false; + if (Opcode == X86::MOV64ri32) + dword = true; + if (MO1.isGlobal()) { + FinalSize += sizeGlobalAddress(dword); + } else if (MO1.isSymbol()) + FinalSize += sizeExternalSymbolAddress(dword); + else if (MO1.isCPI()) + FinalSize += sizeConstPoolAddress(dword); + else if (MO1.isJTI()) + FinalSize += sizeJumpTableAddress(dword); + } + } + break; + + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + + ++FinalSize; + FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode); + CurOp += X86AddrNumOperands; + + if (CurOp != NumOps) { + const MachineOperand &MO = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO.isImm()) + FinalSize += sizeConstant(Size); + else { + bool dword = false; + if (Opcode == X86::MOV64mi32) + dword = true; + if (MO.isGlobal()) { + FinalSize += sizeGlobalAddress(dword); + } else if (MO.isSymbol()) + FinalSize += sizeExternalSymbolAddress(dword); + else if (MO.isCPI()) + FinalSize += sizeConstPoolAddress(dword); + else if (MO.isJTI()) + FinalSize += sizeJumpTableAddress(dword); + } + } + break; + + case X86II::MRM_C1: + case X86II::MRM_C8: + case X86II::MRM_C9: + case X86II::MRM_E8: + case X86II::MRM_F0: + FinalSize += 2; + break; + } + + case X86II::MRMInitReg: + ++FinalSize; + // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). + FinalSize += sizeRegModRMByte(); + ++CurOp; + break; + } + + if (!Desc->isVariadic() && CurOp != NumOps) { + std::string msg; + raw_string_ostream Msg(msg); + Msg << "Cannot determine size: " << MI; + report_fatal_error(Msg.str()); + } + + + return FinalSize; +} + + +unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { + const TargetInstrDesc &Desc = MI->getDesc(); + bool IsPIC = TM.getRelocationModel() == Reloc::PIC_; + bool Is64BitMode = TM.getSubtargetImpl()->is64Bit(); + unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode); + if (Desc.getOpcode() == X86::MOVPC32r) + Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode); + return Size; +} + +/// getGlobalBaseReg - Return a virtual register initialized with the +/// the global base register value. Output instructions required to +/// initialize the register in the function entry block, if necessary. +/// +unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { + assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && + "X86-64 PIC uses RIP relative addressing"); + + X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); + unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); + if (GlobalBaseReg != 0) + return GlobalBaseReg; + + // Insert the set of GlobalBaseReg into the first MBB of the function + MachineBasicBlock &FirstMBB = MF->front(); + MachineBasicBlock::iterator MBBI = FirstMBB.begin(); + DebugLoc DL = FirstMBB.findDebugLoc(MBBI); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); + + const TargetInstrInfo *TII = TM.getInstrInfo(); + // Operand of MovePCtoStack is completely ignored by asm printer. It's + // only used in JIT code emission as displacement to pc. + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); + + // If we're using vanilla 'GOT' PIC style, we should use relative addressing + // not to pc, but to _GLOBAL_OFFSET_TABLE_ external. + if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) { + GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass); + // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register + BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) + .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_", + X86II::MO_GOT_ABSOLUTE_ADDRESS); + } else { + GlobalBaseReg = PC; + } + + X86FI->setGlobalBaseReg(GlobalBaseReg); + return GlobalBaseReg; +} + +// These are the replaceable SSE instructions. Some of these have Int variants +// that we don't include here. We don't want to replace instructions selected +// by intrinsics. +static const unsigned ReplaceableInstrs[][3] = { + //PackedInt PackedSingle PackedDouble + { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, + { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, + { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, + { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, + { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, + { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, + { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, + { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, + { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, + { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, + { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, + { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, + { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI }, + { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, + { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, +}; + +// FIXME: Some shuffle and unpack instructions have equivalents in different +// domains, but they require a bit more work than just switching opcodes. + +static const unsigned *lookup(unsigned opcode, unsigned domain) { + for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i) + if (ReplaceableInstrs[i][domain-1] == opcode) + return ReplaceableInstrs[i]; + return 0; +} + +std::pair<uint16_t, uint16_t> +X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const { + uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; + return std::make_pair(domain, + domain && lookup(MI->getOpcode(), domain) ? 0xe : 0); +} + +void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const { + assert(Domain>0 && Domain<4 && "Invalid execution domain"); + uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3; + assert(dom && "Not an SSE instruction"); + const unsigned *table = lookup(MI->getOpcode(), dom); + assert(table && "Cannot change domain"); + MI->setDesc(get(table[Domain-1])); +} + +/// getNoopForMachoTarget - Return the noop instruction to use for a noop. +void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { + NopInst.setOpcode(X86::NOOP); +} + |