summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86InstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86InstrInfo.cpp3786
1 files changed, 3786 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
new file mode 100644
index 0000000..34e12ca
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86InstrInfo.cpp
@@ -0,0 +1,3786 @@
+//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the X86 implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86InstrInfo.h"
+#include "X86.h"
+#include "X86GenInstrInfo.inc"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/MC/MCAsmInfo.h"
+
+#include <limits>
+
+using namespace llvm;
+
+static cl::opt<bool>
+NoFusing("disable-spill-fusing",
+ cl::desc("Disable fusing of spill code into instructions"));
+static cl::opt<bool>
+PrintFailedFusing("print-failed-fuse-candidates",
+ cl::desc("Print instructions that the allocator wants to"
+ " fuse, but the X86 backend currently can't"),
+ cl::Hidden);
+static cl::opt<bool>
+ReMatPICStubLoad("remat-pic-stub-load",
+ cl::desc("Re-materialize load from stub in PIC mode"),
+ cl::init(false), cl::Hidden);
+
+X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
+ : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
+ TM(tm), RI(tm, *this) {
+ SmallVector<unsigned,16> AmbEntries;
+ static const unsigned OpTbl2Addr[][2] = {
+ { X86::ADC32ri, X86::ADC32mi },
+ { X86::ADC32ri8, X86::ADC32mi8 },
+ { X86::ADC32rr, X86::ADC32mr },
+ { X86::ADC64ri32, X86::ADC64mi32 },
+ { X86::ADC64ri8, X86::ADC64mi8 },
+ { X86::ADC64rr, X86::ADC64mr },
+ { X86::ADD16ri, X86::ADD16mi },
+ { X86::ADD16ri8, X86::ADD16mi8 },
+ { X86::ADD16rr, X86::ADD16mr },
+ { X86::ADD32ri, X86::ADD32mi },
+ { X86::ADD32ri8, X86::ADD32mi8 },
+ { X86::ADD32rr, X86::ADD32mr },
+ { X86::ADD64ri32, X86::ADD64mi32 },
+ { X86::ADD64ri8, X86::ADD64mi8 },
+ { X86::ADD64rr, X86::ADD64mr },
+ { X86::ADD8ri, X86::ADD8mi },
+ { X86::ADD8rr, X86::ADD8mr },
+ { X86::AND16ri, X86::AND16mi },
+ { X86::AND16ri8, X86::AND16mi8 },
+ { X86::AND16rr, X86::AND16mr },
+ { X86::AND32ri, X86::AND32mi },
+ { X86::AND32ri8, X86::AND32mi8 },
+ { X86::AND32rr, X86::AND32mr },
+ { X86::AND64ri32, X86::AND64mi32 },
+ { X86::AND64ri8, X86::AND64mi8 },
+ { X86::AND64rr, X86::AND64mr },
+ { X86::AND8ri, X86::AND8mi },
+ { X86::AND8rr, X86::AND8mr },
+ { X86::DEC16r, X86::DEC16m },
+ { X86::DEC32r, X86::DEC32m },
+ { X86::DEC64_16r, X86::DEC64_16m },
+ { X86::DEC64_32r, X86::DEC64_32m },
+ { X86::DEC64r, X86::DEC64m },
+ { X86::DEC8r, X86::DEC8m },
+ { X86::INC16r, X86::INC16m },
+ { X86::INC32r, X86::INC32m },
+ { X86::INC64_16r, X86::INC64_16m },
+ { X86::INC64_32r, X86::INC64_32m },
+ { X86::INC64r, X86::INC64m },
+ { X86::INC8r, X86::INC8m },
+ { X86::NEG16r, X86::NEG16m },
+ { X86::NEG32r, X86::NEG32m },
+ { X86::NEG64r, X86::NEG64m },
+ { X86::NEG8r, X86::NEG8m },
+ { X86::NOT16r, X86::NOT16m },
+ { X86::NOT32r, X86::NOT32m },
+ { X86::NOT64r, X86::NOT64m },
+ { X86::NOT8r, X86::NOT8m },
+ { X86::OR16ri, X86::OR16mi },
+ { X86::OR16ri8, X86::OR16mi8 },
+ { X86::OR16rr, X86::OR16mr },
+ { X86::OR32ri, X86::OR32mi },
+ { X86::OR32ri8, X86::OR32mi8 },
+ { X86::OR32rr, X86::OR32mr },
+ { X86::OR64ri32, X86::OR64mi32 },
+ { X86::OR64ri8, X86::OR64mi8 },
+ { X86::OR64rr, X86::OR64mr },
+ { X86::OR8ri, X86::OR8mi },
+ { X86::OR8rr, X86::OR8mr },
+ { X86::ROL16r1, X86::ROL16m1 },
+ { X86::ROL16rCL, X86::ROL16mCL },
+ { X86::ROL16ri, X86::ROL16mi },
+ { X86::ROL32r1, X86::ROL32m1 },
+ { X86::ROL32rCL, X86::ROL32mCL },
+ { X86::ROL32ri, X86::ROL32mi },
+ { X86::ROL64r1, X86::ROL64m1 },
+ { X86::ROL64rCL, X86::ROL64mCL },
+ { X86::ROL64ri, X86::ROL64mi },
+ { X86::ROL8r1, X86::ROL8m1 },
+ { X86::ROL8rCL, X86::ROL8mCL },
+ { X86::ROL8ri, X86::ROL8mi },
+ { X86::ROR16r1, X86::ROR16m1 },
+ { X86::ROR16rCL, X86::ROR16mCL },
+ { X86::ROR16ri, X86::ROR16mi },
+ { X86::ROR32r1, X86::ROR32m1 },
+ { X86::ROR32rCL, X86::ROR32mCL },
+ { X86::ROR32ri, X86::ROR32mi },
+ { X86::ROR64r1, X86::ROR64m1 },
+ { X86::ROR64rCL, X86::ROR64mCL },
+ { X86::ROR64ri, X86::ROR64mi },
+ { X86::ROR8r1, X86::ROR8m1 },
+ { X86::ROR8rCL, X86::ROR8mCL },
+ { X86::ROR8ri, X86::ROR8mi },
+ { X86::SAR16r1, X86::SAR16m1 },
+ { X86::SAR16rCL, X86::SAR16mCL },
+ { X86::SAR16ri, X86::SAR16mi },
+ { X86::SAR32r1, X86::SAR32m1 },
+ { X86::SAR32rCL, X86::SAR32mCL },
+ { X86::SAR32ri, X86::SAR32mi },
+ { X86::SAR64r1, X86::SAR64m1 },
+ { X86::SAR64rCL, X86::SAR64mCL },
+ { X86::SAR64ri, X86::SAR64mi },
+ { X86::SAR8r1, X86::SAR8m1 },
+ { X86::SAR8rCL, X86::SAR8mCL },
+ { X86::SAR8ri, X86::SAR8mi },
+ { X86::SBB32ri, X86::SBB32mi },
+ { X86::SBB32ri8, X86::SBB32mi8 },
+ { X86::SBB32rr, X86::SBB32mr },
+ { X86::SBB64ri32, X86::SBB64mi32 },
+ { X86::SBB64ri8, X86::SBB64mi8 },
+ { X86::SBB64rr, X86::SBB64mr },
+ { X86::SHL16rCL, X86::SHL16mCL },
+ { X86::SHL16ri, X86::SHL16mi },
+ { X86::SHL32rCL, X86::SHL32mCL },
+ { X86::SHL32ri, X86::SHL32mi },
+ { X86::SHL64rCL, X86::SHL64mCL },
+ { X86::SHL64ri, X86::SHL64mi },
+ { X86::SHL8rCL, X86::SHL8mCL },
+ { X86::SHL8ri, X86::SHL8mi },
+ { X86::SHLD16rrCL, X86::SHLD16mrCL },
+ { X86::SHLD16rri8, X86::SHLD16mri8 },
+ { X86::SHLD32rrCL, X86::SHLD32mrCL },
+ { X86::SHLD32rri8, X86::SHLD32mri8 },
+ { X86::SHLD64rrCL, X86::SHLD64mrCL },
+ { X86::SHLD64rri8, X86::SHLD64mri8 },
+ { X86::SHR16r1, X86::SHR16m1 },
+ { X86::SHR16rCL, X86::SHR16mCL },
+ { X86::SHR16ri, X86::SHR16mi },
+ { X86::SHR32r1, X86::SHR32m1 },
+ { X86::SHR32rCL, X86::SHR32mCL },
+ { X86::SHR32ri, X86::SHR32mi },
+ { X86::SHR64r1, X86::SHR64m1 },
+ { X86::SHR64rCL, X86::SHR64mCL },
+ { X86::SHR64ri, X86::SHR64mi },
+ { X86::SHR8r1, X86::SHR8m1 },
+ { X86::SHR8rCL, X86::SHR8mCL },
+ { X86::SHR8ri, X86::SHR8mi },
+ { X86::SHRD16rrCL, X86::SHRD16mrCL },
+ { X86::SHRD16rri8, X86::SHRD16mri8 },
+ { X86::SHRD32rrCL, X86::SHRD32mrCL },
+ { X86::SHRD32rri8, X86::SHRD32mri8 },
+ { X86::SHRD64rrCL, X86::SHRD64mrCL },
+ { X86::SHRD64rri8, X86::SHRD64mri8 },
+ { X86::SUB16ri, X86::SUB16mi },
+ { X86::SUB16ri8, X86::SUB16mi8 },
+ { X86::SUB16rr, X86::SUB16mr },
+ { X86::SUB32ri, X86::SUB32mi },
+ { X86::SUB32ri8, X86::SUB32mi8 },
+ { X86::SUB32rr, X86::SUB32mr },
+ { X86::SUB64ri32, X86::SUB64mi32 },
+ { X86::SUB64ri8, X86::SUB64mi8 },
+ { X86::SUB64rr, X86::SUB64mr },
+ { X86::SUB8ri, X86::SUB8mi },
+ { X86::SUB8rr, X86::SUB8mr },
+ { X86::XOR16ri, X86::XOR16mi },
+ { X86::XOR16ri8, X86::XOR16mi8 },
+ { X86::XOR16rr, X86::XOR16mr },
+ { X86::XOR32ri, X86::XOR32mi },
+ { X86::XOR32ri8, X86::XOR32mi8 },
+ { X86::XOR32rr, X86::XOR32mr },
+ { X86::XOR64ri32, X86::XOR64mi32 },
+ { X86::XOR64ri8, X86::XOR64mi8 },
+ { X86::XOR64rr, X86::XOR64mr },
+ { X86::XOR8ri, X86::XOR8mi },
+ { X86::XOR8rr, X86::XOR8mr }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
+ unsigned RegOp = OpTbl2Addr[i][0];
+ unsigned MemOp = OpTbl2Addr[i][1];
+ if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp,
+ std::make_pair(MemOp,0))).second)
+ assert(false && "Duplicated entries?");
+ // Index 0, folded load and store, no alignment requirement.
+ unsigned AuxInfo = 0 | (1 << 4) | (1 << 5);
+ if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
+ std::make_pair(RegOp,
+ AuxInfo))).second)
+ AmbEntries.push_back(MemOp);
+ }
+
+ // If the third value is 1, then it's folding either a load or a store.
+ static const unsigned OpTbl0[][4] = {
+ { X86::BT16ri8, X86::BT16mi8, 1, 0 },
+ { X86::BT32ri8, X86::BT32mi8, 1, 0 },
+ { X86::BT64ri8, X86::BT64mi8, 1, 0 },
+ { X86::CALL32r, X86::CALL32m, 1, 0 },
+ { X86::CALL64r, X86::CALL64m, 1, 0 },
+ { X86::CMP16ri, X86::CMP16mi, 1, 0 },
+ { X86::CMP16ri8, X86::CMP16mi8, 1, 0 },
+ { X86::CMP16rr, X86::CMP16mr, 1, 0 },
+ { X86::CMP32ri, X86::CMP32mi, 1, 0 },
+ { X86::CMP32ri8, X86::CMP32mi8, 1, 0 },
+ { X86::CMP32rr, X86::CMP32mr, 1, 0 },
+ { X86::CMP64ri32, X86::CMP64mi32, 1, 0 },
+ { X86::CMP64ri8, X86::CMP64mi8, 1, 0 },
+ { X86::CMP64rr, X86::CMP64mr, 1, 0 },
+ { X86::CMP8ri, X86::CMP8mi, 1, 0 },
+ { X86::CMP8rr, X86::CMP8mr, 1, 0 },
+ { X86::DIV16r, X86::DIV16m, 1, 0 },
+ { X86::DIV32r, X86::DIV32m, 1, 0 },
+ { X86::DIV64r, X86::DIV64m, 1, 0 },
+ { X86::DIV8r, X86::DIV8m, 1, 0 },
+ { X86::EXTRACTPSrr, X86::EXTRACTPSmr, 0, 16 },
+ { X86::FsMOVAPDrr, X86::MOVSDmr, 0, 0 },
+ { X86::FsMOVAPSrr, X86::MOVSSmr, 0, 0 },
+ { X86::IDIV16r, X86::IDIV16m, 1, 0 },
+ { X86::IDIV32r, X86::IDIV32m, 1, 0 },
+ { X86::IDIV64r, X86::IDIV64m, 1, 0 },
+ { X86::IDIV8r, X86::IDIV8m, 1, 0 },
+ { X86::IMUL16r, X86::IMUL16m, 1, 0 },
+ { X86::IMUL32r, X86::IMUL32m, 1, 0 },
+ { X86::IMUL64r, X86::IMUL64m, 1, 0 },
+ { X86::IMUL8r, X86::IMUL8m, 1, 0 },
+ { X86::JMP32r, X86::JMP32m, 1, 0 },
+ { X86::JMP64r, X86::JMP64m, 1, 0 },
+ { X86::MOV16ri, X86::MOV16mi, 0, 0 },
+ { X86::MOV16rr, X86::MOV16mr, 0, 0 },
+ { X86::MOV32ri, X86::MOV32mi, 0, 0 },
+ { X86::MOV32rr, X86::MOV32mr, 0, 0 },
+ { X86::MOV32rr_TC, X86::MOV32mr_TC, 0, 0 },
+ { X86::MOV64ri32, X86::MOV64mi32, 0, 0 },
+ { X86::MOV64rr, X86::MOV64mr, 0, 0 },
+ { X86::MOV8ri, X86::MOV8mi, 0, 0 },
+ { X86::MOV8rr, X86::MOV8mr, 0, 0 },
+ { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, 0, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDmr, 0, 16 },
+ { X86::MOVAPSrr, X86::MOVAPSmr, 0, 16 },
+ { X86::MOVDQArr, X86::MOVDQAmr, 0, 16 },
+ { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0, 0 },
+ { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0, 0 },
+ { X86::MOVSDto64rr, X86::MOVSDto64mr, 0, 0 },
+ { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDmr, 0, 0 },
+ { X86::MOVUPSrr, X86::MOVUPSmr, 0, 0 },
+ { X86::MUL16r, X86::MUL16m, 1, 0 },
+ { X86::MUL32r, X86::MUL32m, 1, 0 },
+ { X86::MUL64r, X86::MUL64m, 1, 0 },
+ { X86::MUL8r, X86::MUL8m, 1, 0 },
+ { X86::SETAEr, X86::SETAEm, 0, 0 },
+ { X86::SETAr, X86::SETAm, 0, 0 },
+ { X86::SETBEr, X86::SETBEm, 0, 0 },
+ { X86::SETBr, X86::SETBm, 0, 0 },
+ { X86::SETEr, X86::SETEm, 0, 0 },
+ { X86::SETGEr, X86::SETGEm, 0, 0 },
+ { X86::SETGr, X86::SETGm, 0, 0 },
+ { X86::SETLEr, X86::SETLEm, 0, 0 },
+ { X86::SETLr, X86::SETLm, 0, 0 },
+ { X86::SETNEr, X86::SETNEm, 0, 0 },
+ { X86::SETNOr, X86::SETNOm, 0, 0 },
+ { X86::SETNPr, X86::SETNPm, 0, 0 },
+ { X86::SETNSr, X86::SETNSm, 0, 0 },
+ { X86::SETOr, X86::SETOm, 0, 0 },
+ { X86::SETPr, X86::SETPm, 0, 0 },
+ { X86::SETSr, X86::SETSm, 0, 0 },
+ { X86::TAILJMPr, X86::TAILJMPm, 1, 0 },
+ { X86::TAILJMPr64, X86::TAILJMPm64, 1, 0 },
+ { X86::TEST16ri, X86::TEST16mi, 1, 0 },
+ { X86::TEST32ri, X86::TEST32mi, 1, 0 },
+ { X86::TEST64ri32, X86::TEST64mi32, 1, 0 },
+ { X86::TEST8ri, X86::TEST8mi, 1, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
+ unsigned RegOp = OpTbl0[i][0];
+ unsigned MemOp = OpTbl0[i][1];
+ unsigned Align = OpTbl0[i][3];
+ if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp,
+ std::make_pair(MemOp,Align))).second)
+ assert(false && "Duplicated entries?");
+ unsigned FoldedLoad = OpTbl0[i][2];
+ // Index 0, folded load or store.
+ unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
+ if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
+ if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
+ std::make_pair(RegOp, AuxInfo))).second)
+ AmbEntries.push_back(MemOp);
+ }
+
+ static const unsigned OpTbl1[][3] = {
+ { X86::CMP16rr, X86::CMP16rm, 0 },
+ { X86::CMP32rr, X86::CMP32rm, 0 },
+ { X86::CMP64rr, X86::CMP64rm, 0 },
+ { X86::CMP8rr, X86::CMP8rm, 0 },
+ { X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
+ { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
+ { X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
+ { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
+ { X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
+ { X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
+ { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
+ { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
+ { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
+ { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
+ { X86::FsMOVAPDrr, X86::MOVSDrm, 0 },
+ { X86::FsMOVAPSrr, X86::MOVSSrm, 0 },
+ { X86::IMUL16rri, X86::IMUL16rmi, 0 },
+ { X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
+ { X86::IMUL32rri, X86::IMUL32rmi, 0 },
+ { X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
+ { X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
+ { X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
+ { X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
+ { X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
+ { X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
+ { X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
+ { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, 16 },
+ { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, 16 },
+ { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, 16 },
+ { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, 16 },
+ { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, 16 },
+ { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
+ { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm, 0 },
+ { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm, 0 },
+ { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
+ { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
+ { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
+ { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
+ { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
+ { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
+ { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm, 0 },
+ { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm, 0 },
+ { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm, 16 },
+ { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm, 16 },
+ { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
+ { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
+ { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
+ { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
+ { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
+ { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
+ { X86::MOV16rr, X86::MOV16rm, 0 },
+ { X86::MOV32rr, X86::MOV32rm, 0 },
+ { X86::MOV32rr_TC, X86::MOV32rm_TC, 0 },
+ { X86::MOV64rr, X86::MOV64rm, 0 },
+ { X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
+ { X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
+ { X86::MOV8rr, X86::MOV8rm, 0 },
+ { X86::MOVAPDrr, X86::MOVAPDrm, 16 },
+ { X86::MOVAPSrr, X86::MOVAPSrm, 16 },
+ { X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
+ { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
+ { X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
+ { X86::MOVDQArr, X86::MOVDQArm, 16 },
+ { X86::MOVSHDUPrr, X86::MOVSHDUPrm, 16 },
+ { X86::MOVSLDUPrr, X86::MOVSLDUPrm, 16 },
+ { X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
+ { X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
+ { X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
+ { X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
+ { X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
+ { X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
+ { X86::MOVUPDrr, X86::MOVUPDrm, 16 },
+ { X86::MOVUPSrr, X86::MOVUPSrm, 0 },
+ { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
+ { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
+ { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, 16 },
+ { X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
+ { X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
+ { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
+ { X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
+ { X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
+ { X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
+ { X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
+ { X86::PSHUFDri, X86::PSHUFDmi, 16 },
+ { X86::PSHUFHWri, X86::PSHUFHWmi, 16 },
+ { X86::PSHUFLWri, X86::PSHUFLWmi, 16 },
+ { X86::RCPPSr, X86::RCPPSm, 16 },
+ { X86::RCPPSr_Int, X86::RCPPSm_Int, 16 },
+ { X86::RSQRTPSr, X86::RSQRTPSm, 16 },
+ { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, 16 },
+ { X86::RSQRTSSr, X86::RSQRTSSm, 0 },
+ { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
+ { X86::SQRTPDr, X86::SQRTPDm, 16 },
+ { X86::SQRTPDr_Int, X86::SQRTPDm_Int, 16 },
+ { X86::SQRTPSr, X86::SQRTPSm, 16 },
+ { X86::SQRTPSr_Int, X86::SQRTPSm_Int, 16 },
+ { X86::SQRTSDr, X86::SQRTSDm, 0 },
+ { X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
+ { X86::SQRTSSr, X86::SQRTSSm, 0 },
+ { X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
+ { X86::TEST16rr, X86::TEST16rm, 0 },
+ { X86::TEST32rr, X86::TEST32rm, 0 },
+ { X86::TEST64rr, X86::TEST64rm, 0 },
+ { X86::TEST8rr, X86::TEST8rm, 0 },
+ // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
+ { X86::UCOMISDrr, X86::UCOMISDrm, 0 },
+ { X86::UCOMISSrr, X86::UCOMISSrm, 0 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
+ unsigned RegOp = OpTbl1[i][0];
+ unsigned MemOp = OpTbl1[i][1];
+ unsigned Align = OpTbl1[i][2];
+ if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp,
+ std::make_pair(MemOp,Align))).second)
+ assert(false && "Duplicated entries?");
+ // Index 1, folded load
+ unsigned AuxInfo = 1 | (1 << 4);
+ if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
+ if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
+ std::make_pair(RegOp, AuxInfo))).second)
+ AmbEntries.push_back(MemOp);
+ }
+
+ static const unsigned OpTbl2[][3] = {
+ { X86::ADC32rr, X86::ADC32rm, 0 },
+ { X86::ADC64rr, X86::ADC64rm, 0 },
+ { X86::ADD16rr, X86::ADD16rm, 0 },
+ { X86::ADD32rr, X86::ADD32rm, 0 },
+ { X86::ADD64rr, X86::ADD64rm, 0 },
+ { X86::ADD8rr, X86::ADD8rm, 0 },
+ { X86::ADDPDrr, X86::ADDPDrm, 16 },
+ { X86::ADDPSrr, X86::ADDPSrm, 16 },
+ { X86::ADDSDrr, X86::ADDSDrm, 0 },
+ { X86::ADDSSrr, X86::ADDSSrm, 0 },
+ { X86::ADDSUBPDrr, X86::ADDSUBPDrm, 16 },
+ { X86::ADDSUBPSrr, X86::ADDSUBPSrm, 16 },
+ { X86::AND16rr, X86::AND16rm, 0 },
+ { X86::AND32rr, X86::AND32rm, 0 },
+ { X86::AND64rr, X86::AND64rm, 0 },
+ { X86::AND8rr, X86::AND8rm, 0 },
+ { X86::ANDNPDrr, X86::ANDNPDrm, 16 },
+ { X86::ANDNPSrr, X86::ANDNPSrm, 16 },
+ { X86::ANDPDrr, X86::ANDPDrm, 16 },
+ { X86::ANDPSrr, X86::ANDPSrm, 16 },
+ { X86::CMOVA16rr, X86::CMOVA16rm, 0 },
+ { X86::CMOVA32rr, X86::CMOVA32rm, 0 },
+ { X86::CMOVA64rr, X86::CMOVA64rm, 0 },
+ { X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
+ { X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
+ { X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
+ { X86::CMOVB16rr, X86::CMOVB16rm, 0 },
+ { X86::CMOVB32rr, X86::CMOVB32rm, 0 },
+ { X86::CMOVB64rr, X86::CMOVB64rm, 0 },
+ { X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
+ { X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
+ { X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
+ { X86::CMOVE16rr, X86::CMOVE16rm, 0 },
+ { X86::CMOVE32rr, X86::CMOVE32rm, 0 },
+ { X86::CMOVE64rr, X86::CMOVE64rm, 0 },
+ { X86::CMOVG16rr, X86::CMOVG16rm, 0 },
+ { X86::CMOVG32rr, X86::CMOVG32rm, 0 },
+ { X86::CMOVG64rr, X86::CMOVG64rm, 0 },
+ { X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
+ { X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
+ { X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
+ { X86::CMOVL16rr, X86::CMOVL16rm, 0 },
+ { X86::CMOVL32rr, X86::CMOVL32rm, 0 },
+ { X86::CMOVL64rr, X86::CMOVL64rm, 0 },
+ { X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
+ { X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
+ { X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
+ { X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
+ { X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
+ { X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
+ { X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
+ { X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
+ { X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
+ { X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
+ { X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
+ { X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
+ { X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
+ { X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
+ { X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
+ { X86::CMOVO16rr, X86::CMOVO16rm, 0 },
+ { X86::CMOVO32rr, X86::CMOVO32rm, 0 },
+ { X86::CMOVO64rr, X86::CMOVO64rm, 0 },
+ { X86::CMOVP16rr, X86::CMOVP16rm, 0 },
+ { X86::CMOVP32rr, X86::CMOVP32rm, 0 },
+ { X86::CMOVP64rr, X86::CMOVP64rm, 0 },
+ { X86::CMOVS16rr, X86::CMOVS16rm, 0 },
+ { X86::CMOVS32rr, X86::CMOVS32rm, 0 },
+ { X86::CMOVS64rr, X86::CMOVS64rm, 0 },
+ { X86::CMPPDrri, X86::CMPPDrmi, 16 },
+ { X86::CMPPSrri, X86::CMPPSrmi, 16 },
+ { X86::CMPSDrr, X86::CMPSDrm, 0 },
+ { X86::CMPSSrr, X86::CMPSSrm, 0 },
+ { X86::DIVPDrr, X86::DIVPDrm, 16 },
+ { X86::DIVPSrr, X86::DIVPSrm, 16 },
+ { X86::DIVSDrr, X86::DIVSDrm, 0 },
+ { X86::DIVSSrr, X86::DIVSSrm, 0 },
+ { X86::FsANDNPDrr, X86::FsANDNPDrm, 16 },
+ { X86::FsANDNPSrr, X86::FsANDNPSrm, 16 },
+ { X86::FsANDPDrr, X86::FsANDPDrm, 16 },
+ { X86::FsANDPSrr, X86::FsANDPSrm, 16 },
+ { X86::FsORPDrr, X86::FsORPDrm, 16 },
+ { X86::FsORPSrr, X86::FsORPSrm, 16 },
+ { X86::FsXORPDrr, X86::FsXORPDrm, 16 },
+ { X86::FsXORPSrr, X86::FsXORPSrm, 16 },
+ { X86::HADDPDrr, X86::HADDPDrm, 16 },
+ { X86::HADDPSrr, X86::HADDPSrm, 16 },
+ { X86::HSUBPDrr, X86::HSUBPDrm, 16 },
+ { X86::HSUBPSrr, X86::HSUBPSrm, 16 },
+ { X86::IMUL16rr, X86::IMUL16rm, 0 },
+ { X86::IMUL32rr, X86::IMUL32rm, 0 },
+ { X86::IMUL64rr, X86::IMUL64rm, 0 },
+ { X86::MAXPDrr, X86::MAXPDrm, 16 },
+ { X86::MAXPDrr_Int, X86::MAXPDrm_Int, 16 },
+ { X86::MAXPSrr, X86::MAXPSrm, 16 },
+ { X86::MAXPSrr_Int, X86::MAXPSrm_Int, 16 },
+ { X86::MAXSDrr, X86::MAXSDrm, 0 },
+ { X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
+ { X86::MAXSSrr, X86::MAXSSrm, 0 },
+ { X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
+ { X86::MINPDrr, X86::MINPDrm, 16 },
+ { X86::MINPDrr_Int, X86::MINPDrm_Int, 16 },
+ { X86::MINPSrr, X86::MINPSrm, 16 },
+ { X86::MINPSrr_Int, X86::MINPSrm_Int, 16 },
+ { X86::MINSDrr, X86::MINSDrm, 0 },
+ { X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
+ { X86::MINSSrr, X86::MINSSrm, 0 },
+ { X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
+ { X86::MULPDrr, X86::MULPDrm, 16 },
+ { X86::MULPSrr, X86::MULPSrm, 16 },
+ { X86::MULSDrr, X86::MULSDrm, 0 },
+ { X86::MULSSrr, X86::MULSSrm, 0 },
+ { X86::OR16rr, X86::OR16rm, 0 },
+ { X86::OR32rr, X86::OR32rm, 0 },
+ { X86::OR64rr, X86::OR64rm, 0 },
+ { X86::OR8rr, X86::OR8rm, 0 },
+ { X86::ORPDrr, X86::ORPDrm, 16 },
+ { X86::ORPSrr, X86::ORPSrm, 16 },
+ { X86::PACKSSDWrr, X86::PACKSSDWrm, 16 },
+ { X86::PACKSSWBrr, X86::PACKSSWBrm, 16 },
+ { X86::PACKUSWBrr, X86::PACKUSWBrm, 16 },
+ { X86::PADDBrr, X86::PADDBrm, 16 },
+ { X86::PADDDrr, X86::PADDDrm, 16 },
+ { X86::PADDQrr, X86::PADDQrm, 16 },
+ { X86::PADDSBrr, X86::PADDSBrm, 16 },
+ { X86::PADDSWrr, X86::PADDSWrm, 16 },
+ { X86::PADDWrr, X86::PADDWrm, 16 },
+ { X86::PANDNrr, X86::PANDNrm, 16 },
+ { X86::PANDrr, X86::PANDrm, 16 },
+ { X86::PAVGBrr, X86::PAVGBrm, 16 },
+ { X86::PAVGWrr, X86::PAVGWrm, 16 },
+ { X86::PCMPEQBrr, X86::PCMPEQBrm, 16 },
+ { X86::PCMPEQDrr, X86::PCMPEQDrm, 16 },
+ { X86::PCMPEQWrr, X86::PCMPEQWrm, 16 },
+ { X86::PCMPGTBrr, X86::PCMPGTBrm, 16 },
+ { X86::PCMPGTDrr, X86::PCMPGTDrm, 16 },
+ { X86::PCMPGTWrr, X86::PCMPGTWrm, 16 },
+ { X86::PINSRWrri, X86::PINSRWrmi, 16 },
+ { X86::PMADDWDrr, X86::PMADDWDrm, 16 },
+ { X86::PMAXSWrr, X86::PMAXSWrm, 16 },
+ { X86::PMAXUBrr, X86::PMAXUBrm, 16 },
+ { X86::PMINSWrr, X86::PMINSWrm, 16 },
+ { X86::PMINUBrr, X86::PMINUBrm, 16 },
+ { X86::PMULDQrr, X86::PMULDQrm, 16 },
+ { X86::PMULHUWrr, X86::PMULHUWrm, 16 },
+ { X86::PMULHWrr, X86::PMULHWrm, 16 },
+ { X86::PMULLDrr, X86::PMULLDrm, 16 },
+ { X86::PMULLWrr, X86::PMULLWrm, 16 },
+ { X86::PMULUDQrr, X86::PMULUDQrm, 16 },
+ { X86::PORrr, X86::PORrm, 16 },
+ { X86::PSADBWrr, X86::PSADBWrm, 16 },
+ { X86::PSLLDrr, X86::PSLLDrm, 16 },
+ { X86::PSLLQrr, X86::PSLLQrm, 16 },
+ { X86::PSLLWrr, X86::PSLLWrm, 16 },
+ { X86::PSRADrr, X86::PSRADrm, 16 },
+ { X86::PSRAWrr, X86::PSRAWrm, 16 },
+ { X86::PSRLDrr, X86::PSRLDrm, 16 },
+ { X86::PSRLQrr, X86::PSRLQrm, 16 },
+ { X86::PSRLWrr, X86::PSRLWrm, 16 },
+ { X86::PSUBBrr, X86::PSUBBrm, 16 },
+ { X86::PSUBDrr, X86::PSUBDrm, 16 },
+ { X86::PSUBSBrr, X86::PSUBSBrm, 16 },
+ { X86::PSUBSWrr, X86::PSUBSWrm, 16 },
+ { X86::PSUBWrr, X86::PSUBWrm, 16 },
+ { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, 16 },
+ { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, 16 },
+ { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, 16 },
+ { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, 16 },
+ { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, 16 },
+ { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, 16 },
+ { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, 16 },
+ { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, 16 },
+ { X86::PXORrr, X86::PXORrm, 16 },
+ { X86::SBB32rr, X86::SBB32rm, 0 },
+ { X86::SBB64rr, X86::SBB64rm, 0 },
+ { X86::SHUFPDrri, X86::SHUFPDrmi, 16 },
+ { X86::SHUFPSrri, X86::SHUFPSrmi, 16 },
+ { X86::SUB16rr, X86::SUB16rm, 0 },
+ { X86::SUB32rr, X86::SUB32rm, 0 },
+ { X86::SUB64rr, X86::SUB64rm, 0 },
+ { X86::SUB8rr, X86::SUB8rm, 0 },
+ { X86::SUBPDrr, X86::SUBPDrm, 16 },
+ { X86::SUBPSrr, X86::SUBPSrm, 16 },
+ { X86::SUBSDrr, X86::SUBSDrm, 0 },
+ { X86::SUBSSrr, X86::SUBSSrm, 0 },
+ // FIXME: TEST*rr -> swapped operand of TEST*mr.
+ { X86::UNPCKHPDrr, X86::UNPCKHPDrm, 16 },
+ { X86::UNPCKHPSrr, X86::UNPCKHPSrm, 16 },
+ { X86::UNPCKLPDrr, X86::UNPCKLPDrm, 16 },
+ { X86::UNPCKLPSrr, X86::UNPCKLPSrm, 16 },
+ { X86::XOR16rr, X86::XOR16rm, 0 },
+ { X86::XOR32rr, X86::XOR32rm, 0 },
+ { X86::XOR64rr, X86::XOR64rm, 0 },
+ { X86::XOR8rr, X86::XOR8rm, 0 },
+ { X86::XORPDrr, X86::XORPDrm, 16 },
+ { X86::XORPSrr, X86::XORPSrm, 16 }
+ };
+
+ for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
+ unsigned RegOp = OpTbl2[i][0];
+ unsigned MemOp = OpTbl2[i][1];
+ unsigned Align = OpTbl2[i][2];
+ if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp,
+ std::make_pair(MemOp,Align))).second)
+ assert(false && "Duplicated entries?");
+ // Index 2, folded load
+ unsigned AuxInfo = 2 | (1 << 4);
+ if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
+ std::make_pair(RegOp, AuxInfo))).second)
+ AmbEntries.push_back(MemOp);
+ }
+
+ // Remove ambiguous entries.
+ assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
+}
+
+bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SrcSubIdx, unsigned &DstSubIdx) const {
+ switch (MI.getOpcode()) {
+ default:
+ return false;
+ case X86::MOV8rr:
+ case X86::MOV8rr_NOREX:
+ case X86::MOV16rr:
+ case X86::MOV32rr:
+ case X86::MOV64rr:
+ case X86::MOV32rr_TC:
+ case X86::MOV64rr_TC:
+
+ // FP Stack register class copies
+ case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
+ case X86::MOV_Fp3264: case X86::MOV_Fp3280:
+ case X86::MOV_Fp6432: case X86::MOV_Fp8032:
+
+ // Note that MOVSSrr and MOVSDrr are not considered copies. FR32 and FR64
+ // copies are done with FsMOVAPSrr and FsMOVAPDrr.
+
+ case X86::FsMOVAPSrr:
+ case X86::FsMOVAPDrr:
+ case X86::MOVAPSrr:
+ case X86::MOVAPDrr:
+ case X86::MOVDQArr:
+ case X86::MMX_MOVQ64rr:
+ assert(MI.getNumOperands() >= 2 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ "invalid register-register move instruction");
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ SrcSubIdx = MI.getOperand(1).getSubReg();
+ DstSubIdx = MI.getOperand(0).getSubReg();
+ return true;
+ }
+}
+
+bool
+X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
+ unsigned &SrcReg, unsigned &DstReg,
+ unsigned &SubIdx) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ case X86::MOVZX64rr8:
+ if (!TM.getSubtarget<X86Subtarget>().is64Bit())
+ // It's not always legal to reference the low 8-bit of the larger
+ // register in 32-bit mode.
+ return false;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVZX64rr16:
+ case X86::MOVSX64rr32:
+ case X86::MOVZX64rr32: {
+ if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
+ // Be conservative.
+ return false;
+ SrcReg = MI.getOperand(1).getReg();
+ DstReg = MI.getOperand(0).getReg();
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable(0);
+ break;
+ case X86::MOVSX16rr8:
+ case X86::MOVZX16rr8:
+ case X86::MOVSX32rr8:
+ case X86::MOVZX32rr8:
+ case X86::MOVSX64rr8:
+ case X86::MOVZX64rr8:
+ SubIdx = X86::sub_8bit;
+ break;
+ case X86::MOVSX32rr16:
+ case X86::MOVZX32rr16:
+ case X86::MOVSX64rr16:
+ case X86::MOVZX64rr16:
+ SubIdx = X86::sub_16bit;
+ break;
+ case X86::MOVSX64rr32:
+ case X86::MOVZX64rr32:
+ SubIdx = X86::sub_32bit;
+ break;
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+/// isFrameOperand - Return true and the FrameIndex if the specified
+/// operand and follow operands form a reference to the stack frame.
+bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
+ int &FrameIndex) const {
+ if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
+ MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
+ MI->getOperand(Op+1).getImm() == 1 &&
+ MI->getOperand(Op+2).getReg() == 0 &&
+ MI->getOperand(Op+3).getImm() == 0) {
+ FrameIndex = MI->getOperand(Op).getIndex();
+ return true;
+ }
+ return false;
+}
+
+static bool isFrameLoadOpcode(int Opcode) {
+ switch (Opcode) {
+ default: break;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ return true;
+ break;
+ }
+ return false;
+}
+
+static bool isFrameStoreOpcode(int Opcode) {
+ switch (Opcode) {
+ default: break;
+ case X86::MOV8mr:
+ case X86::MOV16mr:
+ case X86::MOV32mr:
+ case X86::MOV64mr:
+ case X86::ST_FpP64m:
+ case X86::MOVSSmr:
+ case X86::MOVSDmr:
+ case X86::MOVAPSmr:
+ case X86::MOVAPDmr:
+ case X86::MOVDQAmr:
+ case X86::MMX_MOVD64mr:
+ case X86::MMX_MOVQ64mr:
+ case X86::MMX_MOVNTQmr:
+ return true;
+ }
+ return false;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode()))
+ if (isFrameOperand(MI, 1, FrameIndex))
+ return MI->getOperand(0).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameLoadOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+bool X86InstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end();
+ o != oe;
+ ++o) {
+ if ((*o)->isLoad() && (*o)->getValue())
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
+ FrameIndex = Value->getFrameIndex();
+ MMO = *o;
+ return true;
+ }
+ }
+ return false;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode()))
+ if (isFrameOperand(MI, 0, FrameIndex))
+ return MI->getOperand(X86AddrNumOperands).getReg();
+ return 0;
+}
+
+unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
+ int &FrameIndex) const {
+ if (isFrameStoreOpcode(MI->getOpcode())) {
+ unsigned Reg;
+ if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
+ return Reg;
+ // Check for post-frame index elimination operations
+ const MachineMemOperand *Dummy;
+ return hasStoreToStackSlot(MI, Dummy, FrameIndex);
+ }
+ return 0;
+}
+
+bool X86InstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
+ const MachineMemOperand *&MMO,
+ int &FrameIndex) const {
+ for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
+ oe = MI->memoperands_end();
+ o != oe;
+ ++o) {
+ if ((*o)->isStore() && (*o)->getValue())
+ if (const FixedStackPseudoSourceValue *Value =
+ dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
+ FrameIndex = Value->getFrameIndex();
+ MMO = *o;
+ return true;
+ }
+ }
+ return false;
+}
+
+/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
+/// X86::MOVPC32r.
+static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
+ bool isPICBase = false;
+ for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
+ E = MRI.def_end(); I != E; ++I) {
+ MachineInstr *DefMI = I.getOperand().getParent();
+ if (DefMI->getOpcode() != X86::MOVPC32r)
+ return false;
+ assert(!isPICBase && "More than one PIC base?");
+ isPICBase = true;
+ }
+ return isPICBase;
+}
+
+bool
+X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
+ AliasAnalysis *AA) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp64m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVUPSrm_Int:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm: {
+ // Loads from constant pools are trivially rematerializable.
+ if (MI->getOperand(1).isReg() &&
+ MI->getOperand(2).isImm() &&
+ MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
+ MI->isInvariantLoad(AA)) {
+ unsigned BaseReg = MI->getOperand(1).getReg();
+ if (BaseReg == 0 || BaseReg == X86::RIP)
+ return true;
+ // Allow re-materialization of PIC load.
+ if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
+ return false;
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool isPICBase = false;
+ for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
+ E = MRI.def_end(); I != E; ++I) {
+ MachineInstr *DefMI = I.getOperand().getParent();
+ if (DefMI->getOpcode() != X86::MOVPC32r)
+ return false;
+ assert(!isPICBase && "More than one PIC base?");
+ isPICBase = true;
+ }
+ return isPICBase;
+ }
+ return false;
+ }
+
+ case X86::LEA32r:
+ case X86::LEA64r: {
+ if (MI->getOperand(2).isImm() &&
+ MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
+ !MI->getOperand(4).isReg()) {
+ // lea fi#, lea GV, etc. are all rematerializable.
+ if (!MI->getOperand(1).isReg())
+ return true;
+ unsigned BaseReg = MI->getOperand(1).getReg();
+ if (BaseReg == 0)
+ return true;
+ // Allow re-materialization of lea PICBase + x.
+ const MachineFunction &MF = *MI->getParent()->getParent();
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return regIsPICBase(BaseReg, MRI);
+ }
+ return false;
+ }
+ }
+
+ // All other instructions marked M_REMATERIALIZABLE are always trivially
+ // rematerializable.
+ return true;
+}
+
+/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
+/// would clobber the EFLAGS condition register. Note the result may be
+/// conservative. If it cannot definitely determine the safety after visiting
+/// a few instructions in each direction it assumes it's not safe.
+static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I) {
+ MachineBasicBlock::iterator E = MBB.end();
+
+ // It's always safe to clobber EFLAGS at the end of a block.
+ if (I == E)
+ return true;
+
+ // For compile time consideration, if we are not able to determine the
+ // safety after visiting 4 instructions in each direction, we will assume
+ // it's not safe.
+ MachineBasicBlock::iterator Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
+ bool SeenDef = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ if (!MO.isReg())
+ continue;
+ if (MO.getReg() == X86::EFLAGS) {
+ if (MO.isUse())
+ return false;
+ SeenDef = true;
+ }
+ }
+
+ if (SeenDef)
+ // This instruction defines EFLAGS, no need to look any further.
+ return true;
+ ++Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != E && Iter->isDebugValue())
+ ++Iter;
+
+ // If we make it to the end of the block, it's safe to clobber EFLAGS.
+ if (Iter == E)
+ return true;
+ }
+
+ MachineBasicBlock::iterator B = MBB.begin();
+ Iter = I;
+ for (unsigned i = 0; i < 4; ++i) {
+ // If we make it to the beginning of the block, it's safe to clobber
+ // EFLAGS iff EFLAGS is not live-in.
+ if (Iter == B)
+ return !MBB.isLiveIn(X86::EFLAGS);
+
+ --Iter;
+ // Skip over DBG_VALUE.
+ while (Iter != B && Iter->isDebugValue())
+ --Iter;
+
+ bool SawKill = false;
+ for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
+ MachineOperand &MO = Iter->getOperand(j);
+ if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
+ if (MO.isDef()) return MO.isDead();
+ if (MO.isKill()) SawKill = true;
+ }
+ }
+
+ if (SawKill)
+ // This instruction kills EFLAGS and doesn't redefine it, so
+ // there's no need to look further.
+ return true;
+ }
+
+ // Conservative answer.
+ return false;
+}
+
+void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, unsigned SubIdx,
+ const MachineInstr *Orig,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = Orig->getDebugLoc();
+
+ if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
+ DestReg = TRI->getSubReg(DestReg, SubIdx);
+ SubIdx = 0;
+ }
+
+ // MOV32r0 etc. are implemented with xor which clobbers condition code.
+ // Re-materialize them as movri instructions to avoid side effects.
+ bool Clone = true;
+ unsigned Opc = Orig->getOpcode();
+ switch (Opc) {
+ default: break;
+ case X86::MOV8r0:
+ case X86::MOV16r0:
+ case X86::MOV32r0:
+ case X86::MOV64r0: {
+ if (!isSafeToClobberEFLAGS(MBB, I)) {
+ switch (Opc) {
+ default: break;
+ case X86::MOV8r0: Opc = X86::MOV8ri; break;
+ case X86::MOV16r0: Opc = X86::MOV16ri; break;
+ case X86::MOV32r0: Opc = X86::MOV32ri; break;
+ case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
+ }
+ Clone = false;
+ }
+ break;
+ }
+ }
+
+ if (Clone) {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
+ MI->getOperand(0).setReg(DestReg);
+ MBB.insert(I, MI);
+ } else {
+ BuildMI(MBB, I, DL, get(Opc), DestReg).addImm(0);
+ }
+
+ MachineInstr *NewMI = prior(I);
+ NewMI->getOperand(0).setSubReg(SubIdx);
+}
+
+/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
+/// is not marked dead.
+static bool hasLiveCondCodeDef(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() &&
+ MO.getReg() == X86::EFLAGS && !MO.isDead()) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
+/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
+/// to a 32-bit superregister and then truncating back down to a 16-bit
+/// subregister.
+MachineInstr *
+X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
+ MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isKill = MI->getOperand(1).isKill();
+
+ unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
+ ? X86::LEA64_32r : X86::LEA32r;
+ MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
+ unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ // This has the potential to cause partial register stall. e.g.
+ // movw (%rbp,%rcx,2), %dx
+ // leal -65(%rdx), %esi
+ // But testing has shown this *does* help performance in 64-bit mode (at
+ // least on modern x86 machines).
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
+ MachineInstr *InsMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg)
+ .addReg(leaInReg)
+ .addReg(Src, getKillRegState(isKill))
+ .addImm(X86::sub_16bit);
+
+ MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
+ get(Opc), leaOutReg);
+ switch (MIOpc) {
+ default:
+ llvm_unreachable(0);
+ break;
+ case X86::SHL16ri: {
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ MIB.addReg(0).addImm(1 << ShAmt)
+ .addReg(leaInReg, RegState::Kill).addImm(0);
+ break;
+ }
+ case X86::INC16r:
+ case X86::INC64_16r:
+ addLeaRegOffset(MIB, leaInReg, true, 1);
+ break;
+ case X86::DEC16r:
+ case X86::DEC64_16r:
+ addLeaRegOffset(MIB, leaInReg, true, -1);
+ break;
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ addLeaRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
+ break;
+ case X86::ADD16rr: {
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ unsigned leaInReg2 = 0;
+ MachineInstr *InsMI2 = 0;
+ if (Src == Src2) {
+ // ADD16rr %reg1028<kill>, %reg1028
+ // just a single insert_subreg.
+ addRegReg(MIB, leaInReg, true, leaInReg, false);
+ } else {
+ leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32RegClass);
+ // Build and insert into an implicit UNDEF value. This is OK because
+ // well be shifting and then extracting the lower 16-bits.
+ BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2);
+ InsMI2 =
+ BuildMI(*MFI, MIB, MI->getDebugLoc(), get(X86::INSERT_SUBREG),leaInReg2)
+ .addReg(leaInReg2)
+ .addReg(Src2, getKillRegState(isKill2))
+ .addImm(X86::sub_16bit);
+ addRegReg(MIB, leaInReg, true, leaInReg2, true);
+ }
+ if (LV && isKill2 && InsMI2)
+ LV->replaceKillInstruction(Src2, MI, InsMI2);
+ break;
+ }
+ }
+
+ MachineInstr *NewMI = MIB;
+ MachineInstr *ExtMI =
+ BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::EXTRACT_SUBREG))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(leaOutReg, RegState::Kill)
+ .addImm(X86::sub_16bit);
+
+ if (LV) {
+ // Update live variables
+ LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
+ LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
+ if (isKill)
+ LV->replaceKillInstruction(Src, MI, InsMI);
+ if (isDead)
+ LV->replaceKillInstruction(Dest, MI, ExtMI);
+ }
+
+ return ExtMI;
+}
+
+/// convertToThreeAddress - This method must be implemented by targets that
+/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+/// may be able to convert a two-address instruction into a true
+/// three-address instruction on demand. This allows the X86 target (for
+/// example) to convert ADD and SHL instructions into LEA instructions if they
+/// would require register copies due to two-addressness.
+///
+/// This method returns a null pointer if the transformation cannot be
+/// performed, otherwise it returns the new instruction.
+///
+MachineInstr *
+X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ MachineFunction &MF = *MI->getParent()->getParent();
+ // All instructions input are two-addr instructions. Get the known operands.
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isKill = MI->getOperand(1).isKill();
+
+ MachineInstr *NewMI = NULL;
+ // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
+ // we have better subtarget support, enable the 16-bit LEA generation here.
+ // 16-bit LEA is also slow on Core2.
+ bool DisableLEA16 = true;
+ bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
+
+ unsigned MIOpc = MI->getOpcode();
+ switch (MIOpc) {
+ case X86::SHUFPSrri: {
+ assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
+ if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
+
+ unsigned B = MI->getOperand(1).getReg();
+ unsigned C = MI->getOperand(2).getReg();
+ if (B != C) return 0;
+ unsigned A = MI->getOperand(0).getReg();
+ unsigned M = MI->getOperand(3).getImm();
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
+ .addReg(A, RegState::Define | getDeadRegState(isDead))
+ .addReg(B, getKillRegState(isKill)).addImm(M);
+ break;
+ }
+ case X86::SHL64ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
+ // the flags produced by a shift yet, so this is safe.
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ if (ShAmt == 0 || ShAmt >= 4) return 0;
+
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(0).addImm(1 << ShAmt)
+ .addReg(Src, getKillRegState(isKill))
+ .addImm(0);
+ break;
+ }
+ case X86::SHL32ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
+ // the flags produced by a shift yet, so this is safe.
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ if (ShAmt == 0 || ShAmt >= 4) return 0;
+
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(0).addImm(1 << ShAmt)
+ .addReg(Src, getKillRegState(isKill)).addImm(0);
+ break;
+ }
+ case X86::SHL16ri: {
+ assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
+ // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
+ // the flags produced by a shift yet, so this is safe.
+ unsigned ShAmt = MI->getOperand(2).getImm();
+ if (ShAmt == 0 || ShAmt >= 4) return 0;
+
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+ NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addReg(Dest, RegState::Define | getDeadRegState(isDead))
+ .addReg(0).addImm(1 << ShAmt)
+ .addReg(Src, getKillRegState(isKill))
+ .addImm(0);
+ break;
+ }
+ default: {
+ // The following opcodes also sets the condition code register(s). Only
+ // convert them to equivalent lea if the condition code register def's
+ // are dead!
+ if (hasLiveCondCodeDef(MI))
+ return 0;
+
+ switch (MIOpc) {
+ default: return 0;
+ case X86::INC64r:
+ case X86::INC32r:
+ case X86::INC64_32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, 1);
+ break;
+ }
+ case X86::INC16r:
+ case X86::INC64_16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+ assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
+ NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, 1);
+ break;
+ case X86::DEC64r:
+ case X86::DEC32r:
+ case X86::DEC64_32r: {
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, -1);
+ break;
+ }
+ case X86::DEC16r:
+ case X86::DEC64_16r:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+ assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
+ NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, -1);
+ break;
+ case X86::ADD64rr:
+ case X86::ADD32rr: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
+ : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, Src2, isKill2);
+ if (LV && isKill2)
+ LV->replaceKillInstruction(Src2, MI, NewMI);
+ break;
+ }
+ case X86::ADD16rr: {
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Src2 = MI->getOperand(2).getReg();
+ bool isKill2 = MI->getOperand(2).isKill();
+ NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, Src2, isKill2);
+ if (LV && isKill2)
+ LV->replaceKillInstruction(Src2, MI, NewMI);
+ break;
+ }
+ case X86::ADD64ri32:
+ case X86::ADD64ri8:
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, MI->getOperand(2).getImm());
+ break;
+ case X86::ADD32ri:
+ case X86::ADD32ri8: {
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
+ NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, MI->getOperand(2).getImm());
+ break;
+ }
+ case X86::ADD16ri:
+ case X86::ADD16ri8:
+ if (DisableLEA16)
+ return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
+ assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
+ NewMI = addLeaRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
+ .addReg(Dest, RegState::Define |
+ getDeadRegState(isDead)),
+ Src, isKill, MI->getOperand(2).getImm());
+ break;
+ }
+ }
+ }
+
+ if (!NewMI) return 0;
+
+ if (LV) { // Update live variables
+ if (isKill)
+ LV->replaceKillInstruction(Src, MI, NewMI);
+ if (isDead)
+ LV->replaceKillInstruction(Dest, MI, NewMI);
+ }
+
+ MFI->insert(MBBI, NewMI); // Insert the new inst
+ return NewMI;
+}
+
+/// commuteInstruction - We have a few instructions that must be hacked on to
+/// commute them.
+///
+MachineInstr *
+X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ switch (MI->getOpcode()) {
+ case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
+ case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
+ case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
+ case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
+ case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
+ case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
+ unsigned Opc;
+ unsigned Size;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unreachable!");
+ case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
+ case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
+ case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
+ case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
+ case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
+ case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
+ }
+ unsigned Amt = MI->getOperand(3).getImm();
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ MI->getOperand(3).setImm(Size-Amt);
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+ }
+ case X86::CMOVB16rr:
+ case X86::CMOVB32rr:
+ case X86::CMOVB64rr:
+ case X86::CMOVAE16rr:
+ case X86::CMOVAE32rr:
+ case X86::CMOVAE64rr:
+ case X86::CMOVE16rr:
+ case X86::CMOVE32rr:
+ case X86::CMOVE64rr:
+ case X86::CMOVNE16rr:
+ case X86::CMOVNE32rr:
+ case X86::CMOVNE64rr:
+ case X86::CMOVBE16rr:
+ case X86::CMOVBE32rr:
+ case X86::CMOVBE64rr:
+ case X86::CMOVA16rr:
+ case X86::CMOVA32rr:
+ case X86::CMOVA64rr:
+ case X86::CMOVL16rr:
+ case X86::CMOVL32rr:
+ case X86::CMOVL64rr:
+ case X86::CMOVGE16rr:
+ case X86::CMOVGE32rr:
+ case X86::CMOVGE64rr:
+ case X86::CMOVLE16rr:
+ case X86::CMOVLE32rr:
+ case X86::CMOVLE64rr:
+ case X86::CMOVG16rr:
+ case X86::CMOVG32rr:
+ case X86::CMOVG64rr:
+ case X86::CMOVS16rr:
+ case X86::CMOVS32rr:
+ case X86::CMOVS64rr:
+ case X86::CMOVNS16rr:
+ case X86::CMOVNS32rr:
+ case X86::CMOVNS64rr:
+ case X86::CMOVP16rr:
+ case X86::CMOVP32rr:
+ case X86::CMOVP64rr:
+ case X86::CMOVNP16rr:
+ case X86::CMOVNP32rr:
+ case X86::CMOVNP64rr:
+ case X86::CMOVO16rr:
+ case X86::CMOVO32rr:
+ case X86::CMOVO64rr:
+ case X86::CMOVNO16rr:
+ case X86::CMOVNO32rr:
+ case X86::CMOVNO64rr: {
+ unsigned Opc = 0;
+ switch (MI->getOpcode()) {
+ default: break;
+ case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
+ case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
+ case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
+ case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
+ case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
+ case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
+ case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
+ case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
+ case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
+ case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
+ case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
+ case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
+ case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
+ case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
+ case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
+ case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
+ case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
+ case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
+ case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
+ case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
+ case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
+ case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
+ case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
+ case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
+ case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
+ case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
+ case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
+ case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
+ case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
+ case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
+ case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
+ case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
+ case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
+ case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
+ case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
+ case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
+ case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
+ case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
+ case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
+ case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
+ case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
+ case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
+ case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
+ case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
+ case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
+ case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
+ case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
+ case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
+ }
+ if (NewMI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MI = MF.CloneMachineInstr(MI);
+ NewMI = false;
+ }
+ MI->setDesc(get(Opc));
+ // Fallthrough intended.
+ }
+ default:
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+ }
+}
+
+static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
+ switch (BrOpc) {
+ default: return X86::COND_INVALID;
+ case X86::JE_4: return X86::COND_E;
+ case X86::JNE_4: return X86::COND_NE;
+ case X86::JL_4: return X86::COND_L;
+ case X86::JLE_4: return X86::COND_LE;
+ case X86::JG_4: return X86::COND_G;
+ case X86::JGE_4: return X86::COND_GE;
+ case X86::JB_4: return X86::COND_B;
+ case X86::JBE_4: return X86::COND_BE;
+ case X86::JA_4: return X86::COND_A;
+ case X86::JAE_4: return X86::COND_AE;
+ case X86::JS_4: return X86::COND_S;
+ case X86::JNS_4: return X86::COND_NS;
+ case X86::JP_4: return X86::COND_P;
+ case X86::JNP_4: return X86::COND_NP;
+ case X86::JO_4: return X86::COND_O;
+ case X86::JNO_4: return X86::COND_NO;
+ }
+}
+
+unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::JE_4;
+ case X86::COND_NE: return X86::JNE_4;
+ case X86::COND_L: return X86::JL_4;
+ case X86::COND_LE: return X86::JLE_4;
+ case X86::COND_G: return X86::JG_4;
+ case X86::COND_GE: return X86::JGE_4;
+ case X86::COND_B: return X86::JB_4;
+ case X86::COND_BE: return X86::JBE_4;
+ case X86::COND_A: return X86::JA_4;
+ case X86::COND_AE: return X86::JAE_4;
+ case X86::COND_S: return X86::JS_4;
+ case X86::COND_NS: return X86::JNS_4;
+ case X86::COND_P: return X86::JP_4;
+ case X86::COND_NP: return X86::JNP_4;
+ case X86::COND_O: return X86::JO_4;
+ case X86::COND_NO: return X86::JNO_4;
+ }
+}
+
+/// GetOppositeBranchCondition - Return the inverse of the specified condition,
+/// e.g. turning COND_E to COND_NE.
+X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Illegal condition code!");
+ case X86::COND_E: return X86::COND_NE;
+ case X86::COND_NE: return X86::COND_E;
+ case X86::COND_L: return X86::COND_GE;
+ case X86::COND_LE: return X86::COND_G;
+ case X86::COND_G: return X86::COND_LE;
+ case X86::COND_GE: return X86::COND_L;
+ case X86::COND_B: return X86::COND_AE;
+ case X86::COND_BE: return X86::COND_A;
+ case X86::COND_A: return X86::COND_BE;
+ case X86::COND_AE: return X86::COND_B;
+ case X86::COND_S: return X86::COND_NS;
+ case X86::COND_NS: return X86::COND_S;
+ case X86::COND_P: return X86::COND_NP;
+ case X86::COND_NP: return X86::COND_P;
+ case X86::COND_O: return X86::COND_NO;
+ case X86::COND_NO: return X86::COND_O;
+ }
+}
+
+bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
+ const TargetInstrDesc &TID = MI->getDesc();
+ if (!TID.isTerminator()) return false;
+
+ // Conditional branch is a special case.
+ if (TID.isBranch() && !TID.isBarrier())
+ return true;
+ if (!TID.isPredicable())
+ return true;
+ return !isPredicated(MI);
+}
+
+// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
+static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
+ const X86InstrInfo &TII) {
+ if (MI->getOpcode() == X86::FP_REG_KILL)
+ return false;
+ return TII.isUnpredicatedTerminator(MI);
+}
+
+bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ MachineBasicBlock::iterator UnCondBrIter = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isBrAnalysisUnpredicatedTerminator(I, *this))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ if (!I->getDesc().isBranch())
+ return true;
+
+ // Handle unconditional branches.
+ if (I->getOpcode() == X86::JMP_4) {
+ UnCondBrIter = I;
+
+ if (!AllowModify) {
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (llvm::next(I) != MBB.end())
+ llvm::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = 0;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
+ TBB = 0;
+ I->eraseFromParent();
+ I = MBB.end();
+ UnCondBrIter = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditional destination.
+ TBB = I->getOperand(0).getMBB();
+ continue;
+ }
+
+ // Handle conditional branches.
+ X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
+ if (BranchCode == X86::COND_INVALID)
+ return true; // Can't handle indirect branch.
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
+ if (AllowModify && UnCondBrIter != MBB.end() &&
+ MBB.isLayoutSuccessor(TargetBB)) {
+ // If we can modify the code and it ends in something like:
+ //
+ // jCC L1
+ // jmp L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Then we can change this to:
+ //
+ // jnCC L2
+ // L1:
+ // ...
+ // L2:
+ //
+ // Which is a bit more efficient.
+ // We conditionally jump to the fall-through block.
+ BranchCode = GetOppositeBranchCondition(BranchCode);
+ unsigned JNCC = GetCondBranchFromCond(BranchCode);
+ MachineBasicBlock::iterator OldInst = I;
+
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
+ .addMBB(UnCondBrIter->getOperand(0).getMBB());
+ BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
+ .addMBB(TargetBB);
+ MBB.addSuccessor(TargetBB);
+
+ OldInst->eraseFromParent();
+ UnCondBrIter->eraseFromParent();
+
+ // Restart the analysis.
+ UnCondBrIter = MBB.end();
+ I = MBB.end();
+ continue;
+ }
+
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(BranchCode));
+ continue;
+ }
+
+ // Handle subsequent conditional branches. Only handle the case where all
+ // conditional branches branch to the same destination and their condition
+ // opcodes fit one of the special multi-branch idioms.
+ assert(Cond.size() == 1);
+ assert(TBB);
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != I->getOperand(0).getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
+ if (OldBranchCode == BranchCode)
+ continue;
+
+ // If they differ, see if they fit one of the known patterns. Theoretically,
+ // we could handle more patterns here, but we shouldn't expect to see them
+ // if instruction selection has done a reasonable job.
+ if ((OldBranchCode == X86::COND_NP &&
+ BranchCode == X86::COND_E) ||
+ (OldBranchCode == X86::COND_E &&
+ BranchCode == X86::COND_NP))
+ BranchCode = X86::COND_NP_OR_E;
+ else if ((OldBranchCode == X86::COND_P &&
+ BranchCode == X86::COND_NE) ||
+ (OldBranchCode == X86::COND_NE &&
+ BranchCode == X86::COND_P))
+ BranchCode = X86::COND_NE_OR_P;
+ else
+ return true;
+
+ // Update the MachineOperand.
+ Cond[0].setImm(BranchCode);
+ }
+
+ return false;
+}
+
+unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (I->getOpcode() != X86::JMP_4 &&
+ GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+unsigned
+X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ // FIXME this should probably have a DebugLoc operand
+ DebugLoc dl;
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 1 || Cond.size() == 0) &&
+ "X86 branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
+ switch (CC) {
+ case X86::COND_NP_OR_E:
+ // Synthesize NP_OR_E with two branches.
+ BuildMI(&MBB, dl, get(X86::JNP_4)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, dl, get(X86::JE_4)).addMBB(TBB);
+ ++Count;
+ break;
+ case X86::COND_NE_OR_P:
+ // Synthesize NE_OR_P with two branches.
+ BuildMI(&MBB, dl, get(X86::JNE_4)).addMBB(TBB);
+ ++Count;
+ BuildMI(&MBB, dl, get(X86::JP_4)).addMBB(TBB);
+ ++Count;
+ break;
+ default: {
+ unsigned Opc = GetCondBranchFromCond(CC);
+ BuildMI(&MBB, dl, get(Opc)).addMBB(TBB);
+ ++Count;
+ }
+ }
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, dl, get(X86::JMP_4)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+/// isHReg - Test if the given register is a physical h register.
+static bool isHReg(unsigned Reg) {
+ return X86::GR8_ABCD_HRegClass.contains(Reg);
+}
+
+bool X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC,
+ DebugLoc DL) const {
+
+ // Determine if DstRC and SrcRC have a common superclass in common.
+ const TargetRegisterClass *CommonRC = DestRC;
+ if (DestRC == SrcRC)
+ /* Source and destination have the same register class. */;
+ else if (CommonRC->hasSuperClass(SrcRC))
+ CommonRC = SrcRC;
+ else if (!DestRC->hasSubClass(SrcRC)) {
+ // Neither of GR64_NOREX or GR64_NOSP is a superclass of the other,
+ // but we want to copy them as GR64. Similarly, for GR32_NOREX and
+ // GR32_NOSP, copy as GR32.
+ if (SrcRC->hasSuperClass(&X86::GR64RegClass) &&
+ DestRC->hasSuperClass(&X86::GR64RegClass))
+ CommonRC = &X86::GR64RegClass;
+ else if (SrcRC->hasSuperClass(&X86::GR32RegClass) &&
+ DestRC->hasSuperClass(&X86::GR32RegClass))
+ CommonRC = &X86::GR32RegClass;
+ else
+ CommonRC = 0;
+ }
+
+ if (CommonRC) {
+ unsigned Opc;
+ if (CommonRC == &X86::GR64RegClass || CommonRC == &X86::GR64_NOSPRegClass) {
+ Opc = X86::MOV64rr;
+ } else if (CommonRC == &X86::GR32RegClass ||
+ CommonRC == &X86::GR32_NOSPRegClass) {
+ Opc = X86::MOV32rr;
+ } else if (CommonRC == &X86::GR16RegClass) {
+ Opc = X86::MOV16rr;
+ } else if (CommonRC == &X86::GR8RegClass) {
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if ((isHReg(DestReg) || isHReg(SrcReg)) &&
+ TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8rr_NOREX;
+ else
+ Opc = X86::MOV8rr;
+ } else if (CommonRC == &X86::GR64_ABCDRegClass) {
+ Opc = X86::MOV64rr;
+ } else if (CommonRC == &X86::GR32_ABCDRegClass) {
+ Opc = X86::MOV32rr;
+ } else if (CommonRC == &X86::GR16_ABCDRegClass) {
+ Opc = X86::MOV16rr;
+ } else if (CommonRC == &X86::GR8_ABCD_LRegClass) {
+ Opc = X86::MOV8rr;
+ } else if (CommonRC == &X86::GR8_ABCD_HRegClass) {
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8rr_NOREX;
+ else
+ Opc = X86::MOV8rr;
+ } else if (CommonRC == &X86::GR64_NOREXRegClass ||
+ CommonRC == &X86::GR64_NOREX_NOSPRegClass) {
+ Opc = X86::MOV64rr;
+ } else if (CommonRC == &X86::GR32_NOREXRegClass) {
+ Opc = X86::MOV32rr;
+ } else if (CommonRC == &X86::GR16_NOREXRegClass) {
+ Opc = X86::MOV16rr;
+ } else if (CommonRC == &X86::GR8_NOREXRegClass) {
+ Opc = X86::MOV8rr;
+ } else if (CommonRC == &X86::GR64_TCRegClass) {
+ Opc = X86::MOV64rr_TC;
+ } else if (CommonRC == &X86::GR32_TCRegClass) {
+ Opc = X86::MOV32rr_TC;
+ } else if (CommonRC == &X86::RFP32RegClass) {
+ Opc = X86::MOV_Fp3232;
+ } else if (CommonRC == &X86::RFP64RegClass || CommonRC == &X86::RSTRegClass) {
+ Opc = X86::MOV_Fp6464;
+ } else if (CommonRC == &X86::RFP80RegClass) {
+ Opc = X86::MOV_Fp8080;
+ } else if (CommonRC == &X86::FR32RegClass) {
+ Opc = X86::FsMOVAPSrr;
+ } else if (CommonRC == &X86::FR64RegClass) {
+ Opc = X86::FsMOVAPDrr;
+ } else if (CommonRC == &X86::VR128RegClass) {
+ Opc = X86::MOVAPSrr;
+ } else if (CommonRC == &X86::VR64RegClass) {
+ Opc = X86::MMX_MOVQ64rr;
+ } else {
+ return false;
+ }
+ BuildMI(MBB, MI, DL, get(Opc), DestReg).addReg(SrcReg);
+ return true;
+ }
+
+ // Moving EFLAGS to / from another register requires a push and a pop.
+ if (SrcRC == &X86::CCRRegClass) {
+ if (SrcReg != X86::EFLAGS)
+ return false;
+ if (DestRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF64));
+ BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
+ return true;
+ } else if (DestRC == &X86::GR32RegClass ||
+ DestRC == &X86::GR32_NOSPRegClass) {
+ BuildMI(MBB, MI, DL, get(X86::PUSHF32));
+ BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
+ return true;
+ }
+ } else if (DestRC == &X86::CCRRegClass) {
+ if (DestReg != X86::EFLAGS)
+ return false;
+ if (SrcRC == &X86::GR64RegClass || DestRC == &X86::GR64_NOSPRegClass) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH64r)).addReg(SrcReg);
+ BuildMI(MBB, MI, DL, get(X86::POPF64));
+ return true;
+ } else if (SrcRC == &X86::GR32RegClass ||
+ DestRC == &X86::GR32_NOSPRegClass) {
+ BuildMI(MBB, MI, DL, get(X86::PUSH32r)).addReg(SrcReg);
+ BuildMI(MBB, MI, DL, get(X86::POPF32));
+ return true;
+ }
+ }
+
+ // Moving from ST(0) turns into FpGET_ST0_32 etc.
+ if (SrcRC == &X86::RSTRegClass) {
+ // Copying from ST(0)/ST(1).
+ if (SrcReg != X86::ST0 && SrcReg != X86::ST1)
+ // Can only copy from ST(0)/ST(1) right now
+ return false;
+ bool isST0 = SrcReg == X86::ST0;
+ unsigned Opc;
+ if (DestRC == &X86::RFP32RegClass)
+ Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
+ else if (DestRC == &X86::RFP64RegClass)
+ Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
+ else {
+ if (DestRC != &X86::RFP80RegClass)
+ return false;
+ Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
+ }
+ BuildMI(MBB, MI, DL, get(Opc), DestReg);
+ return true;
+ }
+
+ // Moving to ST(0) turns into FpSET_ST0_32 etc.
+ if (DestRC == &X86::RSTRegClass) {
+ // Copying to ST(0) / ST(1).
+ if (DestReg != X86::ST0 && DestReg != X86::ST1)
+ // Can only copy to TOS right now
+ return false;
+ bool isST0 = DestReg == X86::ST0;
+ unsigned Opc;
+ if (SrcRC == &X86::RFP32RegClass)
+ Opc = isST0 ? X86::FpSET_ST0_32 : X86::FpSET_ST1_32;
+ else if (SrcRC == &X86::RFP64RegClass)
+ Opc = isST0 ? X86::FpSET_ST0_64 : X86::FpSET_ST1_64;
+ else {
+ if (SrcRC != &X86::RFP80RegClass)
+ return false;
+ Opc = isST0 ? X86::FpSET_ST0_80 : X86::FpSET_ST1_80;
+ }
+ BuildMI(MBB, MI, DL, get(Opc)).addReg(SrcReg);
+ return true;
+ }
+
+ // Not yet supported!
+ return false;
+}
+
+static unsigned getStoreRegOpcode(unsigned SrcReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ TargetMachine &TM) {
+ unsigned Opc = 0;
+ if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
+ Opc = X86::MOV64mr;
+ } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
+ Opc = X86::MOV32mr;
+ } else if (RC == &X86::GR16RegClass) {
+ Opc = X86::MOV16mr;
+ } else if (RC == &X86::GR8RegClass) {
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if (isHReg(SrcReg) &&
+ TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8mr_NOREX;
+ else
+ Opc = X86::MOV8mr;
+ } else if (RC == &X86::GR64_ABCDRegClass) {
+ Opc = X86::MOV64mr;
+ } else if (RC == &X86::GR32_ABCDRegClass) {
+ Opc = X86::MOV32mr;
+ } else if (RC == &X86::GR16_ABCDRegClass) {
+ Opc = X86::MOV16mr;
+ } else if (RC == &X86::GR8_ABCD_LRegClass) {
+ Opc = X86::MOV8mr;
+ } else if (RC == &X86::GR8_ABCD_HRegClass) {
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8mr_NOREX;
+ else
+ Opc = X86::MOV8mr;
+ } else if (RC == &X86::GR64_NOREXRegClass ||
+ RC == &X86::GR64_NOREX_NOSPRegClass) {
+ Opc = X86::MOV64mr;
+ } else if (RC == &X86::GR32_NOREXRegClass) {
+ Opc = X86::MOV32mr;
+ } else if (RC == &X86::GR16_NOREXRegClass) {
+ Opc = X86::MOV16mr;
+ } else if (RC == &X86::GR8_NOREXRegClass) {
+ Opc = X86::MOV8mr;
+ } else if (RC == &X86::GR64_TCRegClass) {
+ Opc = X86::MOV64mr_TC;
+ } else if (RC == &X86::GR32_TCRegClass) {
+ Opc = X86::MOV32mr_TC;
+ } else if (RC == &X86::RFP80RegClass) {
+ Opc = X86::ST_FpP80m; // pops
+ } else if (RC == &X86::RFP64RegClass) {
+ Opc = X86::ST_Fp64m;
+ } else if (RC == &X86::RFP32RegClass) {
+ Opc = X86::ST_Fp32m;
+ } else if (RC == &X86::FR32RegClass) {
+ Opc = X86::MOVSSmr;
+ } else if (RC == &X86::FR64RegClass) {
+ Opc = X86::MOVSDmr;
+ } else if (RC == &X86::VR128RegClass) {
+ // If stack is realigned we can use aligned stores.
+ Opc = isStackAligned ? X86::MOVAPSmr : X86::MOVUPSmr;
+ } else if (RC == &X86::VR64RegClass) {
+ Opc = X86::MMX_MOVQ64mr;
+ } else {
+ llvm_unreachable("Unknown regclass");
+ }
+
+ return Opc;
+}
+
+void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
+ .addReg(SrcReg, getKillRegState(isKill));
+}
+
+void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
+ bool isKill,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ bool isAligned = (*MMOBegin)->getAlignment() >= 16;
+ unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ MIB.addReg(SrcReg, getKillRegState(isKill));
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+static unsigned getLoadRegOpcode(unsigned DestReg,
+ const TargetRegisterClass *RC,
+ bool isStackAligned,
+ const TargetMachine &TM) {
+ unsigned Opc = 0;
+ if (RC == &X86::GR64RegClass || RC == &X86::GR64_NOSPRegClass) {
+ Opc = X86::MOV64rm;
+ } else if (RC == &X86::GR32RegClass || RC == &X86::GR32_NOSPRegClass) {
+ Opc = X86::MOV32rm;
+ } else if (RC == &X86::GR16RegClass) {
+ Opc = X86::MOV16rm;
+ } else if (RC == &X86::GR8RegClass) {
+ // Copying to or from a physical H register on x86-64 requires a NOREX
+ // move. Otherwise use a normal move.
+ if (isHReg(DestReg) &&
+ TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8rm_NOREX;
+ else
+ Opc = X86::MOV8rm;
+ } else if (RC == &X86::GR64_ABCDRegClass) {
+ Opc = X86::MOV64rm;
+ } else if (RC == &X86::GR32_ABCDRegClass) {
+ Opc = X86::MOV32rm;
+ } else if (RC == &X86::GR16_ABCDRegClass) {
+ Opc = X86::MOV16rm;
+ } else if (RC == &X86::GR8_ABCD_LRegClass) {
+ Opc = X86::MOV8rm;
+ } else if (RC == &X86::GR8_ABCD_HRegClass) {
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ Opc = X86::MOV8rm_NOREX;
+ else
+ Opc = X86::MOV8rm;
+ } else if (RC == &X86::GR64_NOREXRegClass ||
+ RC == &X86::GR64_NOREX_NOSPRegClass) {
+ Opc = X86::MOV64rm;
+ } else if (RC == &X86::GR32_NOREXRegClass) {
+ Opc = X86::MOV32rm;
+ } else if (RC == &X86::GR16_NOREXRegClass) {
+ Opc = X86::MOV16rm;
+ } else if (RC == &X86::GR8_NOREXRegClass) {
+ Opc = X86::MOV8rm;
+ } else if (RC == &X86::GR64_TCRegClass) {
+ Opc = X86::MOV64rm_TC;
+ } else if (RC == &X86::GR32_TCRegClass) {
+ Opc = X86::MOV32rm_TC;
+ } else if (RC == &X86::RFP80RegClass) {
+ Opc = X86::LD_Fp80m;
+ } else if (RC == &X86::RFP64RegClass) {
+ Opc = X86::LD_Fp64m;
+ } else if (RC == &X86::RFP32RegClass) {
+ Opc = X86::LD_Fp32m;
+ } else if (RC == &X86::FR32RegClass) {
+ Opc = X86::MOVSSrm;
+ } else if (RC == &X86::FR64RegClass) {
+ Opc = X86::MOVSDrm;
+ } else if (RC == &X86::VR128RegClass) {
+ // If stack is realigned we can use aligned loads.
+ Opc = isStackAligned ? X86::MOVAPSrm : X86::MOVUPSrm;
+ } else if (RC == &X86::VR64RegClass) {
+ Opc = X86::MMX_MOVQ64rm;
+ } else {
+ llvm_unreachable("Unknown regclass");
+ }
+
+ return Opc;
+}
+
+void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ const MachineFunction &MF = *MBB.getParent();
+ bool isAligned = (RI.getStackAlignment() >= 16) || RI.canRealignStack(MF);
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
+ DebugLoc DL = MBB.findDebugLoc(MI);
+ addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
+}
+
+void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
+ SmallVectorImpl<MachineOperand> &Addr,
+ const TargetRegisterClass *RC,
+ MachineInstr::mmo_iterator MMOBegin,
+ MachineInstr::mmo_iterator MMOEnd,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ bool isAligned = (*MMOBegin)->getAlignment() >= 16;
+ unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
+ DebugLoc DL;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
+ for (unsigned i = 0, e = Addr.size(); i != e; ++i)
+ MIB.addOperand(Addr[i]);
+ (*MIB).setMemRefs(MMOBegin, MMOEnd);
+ NewMIs.push_back(MIB);
+}
+
+bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
+ bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
+ unsigned SlotSize = is64Bit ? 8 : 4;
+
+ MachineFunction &MF = *MBB.getParent();
+ unsigned FPReg = RI.getFrameRegister(MF);
+ X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned CalleeFrameSize = 0;
+
+ unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
+ for (unsigned i = CSI.size(); i != 0; --i) {
+ unsigned Reg = CSI[i-1].getReg();
+ const TargetRegisterClass *RegClass = CSI[i-1].getRegClass();
+ // Add the callee-saved register as live-in. It's killed at the spill.
+ MBB.addLiveIn(Reg);
+ if (Reg == FPReg)
+ // X86RegisterInfo::emitPrologue will handle spilling of frame register.
+ continue;
+ if (RegClass != &X86::VR128RegClass && !isWin64) {
+ CalleeFrameSize += SlotSize;
+ BuildMI(MBB, MI, DL, get(Opc)).addReg(Reg, RegState::Kill);
+ } else {
+ storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(), RegClass,
+ &RI);
+ }
+ }
+
+ X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
+ return true;
+}
+
+bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo *TRI) const {
+ if (CSI.empty())
+ return false;
+
+ DebugLoc DL = MBB.findDebugLoc(MI);
+
+ MachineFunction &MF = *MBB.getParent();
+ unsigned FPReg = RI.getFrameRegister(MF);
+ bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
+ bool isWin64 = TM.getSubtarget<X86Subtarget>().isTargetWin64();
+ unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
+ for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ if (Reg == FPReg)
+ // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
+ continue;
+ const TargetRegisterClass *RegClass = CSI[i].getRegClass();
+ if (RegClass != &X86::VR128RegClass && !isWin64) {
+ BuildMI(MBB, MI, DL, get(Opc), Reg);
+ } else {
+ loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RegClass, &RI);
+ }
+ }
+ return true;
+}
+
+MachineInstr*
+X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
+ int FrameIx, uint64_t Offset,
+ const MDNode *MDPtr,
+ DebugLoc DL) const {
+ X86AddressMode AM;
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = FrameIx;
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
+ addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
+ return &*MIB;
+}
+
+static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI,
+ const TargetInstrInfo &TII) {
+ // Create the base instruction with the memory operand as the first part.
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(NewMI);
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+
+ // Loop over the rest of the ri operands, converting them over.
+ unsigned NumOps = MI->getDesc().getNumOperands()-2;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ MachineOperand &MO = MI->getOperand(i+2);
+ MIB.addOperand(MO);
+ }
+ for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ MIB.addOperand(MO);
+ }
+ return MIB;
+}
+
+static MachineInstr *FuseInst(MachineFunction &MF,
+ unsigned Opcode, unsigned OpNo,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI, const TargetInstrInfo &TII) {
+ MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
+ MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(NewMI);
+
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (i == OpNo) {
+ assert(MO.isReg() && "Expected to fold into reg operand!");
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ } else {
+ MIB.addOperand(MO);
+ }
+ }
+ return MIB;
+}
+
+static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ MachineInstr *MI) {
+ MachineFunction &MF = *MI->getParent()->getParent();
+ MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
+
+ unsigned NumAddrOps = MOs.size();
+ for (unsigned i = 0; i != NumAddrOps; ++i)
+ MIB.addOperand(MOs[i]);
+ if (NumAddrOps < 4) // FrameIndex only
+ addOffset(MIB, 0);
+ return MIB.addImm(0);
+}
+
+MachineInstr*
+X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI, unsigned i,
+ const SmallVectorImpl<MachineOperand> &MOs,
+ unsigned Size, unsigned Align) const {
+ const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
+ bool isTwoAddrFold = false;
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
+
+ MachineInstr *NewMI = NULL;
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ if (isTwoAddr && NumOps >= 2 && i < 2 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isReg() &&
+ MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ isTwoAddrFold = true;
+ } else if (i == 0) { // If operand 0
+ if (MI->getOpcode() == X86::MOV64r0)
+ NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
+ else if (MI->getOpcode() == X86::MOV32r0)
+ NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
+ else if (MI->getOpcode() == X86::MOV16r0)
+ NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
+ else if (MI->getOpcode() == X86::MOV8r0)
+ NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
+ if (NewMI)
+ return NewMI;
+
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (i == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (i == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ }
+
+ // If table selected...
+ if (OpcodeTablePtr) {
+ // Find the Opcode to fuse
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
+ OpcodeTablePtr->find((unsigned*)MI->getOpcode());
+ if (I != OpcodeTablePtr->end()) {
+ unsigned Opcode = I->second.first;
+ unsigned MinAlign = I->second.second;
+ if (Align < MinAlign)
+ return NULL;
+ bool NarrowToMOV32rm = false;
+ if (Size) {
+ unsigned RCSize = MI->getDesc().OpInfo[i].getRegClass(&RI)->getSize();
+ if (Size < RCSize) {
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
+ return NULL;
+ // If this is a 64-bit load, but the spill slot is 32, then we can do
+ // a 32-bit load which is implicitly zero-extended. This likely is due
+ // to liveintervalanalysis remat'ing a load from stack slot.
+ if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
+ return NULL;
+ Opcode = X86::MOV32rm;
+ NarrowToMOV32rm = true;
+ }
+ }
+
+ if (isTwoAddrFold)
+ NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
+ else
+ NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
+
+ if (NarrowToMOV32rm) {
+ // If this is the special case where we use a MOV32rm to load a 32-bit
+ // value and zero-extend the top bits. Change the destination register
+ // to a 32-bit one.
+ unsigned DstReg = NewMI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg))
+ NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
+ X86::sub_32bit));
+ else
+ NewMI->getOperand(0).setSubReg(X86::sub_32bit);
+ }
+ return NewMI;
+ }
+ }
+
+ // No fusion
+ if (PrintFailedFusing)
+ dbgs() << "We failed to fuse operand " << i << " in " << *MI;
+ return NULL;
+}
+
+
+MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+ // Check switch flag
+ if (NoFusing) return NULL;
+
+ if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
+ switch (MI->getOpcode()) {
+ case X86::CVTSD2SSrr:
+ case X86::Int_CVTSD2SSrr:
+ case X86::CVTSS2SDrr:
+ case X86::Int_CVTSS2SDrr:
+ case X86::RCPSSr:
+ case X86::RCPSSr_Int:
+ case X86::ROUNDSDr_Int:
+ case X86::ROUNDSSr_Int:
+ case X86::RSQRTSSr:
+ case X86::RSQRTSSr_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSr_Int:
+ return 0;
+ }
+
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
+ unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ unsigned RCSize = 0;
+ switch (MI->getOpcode()) {
+ default: return NULL;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
+ }
+ // Check if it's safe to fold the load. If the size of the object is
+ // narrower than the load width, then it's not.
+ if (Size < RCSize)
+ return NULL;
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return NULL;
+
+ SmallVector<MachineOperand,4> MOs;
+ MOs.push_back(MachineOperand::CreateFI(FrameIndex));
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
+}
+
+MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ MachineInstr *LoadMI) const {
+ // Check switch flag
+ if (NoFusing) return NULL;
+
+ if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
+ switch (MI->getOpcode()) {
+ case X86::CVTSD2SSrr:
+ case X86::Int_CVTSD2SSrr:
+ case X86::CVTSS2SDrr:
+ case X86::Int_CVTSS2SDrr:
+ case X86::RCPSSr:
+ case X86::RCPSSr_Int:
+ case X86::ROUNDSDr_Int:
+ case X86::ROUNDSSr_Int:
+ case X86::RSQRTSSr:
+ case X86::RSQRTSSr_Int:
+ case X86::SQRTSSr:
+ case X86::SQRTSSr_Int:
+ return 0;
+ }
+
+ // Determine the alignment of the load.
+ unsigned Alignment = 0;
+ if (LoadMI->hasOneMemOperand())
+ Alignment = (*LoadMI->memoperands_begin())->getAlignment();
+ else
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0PS:
+ case X86::V_SET0PD:
+ case X86::V_SET0PI:
+ case X86::V_SETALLONES:
+ Alignment = 16;
+ break;
+ case X86::FsFLD0SD:
+ Alignment = 8;
+ break;
+ case X86::FsFLD0SS:
+ Alignment = 4;
+ break;
+ default:
+ llvm_unreachable("Don't know how to fold this instruction!");
+ }
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ unsigned NewOpc = 0;
+ switch (MI->getOpcode()) {
+ default: return NULL;
+ case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
+ case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
+ case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
+ case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
+ }
+ // Change to CMPXXri r, 0 first.
+ MI->setDesc(get(NewOpc));
+ MI->getOperand(1).ChangeToImmediate(0);
+ } else if (Ops.size() != 1)
+ return NULL;
+
+ SmallVector<MachineOperand,X86AddrNumOperands> MOs;
+ switch (LoadMI->getOpcode()) {
+ case X86::V_SET0PS:
+ case X86::V_SET0PD:
+ case X86::V_SET0PI:
+ case X86::V_SETALLONES:
+ case X86::FsFLD0SD:
+ case X86::FsFLD0SS: {
+ // Folding a V_SET0P? or V_SETALLONES as a load, to ease register pressure.
+ // Create a constant-pool entry and operands to load from it.
+
+ // Medium and large mode can't fold loads this way.
+ if (TM.getCodeModel() != CodeModel::Small &&
+ TM.getCodeModel() != CodeModel::Kernel)
+ return NULL;
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ if (TM.getRelocationModel() == Reloc::PIC_) {
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ PICBase = X86::RIP;
+ else
+ // FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF);
+ // This doesn't work for several reasons.
+ // 1. GlobalBaseReg may have been spilled.
+ // 2. It may not be live at MI.
+ return NULL;
+ }
+
+ // Create a constant-pool entry.
+ MachineConstantPool &MCP = *MF.getConstantPool();
+ const Type *Ty;
+ if (LoadMI->getOpcode() == X86::FsFLD0SS)
+ Ty = Type::getFloatTy(MF.getFunction()->getContext());
+ else if (LoadMI->getOpcode() == X86::FsFLD0SD)
+ Ty = Type::getDoubleTy(MF.getFunction()->getContext());
+ else
+ Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
+ const Constant *C = LoadMI->getOpcode() == X86::V_SETALLONES ?
+ Constant::getAllOnesValue(Ty) :
+ Constant::getNullValue(Ty);
+ unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
+
+ // Create operands to load from the constant pool entry.
+ MOs.push_back(MachineOperand::CreateReg(PICBase, false));
+ MOs.push_back(MachineOperand::CreateImm(1));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
+ MOs.push_back(MachineOperand::CreateReg(0, false));
+ break;
+ }
+ default: {
+ // Folding a normal load. Just copy the load's address operands.
+ unsigned NumOps = LoadMI->getDesc().getNumOperands();
+ for (unsigned i = NumOps - X86AddrNumOperands; i != NumOps; ++i)
+ MOs.push_back(LoadMI->getOperand(i));
+ break;
+ }
+ }
+ return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
+}
+
+
+bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ // Check switch flag
+ if (NoFusing) return 0;
+
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case X86::TEST8rr:
+ case X86::TEST16rr:
+ case X86::TEST32rr:
+ case X86::TEST64rr:
+ return true;
+ }
+ }
+
+ if (Ops.size() != 1)
+ return false;
+
+ unsigned OpNum = Ops[0];
+ unsigned Opc = MI->getOpcode();
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ bool isTwoAddr = NumOps > 1 &&
+ MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
+
+ // Folding a memory location into the two-address part of a two-address
+ // instruction is different than folding it other places. It requires
+ // replacing the *two* registers with the memory location.
+ const DenseMap<unsigned*, std::pair<unsigned,unsigned> > *OpcodeTablePtr=NULL;
+ if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2Addr;
+ } else if (OpNum == 0) { // If operand 0
+ switch (Opc) {
+ case X86::MOV8r0:
+ case X86::MOV16r0:
+ case X86::MOV32r0:
+ case X86::MOV64r0:
+ return true;
+ default: break;
+ }
+ OpcodeTablePtr = &RegOp2MemOpTable0;
+ } else if (OpNum == 1) {
+ OpcodeTablePtr = &RegOp2MemOpTable1;
+ } else if (OpNum == 2) {
+ OpcodeTablePtr = &RegOp2MemOpTable2;
+ }
+
+ if (OpcodeTablePtr) {
+ // Find the Opcode to fuse
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
+ OpcodeTablePtr->find((unsigned*)Opc);
+ if (I != OpcodeTablePtr->end())
+ return true;
+ }
+ return false;
+}
+
+bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
+ unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const {
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & 0xf;
+ bool FoldedLoad = I->second.second & (1 << 4);
+ bool FoldedStore = I->second.second & (1 << 5);
+ if (UnfoldLoad && !FoldedLoad)
+ return false;
+ UnfoldLoad &= FoldedLoad;
+ if (UnfoldStore && !FoldedStore)
+ return false;
+ UnfoldStore &= FoldedStore;
+
+ const TargetInstrDesc &TID = get(Opc);
+ const TargetOperandInfo &TOI = TID.OpInfo[Index];
+ const TargetRegisterClass *RC = TOI.getRegClass(&RI);
+ SmallVector<MachineOperand, X86AddrNumOperands> AddrOps;
+ SmallVector<MachineOperand,2> BeforeOps;
+ SmallVector<MachineOperand,2> AfterOps;
+ SmallVector<MachineOperand,4> ImpOps;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (i >= Index && i < Index + X86AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (Op.isReg() && Op.isImplicit())
+ ImpOps.push_back(Op);
+ else if (i < Index)
+ BeforeOps.push_back(Op);
+ else if (i > Index)
+ AfterOps.push_back(Op);
+ }
+
+ // Emit the load instruction.
+ if (UnfoldLoad) {
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
+ if (UnfoldStore) {
+ // Address operands cannot be marked isKill.
+ for (unsigned i = 1; i != 1 + X86AddrNumOperands; ++i) {
+ MachineOperand &MO = NewMIs[0]->getOperand(i);
+ if (MO.isReg())
+ MO.setIsKill(false);
+ }
+ }
+ }
+
+ // Emit the data processing instruction.
+ MachineInstr *DataMI = MF.CreateMachineInstr(TID, MI->getDebugLoc(), true);
+ MachineInstrBuilder MIB(DataMI);
+
+ if (FoldedStore)
+ MIB.addReg(Reg, RegState::Define);
+ for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
+ MIB.addOperand(BeforeOps[i]);
+ if (FoldedLoad)
+ MIB.addReg(Reg);
+ for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
+ MIB.addOperand(AfterOps[i]);
+ for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
+ MachineOperand &MO = ImpOps[i];
+ MIB.addReg(MO.getReg(),
+ getDefRegState(MO.isDef()) |
+ RegState::Implicit |
+ getKillRegState(MO.isKill()) |
+ getDeadRegState(MO.isDead()) |
+ getUndefRegState(MO.isUndef()));
+ }
+ // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
+ unsigned NewOpc = 0;
+ switch (DataMI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri32:
+ case X86::CMP64ri8:
+ case X86::CMP32ri:
+ case X86::CMP32ri8:
+ case X86::CMP16ri:
+ case X86::CMP16ri8:
+ case X86::CMP8ri: {
+ MachineOperand &MO0 = DataMI->getOperand(0);
+ MachineOperand &MO1 = DataMI->getOperand(1);
+ if (MO1.getImm() == 0) {
+ switch (DataMI->getOpcode()) {
+ default: break;
+ case X86::CMP64ri8:
+ case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
+ case X86::CMP32ri8:
+ case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
+ case X86::CMP16ri8:
+ case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
+ case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
+ }
+ DataMI->setDesc(get(NewOpc));
+ MO1.ChangeToRegister(MO0.getReg(), false);
+ }
+ }
+ }
+ NewMIs.push_back(DataMI);
+
+ // Emit the store instruction.
+ if (UnfoldStore) {
+ const TargetRegisterClass *DstRC = TID.OpInfo[0].getRegClass(&RI);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(MI->memoperands_begin(),
+ MI->memoperands_end());
+ storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
+ }
+
+ return true;
+}
+
+bool
+X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
+ SmallVectorImpl<SDNode*> &NewNodes) const {
+ if (!N->isMachineOpcode())
+ return false;
+
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find((unsigned*)N->getMachineOpcode());
+ if (I == MemOp2RegOpTable.end())
+ return false;
+ unsigned Opc = I->second.first;
+ unsigned Index = I->second.second & 0xf;
+ bool FoldedLoad = I->second.second & (1 << 4);
+ bool FoldedStore = I->second.second & (1 << 5);
+ const TargetInstrDesc &TID = get(Opc);
+ const TargetRegisterClass *RC = TID.OpInfo[Index].getRegClass(&RI);
+ unsigned NumDefs = TID.NumDefs;
+ std::vector<SDValue> AddrOps;
+ std::vector<SDValue> BeforeOps;
+ std::vector<SDValue> AfterOps;
+ DebugLoc dl = N->getDebugLoc();
+ unsigned NumOps = N->getNumOperands();
+ for (unsigned i = 0; i != NumOps-1; ++i) {
+ SDValue Op = N->getOperand(i);
+ if (i >= Index-NumDefs && i < Index-NumDefs + X86AddrNumOperands)
+ AddrOps.push_back(Op);
+ else if (i < Index-NumDefs)
+ BeforeOps.push_back(Op);
+ else if (i > Index-NumDefs)
+ AfterOps.push_back(Op);
+ }
+ SDValue Chain = N->getOperand(NumOps-1);
+ AddrOps.push_back(Chain);
+
+ // Emit the load instruction.
+ SDNode *Load = 0;
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (FoldedLoad) {
+ EVT VT = *RC->vt_begin();
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ bool isAligned = (*MMOs.first)->getAlignment() >= 16;
+ Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
+ VT, MVT::Other, &AddrOps[0], AddrOps.size());
+ NewNodes.push_back(Load);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ // Emit the data processing instruction.
+ std::vector<EVT> VTs;
+ const TargetRegisterClass *DstRC = 0;
+ if (TID.getNumDefs() > 0) {
+ DstRC = TID.OpInfo[0].getRegClass(&RI);
+ VTs.push_back(*DstRC->vt_begin());
+ }
+ for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
+ VTs.push_back(VT);
+ }
+ if (Load)
+ BeforeOps.push_back(SDValue(Load, 0));
+ std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
+ SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
+ BeforeOps.size());
+ NewNodes.push_back(NewNode);
+
+ // Emit the store instruction.
+ if (FoldedStore) {
+ AddrOps.pop_back();
+ AddrOps.push_back(SDValue(NewNode, 0));
+ AddrOps.push_back(Chain);
+ std::pair<MachineInstr::mmo_iterator,
+ MachineInstr::mmo_iterator> MMOs =
+ MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
+ cast<MachineSDNode>(N)->memoperands_end());
+ bool isAligned = (*MMOs.first)->getAlignment() >= 16;
+ SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
+ isAligned, TM),
+ dl, MVT::Other,
+ &AddrOps[0], AddrOps.size());
+ NewNodes.push_back(Store);
+
+ // Preserve memory reference information.
+ cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
+ }
+
+ return true;
+}
+
+unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
+ bool UnfoldLoad, bool UnfoldStore,
+ unsigned *LoadRegIndex) const {
+ DenseMap<unsigned*, std::pair<unsigned,unsigned> >::const_iterator I =
+ MemOp2RegOpTable.find((unsigned*)Opc);
+ if (I == MemOp2RegOpTable.end())
+ return 0;
+ bool FoldedLoad = I->second.second & (1 << 4);
+ bool FoldedStore = I->second.second & (1 << 5);
+ if (UnfoldLoad && !FoldedLoad)
+ return 0;
+ if (UnfoldStore && !FoldedStore)
+ return 0;
+ if (LoadRegIndex)
+ *LoadRegIndex = I->second.second & 0xf;
+ return I->second.first;
+}
+
+bool
+X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1, int64_t &Offset2) const {
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ switch (Opc1) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVUPSrm_Int:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ case X86::MOVDQUrm_Int:
+ break;
+ }
+ switch (Opc2) {
+ default: return false;
+ case X86::MOV8rm:
+ case X86::MOV16rm:
+ case X86::MOV32rm:
+ case X86::MOV64rm:
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MOVSSrm:
+ case X86::MOVSDrm:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ case X86::FsMOVAPSrm:
+ case X86::FsMOVAPDrm:
+ case X86::MOVAPSrm:
+ case X86::MOVUPSrm:
+ case X86::MOVUPSrm_Int:
+ case X86::MOVAPDrm:
+ case X86::MOVDQArm:
+ case X86::MOVDQUrm:
+ case X86::MOVDQUrm_Int:
+ break;
+ }
+
+ // Check if chain operands and base addresses match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(5) != Load2->getOperand(5))
+ return false;
+ // Segment operands should match as well.
+ if (Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+ // Scale should be 1, Index should be Reg0.
+ if (Load1->getOperand(1) == Load2->getOperand(1) &&
+ Load1->getOperand(2) == Load2->getOperand(2)) {
+ if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
+ return false;
+
+ // Now let's examine the displacements.
+ if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
+ isa<ConstantSDNode>(Load2->getOperand(3))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ assert(Offset2 > Offset1);
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ unsigned Opc1 = Load1->getMachineOpcode();
+ unsigned Opc2 = Load2->getMachineOpcode();
+ if (Opc1 != Opc2)
+ return false; // FIXME: overly conservative?
+
+ switch (Opc1) {
+ default: break;
+ case X86::LD_Fp32m:
+ case X86::LD_Fp64m:
+ case X86::LD_Fp80m:
+ case X86::MMX_MOVD64rm:
+ case X86::MMX_MOVQ64rm:
+ return false;
+ }
+
+ EVT VT = Load1->getValueType(0);
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: {
+ // XMM registers. In 64-bit mode we can be a bit more aggressive since we
+ // have 16 of them to play with.
+ if (TM.getSubtargetImpl()->is64Bit()) {
+ if (NumLoads >= 3)
+ return false;
+ } else if (NumLoads)
+ return false;
+ break;
+ }
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ case MVT::i64:
+ case MVT::f32:
+ case MVT::f64:
+ if (NumLoads)
+ return false;
+ }
+
+ return true;
+}
+
+
+bool X86InstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 1 && "Invalid X86 branch condition!");
+ X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
+ if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
+ return true;
+ Cond[0].setImm(GetOppositeBranchCondition(CC));
+ return false;
+}
+
+bool X86InstrInfo::
+isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
+ // FIXME: Return false for x87 stack register classes for now. We can't
+ // allow any loads of these registers before FpGet_ST0_80.
+ return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
+ RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
+}
+
+
+/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or higher)
+/// register? e.g. r8, xmm8, xmm13, etc.
+bool X86InstrInfo::isX86_64ExtendedReg(unsigned RegNo) {
+ switch (RegNo) {
+ default: break;
+ case X86::R8: case X86::R9: case X86::R10: case X86::R11:
+ case X86::R12: case X86::R13: case X86::R14: case X86::R15:
+ case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
+ case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
+ case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
+ case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
+ case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
+ case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
+ case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
+ case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
+ return true;
+ }
+ return false;
+}
+
+
+/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
+/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
+/// size, and 3) use of X86-64 extended registers.
+unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
+ unsigned REX = 0;
+ const TargetInstrDesc &Desc = MI.getDesc();
+
+ // Pseudo instructions do not need REX prefix byte.
+ if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
+ return 0;
+ if (Desc.TSFlags & X86II::REX_W)
+ REX |= 1 << 3;
+
+ unsigned NumOps = Desc.getNumOperands();
+ if (NumOps) {
+ bool isTwoAddr = NumOps > 1 &&
+ Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
+
+ // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
+ unsigned i = isTwoAddr ? 1 : 0;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ unsigned Reg = MO.getReg();
+ if (isX86_64NonExtLowByteReg(Reg))
+ REX |= 0x40;
+ }
+ }
+
+ switch (Desc.TSFlags & X86II::FormMask) {
+ case X86II::MRMInitReg:
+ if (isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= (1 << 0) | (1 << 2);
+ break;
+ case X86II::MRMSrcReg: {
+ if (isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 2;
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (isX86_64ExtendedReg(MO))
+ REX |= 1 << 0;
+ }
+ break;
+ }
+ case X86II::MRMSrcMem: {
+ if (isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 2;
+ unsigned Bit = 0;
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (isX86_64ExtendedReg(MO))
+ REX |= 1 << Bit;
+ Bit++;
+ }
+ }
+ break;
+ }
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRMDestMem: {
+ unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
+ i = isTwoAddr ? 1 : 0;
+ if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
+ REX |= 1 << 2;
+ unsigned Bit = 0;
+ for (; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (isX86_64ExtendedReg(MO))
+ REX |= 1 << Bit;
+ Bit++;
+ }
+ }
+ break;
+ }
+ default: {
+ if (isX86_64ExtendedReg(MI.getOperand(0)))
+ REX |= 1 << 0;
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MachineOperand& MO = MI.getOperand(i);
+ if (isX86_64ExtendedReg(MO))
+ REX |= 1 << 2;
+ }
+ break;
+ }
+ }
+ }
+ return REX;
+}
+
+/// sizePCRelativeBlockAddress - This method returns the size of a PC
+/// relative block address instruction
+///
+static unsigned sizePCRelativeBlockAddress() {
+ return 4;
+}
+
+/// sizeGlobalAddress - Give the size of the emission of this global address
+///
+static unsigned sizeGlobalAddress(bool dword) {
+ return dword ? 8 : 4;
+}
+
+/// sizeConstPoolAddress - Give the size of the emission of this constant
+/// pool address
+///
+static unsigned sizeConstPoolAddress(bool dword) {
+ return dword ? 8 : 4;
+}
+
+/// sizeExternalSymbolAddress - Give the size of the emission of this external
+/// symbol
+///
+static unsigned sizeExternalSymbolAddress(bool dword) {
+ return dword ? 8 : 4;
+}
+
+/// sizeJumpTableAddress - Give the size of the emission of this jump
+/// table address
+///
+static unsigned sizeJumpTableAddress(bool dword) {
+ return dword ? 8 : 4;
+}
+
+static unsigned sizeConstant(unsigned Size) {
+ return Size;
+}
+
+static unsigned sizeRegModRMByte(){
+ return 1;
+}
+
+static unsigned sizeSIBByte(){
+ return 1;
+}
+
+static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
+ unsigned FinalSize = 0;
+ // If this is a simple integer displacement that doesn't require a relocation.
+ if (!RelocOp) {
+ FinalSize += sizeConstant(4);
+ return FinalSize;
+ }
+
+ // Otherwise, this is something that requires a relocation.
+ if (RelocOp->isGlobal()) {
+ FinalSize += sizeGlobalAddress(false);
+ } else if (RelocOp->isCPI()) {
+ FinalSize += sizeConstPoolAddress(false);
+ } else if (RelocOp->isJTI()) {
+ FinalSize += sizeJumpTableAddress(false);
+ } else {
+ llvm_unreachable("Unknown value to relocate!");
+ }
+ return FinalSize;
+}
+
+static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
+ bool IsPIC, bool Is64BitMode) {
+ const MachineOperand &Op3 = MI.getOperand(Op+3);
+ int DispVal = 0;
+ const MachineOperand *DispForReloc = 0;
+ unsigned FinalSize = 0;
+
+ // Figure out what sort of displacement we have to handle here.
+ if (Op3.isGlobal()) {
+ DispForReloc = &Op3;
+ } else if (Op3.isCPI()) {
+ if (Is64BitMode || IsPIC) {
+ DispForReloc = &Op3;
+ } else {
+ DispVal = 1;
+ }
+ } else if (Op3.isJTI()) {
+ if (Is64BitMode || IsPIC) {
+ DispForReloc = &Op3;
+ } else {
+ DispVal = 1;
+ }
+ } else {
+ DispVal = 1;
+ }
+
+ const MachineOperand &Base = MI.getOperand(Op);
+ const MachineOperand &IndexReg = MI.getOperand(Op+2);
+
+ unsigned BaseReg = Base.getReg();
+
+ // Is a SIB byte needed?
+ if ((!Is64BitMode || DispForReloc || BaseReg != 0) &&
+ IndexReg.getReg() == 0 &&
+ (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
+ if (BaseReg == 0) { // Just a displacement?
+ // Emit special case [disp32] encoding
+ ++FinalSize;
+ FinalSize += getDisplacementFieldSize(DispForReloc);
+ } else {
+ unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
+ if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
+ // Emit simple indirect register encoding... [EAX] f.e.
+ ++FinalSize;
+ // Be pessimistic and assume it's a disp32, not a disp8
+ } else {
+ // Emit the most general non-SIB encoding: [REG+disp32]
+ ++FinalSize;
+ FinalSize += getDisplacementFieldSize(DispForReloc);
+ }
+ }
+
+ } else { // We need a SIB byte, so start by outputting the ModR/M byte first
+ assert(IndexReg.getReg() != X86::ESP &&
+ IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
+
+ bool ForceDisp32 = false;
+ if (BaseReg == 0 || DispForReloc) {
+ // Emit the normal disp32 encoding.
+ ++FinalSize;
+ ForceDisp32 = true;
+ } else {
+ ++FinalSize;
+ }
+
+ FinalSize += sizeSIBByte();
+
+ // Do we need to output a displacement?
+ if (DispVal != 0 || ForceDisp32) {
+ FinalSize += getDisplacementFieldSize(DispForReloc);
+ }
+ }
+ return FinalSize;
+}
+
+
+static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
+ const TargetInstrDesc *Desc,
+ bool IsPIC, bool Is64BitMode) {
+
+ unsigned Opcode = Desc->Opcode;
+ unsigned FinalSize = 0;
+
+ // Emit the lock opcode prefix as needed.
+ if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
+
+ // Emit segment override opcode prefix as needed.
+ switch (Desc->TSFlags & X86II::SegOvrMask) {
+ case X86II::FS:
+ case X86II::GS:
+ ++FinalSize;
+ break;
+ default: llvm_unreachable("Invalid segment!");
+ case 0: break; // No segment override!
+ }
+
+ // Emit the repeat opcode prefix as needed.
+ if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
+
+ // Emit the operand size opcode prefix as needed.
+ if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
+
+ // Emit the address size opcode prefix as needed.
+ if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
+
+ bool Need0FPrefix = false;
+ switch (Desc->TSFlags & X86II::Op0Mask) {
+ case X86II::TB: // Two-byte opcode prefix
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
+ Need0FPrefix = true;
+ break;
+ case X86II::TF: // F2 0F 38
+ ++FinalSize;
+ Need0FPrefix = true;
+ break;
+ case X86II::REP: break; // already handled.
+ case X86II::XS: // F3 0F
+ ++FinalSize;
+ Need0FPrefix = true;
+ break;
+ case X86II::XD: // F2 0F
+ ++FinalSize;
+ Need0FPrefix = true;
+ break;
+ case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
+ case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
+ ++FinalSize;
+ break; // Two-byte opcode prefix
+ default: llvm_unreachable("Invalid prefix!");
+ case 0: break; // No prefix!
+ }
+
+ if (Is64BitMode) {
+ // REX prefix
+ unsigned REX = X86InstrInfo::determineREX(MI);
+ if (REX)
+ ++FinalSize;
+ }
+
+ // 0x0F escape code must be emitted just before the opcode.
+ if (Need0FPrefix)
+ ++FinalSize;
+
+ switch (Desc->TSFlags & X86II::Op0Mask) {
+ case X86II::T8: // 0F 38
+ ++FinalSize;
+ break;
+ case X86II::TA: // 0F 3A
+ ++FinalSize;
+ break;
+ case X86II::TF: // F2 0F 38
+ ++FinalSize;
+ break;
+ }
+
+ // If this is a two-address instruction, skip one of the register operands.
+ unsigned NumOps = Desc->getNumOperands();
+ unsigned CurOp = 0;
+ if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
+ CurOp++;
+ else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
+ // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
+ --NumOps;
+
+ switch (Desc->TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
+ case X86II::Pseudo:
+ // Remember the current PC offset, this is the PIC relocation
+ // base address.
+ switch (Opcode) {
+ default:
+ break;
+ case TargetOpcode::INLINEASM: {
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ FinalSize += TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
+ *MF->getTarget().getMCAsmInfo());
+ break;
+ }
+ case TargetOpcode::DBG_LABEL:
+ case TargetOpcode::EH_LABEL:
+ case TargetOpcode::DBG_VALUE:
+ break;
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::KILL:
+ case X86::FP_REG_KILL:
+ break;
+ case X86::MOVPC32r: {
+ // This emits the "call" portion of this pseudo instruction.
+ ++FinalSize;
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ break;
+ }
+ }
+ CurOp = NumOps;
+ break;
+ case X86II::RawFrm:
+ ++FinalSize;
+
+ if (CurOp != NumOps) {
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+ if (MO.isMBB()) {
+ FinalSize += sizePCRelativeBlockAddress();
+ } else if (MO.isGlobal()) {
+ FinalSize += sizeGlobalAddress(false);
+ } else if (MO.isSymbol()) {
+ FinalSize += sizeExternalSymbolAddress(false);
+ } else if (MO.isImm()) {
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ } else {
+ llvm_unreachable("Unknown RawFrm operand!");
+ }
+ }
+ break;
+
+ case X86II::AddRegFrm:
+ ++FinalSize;
+ ++CurOp;
+
+ if (CurOp != NumOps) {
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO1.isImm())
+ FinalSize += sizeConstant(Size);
+ else {
+ bool dword = false;
+ if (Opcode == X86::MOV64ri)
+ dword = true;
+ if (MO1.isGlobal()) {
+ FinalSize += sizeGlobalAddress(dword);
+ } else if (MO1.isSymbol())
+ FinalSize += sizeExternalSymbolAddress(dword);
+ else if (MO1.isCPI())
+ FinalSize += sizeConstPoolAddress(dword);
+ else if (MO1.isJTI())
+ FinalSize += sizeJumpTableAddress(dword);
+ }
+ }
+ break;
+
+ case X86II::MRMDestReg: {
+ ++FinalSize;
+ FinalSize += sizeRegModRMByte();
+ CurOp += 2;
+ if (CurOp != NumOps) {
+ ++CurOp;
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ break;
+ }
+ case X86II::MRMDestMem: {
+ ++FinalSize;
+ FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
+ CurOp += X86AddrNumOperands + 1;
+ if (CurOp != NumOps) {
+ ++CurOp;
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ break;
+ }
+
+ case X86II::MRMSrcReg:
+ ++FinalSize;
+ FinalSize += sizeRegModRMByte();
+ CurOp += 2;
+ if (CurOp != NumOps) {
+ ++CurOp;
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ break;
+
+ case X86II::MRMSrcMem: {
+ int AddrOperands;
+ if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
+ Opcode == X86::LEA16r || Opcode == X86::LEA32r)
+ AddrOperands = X86AddrNumOperands - 1; // No segment register
+ else
+ AddrOperands = X86AddrNumOperands;
+
+ ++FinalSize;
+ FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
+ CurOp += AddrOperands + 1;
+ if (CurOp != NumOps) {
+ ++CurOp;
+ FinalSize += sizeConstant(X86II::getSizeOfImm(Desc->TSFlags));
+ }
+ break;
+ }
+
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ ++FinalSize;
+ if (Desc->getOpcode() == X86::LFENCE ||
+ Desc->getOpcode() == X86::MFENCE) {
+ // Special handling of lfence and mfence;
+ FinalSize += sizeRegModRMByte();
+ } else if (Desc->getOpcode() == X86::MONITOR ||
+ Desc->getOpcode() == X86::MWAIT) {
+ // Special handling of monitor and mwait.
+ FinalSize += sizeRegModRMByte() + 1; // +1 for the opcode.
+ } else {
+ ++CurOp;
+ FinalSize += sizeRegModRMByte();
+ }
+
+ if (CurOp != NumOps) {
+ const MachineOperand &MO1 = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO1.isImm())
+ FinalSize += sizeConstant(Size);
+ else {
+ bool dword = false;
+ if (Opcode == X86::MOV64ri32)
+ dword = true;
+ if (MO1.isGlobal()) {
+ FinalSize += sizeGlobalAddress(dword);
+ } else if (MO1.isSymbol())
+ FinalSize += sizeExternalSymbolAddress(dword);
+ else if (MO1.isCPI())
+ FinalSize += sizeConstPoolAddress(dword);
+ else if (MO1.isJTI())
+ FinalSize += sizeJumpTableAddress(dword);
+ }
+ }
+ break;
+
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+
+ ++FinalSize;
+ FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
+ CurOp += X86AddrNumOperands;
+
+ if (CurOp != NumOps) {
+ const MachineOperand &MO = MI.getOperand(CurOp++);
+ unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
+ if (MO.isImm())
+ FinalSize += sizeConstant(Size);
+ else {
+ bool dword = false;
+ if (Opcode == X86::MOV64mi32)
+ dword = true;
+ if (MO.isGlobal()) {
+ FinalSize += sizeGlobalAddress(dword);
+ } else if (MO.isSymbol())
+ FinalSize += sizeExternalSymbolAddress(dword);
+ else if (MO.isCPI())
+ FinalSize += sizeConstPoolAddress(dword);
+ else if (MO.isJTI())
+ FinalSize += sizeJumpTableAddress(dword);
+ }
+ }
+ break;
+
+ case X86II::MRM_C1:
+ case X86II::MRM_C8:
+ case X86II::MRM_C9:
+ case X86II::MRM_E8:
+ case X86II::MRM_F0:
+ FinalSize += 2;
+ break;
+ }
+
+ case X86II::MRMInitReg:
+ ++FinalSize;
+ // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
+ FinalSize += sizeRegModRMByte();
+ ++CurOp;
+ break;
+ }
+
+ if (!Desc->isVariadic() && CurOp != NumOps) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Cannot determine size: " << MI;
+ report_fatal_error(Msg.str());
+ }
+
+
+ return FinalSize;
+}
+
+
+unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ const TargetInstrDesc &Desc = MI->getDesc();
+ bool IsPIC = TM.getRelocationModel() == Reloc::PIC_;
+ bool Is64BitMode = TM.getSubtargetImpl()->is64Bit();
+ unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
+ if (Desc.getOpcode() == X86::MOVPC32r)
+ Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
+ return Size;
+}
+
+/// getGlobalBaseReg - Return a virtual register initialized with the
+/// the global base register value. Output instructions required to
+/// initialize the register in the function entry block, if necessary.
+///
+unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
+ assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
+ "X86-64 PIC uses RIP relative addressing");
+
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
+ if (GlobalBaseReg != 0)
+ return GlobalBaseReg;
+
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
+ MachineRegisterInfo &RegInfo = MF->getRegInfo();
+ unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
+
+ const TargetInstrInfo *TII = TM.getInstrInfo();
+ // Operand of MovePCtoStack is completely ignored by asm printer. It's
+ // only used in JIT code emission as displacement to pc.
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
+
+ // If we're using vanilla 'GOT' PIC style, we should use relative addressing
+ // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
+ if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
+ GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
+ // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
+ BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
+ .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
+ X86II::MO_GOT_ABSOLUTE_ADDRESS);
+ } else {
+ GlobalBaseReg = PC;
+ }
+
+ X86FI->setGlobalBaseReg(GlobalBaseReg);
+ return GlobalBaseReg;
+}
+
+// These are the replaceable SSE instructions. Some of these have Int variants
+// that we don't include here. We don't want to replace instructions selected
+// by intrinsics.
+static const unsigned ReplaceableInstrs[][3] = {
+ //PackedInt PackedSingle PackedDouble
+ { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
+ { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
+ { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
+ { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
+ { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
+ { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
+ { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
+ { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
+ { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
+ { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
+ { X86::ORPSrm, X86::ORPDrm, X86::PORrm },
+ { X86::ORPSrr, X86::ORPDrr, X86::PORrr },
+ { X86::V_SET0PS, X86::V_SET0PD, X86::V_SET0PI },
+ { X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
+ { X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
+};
+
+// FIXME: Some shuffle and unpack instructions have equivalents in different
+// domains, but they require a bit more work than just switching opcodes.
+
+static const unsigned *lookup(unsigned opcode, unsigned domain) {
+ for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
+ if (ReplaceableInstrs[i][domain-1] == opcode)
+ return ReplaceableInstrs[i];
+ return 0;
+}
+
+std::pair<uint16_t, uint16_t>
+X86InstrInfo::GetSSEDomain(const MachineInstr *MI) const {
+ uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ return std::make_pair(domain,
+ domain && lookup(MI->getOpcode(), domain) ? 0xe : 0);
+}
+
+void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
+ assert(Domain>0 && Domain<4 && "Invalid execution domain");
+ uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
+ assert(dom && "Not an SSE instruction");
+ const unsigned *table = lookup(MI->getOpcode(), dom);
+ assert(table && "Cannot change domain");
+ MI->setDesc(get(table[Domain-1]));
+}
+
+/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
+void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
+ NopInst.setOpcode(X86::NOOP);
+}
+
OpenPOWER on IntegriCloud