summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86ISelLowering.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.h')
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.h821
1 files changed, 821 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.h b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
new file mode 100644
index 0000000..1ef1a7b
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.h
@@ -0,0 +1,821 @@
+//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef X86ISELLOWERING_H
+#define X86ISELLOWERING_H
+
+#include "X86Subtarget.h"
+#include "X86RegisterInfo.h"
+#include "X86MachineFunctionInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+
+namespace llvm {
+ namespace X86ISD {
+ // X86 Specific DAG Nodes
+ enum NodeType {
+ // Start the numbering where the builtin ops leave off.
+ FIRST_NUMBER = ISD::BUILTIN_OP_END,
+
+ /// BSF - Bit scan forward.
+ /// BSR - Bit scan reverse.
+ BSF,
+ BSR,
+
+ /// SHLD, SHRD - Double shift instructions. These correspond to
+ /// X86::SHLDxx and X86::SHRDxx instructions.
+ SHLD,
+ SHRD,
+
+ /// FAND - Bitwise logical AND of floating point values. This corresponds
+ /// to X86::ANDPS or X86::ANDPD.
+ FAND,
+
+ /// FOR - Bitwise logical OR of floating point values. This corresponds
+ /// to X86::ORPS or X86::ORPD.
+ FOR,
+
+ /// FXOR - Bitwise logical XOR of floating point values. This corresponds
+ /// to X86::XORPS or X86::XORPD.
+ FXOR,
+
+ /// FSRL - Bitwise logical right shift of floating point values. These
+ /// corresponds to X86::PSRLDQ.
+ FSRL,
+
+ /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
+ /// integer source in memory and FP reg result. This corresponds to the
+ /// X86::FILD*m instructions. It has three inputs (token chain, address,
+ /// and source type) and two outputs (FP value and token chain). FILD_FLAG
+ /// also produces a flag).
+ FILD,
+ FILD_FLAG,
+
+ /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
+ /// integer destination in memory and a FP reg source. This corresponds
+ /// to the X86::FIST*m instructions and the rounding mode change stuff. It
+ /// has two inputs (token chain and address) and two outputs (int value
+ /// and token chain).
+ FP_TO_INT16_IN_MEM,
+ FP_TO_INT32_IN_MEM,
+ FP_TO_INT64_IN_MEM,
+
+ /// FLD - This instruction implements an extending load to FP stack slots.
+ /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
+ /// operand, ptr to load from, and a ValueType node indicating the type
+ /// to load to.
+ FLD,
+
+ /// FST - This instruction implements a truncating store to FP stack
+ /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
+ /// chain operand, value to store, address, and a ValueType to store it
+ /// as.
+ FST,
+
+ /// CALL - These operations represent an abstract X86 call
+ /// instruction, which includes a bunch of information. In particular the
+ /// operands of these node are:
+ ///
+ /// #0 - The incoming token chain
+ /// #1 - The callee
+ /// #2 - The number of arg bytes the caller pushes on the stack.
+ /// #3 - The number of arg bytes the callee pops off the stack.
+ /// #4 - The value to pass in AL/AX/EAX (optional)
+ /// #5 - The value to pass in DL/DX/EDX (optional)
+ ///
+ /// The result values of these nodes are:
+ ///
+ /// #0 - The outgoing token chain
+ /// #1 - The first register result value (optional)
+ /// #2 - The second register result value (optional)
+ ///
+ CALL,
+
+ /// RDTSC_DAG - This operation implements the lowering for
+ /// readcyclecounter
+ RDTSC_DAG,
+
+ /// X86 compare and logical compare instructions.
+ CMP, COMI, UCOMI,
+
+ /// X86 bit-test instructions.
+ BT,
+
+ /// X86 SetCC. Operand 0 is condition code, and operand 1 is the flag
+ /// operand produced by a CMP instruction.
+ SETCC,
+
+ // Same as SETCC except it's materialized with a sbb and the value is all
+ // one's or all zero's.
+ SETCC_CARRY,
+
+ /// X86 conditional moves. Operand 0 and operand 1 are the two values
+ /// to select from. Operand 2 is the condition code, and operand 3 is the
+ /// flag operand produced by a CMP or TEST instruction. It also writes a
+ /// flag result.
+ CMOV,
+
+ /// X86 conditional branches. Operand 0 is the chain operand, operand 1
+ /// is the block to branch if condition is true, operand 2 is the
+ /// condition code, and operand 3 is the flag operand produced by a CMP
+ /// or TEST instruction.
+ BRCOND,
+
+ /// Return with a flag operand. Operand 0 is the chain operand, operand
+ /// 1 is the number of bytes of stack to pop.
+ RET_FLAG,
+
+ /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
+ REP_STOS,
+
+ /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
+ REP_MOVS,
+
+ /// GlobalBaseReg - On Darwin, this node represents the result of the popl
+ /// at function entry, used for PIC code.
+ GlobalBaseReg,
+
+ /// Wrapper - A wrapper node for TargetConstantPool,
+ /// TargetExternalSymbol, and TargetGlobalAddress.
+ Wrapper,
+
+ /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
+ /// relative displacements.
+ WrapperRIP,
+
+ /// MOVQ2DQ - Copies a 64-bit value from a vector to another vector.
+ /// Can be used to move a vector value from a MMX register to a XMM
+ /// register.
+ MOVQ2DQ,
+
+ /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
+ /// i32, corresponds to X86::PEXTRB.
+ PEXTRB,
+
+ /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
+ /// i32, corresponds to X86::PEXTRW.
+ PEXTRW,
+
+ /// INSERTPS - Insert any element of a 4 x float vector into any element
+ /// of a destination 4 x floatvector.
+ INSERTPS,
+
+ /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
+ /// corresponds to X86::PINSRB.
+ PINSRB,
+
+ /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
+ /// corresponds to X86::PINSRW.
+ PINSRW, MMX_PINSRW,
+
+ /// PSHUFB - Shuffle 16 8-bit values within a vector.
+ PSHUFB,
+
+ /// FMAX, FMIN - Floating point max and min.
+ ///
+ FMAX, FMIN,
+
+ /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
+ /// approximation. Note that these typically require refinement
+ /// in order to obtain suitable precision.
+ FRSQRT, FRCP,
+
+ // TLSADDR - Thread Local Storage.
+ TLSADDR,
+
+ // SegmentBaseAddress - The address segment:0
+ SegmentBaseAddress,
+
+ // EH_RETURN - Exception Handling helpers.
+ EH_RETURN,
+
+ /// TC_RETURN - Tail call return.
+ /// operand #0 chain
+ /// operand #1 callee (register or absolute)
+ /// operand #2 stack adjustment
+ /// operand #3 optional in flag
+ TC_RETURN,
+
+ // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
+ LCMPXCHG_DAG,
+ LCMPXCHG8_DAG,
+
+ // FNSTCW16m - Store FP control world into i16 memory.
+ FNSTCW16m,
+
+ // VZEXT_MOVL - Vector move low and zero extend.
+ VZEXT_MOVL,
+
+ // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
+ VZEXT_LOAD,
+
+ // VSHL, VSRL - Vector logical left / right shift.
+ VSHL, VSRL,
+
+ // CMPPD, CMPPS - Vector double/float comparison.
+ // CMPPD, CMPPS - Vector double/float comparison.
+ CMPPD, CMPPS,
+
+ // PCMP* - Vector integer comparisons.
+ PCMPEQB, PCMPEQW, PCMPEQD, PCMPEQQ,
+ PCMPGTB, PCMPGTW, PCMPGTD, PCMPGTQ,
+
+ // ADD, SUB, SMUL, UMUL, etc. - Arithmetic operations with FLAGS results.
+ ADD, SUB, SMUL, UMUL,
+ INC, DEC, OR, XOR, AND,
+
+ // MUL_IMM - X86 specific multiply by immediate.
+ MUL_IMM,
+
+ // PTEST - Vector bitwise comparisons
+ PTEST,
+
+ // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
+ // according to %al. An operator is needed so that this can be expanded
+ // with control flow.
+ VASTART_SAVE_XMM_REGS,
+
+ // MINGW_ALLOCA - MingW's __alloca call to do stack probing.
+ MINGW_ALLOCA,
+
+ // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
+ // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
+ // Atomic 64-bit binary operations.
+ ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
+ ATOMSUB64_DAG,
+ ATOMOR64_DAG,
+ ATOMXOR64_DAG,
+ ATOMAND64_DAG,
+ ATOMNAND64_DAG,
+ ATOMSWAP64_DAG
+
+ // WARNING: Do not add anything in the end unless you want the node to
+ // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
+ // thought as target memory ops!
+ };
+ }
+
+ /// Define some predicates that are used for node matching.
+ namespace X86 {
+ /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to PSHUFD.
+ bool isPSHUFDMask(ShuffleVectorSDNode *N);
+
+ /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to PSHUFD.
+ bool isPSHUFHWMask(ShuffleVectorSDNode *N);
+
+ /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to PSHUFD.
+ bool isPSHUFLWMask(ShuffleVectorSDNode *N);
+
+ /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to SHUFP*.
+ bool isSHUFPMask(ShuffleVectorSDNode *N);
+
+ /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
+ bool isMOVHLPSMask(ShuffleVectorSDNode *N);
+
+ /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
+ /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
+ /// <2, 3, 2, 3>
+ bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N);
+
+ /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
+ bool isMOVLPMask(ShuffleVectorSDNode *N);
+
+ /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
+ /// as well as MOVLHPS.
+ bool isMOVLHPSMask(ShuffleVectorSDNode *N);
+
+ /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to UNPCKL.
+ bool isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
+
+ /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to UNPCKH.
+ bool isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat = false);
+
+ /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
+ /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
+ /// <0, 0, 1, 1>
+ bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N);
+
+ /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
+ /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
+ /// <2, 2, 3, 3>
+ bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N);
+
+ /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to MOVSS,
+ /// MOVSD, and MOVD, i.e. setting the lowest element.
+ bool isMOVLMask(ShuffleVectorSDNode *N);
+
+ /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
+ bool isMOVSHDUPMask(ShuffleVectorSDNode *N);
+
+ /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
+ bool isMOVSLDUPMask(ShuffleVectorSDNode *N);
+
+ /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
+ bool isMOVDDUPMask(ShuffleVectorSDNode *N);
+
+ /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
+ /// specifies a shuffle of elements that is suitable for input to PALIGNR.
+ bool isPALIGNRMask(ShuffleVectorSDNode *N);
+
+ /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
+ /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
+ /// instructions.
+ unsigned getShuffleSHUFImmediate(SDNode *N);
+
+ /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
+ /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
+ unsigned getShufflePSHUFHWImmediate(SDNode *N);
+
+ /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
+ /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
+ unsigned getShufflePSHUFLWImmediate(SDNode *N);
+
+ /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
+ /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
+ unsigned getShufflePALIGNRImmediate(SDNode *N);
+
+ /// isZeroNode - Returns true if Elt is a constant zero or a floating point
+ /// constant +0.0.
+ bool isZeroNode(SDValue Elt);
+
+ /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
+ /// fit into displacement field of the instruction.
+ bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement = true);
+ }
+
+ //===--------------------------------------------------------------------===//
+ // X86TargetLowering - X86 Implementation of the TargetLowering interface
+ class X86TargetLowering : public TargetLowering {
+ public:
+ explicit X86TargetLowering(X86TargetMachine &TM);
+
+ /// getPICBaseSymbol - Return the X86-32 PIC base.
+ MCSymbol *getPICBaseSymbol(const MachineFunction *MF, MCContext &Ctx) const;
+
+ virtual unsigned getJumpTableEncoding() const;
+
+ virtual const MCExpr *
+ LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB, unsigned uid,
+ MCContext &Ctx) const;
+
+ /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
+ /// jumptable.
+ virtual SDValue getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const;
+ virtual const MCExpr *
+ getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
+ unsigned JTI, MCContext &Ctx) const;
+
+ /// getStackPtrReg - Return the stack pointer register we are using: either
+ /// ESP or RSP.
+ unsigned getStackPtrReg() const { return X86StackPtr; }
+
+ /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+ /// function arguments in the caller parameter area. For X86, aggregates
+ /// that contains are placed at 16-byte boundaries while the rest are at
+ /// 4-byte boundaries.
+ virtual unsigned getByValTypeAlignment(const Type *Ty) const;
+
+ /// getOptimalMemOpType - Returns the target specific optimal type for load
+ /// and store operations as a result of memset, memcpy, and memmove
+ /// lowering. If DstAlign is zero that means it's safe to destination
+ /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+ /// means there isn't a need to check it against alignment requirement,
+ /// probably because the source does not need to be loaded. If
+ /// 'NonScalarIntSafe' is true, that means it's safe to return a
+ /// non-scalar-integer type, e.g. empty string source, constant, or loaded
+ /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
+ /// constant so it does not need to be loaded.
+ /// It returns EVT::Other if the type should be determined using generic
+ /// target-independent logic.
+ virtual EVT
+ getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
+ bool NonScalarIntSafe, bool MemcpyStrSrc,
+ MachineFunction &MF) const;
+
+ /// allowsUnalignedMemoryAccesses - Returns true if the target allows
+ /// unaligned memory accesses. of the specified type.
+ virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
+ return true;
+ }
+
+ /// LowerOperation - Provide custom lowering hooks for some operations.
+ ///
+ virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
+
+ /// ReplaceNodeResults - Replace the results of node with an illegal result
+ /// type with new values built out of custom code.
+ ///
+ virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const;
+
+
+ virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
+
+ /// isTypeDesirableForOp - Return true if the target has native support for
+ /// the specified value type and it is 'desirable' to use the type for the
+ /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
+ /// instruction encodings are longer and some i16 instructions are slow.
+ virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
+
+ /// isTypeDesirable - Return true if the target has native support for the
+ /// specified value type and it is 'desirable' to use the type. e.g. On x86
+ /// i16 is legal, but undesirable since i16 instruction encodings are longer
+ /// and some i16 instructions are slow.
+ virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
+
+ virtual MachineBasicBlock *
+ EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const;
+
+
+ /// getTargetNodeName - This method returns the name of a target specific
+ /// DAG node.
+ virtual const char *getTargetNodeName(unsigned Opcode) const;
+
+ /// getSetCCResultType - Return the ISD::SETCC ValueType
+ virtual MVT::SimpleValueType getSetCCResultType(EVT VT) const;
+
+ /// computeMaskedBitsForTargetNode - Determine which of the bits specified
+ /// in Mask are known to be either zero or one and return them in the
+ /// KnownZero/KnownOne bitsets.
+ virtual void computeMaskedBitsForTargetNode(const SDValue Op,
+ const APInt &Mask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth = 0) const;
+
+ virtual bool
+ isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
+
+ SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
+
+ virtual bool ExpandInlineAsm(CallInst *CI) const;
+
+ ConstraintType getConstraintType(const std::string &Constraint) const;
+
+ std::vector<unsigned>
+ getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const;
+
+ virtual const char *LowerXConstraint(EVT ConstraintVT) const;
+
+ /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+ /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
+ /// true it means one of the asm constraint of the inline asm instruction
+ /// being processed is 'm'.
+ virtual void LowerAsmOperandForConstraint(SDValue Op,
+ char ConstraintLetter,
+ bool hasMemory,
+ std::vector<SDValue> &Ops,
+ SelectionDAG &DAG) const;
+
+ /// getRegForInlineAsmConstraint - Given a physical register constraint
+ /// (e.g. {edx}), return the register number and the register class for the
+ /// register. This should only be used for C_Register constraints. On
+ /// error, this returns a register number of 0.
+ std::pair<unsigned, const TargetRegisterClass*>
+ getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const;
+
+ /// isLegalAddressingMode - Return true if the addressing mode represented
+ /// by AM is legal for this target, for a load/store of the specified type.
+ virtual bool isLegalAddressingMode(const AddrMode &AM, const Type *Ty)const;
+
+ /// isTruncateFree - Return true if it's free to truncate a value of
+ /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
+ /// register EAX to i16 by referencing its sub-register AX.
+ virtual bool isTruncateFree(const Type *Ty1, const Type *Ty2) const;
+ virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
+
+ /// isZExtFree - Return true if any actual instruction that defines a
+ /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
+ /// register. This does not necessarily include registers defined in
+ /// unknown ways, such as incoming arguments, or copies from unknown
+ /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
+ /// does not necessarily apply to truncate instructions. e.g. on x86-64,
+ /// all instructions that define 32-bit values implicit zero-extend the
+ /// result out to 64 bits.
+ virtual bool isZExtFree(const Type *Ty1, const Type *Ty2) const;
+ virtual bool isZExtFree(EVT VT1, EVT VT2) const;
+
+ /// isNarrowingProfitable - Return true if it's profitable to narrow
+ /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
+ /// from i32 to i8 but not from i32 to i16.
+ virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
+
+ /// isFPImmLegal - Returns true if the target can instruction select the
+ /// specified FP immediate natively. If false, the legalizer will
+ /// materialize the FP immediate as a load from a constant pool.
+ virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
+
+ /// isShuffleMaskLegal - Targets can use this to indicate that they only
+ /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+ /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
+ /// values are assumed to be legal.
+ virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const;
+
+ /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
+ /// used by Targets can use this to indicate if there is a suitable
+ /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
+ /// pool entry.
+ virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const;
+
+ /// ShouldShrinkFPConstant - If true, then instruction selection should
+ /// seek to shrink the FP constant of the specified type to a smaller type
+ /// in order to save space and / or reduce runtime.
+ virtual bool ShouldShrinkFPConstant(EVT VT) const {
+ // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
+ // expensive than a straight movsd. On the other hand, it's important to
+ // shrink long double fp constant since fldt is very slow.
+ return !X86ScalarSSEf64 || VT == MVT::f80;
+ }
+
+ const X86Subtarget* getSubtarget() const {
+ return Subtarget;
+ }
+
+ /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+ /// computed in an SSE register, not on the X87 floating point stack.
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
+ return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+ (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
+ }
+
+ /// createFastISel - This method returns a target specific FastISel object,
+ /// or null if the target does not support "fast" ISel.
+ virtual FastISel *
+ createFastISel(MachineFunction &mf,
+ DenseMap<const Value *, unsigned> &,
+ DenseMap<const BasicBlock *, MachineBasicBlock *> &,
+ DenseMap<const AllocaInst *, int> &,
+ std::vector<std::pair<MachineInstr*, unsigned> > &
+#ifndef NDEBUG
+ , SmallSet<const Instruction *, 8> &
+#endif
+ ) const;
+
+ /// getFunctionAlignment - Return the Log2 alignment of this function.
+ virtual unsigned getFunctionAlignment(const Function *F) const;
+
+ private:
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+ const X86RegisterInfo *RegInfo;
+ const TargetData *TD;
+
+ /// X86StackPtr - X86 physical register used as stack ptr.
+ unsigned X86StackPtr;
+
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// floating point ops.
+ /// When SSE is available, use it for f32 operations.
+ /// When SSE2 is available, use it for f64 operations.
+ bool X86ScalarSSEf32;
+ bool X86ScalarSSEf64;
+
+ /// LegalFPImmediates - A list of legal fp immediates.
+ std::vector<APFloat> LegalFPImmediates;
+
+ /// addLegalFPImmediate - Indicate that this x86 target can instruction
+ /// select the specified FP immediate natively.
+ void addLegalFPImmediate(const APFloat& Imm) {
+ LegalFPImmediates.push_back(Imm);
+ }
+
+ SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ SDValue LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &ArgInfo,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA, MachineFrameInfo *MFI,
+ unsigned i) const;
+ SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const;
+
+ // Call lowering helpers.
+
+ /// IsEligibleForTailCallOptimization - Check whether the call is eligible
+ /// for tail call optimization. Targets which want to do tail call
+ /// optimization should implement this function.
+ bool IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const;
+ bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
+ SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
+ SDValue Chain, bool IsTailCall, bool Is64Bit,
+ int FPDiff, DebugLoc dl) const;
+
+ CCAssignFn *CCAssignFnForNode(CallingConv::ID CallConv) const;
+ unsigned GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG &DAG) const;
+
+ std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+ bool isSigned) const;
+
+ SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
+ SelectionDAG &DAG) const;
+ SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
+ int64_t Offset, SelectionDAG &DAG) const;
+ SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
+ SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
+ SelectionDAG &DAG) const;
+ SDValue LowerBIT_CONVERT(SDValue op, SelectionDAG &DAG) const;
+ SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerToBT(SDValue And, ISD::CondCode CC,
+ DebugLoc dl, SelectionDAG &DAG) const;
+ SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) const;
+
+ SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
+
+ virtual SDValue
+ LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+ virtual SDValue
+ LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg, bool &isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const;
+
+ virtual SDValue
+ LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) const;
+
+ virtual bool
+ CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<EVT> &OutTys,
+ const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
+ SelectionDAG &DAG) const;
+
+ void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG, unsigned NewOp) const;
+
+ /// Utility function to emit string processing sse4.2 instructions
+ /// that return in xmm0.
+ /// This takes the instruction to expand, the associated machine basic
+ /// block, the number of args, and whether or not the second arg is
+ /// in memory or not.
+ MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
+ unsigned argNum, bool inMem) const;
+
+ /// Utility function to emit atomic bitwise operations (and, or, xor).
+ /// It takes the bitwise instruction to expand, the associated machine basic
+ /// block, and the associated X86 opcodes for reg/reg and reg/imm.
+ MachineBasicBlock *EmitAtomicBitwiseWithCustomInserter(
+ MachineInstr *BInstr,
+ MachineBasicBlock *BB,
+ unsigned regOpc,
+ unsigned immOpc,
+ unsigned loadOpc,
+ unsigned cxchgOpc,
+ unsigned copyOpc,
+ unsigned notOpc,
+ unsigned EAXreg,
+ TargetRegisterClass *RC,
+ bool invSrc = false) const;
+
+ MachineBasicBlock *EmitAtomicBit6432WithCustomInserter(
+ MachineInstr *BInstr,
+ MachineBasicBlock *BB,
+ unsigned regOpcL,
+ unsigned regOpcH,
+ unsigned immOpcL,
+ unsigned immOpcH,
+ bool invSrc = false) const;
+
+ /// Utility function to emit atomic min and max. It takes the min/max
+ /// instruction to expand, the associated basic block, and the associated
+ /// cmov opcode for moving the min or max value.
+ MachineBasicBlock *EmitAtomicMinMaxWithCustomInserter(MachineInstr *BInstr,
+ MachineBasicBlock *BB,
+ unsigned cmovOpc) const;
+
+ /// Utility function to emit the xmm reg save portion of va_start.
+ MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *BInstr,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
+ MachineBasicBlock *BB) const;
+
+ MachineBasicBlock *EmitLoweredMingwAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const;
+
+ /// Emit nodes that will be selected as "test Op0,Op0", or something
+ /// equivalent, for use with the given x86 condition code.
+ SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
+
+ /// Emit nodes that will be selected as "cmp Op0,Op1", or something
+ /// equivalent, for use with the given x86 condition code.
+ SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
+ SelectionDAG &DAG) const;
+ };
+
+ namespace X86 {
+ FastISel *createFastISel(MachineFunction &mf,
+ DenseMap<const Value *, unsigned> &,
+ DenseMap<const BasicBlock *, MachineBasicBlock *> &,
+ DenseMap<const AllocaInst *, int> &,
+ std::vector<std::pair<MachineInstr*, unsigned> > &
+#ifndef NDEBUG
+ , SmallSet<const Instruction*, 8> &
+#endif
+ );
+ }
+}
+
+#endif // X86ISELLOWERING_H
OpenPOWER on IntegriCloud