diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86ISelLowering.cpp | 16558 |
1 files changed, 16558 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp new file mode 100644 index 0000000..c77355f --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -0,0 +1,16558 @@ +//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that X86 uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-isel" +#include "X86ISelLowering.h" +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86TargetMachine.h" +#include "X86TargetObjectFile.h" +#include "Utils/X86ShuffleDecode.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalAlias.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/LLVMContext.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/VariadicFunction.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetOptions.h" +#include <bitset> +#include <cctype> +using namespace llvm; + +STATISTIC(NumTailCalls, "Number of tail calls"); + +// Forward declarations. +static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2); + +/// Generate a DAG to grab 128-bits from a vector > 128 bits. This +/// sets things up to match to an AVX VEXTRACTF128 instruction or a +/// simple subregister reference. Idx is an index in the 128 bits we +/// want. It need not be aligned to a 128-bit bounday. That makes +/// lowering EXTRACT_VECTOR_ELT operations easier. +static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, DebugLoc dl) { + EVT VT = Vec.getValueType(); + assert(VT.is256BitVector() && "Unexpected vector size!"); + EVT ElVT = VT.getVectorElementType(); + unsigned Factor = VT.getSizeInBits()/128; + EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, + VT.getVectorNumElements()/Factor); + + // Extract from UNDEF is UNDEF. + if (Vec.getOpcode() == ISD::UNDEF) + return DAG.getUNDEF(ResultVT); + + // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR + // we can match to VEXTRACTF128. + unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits(); + + // This is the index of the first element of the 128-bit chunk + // we want. + unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128) + * ElemsPerChunk); + + SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32); + SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, + VecIdx); + + return Result; +} + +/// Generate a DAG to put 128-bits into a vector > 128 bits. This +/// sets things up to match to an AVX VINSERTF128 instruction or a +/// simple superregister reference. Idx is an index in the 128 bits +/// we want. It need not be aligned to a 128-bit bounday. That makes +/// lowering INSERT_VECTOR_ELT operations easier. +static SDValue Insert128BitVector(SDValue Result, SDValue Vec, + unsigned IdxVal, SelectionDAG &DAG, + DebugLoc dl) { + // Inserting UNDEF is Result + if (Vec.getOpcode() == ISD::UNDEF) + return Result; + + EVT VT = Vec.getValueType(); + assert(VT.is128BitVector() && "Unexpected vector size!"); + + EVT ElVT = VT.getVectorElementType(); + EVT ResultVT = Result.getValueType(); + + // Insert the relevant 128 bits. + unsigned ElemsPerChunk = 128/ElVT.getSizeInBits(); + + // This is the index of the first element of the 128-bit chunk + // we want. + unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128) + * ElemsPerChunk); + + SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, + VecIdx); +} + +/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 +/// instructions. This is used because creating CONCAT_VECTOR nodes of +/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower +/// large BUILD_VECTORS. +static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, + unsigned NumElems, SelectionDAG &DAG, + DebugLoc dl) { + SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); + return Insert128BitVector(V, V2, NumElems/2, DAG, dl); +} + +static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { + const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>(); + bool is64Bit = Subtarget->is64Bit(); + + if (Subtarget->isTargetEnvMacho()) { + if (is64Bit) + return new X86_64MachoTargetObjectFile(); + return new TargetLoweringObjectFileMachO(); + } + + if (Subtarget->isTargetLinux()) + return new X86LinuxTargetObjectFile(); + if (Subtarget->isTargetELF()) + return new TargetLoweringObjectFileELF(); + if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) + return new TargetLoweringObjectFileCOFF(); + llvm_unreachable("unknown subtarget type"); +} + +X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) + : TargetLowering(TM, createTLOF(TM)) { + Subtarget = &TM.getSubtarget<X86Subtarget>(); + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; + + RegInfo = TM.getRegisterInfo(); + TD = getTargetData(); + + // Set up the TargetLowering object. + static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; + + // X86 is weird, it always uses i8 for shift amounts and setcc results. + setBooleanContents(ZeroOrOneBooleanContent); + // X86-SSE is even stranger. It uses -1 or 0 for vector masks. + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // For 64-bit since we have so many registers use the ILP scheduler, for + // 32-bit code use the register pressure specific scheduling. + // For Atom, always use ILP scheduling. + if (Subtarget->isAtom()) + setSchedulingPreference(Sched::ILP); + else if (Subtarget->is64Bit()) + setSchedulingPreference(Sched::ILP); + else + setSchedulingPreference(Sched::RegPressure); + setStackPointerRegisterToSaveRestore(X86StackPtr); + + if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { + // Setup Windows compiler runtime calls. + setLibcallName(RTLIB::SDIV_I64, "_alldiv"); + setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); + setLibcallName(RTLIB::SREM_I64, "_allrem"); + setLibcallName(RTLIB::UREM_I64, "_aullrem"); + setLibcallName(RTLIB::MUL_I64, "_allmul"); + setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); + + // The _ftol2 runtime function has an unusual calling conv, which + // is modeled by a special pseudo-instruction. + setLibcallName(RTLIB::FPTOUINT_F64_I64, 0); + setLibcallName(RTLIB::FPTOUINT_F32_I64, 0); + setLibcallName(RTLIB::FPTOUINT_F64_I32, 0); + setLibcallName(RTLIB::FPTOUINT_F32_I32, 0); + } + + if (Subtarget->isTargetDarwin()) { + // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. + setUseUnderscoreSetJmp(false); + setUseUnderscoreLongJmp(false); + } else if (Subtarget->isTargetMingw()) { + // MS runtime is weird: it exports _setjmp, but longjmp! + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(false); + } else { + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(true); + } + + // Set up the register classes. + addRegisterClass(MVT::i8, &X86::GR8RegClass); + addRegisterClass(MVT::i16, &X86::GR16RegClass); + addRegisterClass(MVT::i32, &X86::GR32RegClass); + if (Subtarget->is64Bit()) + addRegisterClass(MVT::i64, &X86::GR64RegClass); + + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + + // We don't accept any truncstore of integer registers. + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i8 , Expand); + setTruncStoreAction(MVT::i32, MVT::i16, Expand); + setTruncStoreAction(MVT::i32, MVT::i8 , Expand); + setTruncStoreAction(MVT::i16, MVT::i8, Expand); + + // SETOEQ and SETUNE require checking two conditions. + setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); + + // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this + // operation. + setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + } else if (!TM.Options.UseSoftFloat) { + // We have an algorithm for SSE2->double, and we turn this into a + // 64-bit FILD followed by conditional FADD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + // We have an algorithm for SSE2, and we turn this into a 64-bit + // FILD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + } + + // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have + // this operation. + setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + + if (!TM.Options.UseSoftFloat) { + // SSE has no i16 to fp conversion, only i32 + if (X86ScalarSSEf32) { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); + } + + // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 + // are Legal, f80 is custom lowered. + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); + + // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have + // this operation. + setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); + + if (X86ScalarSSEf32) { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } + + // Handle FP_TO_UINT by promoting the destination to a larger signed + // conversion. + setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); + } else if (!TM.Options.UseSoftFloat) { + // Since AVX is a superset of SSE3, only check for SSE here. + if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) + // Expand FP_TO_UINT into a select. + // FIXME: We would like to use a Custom expander here eventually to do + // the optimal thing for SSE vs. the default expansion in the legalizer. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); + else + // With SSE3 we can use fisttpll to convert to a signed i64; without + // SSE, we're stuck with a fistpll. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + } + + if (isTargetFTOL()) { + // Use the _ftol2 runtime function, which has a pseudo-instruction + // to handle its weird calling convention. + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); + } + + // TODO: when we have SSE, these could be more efficient, by using movd/movq. + if (!X86ScalarSSEf64) { + setOperationAction(ISD::BITCAST , MVT::f32 , Expand); + setOperationAction(ISD::BITCAST , MVT::i32 , Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::BITCAST , MVT::f64 , Expand); + // Without SSE, i64->f64 goes through memory. + setOperationAction(ISD::BITCAST , MVT::i64 , Expand); + } + } + + // Scalar integer divide and remainder are lowered to use operations that + // produce two results, to match the available instructions. This exposes + // the two-result form to trivial CSE, which is able to combine x/y and x%y + // into a single instruction. + // + // Scalar integer multiply-high is also lowered to use two-result + // operations, to match the available instructions. However, plain multiply + // (low) operations are left as Legal, as there are single-result + // instructions for this in x86. Using the two-result multiply instructions + // when both high and low results are needed must be arranged by dagcombine. + for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { + MVT VT = IntVTs[i]; + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + + // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. + setOperationAction(ISD::ADDC, VT, Custom); + setOperationAction(ISD::ADDE, VT, Custom); + setOperationAction(ISD::SUBC, VT, Custom); + setOperationAction(ISD::SUBE, VT, Custom); + } + + setOperationAction(ISD::BR_JT , MVT::Other, Expand); + setOperationAction(ISD::BRCOND , MVT::Other, Custom); + setOperationAction(ISD::BR_CC , MVT::Other, Expand); + setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); + setOperationAction(ISD::FREM , MVT::f32 , Expand); + setOperationAction(ISD::FREM , MVT::f64 , Expand); + setOperationAction(ISD::FREM , MVT::f80 , Expand); + setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); + + // Promote the i8 variants and force them on up to i32 which has a shorter + // encoding. + setOperationAction(ISD::CTTZ , MVT::i8 , Promote); + AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); + setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); + AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); + if (Subtarget->hasBMI()) { + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + } else { + setOperationAction(ISD::CTTZ , MVT::i16 , Custom); + setOperationAction(ISD::CTTZ , MVT::i32 , Custom); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTTZ , MVT::i64 , Custom); + } + + if (Subtarget->hasLZCNT()) { + // When promoting the i8 variants, force them to i32 for a shorter + // encoding. + setOperationAction(ISD::CTLZ , MVT::i8 , Promote); + AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); + AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + } else { + setOperationAction(ISD::CTLZ , MVT::i8 , Custom); + setOperationAction(ISD::CTLZ , MVT::i16 , Custom); + setOperationAction(ISD::CTLZ , MVT::i32 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::CTLZ , MVT::i64 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); + } + } + + if (Subtarget->hasPOPCNT()) { + setOperationAction(ISD::CTPOP , MVT::i8 , Promote); + } else { + setOperationAction(ISD::CTPOP , MVT::i8 , Expand); + setOperationAction(ISD::CTPOP , MVT::i16 , Expand); + setOperationAction(ISD::CTPOP , MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTPOP , MVT::i64 , Expand); + } + + setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); + setOperationAction(ISD::BSWAP , MVT::i16 , Expand); + + // These should be promoted to a larger select which is supported. + setOperationAction(ISD::SELECT , MVT::i1 , Promote); + // X86 wants to expand cmov itself. + setOperationAction(ISD::SELECT , MVT::i8 , Custom); + setOperationAction(ISD::SELECT , MVT::i16 , Custom); + setOperationAction(ISD::SELECT , MVT::i32 , Custom); + setOperationAction(ISD::SELECT , MVT::f32 , Custom); + setOperationAction(ISD::SELECT , MVT::f64 , Custom); + setOperationAction(ISD::SELECT , MVT::f80 , Custom); + setOperationAction(ISD::SETCC , MVT::i8 , Custom); + setOperationAction(ISD::SETCC , MVT::i16 , Custom); + setOperationAction(ISD::SETCC , MVT::i32 , Custom); + setOperationAction(ISD::SETCC , MVT::f32 , Custom); + setOperationAction(ISD::SETCC , MVT::f64 , Custom); + setOperationAction(ISD::SETCC , MVT::f80 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SELECT , MVT::i64 , Custom); + setOperationAction(ISD::SETCC , MVT::i64 , Custom); + } + setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); + + // Darwin ABI issue. + setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); + setOperationAction(ISD::JumpTable , MVT::i32 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); + if (Subtarget->is64Bit()) + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); + setOperationAction(ISD::JumpTable , MVT::i64 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); + setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); + } + // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) + setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); + } + + if (Subtarget->hasSSE1()) + setOperationAction(ISD::PREFETCH , MVT::Other, Legal); + + setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom); + setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); + + // On X86 and X86-64, atomic operations are lowered to locked instructions. + // Locked instructions, in turn, have implicit fence semantics (all memory + // operations are flushed before issuing the locked instruction, and they + // are not buffered), so we can fold away the common pattern of + // fence-atomic-fence. + setShouldFoldAtomicFences(true); + + // Expand certain atomics + for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) { + MVT VT = IntVTs[i]; + setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); + setOperationAction(ISD::ATOMIC_STORE, VT, Custom); + } + + if (!Subtarget->is64Bit()) { + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); + } + + if (Subtarget->hasCmpxchg16b()) { + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); + } + + // FIXME - use subtarget debug flags + if (!Subtarget->isTargetDarwin() && + !Subtarget->isTargetELF() && + !Subtarget->isTargetCygMing()) { + setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); + } + + setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); + setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); + if (Subtarget->is64Bit()) { + setExceptionPointerRegister(X86::RAX); + setExceptionSelectorRegister(X86::RDX); + } else { + setExceptionPointerRegister(X86::EAX); + setExceptionSelectorRegister(X86::EDX); + } + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); + + setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); + setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex + setOperationAction(ISD::VASTART , MVT::Other, Custom); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::VAARG , MVT::Other, Custom); + setOperationAction(ISD::VACOPY , MVT::Other, Custom); + } else { + setOperationAction(ISD::VAARG , MVT::Other, Expand); + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + } + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho()) + setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? + MVT::i64 : MVT::i32, Custom); + else if (TM.Options.EnableSegmentedStacks) + setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? + MVT::i64 : MVT::i32, Custom); + else + setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ? + MVT::i64 : MVT::i32, Expand); + + if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) { + // f32 and f64 use SSE. + // Set up the FP register classes. + addRegisterClass(MVT::f32, &X86::FR32RegClass); + addRegisterClass(MVT::f64, &X86::FR64RegClass); + + // Use ANDPD to simulate FABS. + setOperationAction(ISD::FABS , MVT::f64, Custom); + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f64, Custom); + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + // Use ANDPD and ORPD to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // Lower this to FGETSIGNx86 plus an AND. + setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); + setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + + // Expand FP immediates into loads from the stack, except for the special + // cases we handle. + addLegalFPImmediate(APFloat(+0.0)); // xorpd + addLegalFPImmediate(APFloat(+0.0f)); // xorps + } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) { + // Use SSE for f32, x87 for f64. + // Set up the FP register classes. + addRegisterClass(MVT::f32, &X86::FR32RegClass); + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + + // Use ANDPS to simulate FABS. + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + + // Use ANDPS and ORPS to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + + // Special cases we handle for FP constants. + addLegalFPImmediate(APFloat(+0.0f)); // xorps + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64 , Expand); + setOperationAction(ISD::FCOS , MVT::f64 , Expand); + } + } else if (!TM.Options.UseSoftFloat) { + // f32 and f64 in x87. + // Set up the FP register classes. + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + addRegisterClass(MVT::f32, &X86::RFP32RegClass); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + setOperationAction(ISD::UNDEF, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64 , Expand); + setOperationAction(ISD::FCOS , MVT::f64 , Expand); + } + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + addLegalFPImmediate(APFloat(+0.0f)); // FLD0 + addLegalFPImmediate(APFloat(+1.0f)); // FLD1 + addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS + } + + // We don't support FMA. + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + + // Long double always uses X87. + if (!TM.Options.UseSoftFloat) { + addRegisterClass(MVT::f80, &X86::RFP80RegClass); + setOperationAction(ISD::UNDEF, MVT::f80, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); + { + APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); + addLegalFPImmediate(TmpFlt); // FLD0 + TmpFlt.changeSign(); + addLegalFPImmediate(TmpFlt); // FLD0/FCHS + + bool ignored; + APFloat TmpFlt2(+1.0); + TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, + &ignored); + addLegalFPImmediate(TmpFlt2); // FLD1 + TmpFlt2.changeSign(); + addLegalFPImmediate(TmpFlt2); // FLD1/FCHS + } + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f80 , Expand); + setOperationAction(ISD::FCOS , MVT::f80 , Expand); + } + + setOperationAction(ISD::FFLOOR, MVT::f80, Expand); + setOperationAction(ISD::FCEIL, MVT::f80, Expand); + setOperationAction(ISD::FTRUNC, MVT::f80, Expand); + setOperationAction(ISD::FRINT, MVT::f80, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); + setOperationAction(ISD::FMA, MVT::f80, Expand); + } + + // Always use a library call for pow. + setOperationAction(ISD::FPOW , MVT::f32 , Expand); + setOperationAction(ISD::FPOW , MVT::f64 , Expand); + setOperationAction(ISD::FPOW , MVT::f80 , Expand); + + setOperationAction(ISD::FLOG, MVT::f80, Expand); + setOperationAction(ISD::FLOG2, MVT::f80, Expand); + setOperationAction(ISD::FLOG10, MVT::f80, Expand); + setOperationAction(ISD::FEXP, MVT::f80, Expand); + setOperationAction(ISD::FEXP2, MVT::f80, Expand); + + // First set operation action for all vector types to either promote + // (for widening) or expand (for scalarization). Then we will selectively + // turn on ones that can be effectively codegen'd. + for (int VT = MVT::FIRST_VECTOR_VALUETYPE; + VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) { + setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FMA, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand); + for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE; + InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) + setTruncStoreAction((MVT::SimpleValueType)VT, + (MVT::SimpleValueType)InnerVT, Expand); + setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); + setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); + } + + // FIXME: In order to prevent SSE instructions being expanded to MMX ones + // with -msoft-float, disable use of MMX as well. + if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) { + addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); + // No operations on x86mmx supported, everything uses intrinsics. + } + + // MMX-sized vectors (other than x86mmx) are expected to be expanded + // into smaller operations. + setOperationAction(ISD::MULHS, MVT::v8i8, Expand); + setOperationAction(ISD::MULHS, MVT::v4i16, Expand); + setOperationAction(ISD::MULHS, MVT::v2i32, Expand); + setOperationAction(ISD::MULHS, MVT::v1i64, Expand); + setOperationAction(ISD::AND, MVT::v8i8, Expand); + setOperationAction(ISD::AND, MVT::v4i16, Expand); + setOperationAction(ISD::AND, MVT::v2i32, Expand); + setOperationAction(ISD::AND, MVT::v1i64, Expand); + setOperationAction(ISD::OR, MVT::v8i8, Expand); + setOperationAction(ISD::OR, MVT::v4i16, Expand); + setOperationAction(ISD::OR, MVT::v2i32, Expand); + setOperationAction(ISD::OR, MVT::v1i64, Expand); + setOperationAction(ISD::XOR, MVT::v8i8, Expand); + setOperationAction(ISD::XOR, MVT::v4i16, Expand); + setOperationAction(ISD::XOR, MVT::v2i32, Expand); + setOperationAction(ISD::XOR, MVT::v1i64, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); + setOperationAction(ISD::SELECT, MVT::v8i8, Expand); + setOperationAction(ISD::SELECT, MVT::v4i16, Expand); + setOperationAction(ISD::SELECT, MVT::v2i32, Expand); + setOperationAction(ISD::SELECT, MVT::v1i64, Expand); + setOperationAction(ISD::BITCAST, MVT::v8i8, Expand); + setOperationAction(ISD::BITCAST, MVT::v4i16, Expand); + setOperationAction(ISD::BITCAST, MVT::v2i32, Expand); + setOperationAction(ISD::BITCAST, MVT::v1i64, Expand); + + if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) { + addRegisterClass(MVT::v4f32, &X86::VR128RegClass); + + setOperationAction(ISD::FADD, MVT::v4f32, Legal); + setOperationAction(ISD::FSUB, MVT::v4f32, Legal); + setOperationAction(ISD::FMUL, MVT::v4f32, Legal); + setOperationAction(ISD::FDIV, MVT::v4f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); + setOperationAction(ISD::FNEG, MVT::v4f32, Custom); + setOperationAction(ISD::LOAD, MVT::v4f32, Legal); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::SELECT, MVT::v4f32, Custom); + } + + if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) { + addRegisterClass(MVT::v2f64, &X86::VR128RegClass); + + // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM + // registers cannot be used even for integer operations. + addRegisterClass(MVT::v16i8, &X86::VR128RegClass); + addRegisterClass(MVT::v8i16, &X86::VR128RegClass); + addRegisterClass(MVT::v4i32, &X86::VR128RegClass); + addRegisterClass(MVT::v2i64, &X86::VR128RegClass); + + setOperationAction(ISD::ADD, MVT::v16i8, Legal); + setOperationAction(ISD::ADD, MVT::v8i16, Legal); + setOperationAction(ISD::ADD, MVT::v4i32, Legal); + setOperationAction(ISD::ADD, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v2i64, Custom); + setOperationAction(ISD::SUB, MVT::v16i8, Legal); + setOperationAction(ISD::SUB, MVT::v8i16, Legal); + setOperationAction(ISD::SUB, MVT::v4i32, Legal); + setOperationAction(ISD::SUB, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v8i16, Legal); + setOperationAction(ISD::FADD, MVT::v2f64, Legal); + setOperationAction(ISD::FSUB, MVT::v2f64, Legal); + setOperationAction(ISD::FMUL, MVT::v2f64, Legal); + setOperationAction(ISD::FDIV, MVT::v2f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); + setOperationAction(ISD::FNEG, MVT::v2f64, Custom); + + setOperationAction(ISD::SETCC, MVT::v2i64, Custom); + setOperationAction(ISD::SETCC, MVT::v16i8, Custom); + setOperationAction(ISD::SETCC, MVT::v8i16, Custom); + setOperationAction(ISD::SETCC, MVT::v4i32, Custom); + + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + // Custom lower build_vector, vector_shuffle, and extract_vector_elt. + for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { + MVT VT = (MVT::SimpleValueType)i; + // Do not attempt to custom lower non-power-of-2 vectors + if (!isPowerOf2_32(VT.getVectorNumElements())) + continue; + // Do not attempt to custom lower non-128-bit vectors + if (!VT.is128BitVector()) + continue; + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + + setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); + } + + // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. + for (int i = MVT::v16i8; i != MVT::v2i64; ++i) { + MVT VT = (MVT::SimpleValueType)i; + + // Do not attempt to promote non-128-bit vectors + if (!VT.is128BitVector()) + continue; + + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v2i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v2i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v2i64); + setOperationAction(ISD::LOAD, VT, Promote); + AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); + } + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // Custom lower v2i64 and v2f64 selects. + setOperationAction(ISD::LOAD, MVT::v2f64, Legal); + setOperationAction(ISD::LOAD, MVT::v2i64, Legal); + setOperationAction(ISD::SELECT, MVT::v2f64, Custom); + setOperationAction(ISD::SELECT, MVT::v2i64, Custom); + + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + } + + if (Subtarget->hasSSE41()) { + setOperationAction(ISD::FFLOOR, MVT::f32, Legal); + setOperationAction(ISD::FCEIL, MVT::f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::f32, Legal); + setOperationAction(ISD::FRINT, MVT::f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::f64, Legal); + setOperationAction(ISD::FCEIL, MVT::f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::f64, Legal); + setOperationAction(ISD::FRINT, MVT::f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); + + // FIXME: Do we need to handle scalar-to-vector here? + setOperationAction(ISD::MUL, MVT::v4i32, Legal); + + setOperationAction(ISD::VSELECT, MVT::v2f64, Legal); + setOperationAction(ISD::VSELECT, MVT::v2i64, Legal); + setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); + setOperationAction(ISD::VSELECT, MVT::v4i32, Legal); + setOperationAction(ISD::VSELECT, MVT::v4f32, Legal); + + // i8 and i16 vectors are custom , because the source register and source + // source memory operand types are not the same width. f32 vectors are + // custom since the immediate controlling the insert encodes additional + // information. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + + // FIXME: these should be Legal but thats only for the case where + // the index is constant. For now custom expand to deal with that. + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); + } + } + + if (Subtarget->hasSSE2()) { + setOperationAction(ISD::SRL, MVT::v8i16, Custom); + setOperationAction(ISD::SRL, MVT::v16i8, Custom); + + setOperationAction(ISD::SHL, MVT::v8i16, Custom); + setOperationAction(ISD::SHL, MVT::v16i8, Custom); + + setOperationAction(ISD::SRA, MVT::v8i16, Custom); + setOperationAction(ISD::SRA, MVT::v16i8, Custom); + + if (Subtarget->hasAVX2()) { + setOperationAction(ISD::SRL, MVT::v2i64, Legal); + setOperationAction(ISD::SRL, MVT::v4i32, Legal); + + setOperationAction(ISD::SHL, MVT::v2i64, Legal); + setOperationAction(ISD::SHL, MVT::v4i32, Legal); + + setOperationAction(ISD::SRA, MVT::v4i32, Legal); + } else { + setOperationAction(ISD::SRL, MVT::v2i64, Custom); + setOperationAction(ISD::SRL, MVT::v4i32, Custom); + + setOperationAction(ISD::SHL, MVT::v2i64, Custom); + setOperationAction(ISD::SHL, MVT::v4i32, Custom); + + setOperationAction(ISD::SRA, MVT::v4i32, Custom); + } + } + + if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) { + addRegisterClass(MVT::v32i8, &X86::VR256RegClass); + addRegisterClass(MVT::v16i16, &X86::VR256RegClass); + addRegisterClass(MVT::v8i32, &X86::VR256RegClass); + addRegisterClass(MVT::v8f32, &X86::VR256RegClass); + addRegisterClass(MVT::v4i64, &X86::VR256RegClass); + addRegisterClass(MVT::v4f64, &X86::VR256RegClass); + + setOperationAction(ISD::LOAD, MVT::v8f32, Legal); + setOperationAction(ISD::LOAD, MVT::v4f64, Legal); + setOperationAction(ISD::LOAD, MVT::v4i64, Legal); + + setOperationAction(ISD::FADD, MVT::v8f32, Legal); + setOperationAction(ISD::FSUB, MVT::v8f32, Legal); + setOperationAction(ISD::FMUL, MVT::v8f32, Legal); + setOperationAction(ISD::FDIV, MVT::v8f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); + setOperationAction(ISD::FNEG, MVT::v8f32, Custom); + + setOperationAction(ISD::FADD, MVT::v4f64, Legal); + setOperationAction(ISD::FSUB, MVT::v4f64, Legal); + setOperationAction(ISD::FMUL, MVT::v4f64, Legal); + setOperationAction(ISD::FDIV, MVT::v4f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); + setOperationAction(ISD::FNEG, MVT::v4f64, Custom); + + setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); + + setOperationAction(ISD::SRL, MVT::v16i16, Custom); + setOperationAction(ISD::SRL, MVT::v32i8, Custom); + + setOperationAction(ISD::SHL, MVT::v16i16, Custom); + setOperationAction(ISD::SHL, MVT::v32i8, Custom); + + setOperationAction(ISD::SRA, MVT::v16i16, Custom); + setOperationAction(ISD::SRA, MVT::v32i8, Custom); + + setOperationAction(ISD::SETCC, MVT::v32i8, Custom); + setOperationAction(ISD::SETCC, MVT::v16i16, Custom); + setOperationAction(ISD::SETCC, MVT::v8i32, Custom); + setOperationAction(ISD::SETCC, MVT::v4i64, Custom); + + setOperationAction(ISD::SELECT, MVT::v4f64, Custom); + setOperationAction(ISD::SELECT, MVT::v4i64, Custom); + setOperationAction(ISD::SELECT, MVT::v8f32, Custom); + + setOperationAction(ISD::VSELECT, MVT::v4f64, Legal); + setOperationAction(ISD::VSELECT, MVT::v4i64, Legal); + setOperationAction(ISD::VSELECT, MVT::v8i32, Legal); + setOperationAction(ISD::VSELECT, MVT::v8f32, Legal); + + if (Subtarget->hasFMA()) { + setOperationAction(ISD::FMA, MVT::v8f32, Custom); + setOperationAction(ISD::FMA, MVT::v4f64, Custom); + setOperationAction(ISD::FMA, MVT::v4f32, Custom); + setOperationAction(ISD::FMA, MVT::v2f64, Custom); + setOperationAction(ISD::FMA, MVT::f32, Custom); + setOperationAction(ISD::FMA, MVT::f64, Custom); + } + + if (Subtarget->hasAVX2()) { + setOperationAction(ISD::ADD, MVT::v4i64, Legal); + setOperationAction(ISD::ADD, MVT::v8i32, Legal); + setOperationAction(ISD::ADD, MVT::v16i16, Legal); + setOperationAction(ISD::ADD, MVT::v32i8, Legal); + + setOperationAction(ISD::SUB, MVT::v4i64, Legal); + setOperationAction(ISD::SUB, MVT::v8i32, Legal); + setOperationAction(ISD::SUB, MVT::v16i16, Legal); + setOperationAction(ISD::SUB, MVT::v32i8, Legal); + + setOperationAction(ISD::MUL, MVT::v4i64, Custom); + setOperationAction(ISD::MUL, MVT::v8i32, Legal); + setOperationAction(ISD::MUL, MVT::v16i16, Legal); + // Don't lower v32i8 because there is no 128-bit byte mul + + setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); + + setOperationAction(ISD::SRL, MVT::v4i64, Legal); + setOperationAction(ISD::SRL, MVT::v8i32, Legal); + + setOperationAction(ISD::SHL, MVT::v4i64, Legal); + setOperationAction(ISD::SHL, MVT::v8i32, Legal); + + setOperationAction(ISD::SRA, MVT::v8i32, Legal); + } else { + setOperationAction(ISD::ADD, MVT::v4i64, Custom); + setOperationAction(ISD::ADD, MVT::v8i32, Custom); + setOperationAction(ISD::ADD, MVT::v16i16, Custom); + setOperationAction(ISD::ADD, MVT::v32i8, Custom); + + setOperationAction(ISD::SUB, MVT::v4i64, Custom); + setOperationAction(ISD::SUB, MVT::v8i32, Custom); + setOperationAction(ISD::SUB, MVT::v16i16, Custom); + setOperationAction(ISD::SUB, MVT::v32i8, Custom); + + setOperationAction(ISD::MUL, MVT::v4i64, Custom); + setOperationAction(ISD::MUL, MVT::v8i32, Custom); + setOperationAction(ISD::MUL, MVT::v16i16, Custom); + // Don't lower v32i8 because there is no 128-bit byte mul + + setOperationAction(ISD::SRL, MVT::v4i64, Custom); + setOperationAction(ISD::SRL, MVT::v8i32, Custom); + + setOperationAction(ISD::SHL, MVT::v4i64, Custom); + setOperationAction(ISD::SHL, MVT::v8i32, Custom); + + setOperationAction(ISD::SRA, MVT::v8i32, Custom); + } + + // Custom lower several nodes for 256-bit types. + for (int i = MVT::FIRST_VECTOR_VALUETYPE; + i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { + MVT VT = (MVT::SimpleValueType)i; + + // Extract subvector is special because the value type + // (result) is 128-bit but the source is 256-bit wide. + if (VT.is128BitVector()) + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); + + // Do not attempt to custom lower other non-256-bit vectors + if (!VT.is256BitVector()) + continue; + + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); + setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); + } + + // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. + for (int i = MVT::v32i8; i != MVT::v4i64; ++i) { + MVT VT = (MVT::SimpleValueType)i; + + // Do not attempt to promote non-256-bit vectors + if (!VT.is256BitVector()) + continue; + + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v4i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v4i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v4i64); + setOperationAction(ISD::LOAD, VT, Promote); + AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); + } + } + + // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion + // of this type with custom code. + for (int VT = MVT::FIRST_VECTOR_VALUETYPE; + VT != MVT::LAST_VECTOR_VALUETYPE; VT++) { + setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, + Custom); + } + + // We want to custom lower some of our intrinsics. + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + + + // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't + // handle type legalization for these operations here. + // + // FIXME: We really should do custom legalization for addition and + // subtraction on x86-32 once PR3203 is fixed. We really can't do much better + // than generic legalization for 64-bit multiplication-with-overflow, though. + for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { + // Add/Sub/Mul with overflow operations are custom lowered. + MVT VT = IntVTs[i]; + setOperationAction(ISD::SADDO, VT, Custom); + setOperationAction(ISD::UADDO, VT, Custom); + setOperationAction(ISD::SSUBO, VT, Custom); + setOperationAction(ISD::USUBO, VT, Custom); + setOperationAction(ISD::SMULO, VT, Custom); + setOperationAction(ISD::UMULO, VT, Custom); + } + + // There are no 8-bit 3-address imul/mul instructions + setOperationAction(ISD::SMULO, MVT::i8, Expand); + setOperationAction(ISD::UMULO, MVT::i8, Expand); + + if (!Subtarget->is64Bit()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, 0); + setLibcallName(RTLIB::SRL_I128, 0); + setLibcallName(RTLIB::SRA_I128, 0); + } + + // We have target-specific dag combine patterns for the following nodes: + setTargetDAGCombine(ISD::VECTOR_SHUFFLE); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::VSELECT); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::SRA); + setTargetDAGCombine(ISD::SRL); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FMA); + setTargetDAGCombine(ISD::SUB); + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::ZERO_EXTEND); + setTargetDAGCombine(ISD::ANY_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::TRUNCATE); + setTargetDAGCombine(ISD::UINT_TO_FP); + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::SETCC); + setTargetDAGCombine(ISD::FP_TO_SINT); + if (Subtarget->is64Bit()) + setTargetDAGCombine(ISD::MUL); + setTargetDAGCombine(ISD::XOR); + + computeRegisterProperties(); + + // On Darwin, -Os means optimize for size without hurting performance, + // do not reduce the limit. + maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; + maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores + maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; + maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores + maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; + setPrefLoopAlignment(4); // 2^4 bytes. + benefitFromCodePlacementOpt = true; + + // Predictable cmov don't hurt on atom because it's in-order. + predictableSelectIsExpensive = !Subtarget->isAtom(); + + setPrefFunctionAlignment(4); // 2^4 bytes. +} + + +EVT X86TargetLowering::getSetCCResultType(EVT VT) const { + if (!VT.isVector()) return MVT::i8; + return VT.changeVectorElementTypeToInteger(); +} + + +/// getMaxByValAlign - Helper for getByValTypeAlignment to determine +/// the desired ByVal argument alignment. +static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { + if (MaxAlign == 16) + return; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { + if (VTy->getBitWidth() == 128) + MaxAlign = 16; + } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned EltAlign = 0; + getMaxByValAlign(ATy->getElementType(), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + unsigned EltAlign = 0; + getMaxByValAlign(STy->getElementType(i), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + if (MaxAlign == 16) + break; + } + } +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. For X86, aggregates +/// that contain SSE vectors are placed at 16-byte boundaries while the rest +/// are at 4-byte boundaries. +unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const { + if (Subtarget->is64Bit()) { + // Max of 8 and alignment of type. + unsigned TyAlign = TD->getABITypeAlignment(Ty); + if (TyAlign > 8) + return TyAlign; + return 8; + } + + unsigned Align = 4; + if (Subtarget->hasSSE1()) + getMaxByValAlign(Ty, Align); + return Align; +} + +/// getOptimalMemOpType - Returns the target specific optimal type for load +/// and store operations as a result of memset, memcpy, and memmove +/// lowering. If DstAlign is zero that means it's safe to destination +/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it +/// means there isn't a need to check it against alignment requirement, +/// probably because the source does not need to be loaded. If +/// 'IsZeroVal' is true, that means it's safe to return a +/// non-scalar-integer type, e.g. empty string source, constant, or loaded +/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is +/// constant so it does not need to be loaded. +/// It returns EVT::Other if the type should be determined using generic +/// target-independent logic. +EVT +X86TargetLowering::getOptimalMemOpType(uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsZeroVal, + bool MemcpyStrSrc, + MachineFunction &MF) const { + // FIXME: This turns off use of xmm stores for memset/memcpy on targets like + // linux. This is because the stack realignment code can't handle certain + // cases like PR2962. This should be removed when PR2962 is fixed. + const Function *F = MF.getFunction(); + if (IsZeroVal && + !F->hasFnAttr(Attribute::NoImplicitFloat)) { + if (Size >= 16 && + (Subtarget->isUnalignedMemAccessFast() || + ((DstAlign == 0 || DstAlign >= 16) && + (SrcAlign == 0 || SrcAlign >= 16))) && + Subtarget->getStackAlignment() >= 16) { + if (Subtarget->getStackAlignment() >= 32) { + if (Subtarget->hasAVX2()) + return MVT::v8i32; + if (Subtarget->hasAVX()) + return MVT::v8f32; + } + if (Subtarget->hasSSE2()) + return MVT::v4i32; + if (Subtarget->hasSSE1()) + return MVT::v4f32; + } else if (!MemcpyStrSrc && Size >= 8 && + !Subtarget->is64Bit() && + Subtarget->getStackAlignment() >= 8 && + Subtarget->hasSSE2()) { + // Do not use f64 to lower memcpy if source is string constant. It's + // better to use i32 to avoid the loads. + return MVT::f64; + } + } + if (Subtarget->is64Bit() && Size >= 8) + return MVT::i64; + return MVT::i32; +} + +/// getJumpTableEncoding - Return the entry encoding for a jump table in the +/// current function. The returned value is a member of the +/// MachineJumpTableInfo::JTEntryKind enum. +unsigned X86TargetLowering::getJumpTableEncoding() const { + // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF + // symbol. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()) + return MachineJumpTableInfo::EK_Custom32; + + // Otherwise, use the normal jump table encoding heuristics. + return TargetLowering::getJumpTableEncoding(); +} + +const MCExpr * +X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, + const MachineBasicBlock *MBB, + unsigned uid,MCContext &Ctx) const{ + assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()); + // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF + // entries. + return MCSymbolRefExpr::Create(MBB->getSymbol(), + MCSymbolRefExpr::VK_GOTOFF, Ctx); +} + +/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC +/// jumptable. +SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + if (!Subtarget->is64Bit()) + // This doesn't have DebugLoc associated with it, but is not really the + // same as a Register. + return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); + return Table; +} + +/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the +/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an +/// MCExpr. +const MCExpr *X86TargetLowering:: +getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, + MCContext &Ctx) const { + // X86-64 uses RIP relative addressing based on the jump table label. + if (Subtarget->isPICStyleRIPRel()) + return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); + + // Otherwise, the reference is relative to the PIC base. + return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); +} + +// FIXME: Why this routine is here? Move to RegInfo! +std::pair<const TargetRegisterClass*, uint8_t> +X86TargetLowering::findRepresentativeClass(EVT VT) const{ + const TargetRegisterClass *RRC = 0; + uint8_t Cost = 1; + switch (VT.getSimpleVT().SimpleTy) { + default: + return TargetLowering::findRepresentativeClass(VT); + case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: + RRC = Subtarget->is64Bit() ? + (const TargetRegisterClass*)&X86::GR64RegClass : + (const TargetRegisterClass*)&X86::GR32RegClass; + break; + case MVT::x86mmx: + RRC = &X86::VR64RegClass; + break; + case MVT::f32: case MVT::f64: + case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: + case MVT::v4f32: case MVT::v2f64: + case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: + case MVT::v4f64: + RRC = &X86::VR128RegClass; + break; + } + return std::make_pair(RRC, Cost); +} + +bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, + unsigned &Offset) const { + if (!Subtarget->isTargetLinux()) + return false; + + if (Subtarget->is64Bit()) { + // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: + Offset = 0x28; + if (getTargetMachine().getCodeModel() == CodeModel::Kernel) + AddressSpace = 256; + else + AddressSpace = 257; + } else { + // %gs:0x14 on i386 + Offset = 0x14; + AddressSpace = 256; + } + return true; +} + + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "X86GenCallingConv.inc" + +bool +X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, + MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), + RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_X86); +} + +SDValue +X86TargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc dl, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), + RVLocs, *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + // Add the regs to the liveout set for the function. + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + for (unsigned i = 0; i != RVLocs.size(); ++i) + if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) + MRI.addLiveOut(RVLocs[i].getLocReg()); + + SDValue Flag; + + SmallVector<SDValue, 6> RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + // Operand #1 = Bytes To Pop + RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), + MVT::i16)); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue ValToCopy = OutVals[i]; + EVT ValVT = ValToCopy.getValueType(); + + // Promote values to the appropriate types + if (VA.getLocInfo() == CCValAssign::SExt) + ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::AExt) + ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::BCvt) + ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy); + + // If this is x86-64, and we disabled SSE, we can't return FP values, + // or SSE or MMX vectors. + if ((ValVT == MVT::f32 || ValVT == MVT::f64 || + VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && + (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + // Likewise we can't return F64 values with SSE1 only. gcc does so, but + // llvm-gcc has never done it right and no one has noticed, so this + // should be OK for now. + if (ValVT == MVT::f64 && + (Subtarget->is64Bit() && !Subtarget->hasSSE2())) + report_fatal_error("SSE2 register return with SSE2 disabled"); + + // Returns in ST0/ST1 are handled specially: these are pushed as operands to + // the RET instruction and handled by the FP Stackifier. + if (VA.getLocReg() == X86::ST0 || + VA.getLocReg() == X86::ST1) { + // If this is a copy from an xmm register to ST(0), use an FPExtend to + // change the value to the FP stack register class. + if (isScalarFPTypeInSSEReg(VA.getValVT())) + ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); + RetOps.push_back(ValToCopy); + // Don't emit a copytoreg. + continue; + } + + // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 + // which is returned in RAX / RDX. + if (Subtarget->is64Bit()) { + if (ValVT == MVT::x86mmx) { + if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { + ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); + ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + ValToCopy); + // If we don't have SSE2 available, convert to v4f32 so the generated + // register is legal. + if (!Subtarget->hasSSE2()) + ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); + } + } + } + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); + Flag = Chain.getValue(1); + } + + // The x86-64 ABI for returning structs by value requires that we copy + // the sret argument into %rax for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into %rax. + if (Subtarget->is64Bit() && + DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + unsigned Reg = FuncInfo->getSRetReturnReg(); + assert(Reg && + "SRetReturnReg should have been set in LowerFormalArguments()."); + SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); + + Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); + Flag = Chain.getValue(1); + + // RAX now acts like a return value. + MRI.addLiveOut(X86::RAX); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(X86ISD::RET_FLAG, dl, + MVT::Other, &RetOps[0], RetOps.size()); +} + +bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { + if (N->getNumValues() != 1) + return false; + if (!N->hasNUsesOfValue(1, 0)) + return false; + + SDValue TCChain = Chain; + SDNode *Copy = *N->use_begin(); + if (Copy->getOpcode() == ISD::CopyToReg) { + // If the copy has a glue operand, we conservatively assume it isn't safe to + // perform a tail call. + if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) + return false; + TCChain = Copy->getOperand(0); + } else if (Copy->getOpcode() != ISD::FP_EXTEND) + return false; + + bool HasRet = false; + for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); + UI != UE; ++UI) { + if (UI->getOpcode() != X86ISD::RET_FLAG) + return false; + HasRet = true; + } + + if (!HasRet) + return false; + + Chain = TCChain; + return true; +} + +EVT +X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, + ISD::NodeType ExtendKind) const { + MVT ReturnMVT; + // TODO: Is this also valid on 32-bit? + if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) + ReturnMVT = MVT::i8; + else + ReturnMVT = MVT::i32; + + EVT MinVT = getRegisterType(Context, ReturnMVT); + return VT.bitsLT(MinVT) ? MinVT : VT; +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +/// +SDValue +X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + bool Is64Bit = Subtarget->is64Bit(); + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + EVT CopyVT = VA.getValVT(); + + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && + ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + + SDValue Val; + + // If this is a call to a function that returns an fp value on the floating + // point stack, we must guarantee the value is popped from the stack, so + // a CopyFromReg is not good enough - the copy instruction may be eliminated + // if the return value is not used. We use the FpPOP_RETVAL instruction + // instead. + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; + SDValue Ops[] = { Chain, InFlag }; + Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT, + MVT::Other, MVT::Glue, Ops, 2), 1); + Val = Chain.getValue(0); + + // Round the f80 to the right size, which also moves it to the appropriate + // xmm register. + if (CopyVT != VA.getValVT()) + Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, + // This truncation won't change the value. + DAG.getIntPtrConstant(1)); + } else { + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), + CopyVT, InFlag).getValue(1); + Val = Chain.getValue(0); + } + InFlag = Chain.getValue(2); + InVals.push_back(Val); + } + + return Chain; +} + + +//===----------------------------------------------------------------------===// +// C & StdCall & Fast Calling Convention implementation +//===----------------------------------------------------------------------===// +// StdCall calling convention seems to be standard for many Windows' API +// routines and around. It differs from C calling convention just a little: +// callee should clean up the stack, not caller. Symbols should be also +// decorated in some fancy way :) It doesn't support any vector arguments. +// For info on fast calling convention see Fast Calling Convention (tail call) +// implementation LowerX86_32FastCCCallTo. + +/// CallIsStructReturn - Determines whether a call uses struct return +/// semantics. +enum StructReturnType { + NotStructReturn, + RegStructReturn, + StackStructReturn +}; +static StructReturnType +callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { + if (Outs.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Outs[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg()) + return RegStructReturn; + return StackStructReturn; +} + +/// ArgsAreStructReturn - Determines whether a function uses struct +/// return semantics. +static StructReturnType +argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { + if (Ins.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Ins[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg()) + return RegStructReturn; + return StackStructReturn; +} + +/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified +/// by "Src" to address "Dst" with size and alignment information specified by +/// the specific parameter attribute. The copy will be passed as a byval +/// function parameter. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG, + DebugLoc dl) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); + + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + /*isVolatile*/false, /*AlwaysInline=*/true, + MachinePointerInfo(), MachinePointerInfo()); +} + +/// IsTailCallConvention - Return true if the calling convention is one that +/// supports tail call optimization. +static bool IsTailCallConvention(CallingConv::ID CC) { + return (CC == CallingConv::Fast || CC == CallingConv::GHC); +} + +bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) + return false; + + CallSite CS(CI); + CallingConv::ID CalleeCC = CS.getCallingConv(); + if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) + return false; + + return true; +} + +/// FuncIsMadeTailCallSafe - Return true if the function is being made into +/// a tailcall target by changing its ABI. +static bool FuncIsMadeTailCallSafe(CallingConv::ID CC, + bool GuaranteedTailCallOpt) { + return GuaranteedTailCallOpt && IsTailCallConvention(CC); +} + +SDValue +X86TargetLowering::LowerMemArgument(SDValue Chain, + CallingConv::ID CallConv, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + MachineFrameInfo *MFI, + unsigned i) const { + // Create the nodes corresponding to a load from this parameter slot. + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv, + getTargetMachine().Options.GuaranteedTailCallOpt); + bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); + EVT ValVT; + + // If value is passed by pointer we have address passed instead of the value + // itself. + if (VA.getLocInfo() == CCValAssign::Indirect) + ValVT = VA.getLocVT(); + else + ValVT = VA.getValVT(); + + // FIXME: For now, all byval parameter objects are marked mutable. This can be + // changed with more analysis. + // In case of tail call optimization mark all arguments mutable. Since they + // could be overwritten by lowering of arguments in case of a tail call. + if (Flags.isByVal()) { + unsigned Bytes = Flags.getByValSize(); + if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. + int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); + return DAG.getFrameIndex(FI, getPointerTy()); + } else { + int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, + VA.getLocMemOffset(), isImmutable); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); + return DAG.getLoad(ValVT, dl, Chain, FIN, + MachinePointerInfo::getFixedStack(FI), + false, false, false, 0); + } +} + +SDValue +X86TargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) + const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Function* Fn = MF.getFunction(); + if (Fn->hasExternalLinkage() && + Subtarget->isTargetCygMing() && + Fn->getName() == "main") + FuncInfo->setForceFramePointer(true); + + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsWindows = Subtarget->isTargetWindows(); + bool IsWin64 = Subtarget->isTargetWin64(); + + assert(!(isVarArg && IsTailCallConvention(CallConv)) && + "Var args not supported with calling convention fastcc or ghc"); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), + ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64 + if (IsWin64) { + CCInfo.AllocateStack(32, 8); + } + + CCInfo.AnalyzeFormalArguments(Ins, CC_X86); + + unsigned LastVal = ~0U; + SDValue ArgValue; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + // TODO: If an arg is passed in two places (e.g. reg and stack), skip later + // places. + assert(VA.getValNo() != LastVal && + "Don't support value assigned to multiple locs yet"); + (void)LastVal; + LastVal = VA.getValNo(); + + if (VA.isRegLoc()) { + EVT RegVT = VA.getLocVT(); + const TargetRegisterClass *RC; + if (RegVT == MVT::i32) + RC = &X86::GR32RegClass; + else if (Is64Bit && RegVT == MVT::i64) + RC = &X86::GR64RegClass; + else if (RegVT == MVT::f32) + RC = &X86::FR32RegClass; + else if (RegVT == MVT::f64) + RC = &X86::FR64RegClass; + else if (RegVT.is256BitVector()) + RC = &X86::VR256RegClass; + else if (RegVT.is128BitVector()) + RC = &X86::VR128RegClass; + else if (RegVT == MVT::x86mmx) + RC = &X86::VR64RegClass; + else + llvm_unreachable("Unknown argument type!"); + + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + + // If this is an 8 or 16-bit value, it is really passed promoted to 32 + // bits. Insert an assert[sz]ext to capture this, then truncate to the + // right size. + if (VA.getLocInfo() == CCValAssign::SExt) + ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::BCvt) + ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); + + if (VA.isExtInLoc()) { + // Handle MMX values passed in XMM regs. + if (RegVT.isVector()) { + ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), + ArgValue); + } else + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); + } + } else { + assert(VA.isMemLoc()); + ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); + } + + // If value is passed via pointer - do a load. + if (VA.getLocInfo() == CCValAssign::Indirect) + ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, + MachinePointerInfo(), false, false, false, 0); + + InVals.push_back(ArgValue); + } + + // The x86-64 ABI for returning structs by value requires that we copy + // the sret argument into %rax for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + unsigned Reg = FuncInfo->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); + FuncInfo->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + } + + unsigned StackSize = CCInfo.getNextStackOffset(); + // Align stack specially for tail calls. + if (FuncIsMadeTailCallSafe(CallConv, + MF.getTarget().Options.GuaranteedTailCallOpt)) + StackSize = GetAlignedArgumentStackSize(StackSize, DAG); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (isVarArg) { + if (Is64Bit || (CallConv != CallingConv::X86_FastCall && + CallConv != CallingConv::X86_ThisCall)) { + FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); + } + if (Is64Bit) { + unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; + + // FIXME: We should really autogenerate these arrays + static const uint16_t GPR64ArgRegsWin64[] = { + X86::RCX, X86::RDX, X86::R8, X86::R9 + }; + static const uint16_t GPR64ArgRegs64Bit[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 + }; + static const uint16_t XMMArgRegs64Bit[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + const uint16_t *GPR64ArgRegs; + unsigned NumXMMRegs = 0; + + if (IsWin64) { + // The XMM registers which might contain var arg parameters are shadowed + // in their paired GPR. So we only need to save the GPR to their home + // slots. + TotalNumIntRegs = 4; + GPR64ArgRegs = GPR64ArgRegsWin64; + } else { + TotalNumIntRegs = 6; TotalNumXMMRegs = 8; + GPR64ArgRegs = GPR64ArgRegs64Bit; + + NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, + TotalNumXMMRegs); + } + unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, + TotalNumIntRegs); + + bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); + assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && + "SSE register cannot be used when SSE is disabled!"); + assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat && + NoImplicitFloatOps) && + "SSE register cannot be used when SSE is disabled!"); + if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps || + !Subtarget->hasSSE1()) + // Kernel mode asks for SSE to be disabled, so don't push them + // on the stack. + TotalNumXMMRegs = 0; + + if (IsWin64) { + const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering(); + // Get to the caller-allocated home save location. Add 8 to account + // for the return address. + int HomeOffset = TFI.getOffsetOfLocalArea() + 8; + FuncInfo->setRegSaveFrameIndex( + MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); + // Fixup to set vararg frame on shadow area (4 x i64). + if (NumIntRegs < 4) + FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); + } else { + // For X86-64, if there are vararg parameters that are passed via + // registers, then we must store them to their spots on the stack so + // they may be loaded by deferencing the result of va_next. + FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); + FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); + FuncInfo->setRegSaveFrameIndex( + MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, + false)); + } + + // Store the integer parameter registers. + SmallVector<SDValue, 8> MemOps; + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy()); + unsigned Offset = FuncInfo->getVarArgsGPOffset(); + for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { + SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, + DAG.getIntPtrConstant(Offset)); + unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], + &X86::GR64RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); + SDValue Store = + DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo::getFixedStack( + FuncInfo->getRegSaveFrameIndex(), Offset), + false, false, 0); + MemOps.push_back(Store); + Offset += 8; + } + + if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { + // Now store the XMM (fp + vector) parameter registers. + SmallVector<SDValue, 11> SaveXMMOps; + SaveXMMOps.push_back(Chain); + + unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); + SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); + SaveXMMOps.push_back(ALVal); + + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getRegSaveFrameIndex())); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getVarArgsFPOffset())); + + for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { + unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], + &X86::VR128RegClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); + SaveXMMOps.push_back(Val); + } + MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, + MVT::Other, + &SaveXMMOps[0], SaveXMMOps.size())); + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOps[0], MemOps.size()); + } + } + + // Some CCs need callee pop. + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + MF.getTarget().Options.GuaranteedTailCallOpt)) { + FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. + } else { + FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. + // If this is an sret function, the return should pop the hidden pointer. + if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && + argsAreStructReturn(Ins) == StackStructReturn) + FuncInfo->setBytesToPopOnReturn(4); + } + + if (!Is64Bit) { + // RegSaveFrameIndex is X86-64 only. + FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); + if (CallConv == CallingConv::X86_FastCall || + CallConv == CallingConv::X86_ThisCall) + // fastcc functions can't have varargs. + FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); + } + + FuncInfo->setArgumentStackSize(StackSize); + + return Chain; +} + +SDValue +X86TargetLowering::LowerMemOpCallTo(SDValue Chain, + SDValue StackPtr, SDValue Arg, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + ISD::ArgFlagsTy Flags) const { + unsigned LocMemOffset = VA.getLocMemOffset(); + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); + if (Flags.isByVal()) + return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); + + return DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo::getStack(LocMemOffset), + false, false, 0); +} + +/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call +/// optimization is performed and it is required. +SDValue +X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, + SDValue &OutRetAddr, SDValue Chain, + bool IsTailCall, bool Is64Bit, + int FPDiff, DebugLoc dl) const { + // Adjust the Return address stack slot. + EVT VT = getPointerTy(); + OutRetAddr = getReturnAddressFrameIndex(DAG); + + // Load the "old" Return address. + OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), + false, false, false, 0); + return SDValue(OutRetAddr.getNode(), 1); +} + +/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call +/// optimization is performed and it is required (FPDiff!=0). +static SDValue +EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, + SDValue Chain, SDValue RetAddrFrIdx, + bool Is64Bit, int FPDiff, DebugLoc dl) { + // Store the return address to the appropriate stack slot. + if (!FPDiff) return Chain; + // Calculate the new stack slot for the return address. + int SlotSize = Is64Bit ? 8 : 4; + int NewReturnAddrFI = + MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); + EVT VT = Is64Bit ? MVT::i64 : MVT::i32; + SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); + Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, + MachinePointerInfo::getFixedStack(NewReturnAddrFI), + false, false, 0); + return Chain; +} + +SDValue +X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + DebugLoc &dl = CLI.DL; + SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; + SmallVector<SDValue, 32> &OutVals = CLI.OutVals; + SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + CallingConv::ID CallConv = CLI.CallConv; + bool &isTailCall = CLI.IsTailCall; + bool isVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isTargetWin64(); + bool IsWindows = Subtarget->isTargetWindows(); + StructReturnType SR = callIsStructReturn(Outs); + bool IsSibcall = false; + + if (MF.getTarget().Options.DisableTailCalls) + isTailCall = false; + + if (isTailCall) { + // Check if it's really possible to do a tail call. + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + isVarArg, SR != NotStructReturn, + MF.getFunction()->hasStructRetAttr(), + Outs, OutVals, Ins, DAG); + + // Sibcalls are automatically detected tailcalls which do not require + // ABI changes. + if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) + IsSibcall = true; + + if (isTailCall) + ++NumTailCalls; + } + + assert(!(isVarArg && IsTailCallConvention(CallConv)) && + "Var args not supported with calling convention fastcc or ghc"); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), + ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64 + if (IsWin64) { + CCInfo.AllocateStack(32, 8); + } + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + if (IsSibcall) + // This is a sibcall. The memory operands are available in caller's + // own caller's stack. + NumBytes = 0; + else if (getTargetMachine().Options.GuaranteedTailCallOpt && + IsTailCallConvention(CallConv)) + NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); + + int FPDiff = 0; + if (isTailCall && !IsSibcall) { + // Lower arguments at fp - stackoffset + fpdiff. + unsigned NumBytesCallerPushed = + MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); + FPDiff = NumBytesCallerPushed - NumBytes; + + // Set the delta of movement of the returnaddr stackslot. + // But only set if delta is greater than previous delta. + if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) + MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); + } + + if (!IsSibcall) + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); + + SDValue RetAddrFrIdx; + // Load return address for tail calls. + if (isTailCall && FPDiff) + Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, + Is64Bit, FPDiff, dl); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + + // Walk the register/memloc assignments, inserting copies/loads. In the case + // of tail call optimization arguments are handle later. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + EVT RegVT = VA.getLocVT(); + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + bool isByVal = Flags.isByVal(); + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::AExt: + if (RegVT.is128BitVector()) { + // Special case: passing MMX values in XMM registers. + Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); + Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); + Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); + } else + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); + break; + case CCValAssign::Indirect: { + // Store the argument. + SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, + MachinePointerInfo::getFixedStack(FI), + false, false, 0); + Arg = SpillSlot; + break; + } + } + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + if (isVarArg && IsWin64) { + // Win64 ABI requires argument XMM reg to be copied to the corresponding + // shadow reg if callee is a varargs function. + unsigned ShadowReg = 0; + switch (VA.getLocReg()) { + case X86::XMM0: ShadowReg = X86::RCX; break; + case X86::XMM1: ShadowReg = X86::RDX; break; + case X86::XMM2: ShadowReg = X86::R8; break; + case X86::XMM3: ShadowReg = X86::R9; break; + } + if (ShadowReg) + RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); + } + } else if (!IsSibcall && (!isTailCall || isByVal)) { + assert(VA.isMemLoc()); + if (StackPtr.getNode() == 0) + StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); + MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, + dl, DAG, VA, Flags)); + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + if (Subtarget->isPICStyleGOT()) { + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (!isTailCall) { + RegsToPass.push_back(std::make_pair(unsigned(X86::EBX), + DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()))); + } else { + // If we are tail calling and generating PIC/GOT style code load the + // address of the callee into ECX. The value in ecx is used as target of + // the tail jump. This is done to circumvent the ebx/callee-saved problem + // for tail calls on PIC/GOT architectures. Normally we would just put the + // address of GOT into ebx and then call target@PLT. But for tail calls + // ebx would be restored (since ebx is callee saved) before jumping to the + // target@PLT. + + // Note: The actual moving to ECX is done further down. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (G && !G->getGlobal()->hasHiddenVisibility() && + !G->getGlobal()->hasProtectedVisibility()) + Callee = LowerGlobalAddress(Callee, DAG); + else if (isa<ExternalSymbolSDNode>(Callee)) + Callee = LowerExternalSymbol(Callee, DAG); + } + } + + if (Is64Bit && isVarArg && !IsWin64) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + + // Count the number of XMM registers allocated. + static const uint16_t XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); + assert((Subtarget->hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + + RegsToPass.push_back(std::make_pair(unsigned(X86::AL), + DAG.getConstant(NumXMMRegs, MVT::i8))); + } + + // For tail calls lower the arguments to the 'real' stack slot. + if (isTailCall) { + // Force all the incoming stack arguments to be loaded from the stack + // before any new outgoing arguments are stored to the stack, because the + // outgoing stack slots may alias the incoming argument stack slots, and + // the alias isn't otherwise explicit. This is slightly more conservative + // than necessary, because it means that each store effectively depends + // on every argument instead of just those arguments it would clobber. + SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); + + SmallVector<SDValue, 8> MemOpChains2; + SDValue FIN; + int FI = 0; + if (getTargetMachine().Options.GuaranteedTailCallOpt) { + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) + continue; + assert(VA.isMemLoc()); + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + // Create frame index. + int32_t Offset = VA.getLocMemOffset()+FPDiff; + uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; + FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); + FIN = DAG.getFrameIndex(FI, getPointerTy()); + + if (Flags.isByVal()) { + // Copy relative to framepointer. + SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); + if (StackPtr.getNode() == 0) + StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, + getPointerTy()); + Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); + + MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, + ArgChain, + Flags, DAG, dl)); + } else { + // Store relative to framepointer. + MemOpChains2.push_back( + DAG.getStore(ArgChain, dl, Arg, FIN, + MachinePointerInfo::getFixedStack(FI), + false, false, 0)); + } + } + } + + if (!MemOpChains2.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains2[0], MemOpChains2.size()); + + // Store the return address to the appropriate stack slot. + Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, + FPDiff, dl); + } + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into registers. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (getTargetMachine().getCodeModel() == CodeModel::Large) { + assert(Is64Bit && "Large code model is only legal in 64-bit mode."); + // In the 64-bit large code model, we have to make all calls + // through a register, since the call instruction's 32-bit + // pc-relative offset may not be large enough to hold the whole + // address. + } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + // If the callee is a GlobalAddress node (quite common, every direct call + // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack + // it. + + // We should use extra load for direct calls to dllimported functions in + // non-JIT mode. + const GlobalValue *GV = G->getGlobal(); + if (!GV->hasDLLImportLinkage()) { + unsigned char OpFlags = 0; + bool ExtraLoad = false; + unsigned WrapperKind = ISD::DELETED_NODE; + + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to + // external symbols most go through the PLT in PIC mode. If the symbol + // has hidden or protected visibility, or if it is static or local, then + // we don't need to use the PLT - we can directly call it. + if (Subtarget->isTargetELF() && + getTargetMachine().getRelocationModel() == Reloc::PIC_ && + GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (GV->isDeclaration() || GV->isWeakForLinker()) && + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } else if (Subtarget->isPICStyleRIPRel() && + isa<Function>(GV) && + cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) { + // If the function is marked as non-lazy, generate an indirect call + // which loads from the GOT directly. This avoids runtime overhead + // at the cost of eager binding (and one extra byte of encoding). + OpFlags = X86II::MO_GOTPCREL; + WrapperKind = X86ISD::WrapperRIP; + ExtraLoad = true; + } + + Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), + G->getOffset(), OpFlags); + + // Add a wrapper if needed. + if (WrapperKind != ISD::DELETED_NODE) + Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee); + // Add extra indirection if needed. + if (ExtraLoad) + Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, + MachinePointerInfo::getGOT(), + false, false, false, 0); + } + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + unsigned char OpFlags = 0; + + // On ELF targets, in either X86-64 or X86-32 mode, direct calls to + // external symbols should go through the PLT. + if (Subtarget->isTargetELF() && + getTargetMachine().getRelocationModel() == Reloc::PIC_) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), + OpFlags); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + + if (!IsSibcall && isTailCall) { + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), InFlag); + InFlag = Chain.getValue(1); + } + + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (isTailCall) + Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + if (isTailCall) { + // We used to do: + //// If this is the first return lowered for this function, add the regs + //// to the liveout set for the function. + // This isn't right, although it's probably harmless on x86; liveouts + // should be computed from returns not tail calls. Consider a void + // function making a tail call to a function returning int. + return DAG.getNode(X86ISD::TC_RETURN, dl, + NodeTys, &Ops[0], Ops.size()); + } + + Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + unsigned NumBytesForCalleeToPush; + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + getTargetMachine().Options.GuaranteedTailCallOpt)) + NumBytesForCalleeToPush = NumBytes; // Callee pops everything + else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows && + SR == StackStructReturn) + // If this is a call to a struct-return function, the callee + // pops the hidden struct pointer, so we have to push it back. + // This is common for Darwin/X86, Linux & Mingw32 targets. + // For MSVC Win32 targets, the caller pops the hidden struct pointer. + NumBytesForCalleeToPush = 4; + else + NumBytesForCalleeToPush = 0; // Callee pops nothing. + + // Returns a flag for retval copy to use. + if (!IsSibcall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(NumBytesForCalleeToPush, + true), + InFlag); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, + Ins, dl, DAG, InVals); +} + + +//===----------------------------------------------------------------------===// +// Fast Calling Convention (tail call) implementation +//===----------------------------------------------------------------------===// + +// Like std call, callee cleans arguments, convention except that ECX is +// reserved for storing the tail called function address. Only 2 registers are +// free for argument passing (inreg). Tail call optimization is performed +// provided: +// * tailcallopt is enabled +// * caller/callee are fastcc +// On X86_64 architecture with GOT-style position independent code only local +// (within module) calls are supported at the moment. +// To keep the stack aligned according to platform abi the function +// GetAlignedArgumentStackSize ensures that argument delta is always multiples +// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) +// If a tail called function callee has more arguments than the caller the +// caller needs to make sure that there is room to move the RETADDR to. This is +// achieved by reserving an area the size of the argument delta right after the +// original REtADDR, but before the saved framepointer or the spilled registers +// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) +// stack layout: +// arg1 +// arg2 +// RETADDR +// [ new RETADDR +// move area ] +// (possible EBP) +// ESI +// EDI +// local1 .. + +/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned +/// for a 16 byte align requirement. +unsigned +X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, + SelectionDAG& DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + const TargetMachine &TM = MF.getTarget(); + const TargetFrameLowering &TFI = *TM.getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + uint64_t AlignMask = StackAlignment - 1; + int64_t Offset = StackSize; + uint64_t SlotSize = TD->getPointerSize(); + if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { + // Number smaller than 12 so just add the difference. + Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); + } else { + // Mask out lower bits, add stackalignment once plus the 12 bytes. + Offset = ((~AlignMask) & Offset) + StackAlignment + + (StackAlignment-SlotSize); + } + return Offset; +} + +/// MatchingStackOffset - Return true if the given stack call argument is +/// already available in the same position (relatively) of the caller's +/// incoming argument stack. +static +bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, + MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, + const X86InstrInfo *TII) { + unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; + int FI = INT_MAX; + if (Arg.getOpcode() == ISD::CopyFromReg) { + unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(VR)) + return false; + MachineInstr *Def = MRI->getVRegDef(VR); + if (!Def) + return false; + if (!Flags.isByVal()) { + if (!TII->isLoadFromStackSlot(Def, FI)) + return false; + } else { + unsigned Opcode = Def->getOpcode(); + if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && + Def->getOperand(1).isFI()) { + FI = Def->getOperand(1).getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + } + } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { + if (Flags.isByVal()) + // ByVal argument is passed in as a pointer but it's now being + // dereferenced. e.g. + // define @foo(%struct.X* %A) { + // tail call @bar(%struct.X* byval %A) + // } + return false; + SDValue Ptr = Ld->getBasePtr(); + FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); + if (!FINode) + return false; + FI = FINode->getIndex(); + } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { + FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); + FI = FINode->getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + + assert(FI != INT_MAX); + if (!MFI->isFixedObjectIndex(FI)) + return false; + return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); +} + +/// IsEligibleForTailCallOptimization - Check whether the call is eligible +/// for tail call optimization. Targets which want to do tail call +/// optimization should implement this function. +bool +X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, + CallingConv::ID CalleeCC, + bool isVarArg, + bool isCalleeStructRet, + bool isCallerStructRet, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SelectionDAG& DAG) const { + if (!IsTailCallConvention(CalleeCC) && + CalleeCC != CallingConv::C) + return false; + + // If -tailcallopt is specified, make fastcc functions tail-callable. + const MachineFunction &MF = DAG.getMachineFunction(); + const Function *CallerF = DAG.getMachineFunction().getFunction(); + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + + if (getTargetMachine().Options.GuaranteedTailCallOpt) { + if (IsTailCallConvention(CalleeCC) && CCMatch) + return true; + return false; + } + + // Look for obvious safe cases to perform tail call optimization that do not + // require ABI changes. This is what gcc calls sibcall. + + // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to + // emit a special epilogue. + if (RegInfo->needsStackRealignment(MF)) + return false; + + // Also avoid sibcall optimization if either caller or callee uses struct + // return semantics. + if (isCalleeStructRet || isCallerStructRet) + return false; + + // An stdcall caller is expected to clean up its arguments; the callee + // isn't going to do that. + if (!CCMatch && CallerCC==CallingConv::X86_StdCall) + return false; + + // Do not sibcall optimize vararg calls unless all arguments are passed via + // registers. + if (isVarArg && !Outs.empty()) { + + // Optimizing for varargs on Win64 is unlikely to be safe without + // additional testing. + if (Subtarget->isTargetWin64()) + return false; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) + if (!ArgLocs[i].isRegLoc()) + return false; + } + + // If the call result is in ST0 / ST1, it needs to be popped off the x87 + // stack. Therefore, if it's not used by the call it is not safe to optimize + // this into a sibcall. + bool Unused = false; + for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + if (!Ins[i].Used) { + Unused = true; + break; + } + } + if (Unused) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) + return false; + } + } + + // If the calling conventions do not match, then we'd better make sure the + // results are returned in the same way as what the caller expects. + if (!CCMatch) { + SmallVector<CCValAssign, 16> RVLocs1; + CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), + getTargetMachine(), RVLocs1, *DAG.getContext()); + CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); + + SmallVector<CCValAssign, 16> RVLocs2; + CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), + getTargetMachine(), RVLocs2, *DAG.getContext()); + CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); + + if (RVLocs1.size() != RVLocs2.size()) + return false; + for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { + if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) + return false; + if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) + return false; + if (RVLocs1[i].isRegLoc()) { + if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) + return false; + } else { + if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) + return false; + } + } + } + + // If the callee takes no arguments then go on to check the results of the + // call. + if (!Outs.empty()) { + // Check if stack adjustment is needed. For now, do not do this if any + // argument is passed on the stack. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64 + if (Subtarget->isTargetWin64()) { + CCInfo.AllocateStack(32, 8); + } + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + if (CCInfo.getNextStackOffset()) { + MachineFunction &MF = DAG.getMachineFunction(); + if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) + return false; + + // Check if the arguments are already laid out in the right way as + // the caller's fixed stack objects. + MachineFrameInfo *MFI = MF.getFrameInfo(); + const MachineRegisterInfo *MRI = &MF.getRegInfo(); + const X86InstrInfo *TII = + ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) { + if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, + MFI, MRI, TII)) + return false; + } + } + } + + // If the tailcall address may be in a register, then make sure it's + // possible to register allocate for it. In 32-bit, the call address can + // only target EAX, EDX, or ECX since the tail call must be scheduled after + // callee-saved registers are restored. These happen to be the same + // registers used to pass 'inreg' arguments so watch out for those. + if (!Subtarget->is64Bit() && + !isa<GlobalAddressSDNode>(Callee) && + !isa<ExternalSymbolSDNode>(Callee)) { + unsigned NumInRegs = 0; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (!VA.isRegLoc()) + continue; + unsigned Reg = VA.getLocReg(); + switch (Reg) { + default: break; + case X86::EAX: case X86::EDX: case X86::ECX: + if (++NumInRegs == 3) + return false; + break; + } + } + } + } + + return true; +} + +FastISel * +X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + return X86::createFastISel(funcInfo, libInfo); +} + + +//===----------------------------------------------------------------------===// +// Other Lowering Hooks +//===----------------------------------------------------------------------===// + +static bool MayFoldLoad(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); +} + +static bool MayFoldIntoStore(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); +} + +static bool isTargetShuffle(unsigned Opcode) { + switch(Opcode) { + default: return false; + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::SHUFP: + case X86ISD::PALIGN: + case X86ISD::MOVLHPS: + case X86ISD::MOVLHPD: + case X86ISD::MOVHLPS: + case X86ISD::MOVLPS: + case X86ISD::MOVLPD: + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::MOVDDUP: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + case X86ISD::VPERMILP: + case X86ISD::VPERM2X128: + case X86ISD::VPERMI: + return true; + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, + SDValue V1, SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::MOVDDUP: + return DAG.getNode(Opc, dl, VT, V1); + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, + SDValue V1, unsigned TargetMask, + SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::VPERMILP: + case X86ISD::VPERMI: + return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, + SDValue V1, SDValue V2, unsigned TargetMask, + SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::PALIGN: + case X86ISD::SHUFP: + case X86ISD::VPERM2X128: + return DAG.getNode(Opc, dl, VT, V1, V2, + DAG.getConstant(TargetMask, MVT::i8)); + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, + SDValue V1, SDValue V2, SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::MOVLHPS: + case X86ISD::MOVLHPD: + case X86ISD::MOVHLPS: + case X86ISD::MOVLPS: + case X86ISD::MOVLPD: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + return DAG.getNode(Opc, dl, VT, V1, V2); + } +} + +SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + int ReturnAddrIndex = FuncInfo->getRAIndex(); + + if (ReturnAddrIndex == 0) { + // Set up a frame object for the return address. + uint64_t SlotSize = TD->getPointerSize(); + ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, + false); + FuncInfo->setRAIndex(ReturnAddrIndex); + } + + return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); +} + + +bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, + bool hasSymbolicDisplacement) { + // Offset should fit into 32 bit immediate field. + if (!isInt<32>(Offset)) + return false; + + // If we don't have a symbolic displacement - we don't have any extra + // restrictions. + if (!hasSymbolicDisplacement) + return true; + + // FIXME: Some tweaks might be needed for medium code model. + if (M != CodeModel::Small && M != CodeModel::Kernel) + return false; + + // For small code model we assume that latest object is 16MB before end of 31 + // bits boundary. We may also accept pretty large negative constants knowing + // that all objects are in the positive half of address space. + if (M == CodeModel::Small && Offset < 16*1024*1024) + return true; + + // For kernel code model we know that all object resist in the negative half + // of 32bits address space. We may not accept negative offsets, since they may + // be just off and we may accept pretty large positive ones. + if (M == CodeModel::Kernel && Offset > 0) + return true; + + return false; +} + +/// isCalleePop - Determines whether the callee is required to pop its +/// own arguments. Callee pop is necessary to support tail calls. +bool X86::isCalleePop(CallingConv::ID CallingConv, + bool is64Bit, bool IsVarArg, bool TailCallOpt) { + if (IsVarArg) + return false; + + switch (CallingConv) { + default: + return false; + case CallingConv::X86_StdCall: + return !is64Bit; + case CallingConv::X86_FastCall: + return !is64Bit; + case CallingConv::X86_ThisCall: + return !is64Bit; + case CallingConv::Fast: + return TailCallOpt; + case CallingConv::GHC: + return TailCallOpt; + } +} + +/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 +/// specific condition code, returning the condition code and the LHS/RHS of the +/// comparison to make. +static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, + SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { + if (!isFP) { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { + // X > -1 -> X == 0, jump !sign. + RHS = DAG.getConstant(0, RHS.getValueType()); + return X86::COND_NS; + } + if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { + // X < 0 -> X == 0, jump on sign. + return X86::COND_S; + } + if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { + // X < 1 -> X <= 0 + RHS = DAG.getConstant(0, RHS.getValueType()); + return X86::COND_LE; + } + } + + switch (SetCCOpcode) { + default: llvm_unreachable("Invalid integer condition!"); + case ISD::SETEQ: return X86::COND_E; + case ISD::SETGT: return X86::COND_G; + case ISD::SETGE: return X86::COND_GE; + case ISD::SETLT: return X86::COND_L; + case ISD::SETLE: return X86::COND_LE; + case ISD::SETNE: return X86::COND_NE; + case ISD::SETULT: return X86::COND_B; + case ISD::SETUGT: return X86::COND_A; + case ISD::SETULE: return X86::COND_BE; + case ISD::SETUGE: return X86::COND_AE; + } + } + + // First determine if it is required or is profitable to flip the operands. + + // If LHS is a foldable load, but RHS is not, flip the condition. + if (ISD::isNON_EXTLoad(LHS.getNode()) && + !ISD::isNON_EXTLoad(RHS.getNode())) { + SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); + std::swap(LHS, RHS); + } + + switch (SetCCOpcode) { + default: break; + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETUGT: + case ISD::SETUGE: + std::swap(LHS, RHS); + break; + } + + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + switch (SetCCOpcode) { + default: llvm_unreachable("Condcode should be pre-legalized away"); + case ISD::SETUEQ: + case ISD::SETEQ: return X86::COND_E; + case ISD::SETOLT: // flipped + case ISD::SETOGT: + case ISD::SETGT: return X86::COND_A; + case ISD::SETOLE: // flipped + case ISD::SETOGE: + case ISD::SETGE: return X86::COND_AE; + case ISD::SETUGT: // flipped + case ISD::SETULT: + case ISD::SETLT: return X86::COND_B; + case ISD::SETUGE: // flipped + case ISD::SETULE: + case ISD::SETLE: return X86::COND_BE; + case ISD::SETONE: + case ISD::SETNE: return X86::COND_NE; + case ISD::SETUO: return X86::COND_P; + case ISD::SETO: return X86::COND_NP; + case ISD::SETOEQ: + case ISD::SETUNE: return X86::COND_INVALID; + } +} + +/// hasFPCMov - is there a floating point cmov for the specific X86 condition +/// code. Current x86 isa includes the following FP cmov instructions: +/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. +static bool hasFPCMov(unsigned X86CC) { + switch (X86CC) { + default: + return false; + case X86::COND_B: + case X86::COND_BE: + case X86::COND_E: + case X86::COND_P: + case X86::COND_A: + case X86::COND_AE: + case X86::COND_NE: + case X86::COND_NP: + return true; + } +} + +/// isFPImmLegal - Returns true if the target can instruction select the +/// specified FP immediate natively. If false, the legalizer will +/// materialize the FP immediate as a load from a constant pool. +bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { + if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) + return true; + } + return false; +} + +/// isUndefOrInRange - Return true if Val is undef or if its value falls within +/// the specified range (L, H]. +static bool isUndefOrInRange(int Val, int Low, int Hi) { + return (Val < 0) || (Val >= Low && Val < Hi); +} + +/// isUndefOrEqual - Val is either less than zero (undef) or equal to the +/// specified value. +static bool isUndefOrEqual(int Val, int CmpVal) { + if (Val < 0 || Val == CmpVal) + return true; + return false; +} + +/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size, falls within the specified +/// sequential range (L, L+Pos]. or is undef. +static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, + unsigned Pos, unsigned Size, int Low) { + for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) + if (!isUndefOrEqual(Mask[i], Low)) + return false; + return true; +} + +/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference +/// the second operand. +static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) { + if (VT == MVT::v4f32 || VT == MVT::v4i32 ) + return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); + if (VT == MVT::v2f64 || VT == MVT::v2i64) + return (Mask[0] < 2 && Mask[1] < 2); + return false; +} + +/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFHW. +static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { + if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16)) + return false; + + // Lower quadword copied in order or undef. + if (!isSequentialOrUndefInRange(Mask, 0, 4, 0)) + return false; + + // Upper quadword shuffled. + for (unsigned i = 4; i != 8; ++i) + if (!isUndefOrInRange(Mask[i], 4, 8)) + return false; + + if (VT == MVT::v16i16) { + // Lower quadword copied in order or undef. + if (!isSequentialOrUndefInRange(Mask, 8, 4, 8)) + return false; + + // Upper quadword shuffled. + for (unsigned i = 12; i != 16; ++i) + if (!isUndefOrInRange(Mask[i], 12, 16)) + return false; + } + + return true; +} + +/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFLW. +static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { + if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16)) + return false; + + // Upper quadword copied in order. + if (!isSequentialOrUndefInRange(Mask, 4, 4, 4)) + return false; + + // Lower quadword shuffled. + for (unsigned i = 0; i != 4; ++i) + if (!isUndefOrInRange(Mask[i], 0, 4)) + return false; + + if (VT == MVT::v16i16) { + // Upper quadword copied in order. + if (!isSequentialOrUndefInRange(Mask, 12, 4, 12)) + return false; + + // Lower quadword shuffled. + for (unsigned i = 8; i != 12; ++i) + if (!isUndefOrInRange(Mask[i], 8, 12)) + return false; + } + + return true; +} + +/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PALIGNR. +static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT, + const X86Subtarget *Subtarget) { + if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) || + (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + // Do not handle 64-bit element shuffles with palignr. + if (NumLaneElts == 2) + return false; + + for (unsigned l = 0; l != NumElts; l+=NumLaneElts) { + unsigned i; + for (i = 0; i != NumLaneElts; ++i) { + if (Mask[i+l] >= 0) + break; + } + + // Lane is all undef, go to next lane + if (i == NumLaneElts) + continue; + + int Start = Mask[i+l]; + + // Make sure its in this lane in one of the sources + if (!isUndefOrInRange(Start, l, l+NumLaneElts) && + !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts)) + return false; + + // If not lane 0, then we must match lane 0 + if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l)) + return false; + + // Correct second source to be contiguous with first source + if (Start >= (int)NumElts) + Start -= NumElts - NumLaneElts; + + // Make sure we're shifting in the right direction. + if (Start <= (int)(i+l)) + return false; + + Start -= i; + + // Check the rest of the elements to see if they are consecutive. + for (++i; i != NumLaneElts; ++i) { + int Idx = Mask[i+l]; + + // Make sure its in this lane + if (!isUndefOrInRange(Idx, l, l+NumLaneElts) && + !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts)) + return false; + + // If not lane 0, then we must match lane 0 + if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l)) + return false; + + if (Idx >= (int)NumElts) + Idx -= NumElts - NumLaneElts; + + if (!isUndefOrEqual(Idx, Start+i)) + return false; + + } + } + + return true; +} + +/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming +/// the two vector operands have swapped position. +static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, + unsigned NumElems) { + for (unsigned i = 0; i != NumElems; ++i) { + int idx = Mask[i]; + if (idx < 0) + continue; + else if (idx < (int)NumElems) + Mask[i] = idx + NumElems; + else + Mask[i] = idx - NumElems; + } +} + +/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to 128/256-bit +/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be +/// reverse of what x86 shuffles want. +static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX, + bool Commuted = false) { + if (!HasAVX && VT.getSizeInBits() == 256) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElems = NumElems/NumLanes; + + if (NumLaneElems != 2 && NumLaneElems != 4) + return false; + + // VSHUFPSY divides the resulting vector into 4 chunks. + // The sources are also splitted into 4 chunks, and each destination + // chunk must come from a different source chunk. + // + // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0 + // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9 + // + // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4, + // Y3..Y0, Y3..Y0, X3..X0, X3..X0 + // + // VSHUFPDY divides the resulting vector into 4 chunks. + // The sources are also splitted into 4 chunks, and each destination + // chunk must come from a different source chunk. + // + // SRC1 => X3 X2 X1 X0 + // SRC2 => Y3 Y2 Y1 Y0 + // + // DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0 + // + unsigned HalfLaneElems = NumLaneElems/2; + for (unsigned l = 0; l != NumElems; l += NumLaneElems) { + for (unsigned i = 0; i != NumLaneElems; ++i) { + int Idx = Mask[i+l]; + unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0); + if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems)) + return false; + // For VSHUFPSY, the mask of the second half must be the same as the + // first but with the appropriate offsets. This works in the same way as + // VPERMILPS works with masks. + if (NumElems != 8 || l == 0 || Mask[i] < 0) + continue; + if (!isUndefOrEqual(Idx, Mask[i]+l)) + return false; + } + } + + return true; +} + +/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVHLPS. +static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if (NumElems != 4) + return false; + + // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 + return isUndefOrEqual(Mask[0], 6) && + isUndefOrEqual(Mask[1], 7) && + isUndefOrEqual(Mask[2], 2) && + isUndefOrEqual(Mask[3], 3); +} + +/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form +/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, +/// <2, 3, 2, 3> +static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if (NumElems != 4) + return false; + + return isUndefOrEqual(Mask[0], 2) && + isUndefOrEqual(Mask[1], 3) && + isUndefOrEqual(Mask[2], 2) && + isUndefOrEqual(Mask[3], 3); +} + +/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. +static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + + for (unsigned i = 0, e = NumElems/2; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i + NumElems)) + return false; + + for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + + return true; +} + +/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVLHPS. +static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + + for (unsigned i = 0, e = NumElems/2; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + + for (unsigned i = 0, e = NumElems/2; i != e; ++i) + if (!isUndefOrEqual(Mask[i + e], i + NumElems)) + return false; + + return true; +} + +// +// Some special combinations that can be optimized. +// +static +SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG) { + EVT VT = SVOp->getValueType(0); + DebugLoc dl = SVOp->getDebugLoc(); + + if (VT != MVT::v8i32 && VT != MVT::v8f32) + return SDValue(); + + ArrayRef<int> Mask = SVOp->getMask(); + + // These are the special masks that may be optimized. + static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14}; + static const int MaskToOptimizeOdd[] = {1, 9, 3, 11, 5, 13, 7, 15}; + bool MatchEvenMask = true; + bool MatchOddMask = true; + for (int i=0; i<8; ++i) { + if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i])) + MatchEvenMask = false; + if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i])) + MatchOddMask = false; + } + static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1}; + static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1}; + + const int *CompactionMask; + if (MatchEvenMask) + CompactionMask = CompactionMaskEven; + else if (MatchOddMask) + CompactionMask = CompactionMaskOdd; + else + return SDValue(); + + SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT); + + SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0), + UndefNode, CompactionMask); + SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1), + UndefNode, CompactionMask); + static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13}; + return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask); +} + +/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to UNPCKL. +static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT, + bool HasAVX2, bool V2IsSplat = false) { + unsigned NumElts = VT.getVectorNumElements(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for unpckh"); + + if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && + (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + return false; + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + for (unsigned l = 0; l != NumLanes; ++l) { + for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; + i != (l+1)*NumLaneElts; + i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (V2IsSplat) { + if (!isUndefOrEqual(BitI1, NumElts)) + return false; + } else { + if (!isUndefOrEqual(BitI1, j + NumElts)) + return false; + } + } + } + + return true; +} + +/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to UNPCKH. +static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT, + bool HasAVX2, bool V2IsSplat = false) { + unsigned NumElts = VT.getVectorNumElements(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for unpckh"); + + if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && + (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + return false; + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + for (unsigned l = 0; l != NumLanes; ++l) { + for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; + i != (l+1)*NumLaneElts; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (V2IsSplat) { + if (isUndefOrEqual(BitI1, NumElts)) + return false; + } else { + if (!isUndefOrEqual(BitI1, j+NumElts)) + return false; + } + } + } + return true; +} + +/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form +/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, +/// <0, 0, 1, 1> +static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, + bool HasAVX2) { + unsigned NumElts = VT.getVectorNumElements(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for unpckh"); + + if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && + (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + return false; + + // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern + // FIXME: Need a better way to get rid of this, there's no latency difference + // between UNPCKLPD and MOVDDUP, the later should always be checked first and + // the former later. We should also remove the "_undef" special mask. + if (NumElts == 4 && VT.getSizeInBits() == 256) + return false; + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + for (unsigned l = 0; l != NumLanes; ++l) { + for (unsigned i = l*NumLaneElts, j = l*NumLaneElts; + i != (l+1)*NumLaneElts; + i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + + if (!isUndefOrEqual(BitI, j)) + return false; + if (!isUndefOrEqual(BitI1, j)) + return false; + } + } + + return true; +} + +/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form +/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, +/// <2, 2, 3, 3> +static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) { + unsigned NumElts = VT.getVectorNumElements(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for unpckh"); + + if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 && + (!HasAVX2 || (NumElts != 16 && NumElts != 32))) + return false; + + // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate + // independently on 128-bit lanes. + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + for (unsigned l = 0; l != NumLanes; ++l) { + for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2; + i != (l+1)*NumLaneElts; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (!isUndefOrEqual(BitI1, j)) + return false; + } + } + return true; +} + +/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSS, +/// MOVSD, and MOVD, i.e. setting the lowest element. +static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) { + if (VT.getVectorElementType().getSizeInBits() < 32) + return false; + if (!VT.is128BitVector()) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + + if (!isUndefOrEqual(Mask[0], NumElts)) + return false; + + for (unsigned i = 1; i != NumElts; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + + return true; +} + +/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered +/// as permutations between 128-bit chunks or halves. As an example: this +/// shuffle bellow: +/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15> +/// The first half comes from the second half of V1 and the second half from the +/// the second half of V2. +static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { + if (!HasAVX || !VT.is256BitVector()) + return false; + + // The shuffle result is divided into half A and half B. In total the two + // sources have 4 halves, namely: C, D, E, F. The final values of A and + // B must come from C, D, E or F. + unsigned HalfSize = VT.getVectorNumElements()/2; + bool MatchA = false, MatchB = false; + + // Check if A comes from one of C, D, E, F. + for (unsigned Half = 0; Half != 4; ++Half) { + if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) { + MatchA = true; + break; + } + } + + // Check if B comes from one of C, D, E, F. + for (unsigned Half = 0; Half != 4; ++Half) { + if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) { + MatchB = true; + break; + } + } + + return MatchA && MatchB; +} + +/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions. +static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) { + EVT VT = SVOp->getValueType(0); + + unsigned HalfSize = VT.getVectorNumElements()/2; + + unsigned FstHalf = 0, SndHalf = 0; + for (unsigned i = 0; i < HalfSize; ++i) { + if (SVOp->getMaskElt(i) > 0) { + FstHalf = SVOp->getMaskElt(i)/HalfSize; + break; + } + } + for (unsigned i = HalfSize; i < HalfSize*2; ++i) { + if (SVOp->getMaskElt(i) > 0) { + SndHalf = SVOp->getMaskElt(i)/HalfSize; + break; + } + } + + return (FstHalf | (SndHalf << 4)); +} + +/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to VPERMILPD*. +/// Note that VPERMIL mask matching is different depending whether theunderlying +/// type is 32 or 64. In the VPERMILPS the high half of the mask should point +/// to the same elements of the low, but to the higher half of the source. +/// In VPERMILPD the two lanes could be shuffled independently of each other +/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY. +static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { + if (!HasAVX) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + // Only match 256-bit with 32/64-bit types + if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8)) + return false; + + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned LaneSize = NumElts/NumLanes; + for (unsigned l = 0; l != NumElts; l += LaneSize) { + for (unsigned i = 0; i != LaneSize; ++i) { + if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize)) + return false; + if (NumElts != 8 || l == 0) + continue; + // VPERMILPS handling + if (Mask[i] < 0) + continue; + if (!isUndefOrEqual(Mask[i+l], Mask[i]+l)) + return false; + } + } + + return true; +} + +/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse +/// of what x86 movss want. X86 movs requires the lowest element to be lowest +/// element of vector 2 and the other elements to come from vector 1 in order. +static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT, + bool V2IsSplat = false, bool V2IsUndef = false) { + if (!VT.is128BitVector()) + return false; + + unsigned NumOps = VT.getVectorNumElements(); + if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) + return false; + + if (!isUndefOrEqual(Mask[0], 0)) + return false; + + for (unsigned i = 1; i != NumOps; ++i) + if (!(isUndefOrEqual(Mask[i], i+NumOps) || + (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || + (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) + return false; + + return true; +} + +/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. +/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7> +static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT, + const X86Subtarget *Subtarget) { + if (!Subtarget->hasSSE3()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if ((VT.getSizeInBits() == 128 && NumElems != 4) || + (VT.getSizeInBits() == 256 && NumElems != 8)) + return false; + + // "i+1" is the value the indexed mask element must have + for (unsigned i = 0; i != NumElems; i += 2) + if (!isUndefOrEqual(Mask[i], i+1) || + !isUndefOrEqual(Mask[i+1], i+1)) + return false; + + return true; +} + +/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. +/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6> +static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT, + const X86Subtarget *Subtarget) { + if (!Subtarget->hasSSE3()) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if ((VT.getSizeInBits() == 128 && NumElems != 4) || + (VT.getSizeInBits() == 256 && NumElems != 8)) + return false; + + // "i" is the value the indexed mask element must have + for (unsigned i = 0; i != NumElems; i += 2) + if (!isUndefOrEqual(Mask[i], i) || + !isUndefOrEqual(Mask[i+1], i)) + return false; + + return true; +} + +/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to 256-bit +/// version of MOVDDUP. +static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) { + if (!HasAVX || !VT.is256BitVector()) + return false; + + unsigned NumElts = VT.getVectorNumElements(); + if (NumElts != 4) + return false; + + for (unsigned i = 0; i != NumElts/2; ++i) + if (!isUndefOrEqual(Mask[i], 0)) + return false; + for (unsigned i = NumElts/2; i != NumElts; ++i) + if (!isUndefOrEqual(Mask[i], NumElts/2)) + return false; + return true; +} + +/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to 128-bit +/// version of MOVDDUP. +static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + unsigned e = VT.getVectorNumElements() / 2; + for (unsigned i = 0; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + for (unsigned i = 0; i != e; ++i) + if (!isUndefOrEqual(Mask[e+i], i)) + return false; + return true; +} + +/// isVEXTRACTF128Index - Return true if the specified +/// EXTRACT_SUBVECTOR operand specifies a vector extract that is +/// suitable for input to VEXTRACTF128. +bool X86::isVEXTRACTF128Index(SDNode *N) { + if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) + return false; + + // The index should be aligned on a 128-bit boundary. + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); + + unsigned VL = N->getValueType(0).getVectorNumElements(); + unsigned VBits = N->getValueType(0).getSizeInBits(); + unsigned ElSize = VBits / VL; + bool Result = (Index * ElSize) % 128 == 0; + + return Result; +} + +/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR +/// operand specifies a subvector insert that is suitable for input to +/// VINSERTF128. +bool X86::isVINSERTF128Index(SDNode *N) { + if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) + return false; + + // The index should be aligned on a 128-bit boundary. + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); + + unsigned VL = N->getValueType(0).getVectorNumElements(); + unsigned VBits = N->getValueType(0).getSizeInBits(); + unsigned ElSize = VBits / VL; + bool Result = (Index * ElSize) % 128 == 0; + + return Result; +} + +/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. +/// Handles 128-bit and 256-bit. +static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) { + EVT VT = N->getValueType(0); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for PSHUF/SHUFP"); + + // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate + // independently on 128-bit lanes. + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + assert((NumLaneElts == 2 || NumLaneElts == 4) && + "Only supports 2 or 4 elements per lane"); + + unsigned Shift = (NumLaneElts == 4) ? 1 : 0; + unsigned Mask = 0; + for (unsigned i = 0; i != NumElts; ++i) { + int Elt = N->getMaskElt(i); + if (Elt < 0) continue; + Elt &= NumLaneElts - 1; + unsigned ShAmt = (i << Shift) % 8; + Mask |= Elt << ShAmt; + } + + return Mask; +} + +/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. +static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) { + EVT VT = N->getValueType(0); + + assert((VT == MVT::v8i16 || VT == MVT::v16i16) && + "Unsupported vector type for PSHUFHW"); + + unsigned NumElts = VT.getVectorNumElements(); + + unsigned Mask = 0; + for (unsigned l = 0; l != NumElts; l += 8) { + // 8 nodes per lane, but we only care about the last 4. + for (unsigned i = 0; i < 4; ++i) { + int Elt = N->getMaskElt(l+i+4); + if (Elt < 0) continue; + Elt &= 0x3; // only 2-bits. + Mask |= Elt << (i * 2); + } + } + + return Mask; +} + +/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. +static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) { + EVT VT = N->getValueType(0); + + assert((VT == MVT::v8i16 || VT == MVT::v16i16) && + "Unsupported vector type for PSHUFHW"); + + unsigned NumElts = VT.getVectorNumElements(); + + unsigned Mask = 0; + for (unsigned l = 0; l != NumElts; l += 8) { + // 8 nodes per lane, but we only care about the first 4. + for (unsigned i = 0; i < 4; ++i) { + int Elt = N->getMaskElt(l+i); + if (Elt < 0) continue; + Elt &= 0x3; // only 2-bits + Mask |= Elt << (i * 2); + } + } + + return Mask; +} + +/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. +static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) { + EVT VT = SVOp->getValueType(0); + unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3; + + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts/NumLanes; + + int Val = 0; + unsigned i; + for (i = 0; i != NumElts; ++i) { + Val = SVOp->getMaskElt(i); + if (Val >= 0) + break; + } + if (Val >= (int)NumElts) + Val -= NumElts - NumLaneElts; + + assert(Val - i > 0 && "PALIGNR imm should be positive"); + return (Val - i) * EltSize; +} + +/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate +/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128 +/// instructions. +unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) { + if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) + llvm_unreachable("Illegal extract subvector for VEXTRACTF128"); + + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); + + EVT VecVT = N->getOperand(0).getValueType(); + EVT ElVT = VecVT.getVectorElementType(); + + unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); + return Index / NumElemsPerChunk; +} + +/// getInsertVINSERTF128Immediate - Return the appropriate immediate +/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128 +/// instructions. +unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) { + if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) + llvm_unreachable("Illegal insert subvector for VINSERTF128"); + + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); + + EVT VecVT = N->getValueType(0); + EVT ElVT = VecVT.getVectorElementType(); + + unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits(); + return Index / NumElemsPerChunk; +} + +/// getShuffleCLImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions. +/// Handles 256-bit. +static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) { + EVT VT = N->getValueType(0); + + unsigned NumElts = VT.getVectorNumElements(); + + assert((VT.is256BitVector() && NumElts == 4) && + "Unsupported vector type for VPERMQ/VPERMPD"); + + unsigned Mask = 0; + for (unsigned i = 0; i != NumElts; ++i) { + int Elt = N->getMaskElt(i); + if (Elt < 0) + continue; + Mask |= Elt << (i*2); + } + + return Mask; +} +/// isZeroNode - Returns true if Elt is a constant zero or a floating point +/// constant +0.0. +bool X86::isZeroNode(SDValue Elt) { + return ((isa<ConstantSDNode>(Elt) && + cast<ConstantSDNode>(Elt)->isNullValue()) || + (isa<ConstantFPSDNode>(Elt) && + cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); +} + +/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in +/// their permute mask. +static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG) { + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> MaskVec; + + for (unsigned i = 0; i != NumElems; ++i) { + int Idx = SVOp->getMaskElt(i); + if (Idx >= 0) { + if (Idx < (int)NumElems) + Idx += NumElems; + else + Idx -= NumElems; + } + MaskVec.push_back(Idx); + } + return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), + SVOp->getOperand(0), &MaskVec[0]); +} + +/// ShouldXformToMOVHLPS - Return true if the node should be transformed to +/// match movhlps. The lower half elements should come from upper half of +/// V1 (and in order), and the upper half elements should come from the upper +/// half of V2 (and in order). +static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + if (VT.getVectorNumElements() != 4) + return false; + for (unsigned i = 0, e = 2; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i+2)) + return false; + for (unsigned i = 2; i != 4; ++i) + if (!isUndefOrEqual(Mask[i], i+4)) + return false; + return true; +} + +/// isScalarLoadToVector - Returns true if the node is a scalar load that +/// is promoted to a vector. It also returns the LoadSDNode by reference if +/// required. +static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { + if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) + return false; + N = N->getOperand(0).getNode(); + if (!ISD::isNON_EXTLoad(N)) + return false; + if (LD) + *LD = cast<LoadSDNode>(N); + return true; +} + +// Test whether the given value is a vector value which will be legalized +// into a load. +static bool WillBeConstantPoolLoad(SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + // Check for any non-constant elements. + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + switch (N->getOperand(i).getNode()->getOpcode()) { + case ISD::UNDEF: + case ISD::ConstantFP: + case ISD::Constant: + break; + default: + return false; + } + + // Vectors of all-zeros and all-ones are materialized with special + // instructions rather than being loaded. + return !ISD::isBuildVectorAllZeros(N) && + !ISD::isBuildVectorAllOnes(N); +} + +/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to +/// match movlp{s|d}. The lower half elements should come from lower half of +/// V1 (and in order), and the upper half elements should come from the upper +/// half of V2 (and in order). And since V1 will become the source of the +/// MOVLP, it must be either a vector load or a scalar load to vector. +static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, + ArrayRef<int> Mask, EVT VT) { + if (!VT.is128BitVector()) + return false; + + if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) + return false; + // Is V2 is a vector load, don't do this transformation. We will try to use + // load folding shufps op. + if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2)) + return false; + + unsigned NumElems = VT.getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + for (unsigned i = 0, e = NumElems/2; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + for (unsigned i = NumElems/2, e = NumElems; i != e; ++i) + if (!isUndefOrEqual(Mask[i], i+NumElems)) + return false; + return true; +} + +/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are +/// all the same. +static bool isSplatVector(SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + SDValue SplatValue = N->getOperand(0); + for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) + if (N->getOperand(i) != SplatValue) + return false; + return true; +} + +/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved +/// to an zero vector. +/// FIXME: move to dag combiner / method on ShuffleVectorSDNode +static bool isZeroShuffle(ShuffleVectorSDNode *N) { + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + unsigned NumElems = N->getValueType(0).getVectorNumElements(); + for (unsigned i = 0; i != NumElems; ++i) { + int Idx = N->getMaskElt(i); + if (Idx >= (int)NumElems) { + unsigned Opc = V2.getOpcode(); + if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) + continue; + if (Opc != ISD::BUILD_VECTOR || + !X86::isZeroNode(V2.getOperand(Idx-NumElems))) + return false; + } else if (Idx >= 0) { + unsigned Opc = V1.getOpcode(); + if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) + continue; + if (Opc != ISD::BUILD_VECTOR || + !X86::isZeroNode(V1.getOperand(Idx))) + return false; + } + } + return true; +} + +/// getZeroVector - Returns a vector of specified type with all zero elements. +/// +static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG, DebugLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + unsigned Size = VT.getSizeInBits(); + + // Always build SSE zero vectors as <4 x i32> bitcasted + // to their dest type. This ensures they get CSE'd. + SDValue Vec; + if (Size == 128) { // SSE + if (Subtarget->hasSSE2()) { // SSE2 + SDValue Cst = DAG.getTargetConstant(0, MVT::i32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + } else { // SSE1 + SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); + } + } else if (Size == 256) { // AVX + if (Subtarget->hasAVX2()) { // AVX2 + SDValue Cst = DAG.getTargetConstant(0, MVT::i32); + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); + } else { + // 256-bit logic and arithmetic instructions in AVX are all + // floating-point, no support for integer ops. Emit fp zeroed vectors. + SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8); + } + } else + llvm_unreachable("Unexpected vector type"); + + return DAG.getNode(ISD::BITCAST, dl, VT, Vec); +} + +/// getOnesVector - Returns a vector of specified type with all bits set. +/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with +/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. +/// Then bitcast to their original type, ensuring they get CSE'd. +static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG, + DebugLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + unsigned Size = VT.getSizeInBits(); + + SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); + SDValue Vec; + if (Size == 256) { + if (HasAVX2) { // AVX2 + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8); + } else { // AVX + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); + } + } else if (Size == 128) { + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + } else + llvm_unreachable("Unexpected vector type"); + + return DAG.getNode(ISD::BITCAST, dl, VT, Vec); +} + +/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements +/// that point to V2 points to its first element. +static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) { + for (unsigned i = 0; i != NumElems; ++i) { + if (Mask[i] > (int)NumElems) { + Mask[i] = NumElems; + } + } +} + +/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd +/// operation of specified width. +static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + Mask.push_back(NumElems); + for (unsigned i = 1; i != NumElems; ++i) + Mask.push_back(i); + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// getUnpackl - Returns a vector_shuffle node for an unpackl operation. +static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + for (unsigned i = 0, e = NumElems/2; i != e; ++i) { + Mask.push_back(i); + Mask.push_back(i + NumElems); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// getUnpackh - Returns a vector_shuffle node for an unpackh operation. +static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { + Mask.push_back(i + Half); + Mask.push_back(i + NumElems + Half); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by +// a generic shuffle instruction because the target has no such instructions. +// Generate shuffles which repeat i16 and i8 several times until they can be +// represented by v4f32 and then be manipulated by target suported shuffles. +static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) { + EVT VT = V.getValueType(); + int NumElems = VT.getVectorNumElements(); + DebugLoc dl = V.getDebugLoc(); + + while (NumElems > 4) { + if (EltNo < NumElems/2) { + V = getUnpackl(DAG, dl, VT, V, V); + } else { + V = getUnpackh(DAG, dl, VT, V, V); + EltNo -= NumElems/2; + } + NumElems >>= 1; + } + return V; +} + +/// getLegalSplat - Generate a legal splat with supported x86 shuffles +static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) { + EVT VT = V.getValueType(); + DebugLoc dl = V.getDebugLoc(); + unsigned Size = VT.getSizeInBits(); + + if (Size == 128) { + V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V); + int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; + V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32), + &SplatMask[0]); + } else if (Size == 256) { + // To use VPERMILPS to splat scalars, the second half of indicies must + // refer to the higher part, which is a duplication of the lower one, + // because VPERMILPS can only handle in-lane permutations. + int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo, + EltNo+4, EltNo+4, EltNo+4, EltNo+4 }; + + V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V); + V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32), + &SplatMask[0]); + } else + llvm_unreachable("Vector size not supported"); + + return DAG.getNode(ISD::BITCAST, dl, VT, V); +} + +/// PromoteSplat - Splat is promoted to target supported vector shuffles. +static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { + EVT SrcVT = SV->getValueType(0); + SDValue V1 = SV->getOperand(0); + DebugLoc dl = SV->getDebugLoc(); + + int EltNo = SV->getSplatIndex(); + int NumElems = SrcVT.getVectorNumElements(); + unsigned Size = SrcVT.getSizeInBits(); + + assert(((Size == 128 && NumElems > 4) || Size == 256) && + "Unknown how to promote splat for type"); + + // Extract the 128-bit part containing the splat element and update + // the splat element index when it refers to the higher register. + if (Size == 256) { + V1 = Extract128BitVector(V1, EltNo, DAG, dl); + if (EltNo >= NumElems/2) + EltNo -= NumElems/2; + } + + // All i16 and i8 vector types can't be used directly by a generic shuffle + // instruction because the target has no such instruction. Generate shuffles + // which repeat i16 and i8 several times until they fit in i32, and then can + // be manipulated by target suported shuffles. + EVT EltVT = SrcVT.getVectorElementType(); + if (EltVT == MVT::i8 || EltVT == MVT::i16) + V1 = PromoteSplati8i16(V1, DAG, EltNo); + + // Recreate the 256-bit vector and place the same 128-bit vector + // into the low and high part. This is necessary because we want + // to use VPERM* to shuffle the vectors + if (Size == 256) { + V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1); + } + + return getLegalSplat(DAG, V1, EltNo); +} + +/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified +/// vector of zero or undef vector. This produces a shuffle where the low +/// element of V2 is swizzled into the zero/undef vector, landing at element +/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). +static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, + bool IsZero, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + EVT VT = V2.getValueType(); + SDValue V1 = IsZero + ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 16> MaskVec; + for (unsigned i = 0; i != NumElems; ++i) + // If this is the insertion idx, put the low elt of V2 here. + MaskVec.push_back(i == Idx ? NumElems : i); + return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); +} + +/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the +/// target specific opcode. Returns true if the Mask could be calculated. +/// Sets IsUnary to true if only uses one source. +static bool getTargetShuffleMask(SDNode *N, MVT VT, + SmallVectorImpl<int> &Mask, bool &IsUnary) { + unsigned NumElems = VT.getVectorNumElements(); + SDValue ImmN; + + IsUnary = false; + switch(N->getOpcode()) { + case X86ISD::SHUFP: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + break; + case X86ISD::UNPCKH: + DecodeUNPCKHMask(VT, Mask); + break; + case X86ISD::UNPCKL: + DecodeUNPCKLMask(VT, Mask); + break; + case X86ISD::MOVHLPS: + DecodeMOVHLPSMask(NumElems, Mask); + break; + case X86ISD::MOVLHPS: + DecodeMOVLHPSMask(NumElems, Mask); + break; + case X86ISD::PSHUFD: + case X86ISD::VPERMILP: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFHW: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFLW: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::VPERMI: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::MOVSS: + case X86ISD::MOVSD: { + // The index 0 always comes from the first element of the second source, + // this is why MOVSS and MOVSD are used in the first place. The other + // elements come from the other positions of the first source vector + Mask.push_back(NumElems); + for (unsigned i = 1; i != NumElems; ++i) { + Mask.push_back(i); + } + break; + } + case X86ISD::VPERM2X128: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + if (Mask.empty()) return false; + break; + case X86ISD::MOVDDUP: + case X86ISD::MOVLHPD: + case X86ISD::MOVLPD: + case X86ISD::MOVLPS: + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::PALIGN: + // Not yet implemented + return false; + default: llvm_unreachable("unknown target shuffle node"); + } + + return true; +} + +/// getShuffleScalarElt - Returns the scalar element that will make up the ith +/// element of the result of the vector shuffle. +static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, + unsigned Depth) { + if (Depth == 6) + return SDValue(); // Limit search depth. + + SDValue V = SDValue(N, 0); + EVT VT = V.getValueType(); + unsigned Opcode = V.getOpcode(); + + // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. + if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { + int Elt = SV->getMaskElt(Index); + + if (Elt < 0) + return DAG.getUNDEF(VT.getVectorElementType()); + + unsigned NumElems = VT.getVectorNumElements(); + SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) + : SV->getOperand(1); + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); + } + + // Recurse into target specific vector shuffles to find scalars. + if (isTargetShuffle(Opcode)) { + MVT ShufVT = V.getValueType().getSimpleVT(); + unsigned NumElems = ShufVT.getVectorNumElements(); + SmallVector<int, 16> ShuffleMask; + SDValue ImmN; + bool IsUnary; + + if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) + return SDValue(); + + int Elt = ShuffleMask[Index]; + if (Elt < 0) + return DAG.getUNDEF(ShufVT.getVectorElementType()); + + SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) + : N->getOperand(1); + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, + Depth+1); + } + + // Actual nodes that may contain scalar elements + if (Opcode == ISD::BITCAST) { + V = V.getOperand(0); + EVT SrcVT = V.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) + return SDValue(); + } + + if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) + return (Index == 0) ? V.getOperand(0) + : DAG.getUNDEF(VT.getVectorElementType()); + + if (V.getOpcode() == ISD::BUILD_VECTOR) + return V.getOperand(Index); + + return SDValue(); +} + +/// getNumOfConsecutiveZeros - Return the number of elements of a vector +/// shuffle operation which come from a consecutively from a zero. The +/// search can start in two different directions, from left or right. +static +unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems, + bool ZerosFromLeft, SelectionDAG &DAG) { + unsigned i; + for (i = 0; i != NumElems; ++i) { + unsigned Index = ZerosFromLeft ? i : NumElems-i-1; + SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0); + if (!(Elt.getNode() && + (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)))) + break; + } + + return i; +} + +/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE) +/// correspond consecutively to elements from one of the vector operands, +/// starting from its index OpIdx. Also tell OpNum which source vector operand. +static +bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, + unsigned MaskI, unsigned MaskE, unsigned OpIdx, + unsigned NumElems, unsigned &OpNum) { + bool SeenV1 = false; + bool SeenV2 = false; + + for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) { + int Idx = SVOp->getMaskElt(i); + // Ignore undef indicies + if (Idx < 0) + continue; + + if (Idx < (int)NumElems) + SeenV1 = true; + else + SeenV2 = true; + + // Only accept consecutive elements from the same vector + if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) + return false; + } + + OpNum = SeenV1 ? 0 : 1; + return true; +} + +/// isVectorShiftRight - Returns true if the shuffle can be implemented as a +/// logical left shift of a vector. +static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, + bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { + unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); + unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, + false /* check zeros from right */, DAG); + unsigned OpSrc; + + if (!NumZeros) + return false; + + // Considering the elements in the mask that are not consecutive zeros, + // check if they consecutively come from only one of the source vectors. + // + // V1 = {X, A, B, C} 0 + // \ \ \ / + // vector_shuffle V1, V2 <1, 2, 3, X> + // + if (!isShuffleMaskConsecutive(SVOp, + 0, // Mask Start Index + NumElems-NumZeros, // Mask End Index(exclusive) + NumZeros, // Where to start looking in the src vector + NumElems, // Number of elements in vector + OpSrc)) // Which source operand ? + return false; + + isLeft = false; + ShAmt = NumZeros; + ShVal = SVOp->getOperand(OpSrc); + return true; +} + +/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a +/// logical left shift of a vector. +static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, + bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { + unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); + unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, + true /* check zeros from left */, DAG); + unsigned OpSrc; + + if (!NumZeros) + return false; + + // Considering the elements in the mask that are not consecutive zeros, + // check if they consecutively come from only one of the source vectors. + // + // 0 { A, B, X, X } = V2 + // / \ / / + // vector_shuffle V1, V2 <X, X, 4, 5> + // + if (!isShuffleMaskConsecutive(SVOp, + NumZeros, // Mask Start Index + NumElems, // Mask End Index(exclusive) + 0, // Where to start looking in the src vector + NumElems, // Number of elements in vector + OpSrc)) // Which source operand ? + return false; + + isLeft = true; + ShAmt = NumZeros; + ShVal = SVOp->getOperand(OpSrc); + return true; +} + +/// isVectorShift - Returns true if the shuffle can be implemented as a +/// logical left or right shift of a vector. +static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, + bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { + // Although the logic below support any bitwidth size, there are no + // shift instructions which handle more than 128-bit vectors. + if (!SVOp->getValueType(0).is128BitVector()) + return false; + + if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || + isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) + return true; + + return false; +} + +/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. +/// +static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget* Subtarget, + const TargetLowering &TLI) { + if (NumNonZero > 8) + return SDValue(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue V(0, 0); + bool First = true; + for (unsigned i = 0; i < 16; ++i) { + bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; + if (ThisIsNonZero && First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + + if ((i & 1) != 0) { + SDValue ThisElt(0, 0), LastElt(0, 0); + bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; + if (LastIsNonZero) { + LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, + MVT::i16, Op.getOperand(i-1)); + } + if (ThisIsNonZero) { + ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); + ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, + ThisElt, DAG.getConstant(8, MVT::i8)); + if (LastIsNonZero) + ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); + } else + ThisElt = LastElt; + + if (ThisElt.getNode()) + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, + DAG.getIntPtrConstant(i/2)); + } + } + + return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); +} + +/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. +/// +static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget* Subtarget, + const TargetLowering &TLI) { + if (NumNonZero > 4) + return SDValue(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue V(0, 0); + bool First = true; + for (unsigned i = 0; i < 8; ++i) { + bool isNonZero = (NonZeros & (1 << i)) != 0; + if (isNonZero) { + if (First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, + MVT::v8i16, V, Op.getOperand(i), + DAG.getIntPtrConstant(i)); + } + } + + return V; +} + +/// getVShift - Return a vector logical shift node. +/// +static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, + unsigned NumBits, SelectionDAG &DAG, + const TargetLowering &TLI, DebugLoc dl) { + assert(VT.is128BitVector() && "Unknown type for VShift"); + EVT ShVT = MVT::v2i64; + unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; + SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getNode(Opc, dl, ShVT, SrcOp, + DAG.getConstant(NumBits, + TLI.getShiftAmountTy(SrcOp.getValueType())))); +} + +SDValue +X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, + SelectionDAG &DAG) const { + + // Check if the scalar load can be widened into a vector load. And if + // the address is "base + cst" see if the cst can be "absorbed" into + // the shuffle mask. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { + SDValue Ptr = LD->getBasePtr(); + if (!ISD::isNormalLoad(LD) || LD->isVolatile()) + return SDValue(); + EVT PVT = LD->getValueType(0); + if (PVT != MVT::i32 && PVT != MVT::f32) + return SDValue(); + + int FI = -1; + int64_t Offset = 0; + if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { + FI = FINode->getIndex(); + Offset = 0; + } else if (DAG.isBaseWithConstantOffset(Ptr) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + Offset = Ptr.getConstantOperandVal(1); + Ptr = Ptr.getOperand(0); + } else { + return SDValue(); + } + + // FIXME: 256-bit vector instructions don't require a strict alignment, + // improve this code to support it better. + unsigned RequiredAlign = VT.getSizeInBits()/8; + SDValue Chain = LD->getChain(); + // Make sure the stack object alignment is at least 16 or 32. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { + if (MFI->isFixedObjectIndex(FI)) { + // Can't change the alignment. FIXME: It's possible to compute + // the exact stack offset and reference FI + adjust offset instead. + // If someone *really* cares about this. That's the way to implement it. + return SDValue(); + } else { + MFI->setObjectAlignment(FI, RequiredAlign); + } + } + + // (Offset % 16 or 32) must be multiple of 4. Then address is then + // Ptr + (Offset & ~15). + if (Offset < 0) + return SDValue(); + if ((Offset % RequiredAlign) & 3) + return SDValue(); + int64_t StartOffset = Offset & ~(RequiredAlign-1); + if (StartOffset) + Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), + Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); + + int EltNo = (Offset - StartOffset) >> 2; + unsigned NumElems = VT.getVectorNumElements(); + + EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); + SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, + LD->getPointerInfo().getWithOffset(StartOffset), + false, false, false, 0); + + SmallVector<int, 8> Mask; + for (unsigned i = 0; i != NumElems; ++i) + Mask.push_back(EltNo); + + return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); + } + + return SDValue(); +} + +/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a +/// vector of type 'VT', see if the elements can be replaced by a single large +/// load which has the same value as a build_vector whose operands are 'elts'. +/// +/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a +/// +/// FIXME: we'd also like to handle the case where the last elements are zero +/// rather than undef via VZEXT_LOAD, but we do not detect that case today. +/// There's even a handy isZeroNode for that purpose. +static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, + DebugLoc &DL, SelectionDAG &DAG) { + EVT EltVT = VT.getVectorElementType(); + unsigned NumElems = Elts.size(); + + LoadSDNode *LDBase = NULL; + unsigned LastLoadedElt = -1U; + + // For each element in the initializer, see if we've found a load or an undef. + // If we don't find an initial load element, or later load elements are + // non-consecutive, bail out. + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Elts[i]; + + if (!Elt.getNode() || + (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) + return SDValue(); + if (!LDBase) { + if (Elt.getNode()->getOpcode() == ISD::UNDEF) + return SDValue(); + LDBase = cast<LoadSDNode>(Elt.getNode()); + LastLoadedElt = i; + continue; + } + if (Elt.getOpcode() == ISD::UNDEF) + continue; + + LoadSDNode *LD = cast<LoadSDNode>(Elt); + if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) + return SDValue(); + LastLoadedElt = i; + } + + // If we have found an entire vector of loads and undefs, then return a large + // load of the entire vector width starting at the base pointer. If we found + // consecutive loads for the low half, generate a vzext_load node. + if (LastLoadedElt == NumElems - 1) { + if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) + return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getPointerInfo(), + LDBase->isVolatile(), LDBase->isNonTemporal(), + LDBase->isInvariant(), 0); + return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getPointerInfo(), + LDBase->isVolatile(), LDBase->isNonTemporal(), + LDBase->isInvariant(), LDBase->getAlignment()); + } + if (NumElems == 4 && LastLoadedElt == 1 && + DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { + SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); + SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; + SDValue ResNode = + DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64, + LDBase->getPointerInfo(), + LDBase->getAlignment(), + false/*isVolatile*/, true/*ReadMem*/, + false/*WriteMem*/); + return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); + } + return SDValue(); +} + +/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction +/// to generate a splat value for the following cases: +/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. +/// 2. A splat shuffle which uses a scalar_to_vector node which comes from +/// a scalar load, or a constant. +/// The VBROADCAST node is returned when a pattern is found, +/// or SDValue() otherwise. +SDValue +X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const { + if (!Subtarget->hasAVX()) + return SDValue(); + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for broadcast."); + + SDValue Ld; + bool ConstSplatVal; + + switch (Op.getOpcode()) { + default: + // Unknown pattern found. + return SDValue(); + + case ISD::BUILD_VECTOR: { + // The BUILD_VECTOR node must be a splat. + if (!isSplatVector(Op.getNode())) + return SDValue(); + + Ld = Op.getOperand(0); + ConstSplatVal = (Ld.getOpcode() == ISD::Constant || + Ld.getOpcode() == ISD::ConstantFP); + + // The suspected load node has several users. Make sure that all + // of its users are from the BUILD_VECTOR node. + // Constants may have multiple users. + if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0)) + return SDValue(); + break; + } + + case ISD::VECTOR_SHUFFLE: { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + + // Shuffles must have a splat mask where the first element is + // broadcasted. + if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) + return SDValue(); + + SDValue Sc = Op.getOperand(0); + if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && + Sc.getOpcode() != ISD::BUILD_VECTOR) { + + if (!Subtarget->hasAVX2()) + return SDValue(); + + // Use the register form of the broadcast instruction available on AVX2. + if (VT.is256BitVector()) + Sc = Extract128BitVector(Sc, 0, DAG, dl); + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); + } + + Ld = Sc.getOperand(0); + ConstSplatVal = (Ld.getOpcode() == ISD::Constant || + Ld.getOpcode() == ISD::ConstantFP); + + // The scalar_to_vector node and the suspected + // load node must have exactly one user. + // Constants may have multiple users. + if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse())) + return SDValue(); + break; + } + } + + bool Is256 = VT.is256BitVector(); + + // Handle the broadcasting a single constant scalar from the constant pool + // into a vector. On Sandybridge it is still better to load a constant vector + // from the constant pool and not to broadcast it from a scalar. + if (ConstSplatVal && Subtarget->hasAVX2()) { + EVT CVT = Ld.getValueType(); + assert(!CVT.isVector() && "Must not broadcast a vector type"); + unsigned ScalarSize = CVT.getSizeInBits(); + + if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) { + const Constant *C = 0; + if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) + C = CI->getConstantIntValue(); + else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) + C = CF->getConstantFPValue(); + + assert(C && "Invalid constant type"); + + SDValue CP = DAG.getConstantPool(C, getPointerTy()); + unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); + Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(), + false, false, false, Alignment); + + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + } + + bool IsLoad = ISD::isNormalLoad(Ld.getNode()); + unsigned ScalarSize = Ld.getValueType().getSizeInBits(); + + // Handle AVX2 in-register broadcasts. + if (!IsLoad && Subtarget->hasAVX2() && + (ScalarSize == 32 || (Is256 && ScalarSize == 64))) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The scalar source must be a normal load. + if (!IsLoad) + return SDValue(); + + if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The integer check is needed for the 64-bit into 128-bit so it doesn't match + // double since there is no vbroadcastsd xmm + if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) { + if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + + // Unsupported broadcast. + return SDValue(); +} + +// LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64 +// and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the +// constraint of matching input/output vector elements. +SDValue +X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const { + DebugLoc DL = Op.getDebugLoc(); + SDNode *N = Op.getNode(); + EVT VT = Op.getValueType(); + unsigned NumElts = Op.getNumOperands(); + + // Check supported types and sub-targets. + // + // Only v2f32 -> v2f64 needs special handling. + if (VT != MVT::v2f64 || !Subtarget->hasSSE2()) + return SDValue(); + + SDValue VecIn; + EVT VecInVT; + SmallVector<int, 8> Mask; + EVT SrcVT = MVT::Other; + + // Check the patterns could be translated into X86vfpext. + for (unsigned i = 0; i < NumElts; ++i) { + SDValue In = N->getOperand(i); + unsigned Opcode = In.getOpcode(); + + // Skip if the element is undefined. + if (Opcode == ISD::UNDEF) { + Mask.push_back(-1); + continue; + } + + // Quit if one of the elements is not defined from 'fpext'. + if (Opcode != ISD::FP_EXTEND) + return SDValue(); + + // Check how the source of 'fpext' is defined. + SDValue L2In = In.getOperand(0); + EVT L2InVT = L2In.getValueType(); + + // Check the original type + if (SrcVT == MVT::Other) + SrcVT = L2InVT; + else if (SrcVT != L2InVT) // Quit if non-homogenous typed. + return SDValue(); + + // Check whether the value being 'fpext'ed is extracted from the same + // source. + Opcode = L2In.getOpcode(); + + // Quit if it's not extracted with a constant index. + if (Opcode != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(L2In.getOperand(1))) + return SDValue(); + + SDValue ExtractedFromVec = L2In.getOperand(0); + + if (VecIn.getNode() == 0) { + VecIn = ExtractedFromVec; + VecInVT = ExtractedFromVec.getValueType(); + } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec. + return SDValue(); + + Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue()); + } + + // Fill the remaining mask as undef. + for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i) + Mask.push_back(-1); + + return DAG.getNode(X86ISD::VFPEXT, DL, VT, + DAG.getVectorShuffle(VecInVT, DL, + VecIn, DAG.getUNDEF(VecInVT), + &Mask[0])); +} + +SDValue +X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + + EVT VT = Op.getValueType(); + EVT ExtVT = VT.getVectorElementType(); + unsigned NumElems = Op.getNumOperands(); + + // Vectors containing all zeros can be matched by pxor and xorps later + if (ISD::isBuildVectorAllZeros(Op.getNode())) { + // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd + // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. + if (VT == MVT::v4i32 || VT == MVT::v8i32) + return Op; + + return getZeroVector(VT, Subtarget, DAG, dl); + } + + // Vectors containing all ones can be matched by pcmpeqd on 128-bit width + // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use + // vpcmpeqd on 256-bit vectors. + if (ISD::isBuildVectorAllOnes(Op.getNode())) { + if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2())) + return Op; + + return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl); + } + + SDValue Broadcast = LowerVectorBroadcast(Op, DAG); + if (Broadcast.getNode()) + return Broadcast; + + SDValue FpExt = LowerVectorFpExtend(Op, DAG); + if (FpExt.getNode()) + return FpExt; + + unsigned EVTBits = ExtVT.getSizeInBits(); + + unsigned NumZero = 0; + unsigned NumNonZero = 0; + unsigned NonZeros = 0; + bool IsAllConstants = true; + SmallSet<SDValue, 8> Values; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Op.getOperand(i); + if (Elt.getOpcode() == ISD::UNDEF) + continue; + Values.insert(Elt); + if (Elt.getOpcode() != ISD::Constant && + Elt.getOpcode() != ISD::ConstantFP) + IsAllConstants = false; + if (X86::isZeroNode(Elt)) + NumZero++; + else { + NonZeros |= (1 << i); + NumNonZero++; + } + } + + // All undef vector. Return an UNDEF. All zero vectors were handled above. + if (NumNonZero == 0) + return DAG.getUNDEF(VT); + + // Special case for single non-zero, non-undef, element. + if (NumNonZero == 1) { + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue Item = Op.getOperand(Idx); + + // If this is an insertion of an i64 value on x86-32, and if the top bits of + // the value are obviously zero, truncate the value to i32 and do the + // insertion that way. Only do this if the value is non-constant or if the + // value is a constant being inserted into element 0. It is cheaper to do + // a constant pool load than it is to do a movd + shuffle. + if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && + (!IsAllConstants || Idx == 0)) { + if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { + // Handle SSE only. + assert(VT == MVT::v2i64 && "Expected an SSE value type!"); + EVT VecVT = MVT::v4i32; + unsigned VecElts = 4; + + // Truncate the value (which may itself be a constant) to i32, and + // convert it to a vector with movd (S2V+shuffle to zero extend). + Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + + // Now we have our 32-bit value zero extended in the low element of + // a vector. If Idx != 0, swizzle it into place. + if (Idx != 0) { + SmallVector<int, 4> Mask; + Mask.push_back(Idx); + for (unsigned i = 1; i != VecElts; ++i) + Mask.push_back(i); + Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT), + &Mask[0]); + } + return DAG.getNode(ISD::BITCAST, dl, VT, Item); + } + } + + // If we have a constant or non-constant insertion into the low element of + // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into + // the rest of the elements. This will be matched as movd/movq/movss/movsd + // depending on what the source datatype is. + if (Idx == 0) { + if (NumZero == 0) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + + if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || + (ExtVT == MVT::i64 && Subtarget->is64Bit())) { + if (VT.is256BitVector()) { + SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, + Item, DAG.getIntPtrConstant(0)); + } + assert(VT.is128BitVector() && "Expected an SSE value type!"); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. + return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + + if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { + Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); + if (VT.is256BitVector()) { + SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); + Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); + } else { + assert(VT.is128BitVector() && "Expected an SSE value type!"); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + return DAG.getNode(ISD::BITCAST, dl, VT, Item); + } + } + + // Is it a vector logical left shift? + if (NumElems == 2 && Idx == 1 && + X86::isZeroNode(Op.getOperand(0)) && + !X86::isZeroNode(Op.getOperand(1))) { + unsigned NumBits = VT.getSizeInBits(); + return getVShift(true, VT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + VT, Op.getOperand(1)), + NumBits/2, DAG, *this, dl); + } + + if (IsAllConstants) // Otherwise, it's better to do a constpool load. + return SDValue(); + + // Otherwise, if this is a vector with i32 or f32 elements, and the element + // is a non-constant being inserted into an element other than the low one, + // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka + // movd/movss) to move this into the low element, then shuffle it into + // place. + if (EVTBits == 32) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + + // Turn it into a shuffle of zero and zero-extended scalar to vector. + Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG); + SmallVector<int, 8> MaskVec; + for (unsigned i = 0; i != NumElems; ++i) + MaskVec.push_back(i == Idx ? 0 : 1); + return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); + } + } + + // Splat is obviously ok. Let legalizer expand it to a shuffle. + if (Values.size() == 1) { + if (EVTBits == 32) { + // Instead of a shuffle like this: + // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> + // Check if it's possible to issue this instead. + // shuffle (vload ptr)), undef, <1, 1, 1, 1> + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue Item = Op.getOperand(Idx); + if (Op.getNode()->isOnlyUserOf(Item.getNode())) + return LowerAsSplatVectorLoad(Item, VT, dl, DAG); + } + return SDValue(); + } + + // A vector full of immediates; various special cases are already + // handled, so this is best done with a single constant-pool load. + if (IsAllConstants) + return SDValue(); + + // For AVX-length vectors, build the individual 128-bit pieces and use + // shuffles to put them in place. + if (VT.is256BitVector()) { + SmallVector<SDValue, 32> V; + for (unsigned i = 0; i != NumElems; ++i) + V.push_back(Op.getOperand(i)); + + EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); + + // Build both the lower and upper subvector. + SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2); + SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2], + NumElems/2); + + // Recreate the wider vector with the lower and upper part. + return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); + } + + // Let legalizer expand 2-wide build_vectors. + if (EVTBits == 64) { + if (NumNonZero == 1) { + // One half is zero or undef. + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, + Op.getOperand(Idx)); + return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); + } + return SDValue(); + } + + // If element VT is < 32 bits, convert it to inserts into a zero vector. + if (EVTBits == 8 && NumElems == 16) { + SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, + Subtarget, *this); + if (V.getNode()) return V; + } + + if (EVTBits == 16 && NumElems == 8) { + SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, + Subtarget, *this); + if (V.getNode()) return V; + } + + // If element VT is == 32 bits, turn it into a number of shuffles. + SmallVector<SDValue, 8> V(NumElems); + if (NumElems == 4 && NumZero > 0) { + for (unsigned i = 0; i < 4; ++i) { + bool isZero = !(NonZeros & (1 << i)); + if (isZero) + V[i] = getZeroVector(VT, Subtarget, DAG, dl); + else + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + } + + for (unsigned i = 0; i < 2; ++i) { + switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { + default: break; + case 0: + V[i] = V[i*2]; // Must be a zero vector. + break; + case 1: + V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); + break; + case 2: + V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + case 3: + V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + } + } + + bool Reverse1 = (NonZeros & 0x3) == 2; + bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; + int MaskVec[] = { + Reverse1 ? 1 : 0, + Reverse1 ? 0 : 1, + static_cast<int>(Reverse2 ? NumElems+1 : NumElems), + static_cast<int>(Reverse2 ? NumElems : NumElems+1) + }; + return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); + } + + if (Values.size() > 1 && VT.is128BitVector()) { + // Check for a build vector of consecutive loads. + for (unsigned i = 0; i < NumElems; ++i) + V[i] = Op.getOperand(i); + + // Check for elements which are consecutive loads. + SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); + if (LD.getNode()) + return LD; + + // For SSE 4.1, use insertps to put the high elements into the low element. + if (getSubtarget()->hasSSE41()) { + SDValue Result; + if (Op.getOperand(0).getOpcode() != ISD::UNDEF) + Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); + else + Result = DAG.getUNDEF(VT); + + for (unsigned i = 1; i < NumElems; ++i) { + if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, + Op.getOperand(i), DAG.getIntPtrConstant(i)); + } + return Result; + } + + // Otherwise, expand into a number of unpckl*, start by extending each of + // our (non-undef) elements to the full vector width with the element in the + // bottom slot of the vector (which generates no code for SSE). + for (unsigned i = 0; i < NumElems; ++i) { + if (Op.getOperand(i).getOpcode() != ISD::UNDEF) + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + else + V[i] = DAG.getUNDEF(VT); + } + + // Next, we iteratively mix elements, e.g. for v4f32: + // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> + // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> + // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> + unsigned EltStride = NumElems >> 1; + while (EltStride != 0) { + for (unsigned i = 0; i < EltStride; ++i) { + // If V[i+EltStride] is undef and this is the first round of mixing, + // then it is safe to just drop this shuffle: V[i] is already in the + // right place, the one element (since it's the first round) being + // inserted as undef can be dropped. This isn't safe for successive + // rounds because they will permute elements within both vectors. + if (V[i+EltStride].getOpcode() == ISD::UNDEF && + EltStride == NumElems/2) + continue; + + V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); + } + EltStride >>= 1; + } + return V[0]; + } + return SDValue(); +} + +// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction +// to create 256-bit vectors from two other 128-bit ones. +static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { + DebugLoc dl = Op.getDebugLoc(); + EVT ResVT = Op.getValueType(); + + assert(ResVT.is256BitVector() && "Value type must be 256-bit wide"); + + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + unsigned NumElems = ResVT.getVectorNumElements(); + + return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); +} + +SDValue +X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getNumOperands() == 2); + + // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors + // from two other 128-bit ones. + return LowerAVXCONCAT_VECTORS(Op, DAG); +} + +// Try to lower a shuffle node into a simple blend instruction. +static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + MVT VT = SVOp->getValueType(0).getSimpleVT(); + unsigned NumElems = VT.getVectorNumElements(); + + if (!Subtarget->hasSSE41()) + return SDValue(); + + unsigned ISDNo = 0; + MVT OpTy; + + switch (VT.SimpleTy) { + default: return SDValue(); + case MVT::v8i16: + ISDNo = X86ISD::BLENDPW; + OpTy = MVT::v8i16; + break; + case MVT::v4i32: + case MVT::v4f32: + ISDNo = X86ISD::BLENDPS; + OpTy = MVT::v4f32; + break; + case MVT::v2i64: + case MVT::v2f64: + ISDNo = X86ISD::BLENDPD; + OpTy = MVT::v2f64; + break; + case MVT::v8i32: + case MVT::v8f32: + if (!Subtarget->hasAVX()) + return SDValue(); + ISDNo = X86ISD::BLENDPS; + OpTy = MVT::v8f32; + break; + case MVT::v4i64: + case MVT::v4f64: + if (!Subtarget->hasAVX()) + return SDValue(); + ISDNo = X86ISD::BLENDPD; + OpTy = MVT::v4f64; + break; + } + assert(ISDNo && "Invalid Op Number"); + + unsigned MaskVals = 0; + + for (unsigned i = 0; i != NumElems; ++i) { + int EltIdx = SVOp->getMaskElt(i); + if (EltIdx == (int)i || EltIdx < 0) + MaskVals |= (1<<i); + else if (EltIdx == (int)(i + NumElems)) + continue; // Bit is set to zero; + else + return SDValue(); + } + + V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1); + V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2); + SDValue Ret = DAG.getNode(ISDNo, dl, OpTy, V1, V2, + DAG.getConstant(MaskVals, MVT::i32)); + return DAG.getNode(ISD::BITCAST, dl, VT, Ret); +} + +// v8i16 shuffles - Prefer shuffles in the following order: +// 1. [all] pshuflw, pshufhw, optional move +// 2. [ssse3] 1 x pshufb +// 3. [ssse3] 2 x pshufb + 1 x por +// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) +SDValue +X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op, + SelectionDAG &DAG) const { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + SmallVector<int, 8> MaskVals; + + // Determine if more than 1 of the words in each of the low and high quadwords + // of the result come from the same quadword of one of the two inputs. Undef + // mask values count as coming from any quadword, for better codegen. + unsigned LoQuad[] = { 0, 0, 0, 0 }; + unsigned HiQuad[] = { 0, 0, 0, 0 }; + std::bitset<4> InputQuads; + for (unsigned i = 0; i < 8; ++i) { + unsigned *Quad = i < 4 ? LoQuad : HiQuad; + int EltIdx = SVOp->getMaskElt(i); + MaskVals.push_back(EltIdx); + if (EltIdx < 0) { + ++Quad[0]; + ++Quad[1]; + ++Quad[2]; + ++Quad[3]; + continue; + } + ++Quad[EltIdx / 4]; + InputQuads.set(EltIdx / 4); + } + + int BestLoQuad = -1; + unsigned MaxQuad = 1; + for (unsigned i = 0; i < 4; ++i) { + if (LoQuad[i] > MaxQuad) { + BestLoQuad = i; + MaxQuad = LoQuad[i]; + } + } + + int BestHiQuad = -1; + MaxQuad = 1; + for (unsigned i = 0; i < 4; ++i) { + if (HiQuad[i] > MaxQuad) { + BestHiQuad = i; + MaxQuad = HiQuad[i]; + } + } + + // For SSSE3, If all 8 words of the result come from only 1 quadword of each + // of the two input vectors, shuffle them into one input vector so only a + // single pshufb instruction is necessary. If There are more than 2 input + // quads, disable the next transformation since it does not help SSSE3. + bool V1Used = InputQuads[0] || InputQuads[1]; + bool V2Used = InputQuads[2] || InputQuads[3]; + if (Subtarget->hasSSSE3()) { + if (InputQuads.count() == 2 && V1Used && V2Used) { + BestLoQuad = InputQuads[0] ? 0 : 1; + BestHiQuad = InputQuads[2] ? 2 : 3; + } + if (InputQuads.count() > 2) { + BestLoQuad = -1; + BestHiQuad = -1; + } + } + + // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update + // the shuffle mask. If a quad is scored as -1, that means that it contains + // words from all 4 input quadwords. + SDValue NewV; + if (BestLoQuad >= 0 || BestHiQuad >= 0) { + int MaskV[] = { + BestLoQuad < 0 ? 0 : BestLoQuad, + BestHiQuad < 0 ? 1 : BestHiQuad + }; + NewV = DAG.getVectorShuffle(MVT::v2i64, dl, + DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), + DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); + NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); + + // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the + // source words for the shuffle, to aid later transformations. + bool AllWordsInNewV = true; + bool InOrder[2] = { true, true }; + for (unsigned i = 0; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx != (int)i) + InOrder[i/4] = false; + if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) + continue; + AllWordsInNewV = false; + break; + } + + bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; + if (AllWordsInNewV) { + for (int i = 0; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx < 0) + continue; + idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; + if ((idx != i) && idx < 4) + pshufhw = false; + if ((idx != i) && idx > 3) + pshuflw = false; + } + V1 = NewV; + V2Used = false; + BestLoQuad = 0; + BestHiQuad = 1; + } + + // If we've eliminated the use of V2, and the new mask is a pshuflw or + // pshufhw, that's as cheap as it gets. Return the new shuffle. + if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { + unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; + unsigned TargetMask = 0; + NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, + DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); + TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp): + getShufflePSHUFLWImmediate(SVOp); + V1 = NewV.getOperand(0); + return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); + } + } + + // If we have SSSE3, and all words of the result are from 1 input vector, + // case 2 is generated, otherwise case 3 is generated. If no SSSE3 + // is present, fall back to case 4. + if (Subtarget->hasSSSE3()) { + SmallVector<SDValue,16> pshufbMask; + + // If we have elements from both input vectors, set the high bit of the + // shuffle mask element to zero out elements that come from V2 in the V1 + // mask, and elements that come from V1 in the V2 mask, so that the two + // results can be OR'd together. + bool TwoInputs = V1Used && V2Used; + for (unsigned i = 0; i != 8; ++i) { + int EltIdx = MaskVals[i] * 2; + int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx; + int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1; + pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); + } + V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); + V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + if (!TwoInputs) + return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); + + // Calculate the shuffle mask for the second input, shuffle it, and + // OR it with the first shuffled input. + pshufbMask.clear(); + for (unsigned i = 0; i != 8; ++i) { + int EltIdx = MaskVals[i] * 2; + int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16; + int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15; + pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8)); + } + V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2); + V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); + return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); + } + + // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, + // and update MaskVals with new element order. + std::bitset<8> InOrder; + if (BestLoQuad >= 0) { + int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 }; + for (int i = 0; i != 4; ++i) { + int idx = MaskVals[i]; + if (idx < 0) { + InOrder.set(i); + } else if ((idx / 4) == BestLoQuad) { + MaskV[i] = idx & 3; + InOrder.set(i); + } + } + NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), + &MaskV[0]); + + if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); + NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, + NewV.getOperand(0), + getShufflePSHUFLWImmediate(SVOp), DAG); + } + } + + // If BestHi >= 0, generate a pshufhw to put the high elements in order, + // and update MaskVals with the new element order. + if (BestHiQuad >= 0) { + int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 }; + for (unsigned i = 4; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx < 0) { + InOrder.set(i); + } else if ((idx / 4) == BestHiQuad) { + MaskV[i] = (idx & 3) + 4; + InOrder.set(i); + } + } + NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), + &MaskV[0]); + + if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode()); + NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, + NewV.getOperand(0), + getShufflePSHUFHWImmediate(SVOp), DAG); + } + } + + // In case BestHi & BestLo were both -1, which means each quadword has a word + // from each of the four input quadwords, calculate the InOrder bitvector now + // before falling through to the insert/extract cleanup. + if (BestLoQuad == -1 && BestHiQuad == -1) { + NewV = V1; + for (int i = 0; i != 8; ++i) + if (MaskVals[i] < 0 || MaskVals[i] == i) + InOrder.set(i); + } + + // The other elements are put in the right place using pextrw and pinsrw. + for (unsigned i = 0; i != 8; ++i) { + if (InOrder[i]) + continue; + int EltIdx = MaskVals[i]; + if (EltIdx < 0) + continue; + SDValue ExtOp = (EltIdx < 8) ? + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, + DAG.getIntPtrConstant(EltIdx)) : + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, + DAG.getIntPtrConstant(EltIdx - 8)); + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, + DAG.getIntPtrConstant(i)); + } + return NewV; +} + +// v16i8 shuffles - Prefer shuffles in the following order: +// 1. [ssse3] 1 x pshufb +// 2. [ssse3] 2 x pshufb + 1 x por +// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw +static +SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG, + const X86TargetLowering &TLI) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + ArrayRef<int> MaskVals = SVOp->getMask(); + + bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; + + // If we have SSSE3, case 1 is generated when all result bytes come from + // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is + // present, fall back to case 3. + + // If SSSE3, use 1 pshufb instruction per vector with elements in the result. + if (TLI.getSubtarget()->hasSSSE3()) { + SmallVector<SDValue,16> pshufbMask; + + // If all result elements are from one input vector, then only translate + // undef mask values to 0x80 (zero out result) in the pshufb mask. + // + // Otherwise, we have elements from both input vectors, and must zero out + // elements that come from V2 in the first mask, and V1 in the second mask + // so that we can OR them together. + for (unsigned i = 0; i != 16; ++i) { + int EltIdx = MaskVals[i]; + if (EltIdx < 0 || EltIdx >= 16) + EltIdx = 0x80; + pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); + } + V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + if (V2IsUndef) + return V1; + + // Calculate the shuffle mask for the second input, shuffle it, and + // OR it with the first shuffled input. + pshufbMask.clear(); + for (unsigned i = 0; i != 16; ++i) { + int EltIdx = MaskVals[i]; + EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16; + pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); + } + V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); + } + + // No SSSE3 - Calculate in place words and then fix all out of place words + // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from + // the 16 different words that comprise the two doublequadword input vectors. + V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); + V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); + SDValue NewV = V1; + for (int i = 0; i != 8; ++i) { + int Elt0 = MaskVals[i*2]; + int Elt1 = MaskVals[i*2+1]; + + // This word of the result is all undef, skip it. + if (Elt0 < 0 && Elt1 < 0) + continue; + + // This word of the result is already in the correct place, skip it. + if ((Elt0 == i*2) && (Elt1 == i*2+1)) + continue; + + SDValue Elt0Src = Elt0 < 16 ? V1 : V2; + SDValue Elt1Src = Elt1 < 16 ? V1 : V2; + SDValue InsElt; + + // If Elt0 and Elt1 are defined, are consecutive, and can be load + // using a single extract together, load it and store it. + if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { + InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, + DAG.getIntPtrConstant(Elt1 / 2)); + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, + DAG.getIntPtrConstant(i)); + continue; + } + + // If Elt1 is defined, extract it from the appropriate source. If the + // source byte is not also odd, shift the extracted word left 8 bits + // otherwise clear the bottom 8 bits if we need to do an or. + if (Elt1 >= 0) { + InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, + DAG.getIntPtrConstant(Elt1 / 2)); + if ((Elt1 & 1) == 0) + InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, + DAG.getConstant(8, + TLI.getShiftAmountTy(InsElt.getValueType()))); + else if (Elt0 >= 0) + InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, + DAG.getConstant(0xFF00, MVT::i16)); + } + // If Elt0 is defined, extract it from the appropriate source. If the + // source byte is not also even, shift the extracted word right 8 bits. If + // Elt1 was also defined, OR the extracted values together before + // inserting them in the result. + if (Elt0 >= 0) { + SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, + Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); + if ((Elt0 & 1) != 0) + InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, + DAG.getConstant(8, + TLI.getShiftAmountTy(InsElt0.getValueType()))); + else if (Elt1 >= 0) + InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, + DAG.getConstant(0x00FF, MVT::i16)); + InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) + : InsElt0; + } + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, + DAG.getIntPtrConstant(i)); + } + return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); +} + +/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide +/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be +/// done when every pair / quad of shuffle mask elements point to elements in +/// the right sequence. e.g. +/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> +static +SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG, DebugLoc dl) { + MVT VT = SVOp->getValueType(0).getSimpleVT(); + unsigned NumElems = VT.getVectorNumElements(); + MVT NewVT; + unsigned Scale; + switch (VT.SimpleTy) { + default: llvm_unreachable("Unexpected!"); + case MVT::v4f32: NewVT = MVT::v2f64; Scale = 2; break; + case MVT::v4i32: NewVT = MVT::v2i64; Scale = 2; break; + case MVT::v8i16: NewVT = MVT::v4i32; Scale = 2; break; + case MVT::v16i8: NewVT = MVT::v4i32; Scale = 4; break; + case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break; + case MVT::v32i8: NewVT = MVT::v8i32; Scale = 4; break; + } + + SmallVector<int, 8> MaskVec; + for (unsigned i = 0; i != NumElems; i += Scale) { + int StartIdx = -1; + for (unsigned j = 0; j != Scale; ++j) { + int EltIdx = SVOp->getMaskElt(i+j); + if (EltIdx < 0) + continue; + if (StartIdx < 0) + StartIdx = (EltIdx / Scale); + if (EltIdx != (int)(StartIdx*Scale + j)) + return SDValue(); + } + MaskVec.push_back(StartIdx); + } + + SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0)); + SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1)); + return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); +} + +/// getVZextMovL - Return a zero-extending vector move low node. +/// +static SDValue getVZextMovL(EVT VT, EVT OpVT, + SDValue SrcOp, SelectionDAG &DAG, + const X86Subtarget *Subtarget, DebugLoc dl) { + if (VT == MVT::v2f64 || VT == MVT::v4f32) { + LoadSDNode *LD = NULL; + if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) + LD = dyn_cast<LoadSDNode>(SrcOp); + if (!LD) { + // movssrr and movsdrr do not clear top bits. Try to use movd, movq + // instead. + MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; + if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && + SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && + SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && + SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { + // PR2108 + OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + OpVT, + SrcOp.getOperand(0) + .getOperand(0)))); + } + } + } + + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, + DAG.getNode(ISD::BITCAST, dl, + OpVT, SrcOp))); +} + +/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles +/// which could not be matched by any known target speficic shuffle +static SDValue +LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { + + SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG); + if (NewOp.getNode()) + return NewOp; + + EVT VT = SVOp->getValueType(0); + + unsigned NumElems = VT.getVectorNumElements(); + unsigned NumLaneElems = NumElems / 2; + + DebugLoc dl = SVOp->getDebugLoc(); + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems); + SDValue Output[2]; + + SmallVector<int, 16> Mask; + for (unsigned l = 0; l < 2; ++l) { + // Build a shuffle mask for the output, discovering on the fly which + // input vectors to use as shuffle operands (recorded in InputUsed). + // If building a suitable shuffle vector proves too hard, then bail + // out with UseBuildVector set. + bool UseBuildVector = false; + int InputUsed[2] = { -1, -1 }; // Not yet discovered. + unsigned LaneStart = l * NumLaneElems; + for (unsigned i = 0; i != NumLaneElems; ++i) { + // The mask element. This indexes into the input. + int Idx = SVOp->getMaskElt(i+LaneStart); + if (Idx < 0) { + // the mask element does not index into any input vector. + Mask.push_back(-1); + continue; + } + + // The input vector this mask element indexes into. + int Input = Idx / NumLaneElems; + + // Turn the index into an offset from the start of the input vector. + Idx -= Input * NumLaneElems; + + // Find or create a shuffle vector operand to hold this input. + unsigned OpNo; + for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) { + if (InputUsed[OpNo] == Input) + // This input vector is already an operand. + break; + if (InputUsed[OpNo] < 0) { + // Create a new operand for this input vector. + InputUsed[OpNo] = Input; + break; + } + } + + if (OpNo >= array_lengthof(InputUsed)) { + // More than two input vectors used! Give up on trying to create a + // shuffle vector. Insert all elements into a BUILD_VECTOR instead. + UseBuildVector = true; + break; + } + + // Add the mask index for the new shuffle vector. + Mask.push_back(Idx + OpNo * NumLaneElems); + } + + if (UseBuildVector) { + SmallVector<SDValue, 16> SVOps; + for (unsigned i = 0; i != NumLaneElems; ++i) { + // The mask element. This indexes into the input. + int Idx = SVOp->getMaskElt(i+LaneStart); + if (Idx < 0) { + SVOps.push_back(DAG.getUNDEF(EltVT)); + continue; + } + + // The input vector this mask element indexes into. + int Input = Idx / NumElems; + + // Turn the index into an offset from the start of the input vector. + Idx -= Input * NumElems; + + // Extract the vector element by hand. + SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, + SVOp->getOperand(Input), + DAG.getIntPtrConstant(Idx))); + } + + // Construct the output using a BUILD_VECTOR. + Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0], + SVOps.size()); + } else if (InputUsed[0] < 0) { + // No input vectors were used! The result is undefined. + Output[l] = DAG.getUNDEF(NVT); + } else { + SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2), + (InputUsed[0] % 2) * NumLaneElems, + DAG, dl); + // If only one input was used, use an undefined vector for the other. + SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) : + Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2), + (InputUsed[1] % 2) * NumLaneElems, DAG, dl); + // At least one input vector was used. Create a new shuffle vector. + Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]); + } + + Mask.clear(); + } + + // Concatenate the result back + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]); +} + +/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with +/// 4 elements, and match them with several different shuffle types. +static SDValue +LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + EVT VT = SVOp->getValueType(0); + + assert(VT.is128BitVector() && "Unsupported vector size"); + + std::pair<int, int> Locs[4]; + int Mask1[] = { -1, -1, -1, -1 }; + SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end()); + + unsigned NumHi = 0; + unsigned NumLo = 0; + for (unsigned i = 0; i != 4; ++i) { + int Idx = PermMask[i]; + if (Idx < 0) { + Locs[i] = std::make_pair(-1, -1); + } else { + assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); + if (Idx < 4) { + Locs[i] = std::make_pair(0, NumLo); + Mask1[NumLo] = Idx; + NumLo++; + } else { + Locs[i] = std::make_pair(1, NumHi); + if (2+NumHi < 4) + Mask1[2+NumHi] = Idx; + NumHi++; + } + } + } + + if (NumLo <= 2 && NumHi <= 2) { + // If no more than two elements come from either vector. This can be + // implemented with two shuffles. First shuffle gather the elements. + // The second shuffle, which takes the first shuffle as both of its + // vector operands, put the elements into the right order. + V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + + int Mask2[] = { -1, -1, -1, -1 }; + + for (unsigned i = 0; i != 4; ++i) + if (Locs[i].first != -1) { + unsigned Idx = (i < 2) ? 0 : 4; + Idx += Locs[i].first * 2 + Locs[i].second; + Mask2[i] = Idx; + } + + return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); + } + + if (NumLo == 3 || NumHi == 3) { + // Otherwise, we must have three elements from one vector, call it X, and + // one element from the other, call it Y. First, use a shufps to build an + // intermediate vector with the one element from Y and the element from X + // that will be in the same half in the final destination (the indexes don't + // matter). Then, use a shufps to build the final vector, taking the half + // containing the element from Y from the intermediate, and the other half + // from X. + if (NumHi == 3) { + // Normalize it so the 3 elements come from V1. + CommuteVectorShuffleMask(PermMask, 4); + std::swap(V1, V2); + } + + // Find the element from V2. + unsigned HiIndex; + for (HiIndex = 0; HiIndex < 3; ++HiIndex) { + int Val = PermMask[HiIndex]; + if (Val < 0) + continue; + if (Val >= 4) + break; + } + + Mask1[0] = PermMask[HiIndex]; + Mask1[1] = -1; + Mask1[2] = PermMask[HiIndex^1]; + Mask1[3] = -1; + V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + + if (HiIndex >= 2) { + Mask1[0] = PermMask[0]; + Mask1[1] = PermMask[1]; + Mask1[2] = HiIndex & 1 ? 6 : 4; + Mask1[3] = HiIndex & 1 ? 4 : 6; + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + } + + Mask1[0] = HiIndex & 1 ? 2 : 0; + Mask1[1] = HiIndex & 1 ? 0 : 2; + Mask1[2] = PermMask[2]; + Mask1[3] = PermMask[3]; + if (Mask1[2] >= 0) + Mask1[2] += 4; + if (Mask1[3] >= 0) + Mask1[3] += 4; + return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); + } + + // Break it into (shuffle shuffle_hi, shuffle_lo). + int LoMask[] = { -1, -1, -1, -1 }; + int HiMask[] = { -1, -1, -1, -1 }; + + int *MaskPtr = LoMask; + unsigned MaskIdx = 0; + unsigned LoIdx = 0; + unsigned HiIdx = 2; + for (unsigned i = 0; i != 4; ++i) { + if (i == 2) { + MaskPtr = HiMask; + MaskIdx = 1; + LoIdx = 0; + HiIdx = 2; + } + int Idx = PermMask[i]; + if (Idx < 0) { + Locs[i] = std::make_pair(-1, -1); + } else if (Idx < 4) { + Locs[i] = std::make_pair(MaskIdx, LoIdx); + MaskPtr[LoIdx] = Idx; + LoIdx++; + } else { + Locs[i] = std::make_pair(MaskIdx, HiIdx); + MaskPtr[HiIdx] = Idx; + HiIdx++; + } + } + + SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); + SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); + int MaskOps[] = { -1, -1, -1, -1 }; + for (unsigned i = 0; i != 4; ++i) + if (Locs[i].first != -1) + MaskOps[i] = Locs[i].first * 4 + Locs[i].second; + return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); +} + +static bool MayFoldVectorLoad(SDValue V) { + if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) + V = V.getOperand(0); + if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR && + V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF) + // BUILD_VECTOR (load), undef + V = V.getOperand(0); + if (MayFoldLoad(V)) + return true; + return false; +} + +// FIXME: the version above should always be used. Since there's +// a bug where several vector shuffles can't be folded because the +// DAG is not updated during lowering and a node claims to have two +// uses while it only has one, use this version, and let isel match +// another instruction if the load really happens to have more than +// one use. Remove this version after this bug get fixed. +// rdar://8434668, PR8156 +static bool RelaxedMayFoldVectorLoad(SDValue V) { + if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) + V = V.getOperand(0); + if (ISD::isNormalLoad(V.getNode())) + return true; + return false; +} + +static +SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + // Canonizalize to v2f64. + V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); + return DAG.getNode(ISD::BITCAST, dl, VT, + getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, + V1, DAG)); +} + +static +SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, + bool HasSSE2) { + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + EVT VT = Op.getValueType(); + + assert(VT != MVT::v2i64 && "unsupported shuffle type"); + + if (HasSSE2 && VT == MVT::v2f64) + return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); + + // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1) + return DAG.getNode(ISD::BITCAST, dl, VT, + getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32, + DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1), + DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG)); +} + +static +SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) { + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + EVT VT = Op.getValueType(); + + assert((VT == MVT::v4i32 || VT == MVT::v4f32) && + "unsupported shuffle type"); + + if (V2.getOpcode() == ISD::UNDEF) + V2 = V1; + + // v4i32 or v4f32 + return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); +} + +static +SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + EVT VT = Op.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second + // operand of these instructions is only memory, so check if there's a + // potencial load folding here, otherwise use SHUFPS or MOVSD to match the + // same masks. + bool CanFoldLoad = false; + + // Trivial case, when V2 comes from a load. + if (MayFoldVectorLoad(V2)) + CanFoldLoad = true; + + // When V1 is a load, it can be folded later into a store in isel, example: + // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) + // turns into: + // (MOVLPSmr addr:$src1, VR128:$src2) + // So, recognize this potential and also use MOVLPS or MOVLPD + else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) + CanFoldLoad = true; + + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + if (CanFoldLoad) { + if (HasSSE2 && NumElems == 2) + return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); + + if (NumElems == 4) + // If we don't care about the second element, proceed to use movss. + if (SVOp->getMaskElt(1) != -1) + return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); + } + + // movl and movlp will both match v2i64, but v2i64 is never matched by + // movl earlier because we make it strict to avoid messing with the movlp load + // folding logic (see the code above getMOVLP call). Match it here then, + // this is horrible, but will stay like this until we move all shuffle + // matching to x86 specific nodes. Note that for the 1st condition all + // types are matched with movsd. + if (HasSSE2) { + // FIXME: isMOVLMask should be checked and matched before getMOVLP, + // as to remove this logic from here, as much as possible + if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT)) + return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); + return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); + } + + assert(VT != MVT::v4i32 && "unsupported shuffle type"); + + // Invert the operand order and use SHUFPS to match it. + return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1, + getShuffleSHUFImmediate(SVOp), DAG); +} + +SDValue +X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + + if (isZeroShuffle(SVOp)) + return getZeroVector(VT, Subtarget, DAG, dl); + + // Handle splat operations + if (SVOp->isSplat()) { + unsigned NumElem = VT.getVectorNumElements(); + int Size = VT.getSizeInBits(); + + // Use vbroadcast whenever the splat comes from a foldable load + SDValue Broadcast = LowerVectorBroadcast(Op, DAG); + if (Broadcast.getNode()) + return Broadcast; + + // Handle splats by matching through known shuffle masks + if ((Size == 128 && NumElem <= 4) || + (Size == 256 && NumElem < 8)) + return SDValue(); + + // All remaning splats are promoted to target supported vector shuffles. + return PromoteSplat(SVOp, DAG); + } + + // If the shuffle can be profitably rewritten as a narrower shuffle, then + // do it! + if (VT == MVT::v8i16 || VT == MVT::v16i8 || + VT == MVT::v16i16 || VT == MVT::v32i8) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + if (NewOp.getNode()) + return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); + } else if ((VT == MVT::v4i32 || + (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { + // FIXME: Figure out a cleaner way to do this. + // Try to make use of movq to zero out the top part. + if (ISD::isBuildVectorAllZeros(V2.getNode())) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + if (NewOp.getNode()) { + EVT NewVT = NewOp.getValueType(); + if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), + NewVT, true, false)) + return getVZextMovL(VT, NewVT, NewOp.getOperand(0), + DAG, Subtarget, dl); + } + } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); + if (NewOp.getNode()) { + EVT NewVT = NewOp.getValueType(); + if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT)) + return getVZextMovL(VT, NewVT, NewOp.getOperand(1), + DAG, Subtarget, dl); + } + } + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + unsigned NumElems = VT.getVectorNumElements(); + bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; + bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; + bool V1IsSplat = false; + bool V2IsSplat = false; + bool HasSSE2 = Subtarget->hasSSE2(); + bool HasAVX = Subtarget->hasAVX(); + bool HasAVX2 = Subtarget->hasAVX2(); + MachineFunction &MF = DAG.getMachineFunction(); + bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize); + + assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles"); + + if (V1IsUndef && V2IsUndef) + return DAG.getUNDEF(VT); + + assert(!V1IsUndef && "Op 1 of shuffle should not be undef"); + + // Vector shuffle lowering takes 3 steps: + // + // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable + // narrowing and commutation of operands should be handled. + // 2) Matching of shuffles with known shuffle masks to x86 target specific + // shuffle nodes. + // 3) Rewriting of unmatched masks into new generic shuffle operations, + // so the shuffle can be broken into other shuffles and the legalizer can + // try the lowering again. + // + // The general idea is that no vector_shuffle operation should be left to + // be matched during isel, all of them must be converted to a target specific + // node here. + + // Normalize the input vectors. Here splats, zeroed vectors, profitable + // narrowing and commutation of operands should be handled. The actual code + // doesn't include all of those, work in progress... + SDValue NewOp = NormalizeVectorShuffle(Op, DAG); + if (NewOp.getNode()) + return NewOp; + + SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end()); + + // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and + // unpckh_undef). Only use pshufd if speed is more important than size. + if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); + if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); + + if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() && + V2IsUndef && RelaxedMayFoldVectorLoad(V1)) + return getMOVDDup(Op, dl, V1, DAG); + + if (isMOVHLPS_v_undef_Mask(M, VT)) + return getMOVHighToLow(Op, dl, DAG); + + // Use to match splats + if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef && + (VT == MVT::v2f64 || VT == MVT::v2i64)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); + + if (isPSHUFDMask(M, VT)) { + // The actual implementation will match the mask in the if above and then + // during isel it can match several different instructions, not only pshufd + // as its name says, sad but true, emulate the behavior for now... + if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) + return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); + + unsigned TargetMask = getShuffleSHUFImmediate(SVOp); + + if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64)) + return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG); + + if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) + return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); + + return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1, + TargetMask, DAG); + } + + // Check if this can be converted into a logical shift. + bool isLeft = false; + unsigned ShAmt = 0; + SDValue ShVal; + bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); + if (isShift && ShVal.hasOneUse()) { + // If the shifted value has multiple uses, it may be cheaper to use + // v_set0 + movlhps or movhlps, etc. + EVT EltVT = VT.getVectorElementType(); + ShAmt *= EltVT.getSizeInBits(); + return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); + } + + if (isMOVLMask(M, VT)) { + if (ISD::isBuildVectorAllZeros(V1.getNode())) + return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); + if (!isMOVLPMask(M, VT)) { + if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) + return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); + + if (VT == MVT::v4i32 || VT == MVT::v4f32) + return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); + } + } + + // FIXME: fold these into legal mask. + if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2)) + return getMOVLowToHigh(Op, dl, DAG, HasSSE2); + + if (isMOVHLPSMask(M, VT)) + return getMOVHighToLow(Op, dl, DAG); + + if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget)) + return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); + + if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget)) + return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); + + if (isMOVLPMask(M, VT)) + return getMOVLP(Op, dl, DAG, HasSSE2); + + if (ShouldXformToMOVHLPS(M, VT) || + ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT)) + return CommuteVectorShuffle(SVOp, DAG); + + if (isShift) { + // No better options. Use a vshldq / vsrldq. + EVT EltVT = VT.getVectorElementType(); + ShAmt *= EltVT.getSizeInBits(); + return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); + } + + bool Commuted = false; + // FIXME: This should also accept a bitcast of a splat? Be careful, not + // 1,1,1,1 -> v8i16 though. + V1IsSplat = isSplatVector(V1.getNode()); + V2IsSplat = isSplatVector(V2.getNode()); + + // Canonicalize the splat or undef, if present, to be on the RHS. + if (!V2IsUndef && V1IsSplat && !V2IsSplat) { + CommuteVectorShuffleMask(M, NumElems); + std::swap(V1, V2); + std::swap(V1IsSplat, V2IsSplat); + Commuted = true; + } + + if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) { + // Shuffling low element of v1 into undef, just return v1. + if (V2IsUndef) + return V1; + // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which + // the instruction selector will not match, so get a canonical MOVL with + // swapped operands to undo the commute. + return getMOVL(DAG, dl, VT, V2, V1); + } + + if (isUNPCKLMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); + + if (isUNPCKHMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); + + if (V2IsSplat) { + // Normalize mask so all entries that point to V2 points to its first + // element then try to match unpck{h|l} again. If match, return a + // new vector_shuffle with the corrected mask.p + SmallVector<int, 8> NewMask(M.begin(), M.end()); + NormalizeMask(NewMask, NumElems); + if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); + if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); + } + + if (Commuted) { + // Commute is back and try unpck* again. + // FIXME: this seems wrong. + CommuteVectorShuffleMask(M, NumElems); + std::swap(V1, V2); + std::swap(V1IsSplat, V2IsSplat); + Commuted = false; + + if (isUNPCKLMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG); + + if (isUNPCKHMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG); + } + + // Normalize the node to match x86 shuffle ops if needed + if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true))) + return CommuteVectorShuffle(SVOp, DAG); + + // The checks below are all present in isShuffleMaskLegal, but they are + // inlined here right now to enable us to directly emit target specific + // nodes, and remove one by one until they don't return Op anymore. + + if (isPALIGNRMask(M, VT, Subtarget)) + return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2, + getShufflePALIGNRImmediate(SVOp), + DAG); + + if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && + SVOp->getSplatIndex() == 0 && V2IsUndef) { + if (VT == MVT::v2f64 || VT == MVT::v2i64) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); + } + + if (isPSHUFHWMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, + getShufflePSHUFHWImmediate(SVOp), + DAG); + + if (isPSHUFLWMask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, + getShufflePSHUFLWImmediate(SVOp), + DAG); + + if (isSHUFPMask(M, VT, HasAVX)) + return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2, + getShuffleSHUFImmediate(SVOp), DAG); + + if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG); + if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2)) + return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG); + + //===--------------------------------------------------------------------===// + // Generate target specific nodes for 128 or 256-bit shuffles only + // supported in the AVX instruction set. + // + + // Handle VMOVDDUPY permutations + if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX)) + return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG); + + // Handle VPERMILPS/D* permutations + if (isVPERMILPMask(M, VT, HasAVX)) { + if (HasAVX2 && VT == MVT::v8i32) + return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, + getShuffleSHUFImmediate(SVOp), DAG); + return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, + getShuffleSHUFImmediate(SVOp), DAG); + } + + // Handle VPERM2F128/VPERM2I128 permutations + if (isVPERM2X128Mask(M, VT, HasAVX)) + return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1, + V2, getShuffleVPERM2X128Immediate(SVOp), DAG); + + SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG); + if (BlendOp.getNode()) + return BlendOp; + + if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) { + SmallVector<SDValue, 8> permclMask; + for (unsigned i = 0; i != 8; ++i) { + permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32)); + } + SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, + &permclMask[0], 8); + // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32 + return DAG.getNode(X86ISD::VPERMV, dl, VT, + DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1); + } + + if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64)) + return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, + getShuffleCLImmediate(SVOp), DAG); + + + //===--------------------------------------------------------------------===// + // Since no target specific shuffle was selected for this generic one, + // lower it into other known shuffles. FIXME: this isn't true yet, but + // this is the plan. + // + + // Handle v8i16 specifically since SSE can do byte extraction and insertion. + if (VT == MVT::v8i16) { + SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG); + if (NewOp.getNode()) + return NewOp; + } + + if (VT == MVT::v16i8) { + SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); + if (NewOp.getNode()) + return NewOp; + } + + // Handle all 128-bit wide vectors with 4 elements, and match them with + // several different shuffle types. + if (NumElems == 4 && VT.is128BitVector()) + return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG); + + // Handle general 256-bit shuffles + if (VT.is256BitVector()) + return LowerVECTOR_SHUFFLE_256(SVOp, DAG); + + return SDValue(); +} + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + + if (!Op.getOperand(0).getValueType().is128BitVector()) + return SDValue(); + + if (VT.getSizeInBits() == 8) { + SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT.getSizeInBits() == 16) { + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + // If Idx is 0, it's cheaper to do a move instead of a pextrw. + if (Idx == 0) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BITCAST, dl, + MVT::v4i32, + Op.getOperand(0)), + Op.getOperand(1))); + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT == MVT::f32) { + // EXTRACTPS outputs to a GPR32 register which will require a movd to copy + // the result back to FR32 register. It's only worth matching if the + // result has a single use which is a store or a bitcast to i32. And in + // the case of a store, it's not worth it if the index is a constant 0, + // because a MOVSSmr can be used instead, which is smaller and faster. + if (!Op.hasOneUse()) + return SDValue(); + SDNode *User = *Op.getNode()->use_begin(); + if ((User->getOpcode() != ISD::STORE || + (isa<ConstantSDNode>(Op.getOperand(1)) && + cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && + (User->getOpcode() != ISD::BITCAST || + User->getValueType(0) != MVT::i32)) + return SDValue(); + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, + Op.getOperand(0)), + Op.getOperand(1)); + return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); + } + + if (VT == MVT::i32 || VT == MVT::i64) { + // ExtractPS/pextrq works with constant index. + if (isa<ConstantSDNode>(Op.getOperand(1))) + return Op; + } + return SDValue(); +} + + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + if (!isa<ConstantSDNode>(Op.getOperand(1))) + return SDValue(); + + SDValue Vec = Op.getOperand(0); + EVT VecVT = Vec.getValueType(); + + // If this is a 256-bit vector result, first extract the 128-bit vector and + // then extract the element from the 128-bit vector. + if (VecVT.is256BitVector()) { + DebugLoc dl = Op.getNode()->getDebugLoc(); + unsigned NumElems = VecVT.getVectorNumElements(); + SDValue Idx = Op.getOperand(1); + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + + // Get the 128-bit vector. + Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); + + if (IdxVal >= NumElems/2) + IdxVal -= NumElems/2; + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, + DAG.getConstant(IdxVal, MVT::i32)); + } + + assert(VecVT.is128BitVector() && "Unexpected vector length"); + + if (Subtarget->hasSSE41()) { + SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); + if (Res.getNode()) + return Res; + } + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + // TODO: handle v16i8. + if (VT.getSizeInBits() == 16) { + SDValue Vec = Op.getOperand(0); + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BITCAST, dl, + MVT::v4i32, Vec), + Op.getOperand(1))); + // Transform it so it match pextrw which produces a 32-bit result. + EVT EltVT = MVT::i32; + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT.getSizeInBits() == 32) { + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return Op; + + // SHUFPS the element to the lowest double word, then movss. + int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; + EVT VVT = Op.getOperand(0).getValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0)); + } + + if (VT.getSizeInBits() == 64) { + // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b + // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught + // to match extract_elt for f64. + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return Op; + + // UNPCKHPD the element to the lowest double word, then movsd. + // Note if the lower 64 bits of the result of the UNPCKHPD is then stored + // to a f64mem, the whole operation is folded into a single MOVHPDmr. + int Mask[2] = { 1, -1 }; + EVT VVT = Op.getOperand(0).getValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0)); + } + + return SDValue(); +} + +SDValue +X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT EltVT = VT.getVectorElementType(); + DebugLoc dl = Op.getDebugLoc(); + + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + + if (!VT.is128BitVector()) + return SDValue(); + + if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && + isa<ConstantSDNode>(N2)) { + unsigned Opc; + if (VT == MVT::v8i16) + Opc = X86ISD::PINSRW; + else if (VT == MVT::v16i8) + Opc = X86ISD::PINSRB; + else + Opc = X86ISD::PINSRB; + + // Transform it so it match pinsr{b,w} which expects a GR32 as its second + // argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); + return DAG.getNode(Opc, dl, VT, N0, N1, N2); + } + + if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { + // Bits [7:6] of the constant are the source select. This will always be + // zero here. The DAG Combiner may combine an extract_elt index into these + // bits. For example (insert (extract, 3), 2) could be matched by putting + // the '3' into bits [7:6] of X86ISD::INSERTPS. + // Bits [5:4] of the constant are the destination select. This is the + // value of the incoming immediate. + // Bits [3:0] of the constant are the zero mask. The DAG Combiner may + // combine either bitwise AND or insert of float 0.0 to set these bits. + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); + // Create this as a scalar to vector.. + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); + } + + if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) { + // PINSR* works with constant index. + return Op; + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT EltVT = VT.getVectorElementType(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + + // If this is a 256-bit vector result, first extract the 128-bit vector, + // insert the element into the extracted half and then place it back. + if (VT.is256BitVector()) { + if (!isa<ConstantSDNode>(N2)) + return SDValue(); + + // Get the desired 128-bit vector half. + unsigned NumElems = VT.getVectorNumElements(); + unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue(); + SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); + + // Insert the element into the desired half. + bool Upper = IdxVal >= NumElems/2; + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, + DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32)); + + // Insert the changed part back to the 256-bit vector + return Insert128BitVector(N0, V, IdxVal, DAG, dl); + } + + if (Subtarget->hasSSE41()) + return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); + + if (EltVT == MVT::i8) + return SDValue(); + + if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { + // Transform it so it match pinsrw which expects a 16-bit value in a GR32 + // as its second argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); + return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + DebugLoc dl = Op.getDebugLoc(); + EVT OpVT = Op.getValueType(); + + // If this is a 256-bit vector result, first insert into a 128-bit + // vector and then insert into the 256-bit vector. + if (!OpVT.is128BitVector()) { + // Insert into a 128-bit vector. + EVT VT128 = EVT::getVectorVT(*Context, + OpVT.getVectorElementType(), + OpVT.getVectorNumElements() / 2); + + Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); + + // Insert the 128-bit vector. + return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); + } + + if (OpVT == MVT::v1i64 && + Op.getOperand(0).getValueType() == MVT::i64) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); + + SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); + assert(OpVT.is128BitVector() && "Expected an SSE type!"); + return DAG.getNode(ISD::BITCAST, dl, OpVT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); +} + +// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in +// a simple subregister reference or explicit instructions to grab +// upper bits of a vector. +SDValue +X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget->hasAVX()) { + DebugLoc dl = Op.getNode()->getDebugLoc(); + SDValue Vec = Op.getNode()->getOperand(0); + SDValue Idx = Op.getNode()->getOperand(1); + + if (Op.getNode()->getValueType(0).is128BitVector() && + Vec.getNode()->getValueType(0).is256BitVector() && + isa<ConstantSDNode>(Idx)) { + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + return Extract128BitVector(Vec, IdxVal, DAG, dl); + } + } + return SDValue(); +} + +// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a +// simple superregister reference or explicit instructions to insert +// the upper bits of a vector. +SDValue +X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget->hasAVX()) { + DebugLoc dl = Op.getNode()->getDebugLoc(); + SDValue Vec = Op.getNode()->getOperand(0); + SDValue SubVec = Op.getNode()->getOperand(1); + SDValue Idx = Op.getNode()->getOperand(2); + + if (Op.getNode()->getValueType(0).is256BitVector() && + SubVec.getNode()->getValueType(0).is128BitVector() && + isa<ConstantSDNode>(Idx)) { + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); + } + } + return SDValue(); +} + +// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as +// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is +// one of the above mentioned nodes. It has to be wrapped because otherwise +// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only +// be used to form addressing mode. These wrapped nodes will be selected +// into MOV32ri. +SDValue +X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), + CP->getAlignment(), + CP->getOffset(), OpFlag); + DebugLoc DL = CP->getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + // With PIC, the address is actually $g + Offset. + if (OpFlag) { + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + } + + return Result; +} + +SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), + OpFlag); + DebugLoc DL = JT->getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (OpFlag) + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + + return Result; +} + +SDValue +X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { + const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) { + if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) + OpFlag = X86II::MO_GOTPCREL; + WrapperKind = X86ISD::WrapperRIP; + } else if (Subtarget->isPICStyleGOT()) { + OpFlag = X86II::MO_GOT; + } else if (Subtarget->isPICStyleStubPIC()) { + OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; + } else if (Subtarget->isPICStyleStubNoDynamic()) { + OpFlag = X86II::MO_DARWIN_NONLAZY; + } + + SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); + + DebugLoc DL = Op.getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + + // With PIC, the address is actually $g + Offset. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && + !Subtarget->is64Bit()) { + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + } + + // For symbols that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlag)) + Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(), false, false, false, 0); + + return Result; +} + +SDValue +X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + // Create the TargetBlockAddressAddress node. + unsigned char OpFlags = + Subtarget->ClassifyBlockAddressReference(); + CodeModel::Model M = getTargetMachine().getCodeModel(); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + DebugLoc dl = Op.getDebugLoc(); + SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), + /*isTarget=*/true, OpFlags); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), + Result); + } + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, + int64_t Offset, + SelectionDAG &DAG) const { + // Create the TargetGlobalAddress node, folding in the constant + // offset if it is legal. + unsigned char OpFlags = + Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); + CodeModel::Model M = getTargetMachine().getCodeModel(); + SDValue Result; + if (OpFlags == X86II::MO_NO_FLAG && + X86::isOffsetSuitableForCodeModel(Offset, M)) { + // A direct static reference to a global. + Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); + Offset = 0; + } else { + Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); + } + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), + Result); + } + + // For globals that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlags)) + Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(), false, false, false, 0); + + // If there was a non-zero offset that we didn't fold, create an explicit + // addition for it. + if (Offset != 0) + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, + DAG.getConstant(Offset, getPointerTy())); + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); + return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); +} + +static SDValue +GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, + SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, + unsigned char OperandFlags, bool LocalDynamic = false) { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + DebugLoc dl = GA->getDebugLoc(); + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), + OperandFlags); + + X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR + : X86ISD::TLSADDR; + + if (InFlag) { + SDValue Ops[] = { Chain, TGA, *InFlag }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3); + } else { + SDValue Ops[] = { Chain, TGA }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2); + } + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + MFI->setAdjustsStack(true); + + SDValue Flag = Chain.getValue(1); + return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit +static SDValue +LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + SDValue InFlag; + DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + + return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit +static SDValue +LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, + X86::RAX, X86II::MO_TLSGD); +} + +static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, + SelectionDAG &DAG, + const EVT PtrVT, + bool is64Bit) { + DebugLoc dl = GA->getDebugLoc(); + + // Get the start address of the TLS block for this module. + X86MachineFunctionInfo* MFI = DAG.getMachineFunction() + .getInfo<X86MachineFunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + SDValue Base; + if (is64Bit) { + Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX, + X86II::MO_TLSLD, /*LocalDynamic=*/true); + } else { + SDValue InFlag; + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, + X86II::MO_TLSLDM, /*LocalDynamic=*/true); + } + + // Note: the CleanupLocalDynamicTLSPass will remove redundant computations + // of Base. + + // Build x@dtpoff. + unsigned char OperandFlags = X86II::MO_DTPOFF; + unsigned WrapperKind = X86ISD::Wrapper; + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + // Add x@dtpoff with the base. + return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); +} + +// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. +static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT, TLSModel::Model model, + bool is64Bit, bool isPIC) { + DebugLoc dl = GA->getDebugLoc(); + + // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). + Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), + is64Bit ? 257 : 256)); + + SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), + DAG.getIntPtrConstant(0), + MachinePointerInfo(Ptr), + false, false, false, 0); + + unsigned char OperandFlags = 0; + // Most TLS accesses are not RIP relative, even on x86-64. One exception is + // initialexec. + unsigned WrapperKind = X86ISD::Wrapper; + if (model == TLSModel::LocalExec) { + OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; + } else if (model == TLSModel::InitialExec) { + if (is64Bit) { + OperandFlags = X86II::MO_GOTTPOFF; + WrapperKind = X86ISD::WrapperRIP; + } else { + OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; + } + } else { + llvm_unreachable("Unexpected model"); + } + + // emit "addl x@ntpoff,%eax" (local exec) + // or "addl x@indntpoff,%eax" (initial exec) + // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + if (model == TLSModel::InitialExec) { + if (isPIC && !is64Bit) { + Offset = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), + Offset); + } + + Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, + MachinePointerInfo::getGOT(), false, false, false, + 0); + } + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); +} + +SDValue +X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = GA->getGlobal(); + + if (Subtarget->isTargetELF()) { + TLSModel::Model model = getTargetMachine().getTLSModel(GV); + + switch (model) { + case TLSModel::GeneralDynamic: + if (Subtarget->is64Bit()) + return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); + return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); + case TLSModel::LocalDynamic: + return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(), + Subtarget->is64Bit()); + case TLSModel::InitialExec: + case TLSModel::LocalExec: + return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, + Subtarget->is64Bit(), + getTargetMachine().getRelocationModel() == Reloc::PIC_); + } + llvm_unreachable("Unknown TLS model."); + } + + if (Subtarget->isTargetDarwin()) { + // Darwin only has one model of TLS. Lower to that. + unsigned char OpFlag = 0; + unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? + X86ISD::WrapperRIP : X86ISD::Wrapper; + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && + !Subtarget->is64Bit(); + if (PIC32) + OpFlag = X86II::MO_TLVP_PIC_BASE; + else + OpFlag = X86II::MO_TLVP; + DebugLoc DL = Op.getDebugLoc(); + SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, + GA->getValueType(0), + GA->getOffset(), OpFlag); + SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + // With PIC32, the address is actually $g + Offset. + if (PIC32) + Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Offset); + + // Lowering the machine isd will make sure everything is in the right + // location. + SDValue Chain = DAG.getEntryNode(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Args[] = { Chain, Offset }; + Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); + + // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setAdjustsStack(true); + + // And our return value (tls address) is in the standard call return value + // location. + unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(), + Chain.getValue(1)); + } + + if (Subtarget->isTargetWindows()) { + // Just use the implicit TLS architecture + // Need to generate someting similar to: + // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage + // ; from TEB + // mov ecx, dword [rel _tls_index]: Load index (from C runtime) + // mov rcx, qword [rdx+rcx*8] + // mov eax, .tls$:tlsvar + // [rax+rcx] contains the address + // Windows 64bit: gs:0x58 + // Windows 32bit: fs:__tls_array + + // If GV is an alias then use the aliasee for determining + // thread-localness. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) + GV = GA->resolveAliasedGlobal(false); + DebugLoc dl = GA->getDebugLoc(); + SDValue Chain = DAG.getEntryNode(); + + // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or + // %gs:0x58 (64-bit). + Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() + ? Type::getInt8PtrTy(*DAG.getContext(), + 256) + : Type::getInt32PtrTy(*DAG.getContext(), + 257)); + + SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, + Subtarget->is64Bit() + ? DAG.getIntPtrConstant(0x58) + : DAG.getExternalSymbol("_tls_array", + getPointerTy()), + MachinePointerInfo(Ptr), + false, false, false, 0); + + // Load the _tls_index variable + SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy()); + if (Subtarget->is64Bit()) + IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain, + IDX, MachinePointerInfo(), MVT::i32, + false, false, 0); + else + IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(), + false, false, false, 0); + + SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()), + getPointerTy()); + IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale); + + SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX); + res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(), + false, false, false, 0); + + // Get the offset of start of .tls section + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), X86II::MO_SECREL); + SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA); + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset); + } + + llvm_unreachable("TLS not implemented for this target."); +} + + +/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values +/// and take a 2 x i32 value to shift plus a shift amount. +SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{ + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + EVT VT = Op.getValueType(); + unsigned VTBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, MVT::i8)) + : DAG.getConstant(0, VT); + + SDValue Tmp2, Tmp3; + if (Op.getOpcode() == ISD::SHL_PARTS) { + Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); + } else { + Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); + Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); + } + + SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits, MVT::i8)); + SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + AndNode, DAG.getConstant(0, MVT::i8)); + + SDValue Hi, Lo; + SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); + SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; + SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; + + if (Op.getOpcode() == ISD::SHL_PARTS) { + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); + } else { + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); + } + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, 2, dl); +} + +SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + EVT SrcVT = Op.getOperand(0).getValueType(); + + if (SrcVT.isVector()) + return SDValue(); + + assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && + "Unknown SINT_TO_FP to lower!"); + + // These are really Legal; return the operand so the caller accepts it as + // Legal. + if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) + return Op; + if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && + Subtarget->is64Bit()) { + return Op; + } + + DebugLoc dl = Op.getDebugLoc(); + unsigned Size = SrcVT.getSizeInBits()/8; + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, + MachinePointerInfo::getFixedStack(SSFI), + false, false, 0); + return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); +} + +SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, + SDValue StackSlot, + SelectionDAG &DAG) const { + // Build the FILD + DebugLoc DL = Op.getDebugLoc(); + SDVTList Tys; + bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); + if (useSSE) + Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); + else + Tys = DAG.getVTList(Op.getValueType(), MVT::Other); + + unsigned ByteSize = SrcVT.getSizeInBits()/8; + + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); + MachineMemOperand *MMO; + if (FI) { + int SSFI = FI->getIndex(); + MMO = + DAG.getMachineFunction() + .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOLoad, ByteSize, ByteSize); + } else { + MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); + StackSlot = StackSlot.getOperand(1); + } + SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; + SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : + X86ISD::FILD, DL, + Tys, Ops, array_lengthof(Ops), + SrcVT, MMO); + + if (useSSE) { + Chain = Result.getValue(1); + SDValue InFlag = Result.getValue(2); + + // FIXME: Currently the FST is flagged to the FILD_FLAG. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned SSFISize = Op.getValueType().getSizeInBits()/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + Tys = DAG.getVTList(MVT::Other); + SDValue Ops[] = { + Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag + }; + MachineMemOperand *MMO = + DAG.getMachineFunction() + .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOStore, SSFISize, SSFISize); + + Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, + Ops, array_lengthof(Ops), + Op.getValueType(), MMO); + Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, + MachinePointerInfo::getFixedStack(SSFI), + false, false, false, 0); + } + + return Result; +} + +// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, + SelectionDAG &DAG) const { + // This algorithm is not obvious. Here it is what we're trying to output: + /* + movq %rax, %xmm0 + punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } + subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } + #ifdef __SSE3__ + haddpd %xmm0, %xmm0 + #else + pshufd $0x4e, %xmm0, %xmm1 + addpd %xmm1, %xmm0 + #endif + */ + + DebugLoc dl = Op.getDebugLoc(); + LLVMContext *Context = DAG.getContext(); + + // Build some magic constants. + const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; + Constant *C0 = ConstantDataVector::get(*Context, CV0); + SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); + + SmallVector<Constant*,2> CV1; + CV1.push_back( + ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); + CV1.push_back( + ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); + Constant *C1 = ConstantVector::get(CV1); + SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); + + // Load the 64-bit value into an XMM register. + SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + Op.getOperand(0)); + SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, + DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1), + CLod0); + + SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1); + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); + SDValue Result; + + if (Subtarget->hasSSE3()) { + // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. + Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); + } else { + SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub); + SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, + S2F, 0x4E, DAG); + Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, + DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle), + Sub); + } + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, + DAG.getIntPtrConstant(0)); +} + +// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + // FP constant to bias correct the final result. + SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), + MVT::f64); + + // Load the 32-bit value into an XMM register. + SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + Op.getOperand(0)); + + // Zero out the upper parts of the register. + Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); + + Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), + DAG.getIntPtrConstant(0)); + + // Or the load with the bias. + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, + DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, Load)), + DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, Bias))); + Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), + DAG.getIntPtrConstant(0)); + + // Subtract the bias. + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); + + // Handle final rounding. + EVT DestVT = Op.getValueType(); + + if (DestVT.bitsLT(MVT::f64)) + return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, + DAG.getIntPtrConstant(0)); + if (DestVT.bitsGT(MVT::f64)) + return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); + + // Handle final rounding. + return Sub; +} + +SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + + // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't + // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform + // the optimization here. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); + + EVT SrcVT = N0.getValueType(); + EVT DstVT = Op.getValueType(); + if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i64(Op, DAG); + if (SrcVT == MVT::i32 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i32(Op, DAG); + if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) + return SDValue(); + + // Make a 64-bit buffer, and use it to build an FILD. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); + if (SrcVT == MVT::i32) { + SDValue WordOff = DAG.getConstant(4, getPointerTy()); + SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, + getPointerTy(), StackSlot, WordOff); + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, MachinePointerInfo(), + false, false, 0); + SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), + OffsetSlot, MachinePointerInfo(), + false, false, 0); + SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); + return Fild; + } + + assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, MachinePointerInfo(), + false, false, 0); + // For i64 source, we need to add the appropriate power of 2 if the input + // was negative. This is the same as the optimization in + // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, + // we must be careful to do the computation in x87 extended precision, not + // in SSE. (The generic code can't know it's OK to do this, or how to.) + int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); + MachineMemOperand *MMO = + DAG.getMachineFunction() + .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOLoad, 8, 8); + + SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); + SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; + SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3, + MVT::i64, MMO); + + APInt FF(32, 0x5F800000ULL); + + // Check whether the sign bit is set. + SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), + Op.getOperand(0), DAG.getConstant(0, MVT::i64), + ISD::SETLT); + + // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. + SDValue FudgePtr = DAG.getConstantPool( + ConstantInt::get(*DAG.getContext(), FF.zext(64)), + getPointerTy()); + + // Get a pointer to FF if the sign bit was set, or to 0 otherwise. + SDValue Zero = DAG.getIntPtrConstant(0); + SDValue Four = DAG.getIntPtrConstant(4); + SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, + Zero, Four); + FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); + + // Load the value out, extending it from f32 to f80. + // FIXME: Avoid the extend by constructing the right constant pool? + SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), + FudgePtr, MachinePointerInfo::getConstantPool(), + MVT::f32, false, false, 4); + // Extend everything to 80 bits to force it to be done on x87. + SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); + return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); +} + +std::pair<SDValue,SDValue> X86TargetLowering:: +FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const { + DebugLoc DL = Op.getDebugLoc(); + + EVT DstTy = Op.getValueType(); + + if (!IsSigned && !isIntegerTypeFTOL(DstTy)) { + assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); + DstTy = MVT::i64; + } + + assert(DstTy.getSimpleVT() <= MVT::i64 && + DstTy.getSimpleVT() >= MVT::i16 && + "Unknown FP_TO_INT to lower!"); + + // These are really Legal. + if (DstTy == MVT::i32 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + if (Subtarget->is64Bit() && + DstTy == MVT::i64 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + + // We lower FP->int64 either into FISTP64 followed by a load from a temporary + // stack slot, or into the FTOL runtime function. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned MemSize = DstTy.getSizeInBits()/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + + unsigned Opc; + if (!IsSigned && isIntegerTypeFTOL(DstTy)) + Opc = X86ISD::WIN_FTOL; + else + switch (DstTy.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); + case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; + case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; + case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; + } + + SDValue Chain = DAG.getEntryNode(); + SDValue Value = Op.getOperand(0); + EVT TheVT = Op.getOperand(0).getValueType(); + // FIXME This causes a redundant load/store if the SSE-class value is already + // in memory, such as if it is on the callstack. + if (isScalarFPTypeInSSEReg(TheVT)) { + assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); + Chain = DAG.getStore(Chain, DL, Value, StackSlot, + MachinePointerInfo::getFixedStack(SSFI), + false, false, 0); + SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); + SDValue Ops[] = { + Chain, StackSlot, DAG.getValueType(TheVT) + }; + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOLoad, MemSize, MemSize); + Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3, + DstTy, MMO); + Chain = Value.getValue(1); + SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + } + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOStore, MemSize, MemSize); + + if (Opc != X86ISD::WIN_FTOL) { + // Build the FP_TO_INT*_IN_MEM + SDValue Ops[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), + Ops, 3, DstTy, MMO); + return std::make_pair(FIST, StackSlot); + } else { + SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL, + DAG.getVTList(MVT::Other, MVT::Glue), + Chain, Value); + SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX, + MVT::i32, ftol.getValue(1)); + SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX, + MVT::i32, eax.getValue(2)); + SDValue Ops[] = { eax, edx }; + SDValue pair = IsReplace + ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2) + : DAG.getMergeValues(Ops, 2, DL); + return std::make_pair(pair, SDValue()); + } +} + +SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getValueType().isVector()) + return SDValue(); + + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, + /*IsSigned=*/ true, /*IsReplace=*/ false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. + if (FIST.getNode() == 0) return Op; + + if (StackSlot.getNode()) + // Load the result. + return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), + FIST, StackSlot, MachinePointerInfo(), + false, false, false, 0); + + // The node is the result. + return FIST; +} + +SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, + SelectionDAG &DAG) const { + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, + /*IsSigned=*/ false, /*IsReplace=*/ false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + assert(FIST.getNode() && "Unexpected failure"); + + if (StackSlot.getNode()) + // Load the result. + return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), + FIST, StackSlot, MachinePointerInfo(), + false, false, false, 0); + + // The node is the result. + return FIST; +} + +SDValue X86TargetLowering::LowerFABS(SDValue Op, + SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT EltVT = VT; + if (VT.isVector()) + EltVT = VT.getVectorElementType(); + Constant *C; + if (EltVT == MVT::f64) { + C = ConstantVector::getSplat(2, + ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); + } else { + C = ConstantVector::getSplat(4, + ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); + } + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); +} + +SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT EltVT = VT; + unsigned NumElts = VT == MVT::f64 ? 2 : 4; + if (VT.isVector()) { + EltVT = VT.getVectorElementType(); + NumElts = VT.getVectorNumElements(); + } + Constant *C; + if (EltVT == MVT::f64) + C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); + else + C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); + C = ConstantVector::getSplat(NumElts, C); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + if (VT.isVector()) { + MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; + return DAG.getNode(ISD::BITCAST, dl, VT, + DAG.getNode(ISD::XOR, dl, XORVT, + DAG.getNode(ISD::BITCAST, dl, XORVT, + Op.getOperand(0)), + DAG.getNode(ISD::BITCAST, dl, XORVT, Mask))); + } + + return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); +} + +SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT SrcVT = Op1.getValueType(); + + // If second operand is smaller, extend it first. + if (SrcVT.bitsLT(VT)) { + Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); + SrcVT = VT; + } + // And if it is bigger, shrink it first. + if (SrcVT.bitsGT(VT)) { + Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); + SrcVT = VT; + } + + // At this point the operands and the result should have the same + // type, and that won't be f80 since that is not custom lowered. + + // First get the sign bit of second operand. + SmallVector<Constant*,4> CV; + if (SrcVT == MVT::f64) { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + } else { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + } + Constant *C = ConstantVector::get(CV); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); + + // Shift sign bit right or left if the two operands have different types. + if (SrcVT.bitsGT(VT)) { + // Op0 is MVT::f32, Op1 is MVT::f64. + SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); + SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, + DAG.getConstant(32, MVT::i32)); + SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); + SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, + DAG.getIntPtrConstant(0)); + } + + // Clear first operand sign bit. + CV.clear(); + if (VT == MVT::f64) { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + } else { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + } + C = ConstantVector::get(CV); + CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); + + // Or the value with the sign bit. + return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); +} + +SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + + // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). + SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, + DAG.getConstant(1, VT)); + return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT)); +} + +/// Emit nodes that will be selected as "test Op0,Op0", or something +/// equivalent. +SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + + // CF and OF aren't always set the way we want. Determine which + // of these we need. + bool NeedCF = false; + bool NeedOF = false; + switch (X86CC) { + default: break; + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + NeedCF = true; + break; + case X86::COND_G: case X86::COND_GE: + case X86::COND_L: case X86::COND_LE: + case X86::COND_O: case X86::COND_NO: + NeedOF = true; + break; + } + + // See if we can use the EFLAGS value from the operand instead of + // doing a separate TEST. TEST always sets OF and CF to 0, so unless + // we prove that the arithmetic won't overflow, we can't use OF or CF. + if (Op.getResNo() != 0 || NeedOF || NeedCF) + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, Op.getValueType())); + + unsigned Opcode = 0; + unsigned NumOperands = 0; + switch (Op.getNode()->getOpcode()) { + case ISD::ADD: + // Due to an isel shortcoming, be conservative if this add is likely to be + // selected as part of a load-modify-store instruction. When the root node + // in a match is a store, isel doesn't know how to remap non-chain non-flag + // uses of other nodes in the match, such as the ADD in this case. This + // leads to the ADD being left around and reselected, with the result being + // two adds in the output. Alas, even if none our users are stores, that + // doesn't prove we're O.K. Ergo, if we have any parents that aren't + // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require + // climbing the DAG back to the root, and it doesn't seem to be worth the + // effort. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && + UI->getOpcode() != ISD::SETCC && + UI->getOpcode() != ISD::STORE) + goto default_case; + + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { + // An add of one will be selected as an INC. + if (C->getAPIntValue() == 1) { + Opcode = X86ISD::INC; + NumOperands = 1; + break; + } + + // An add of negative one (subtract of one) will be selected as a DEC. + if (C->getAPIntValue().isAllOnesValue()) { + Opcode = X86ISD::DEC; + NumOperands = 1; + break; + } + } + + // Otherwise use a regular EFLAGS-setting add. + Opcode = X86ISD::ADD; + NumOperands = 2; + break; + case ISD::AND: { + // If the primary and result isn't used, don't bother using X86ISD::AND, + // because a TEST instruction will be better. + bool NonFlagUse = false; + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + unsigned UOpNo = UI.getOperandNo(); + if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { + // Look pass truncate. + UOpNo = User->use_begin().getOperandNo(); + User = *User->use_begin(); + } + + if (User->getOpcode() != ISD::BRCOND && + User->getOpcode() != ISD::SETCC && + (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { + NonFlagUse = true; + break; + } + } + + if (!NonFlagUse) + break; + } + // FALL THROUGH + case ISD::SUB: + case ISD::OR: + case ISD::XOR: + // Due to the ISEL shortcoming noted above, be conservative if this op is + // likely to be selected as part of a load-modify-store instruction. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() == ISD::STORE) + goto default_case; + + // Otherwise use a regular EFLAGS-setting instruction. + switch (Op.getNode()->getOpcode()) { + default: llvm_unreachable("unexpected operator!"); + case ISD::SUB: + Opcode = X86ISD::SUB; + break; + case ISD::OR: Opcode = X86ISD::OR; break; + case ISD::XOR: Opcode = X86ISD::XOR; break; + case ISD::AND: Opcode = X86ISD::AND; break; + } + + NumOperands = 2; + break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + return SDValue(Op.getNode(), 1); + default: + default_case: + break; + } + + if (Opcode == 0) + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, Op.getValueType())); + + if (Opcode == X86ISD::CMP) { + SDValue New = DAG.getNode(Opcode, dl, MVT::i32, Op.getOperand(0), + Op.getOperand(1)); + // We can't replace usage of SUB with CMP. + // The SUB node will be removed later because there is no use of it. + return SDValue(New.getNode(), 0); + } + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SmallVector<SDValue, 4> Ops; + for (unsigned i = 0; i != NumOperands; ++i) + Ops.push_back(Op.getOperand(i)); + + SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); + DAG.ReplaceAllUsesWith(Op, New); + return SDValue(New.getNode(), 1); +} + +/// Emit nodes that will be selected as "cmp Op0,Op1", or something +/// equivalent. +SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, + SelectionDAG &DAG) const { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) + if (C->getAPIntValue() == 0) + return EmitTest(Op0, X86CC, DAG); + + DebugLoc dl = Op0.getDebugLoc(); + if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || + Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { + // Use SUB instead of CMP to enable CSE between SUB and CMP. + SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); + SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, + Op0, Op1); + return SDValue(Sub.getNode(), 1); + } + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); +} + +/// Convert a comparison if required by the subtarget. +SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, + SelectionDAG &DAG) const { + // If the subtarget does not support the FUCOMI instruction, floating-point + // comparisons have to be converted. + if (Subtarget->hasCMov() || + Cmp.getOpcode() != X86ISD::CMP || + !Cmp.getOperand(0).getValueType().isFloatingPoint() || + !Cmp.getOperand(1).getValueType().isFloatingPoint()) + return Cmp; + + // The instruction selector will select an FUCOM instruction instead of + // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence + // build an SDNode sequence that transfers the result from FPSW into EFLAGS: + // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) + DebugLoc dl = Cmp.getDebugLoc(); + SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); + SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); + SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, + DAG.getConstant(8, MVT::i8)); + SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); + return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); +} + +/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node +/// if it's possible. +SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, + DebugLoc dl, SelectionDAG &DAG) const { + SDValue Op0 = And.getOperand(0); + SDValue Op1 = And.getOperand(1); + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + if (Op1.getOpcode() == ISD::TRUNCATE) + Op1 = Op1.getOperand(0); + + SDValue LHS, RHS; + if (Op1.getOpcode() == ISD::SHL) + std::swap(Op0, Op1); + if (Op0.getOpcode() == ISD::SHL) { + if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) + if (And00C->getZExtValue() == 1) { + // If we looked past a truncate, check that it's only truncating away + // known zeros. + unsigned BitWidth = Op0.getValueSizeInBits(); + unsigned AndBitWidth = And.getValueSizeInBits(); + if (BitWidth > AndBitWidth) { + APInt Zeros, Ones; + DAG.ComputeMaskedBits(Op0, Zeros, Ones); + if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) + return SDValue(); + } + LHS = Op1; + RHS = Op0.getOperand(1); + } + } else if (Op1.getOpcode() == ISD::Constant) { + ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); + uint64_t AndRHSVal = AndRHS->getZExtValue(); + SDValue AndLHS = Op0; + + if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { + LHS = AndLHS.getOperand(0); + RHS = AndLHS.getOperand(1); + } + + // Use BT if the immediate can't be encoded in a TEST instruction. + if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { + LHS = AndLHS; + RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType()); + } + } + + if (LHS.getNode()) { + // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT + // instruction. Since the shift amount is in-range-or-undefined, we know + // that doing a bittest on the i32 value is ok. We extend to i32 because + // the encoding for the i16 version is larger than the i32 version. + // Also promote i16 to i32 for performance / code size reason. + if (LHS.getValueType() == MVT::i8 || + LHS.getValueType() == MVT::i16) + LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); + + // If the operand types disagree, extend the shift amount to match. Since + // BT ignores high bits (like shifts) we can use anyextend. + if (LHS.getValueType() != RHS.getValueType()) + RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); + + SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); + unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(Cond, MVT::i8), BT); + } + + return SDValue(); +} + +SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + + if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG); + + assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + // Optimize to BT if possible. + // Lower (X & (1 << N)) == 0 to BT(X, N). + // Lower ((X >>u N) & 1) != 0 to BT(X, N). + // Lower ((X >>s N) & 1) != 0 to BT(X, N). + if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && + Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Op1)->isNullValue() && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); + if (NewSetCC.getNode()) + return NewSetCC; + } + + // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of + // these. + if (Op1.getOpcode() == ISD::Constant && + (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || + cast<ConstantSDNode>(Op1)->isNullValue()) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + + // If the input is a setcc, then reuse the input setcc or use a new one with + // the inverted condition. + if (Op0.getOpcode() == X86ISD::SETCC) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ + cast<ConstantSDNode>(Op1)->isNullValue(); + if (!Invert) return Op0; + + CCode = X86::GetOppositeBranchCondition(CCode); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); + } + } + + bool isFP = Op1.getValueType().isFloatingPoint(); + unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); + if (X86CC == X86::COND_INVALID) + return SDValue(); + + SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); + EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), EFLAGS); +} + +// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 +// ones, and then concatenate the result back. +static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + DebugLoc dl = Op.getDebugLoc(); + SDValue CC = Op.getOperand(2); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); + + // Issue the operation on the smaller types and concatenate the result back + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); +} + + +SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { + SDValue Cond; + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + EVT VT = Op.getValueType(); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); + DebugLoc dl = Op.getDebugLoc(); + + if (isFP) { +#ifndef NDEBUG + EVT EltVT = Op0.getValueType().getVectorElementType(); + assert(EltVT == MVT::f32 || EltVT == MVT::f64); +#endif + + unsigned SSECC; + bool Swap = false; + + // SSE Condition code mapping: + // 0 - EQ + // 1 - LT + // 2 - LE + // 3 - UNORD + // 4 - NEQ + // 5 - NLT + // 6 - NLE + // 7 - ORD + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETOEQ: + case ISD::SETEQ: SSECC = 0; break; + case ISD::SETOGT: + case ISD::SETGT: Swap = true; // Fallthrough + case ISD::SETLT: + case ISD::SETOLT: SSECC = 1; break; + case ISD::SETOGE: + case ISD::SETGE: Swap = true; // Fallthrough + case ISD::SETLE: + case ISD::SETOLE: SSECC = 2; break; + case ISD::SETUO: SSECC = 3; break; + case ISD::SETUNE: + case ISD::SETNE: SSECC = 4; break; + case ISD::SETULE: Swap = true; // Fallthrough + case ISD::SETUGE: SSECC = 5; break; + case ISD::SETULT: Swap = true; // Fallthrough + case ISD::SETUGT: SSECC = 6; break; + case ISD::SETO: SSECC = 7; break; + case ISD::SETUEQ: + case ISD::SETONE: SSECC = 8; break; + } + if (Swap) + std::swap(Op0, Op1); + + // In the two special cases we can't handle, emit two comparisons. + if (SSECC == 8) { + unsigned CC0, CC1; + unsigned CombineOpc; + if (SetCCOpcode == ISD::SETUEQ) { + CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; + } else { + assert(SetCCOpcode == ISD::SETONE); + CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; + } + + SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, + DAG.getConstant(CC0, MVT::i8)); + SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, + DAG.getConstant(CC1, MVT::i8)); + return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); + } + // Handle all other FP comparisons here. + return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1, + DAG.getConstant(SSECC, MVT::i8)); + } + + // Break 256-bit integer vector compare into smaller ones. + if (VT.is256BitVector() && !Subtarget->hasAVX2()) + return Lower256IntVSETCC(Op, DAG); + + // We are handling one of the integer comparisons here. Since SSE only has + // GT and EQ comparisons for integer, swapping operands and multiple + // operations may be required for some comparisons. + unsigned Opc; + bool Swap = false, Invert = false, FlipSigns = false; + + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETNE: Invert = true; + case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; + case ISD::SETLT: Swap = true; + case ISD::SETGT: Opc = X86ISD::PCMPGT; break; + case ISD::SETGE: Swap = true; + case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break; + case ISD::SETULT: Swap = true; + case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break; + case ISD::SETUGE: Swap = true; + case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break; + } + if (Swap) + std::swap(Op0, Op1); + + // Check that the operation in question is available (most are plain SSE2, + // but PCMPGTQ and PCMPEQQ have different requirements). + if (VT == MVT::v2i64) { + if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) + return SDValue(); + if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) + return SDValue(); + } + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. + if (FlipSigns) { + EVT EltVT = VT.getVectorElementType(); + SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), + EltVT); + std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); + SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], + SignBits.size()); + Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); + Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); + } + + SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); + + // If the logical-not of the result is required, perform that now. + if (Invert) + Result = DAG.getNOT(dl, Result, VT); + + return Result; +} + +// isX86LogicalCmp - Return true if opcode is a X86 logical comparison. +static bool isX86LogicalCmp(SDValue Op) { + unsigned Opc = Op.getNode()->getOpcode(); + if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || + Opc == X86ISD::SAHF) + return true; + if (Op.getResNo() == 1 && + (Opc == X86ISD::ADD || + Opc == X86ISD::SUB || + Opc == X86ISD::ADC || + Opc == X86ISD::SBB || + Opc == X86ISD::SMUL || + Opc == X86ISD::UMUL || + Opc == X86ISD::INC || + Opc == X86ISD::DEC || + Opc == X86ISD::OR || + Opc == X86ISD::XOR || + Opc == X86ISD::AND)) + return true; + + if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) + return true; + + return false; +} + +static bool isZero(SDValue V) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); + return C && C->isNullValue(); +} + +static bool isAllOnes(SDValue V) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); + return C && C->isAllOnesValue(); +} + +static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { + if (V.getOpcode() != ISD::TRUNCATE) + return false; + + SDValue VOp0 = V.getOperand(0); + unsigned InBits = VOp0.getValueSizeInBits(); + unsigned Bits = V.getValueSizeInBits(); + return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); +} + +SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Cond = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + DebugLoc DL = Op.getDebugLoc(); + SDValue CC; + + if (Cond.getOpcode() == ISD::SETCC) { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } + + // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y + // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y + // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y + // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y + if (Cond.getOpcode() == X86ISD::SETCC && + Cond.getOperand(1).getOpcode() == X86ISD::CMP && + isZero(Cond.getOperand(1).getOperand(1))) { + SDValue Cmp = Cond.getOperand(1); + + unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); + + if ((isAllOnes(Op1) || isAllOnes(Op2)) && + (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { + SDValue Y = isAllOnes(Op2) ? Op1 : Op2; + + SDValue CmpOp0 = Cmp.getOperand(0); + // Apply further optimizations for special cases + // (select (x != 0), -1, 0) -> neg & sbb + // (select (x == 0), 0, -1) -> neg & sbb + if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y)) + if (YC->isNullValue() && + (isAllOnes(Op1) == (CondCode == X86::COND_NE))) { + SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, + DAG.getConstant(0, CmpOp0.getValueType()), + CmpOp0); + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, MVT::i8), + SDValue(Neg.getNode(), 1)); + return Res; + } + + Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, + CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + + SDValue Res = // Res = 0 or -1. + DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, MVT::i8), Cmp); + + if (isAllOnes(Op1) != (CondCode == X86::COND_E)) + Res = DAG.getNOT(DL, Res, Res.getValueType()); + + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); + if (N2C == 0 || !N2C->isNullValue()) + Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); + return Res; + } + } + + // Look past (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); + if (C && C->getAPIntValue() == 1) + Cond = Cond.getOperand(0); + } + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + EVT VT = Op.getValueType(); + + bool IllegalFPCMov = false; + if (VT.isFloatingPoint() && !VT.isVector() && + !isScalarFPTypeInSSEReg(VT)) // FPStack? + IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); + + if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || + Opc == X86ISD::BT) { // FIXME + Cond = Cmp; + addTest = false; + } + } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, MVT::i8); + addTest = false; + } + + if (addTest) { + // Look pass the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); + if (NewSetCC.getNode()) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DAG); + } + + // a < b ? -1 : 0 -> RES = ~setcc_carry + // a < b ? 0 : -1 -> RES = setcc_carry + // a >= b ? -1 : 0 -> RES = setcc_carry + // a >= b ? 0 : -1 -> RES = ~setcc_carry + if (Cond.getOpcode() == X86ISD::SUB) { + Cond = ConvertCmpIfNecessary(Cond, DAG); + unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); + + if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && + (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, MVT::i8), Cond); + if (isAllOnes(Op1) != (CondCode == X86::COND_B)) + return DAG.getNOT(DL, Res, Res.getValueType()); + return Res; + } + } + + // X86ISD::CMOV means set the result (which is operand 1) to the RHS if + // condition is true. + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + SDValue Ops[] = { Op2, Op1, CC, Cond }; + return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); +} + +// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or +// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart +// from the AND / OR. +static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { + Opc = Op.getOpcode(); + if (Opc != ISD::OR && Opc != ISD::AND) + return false; + return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse() && + Op.getOperand(1).getOpcode() == X86ISD::SETCC && + Op.getOperand(1).hasOneUse()); +} + +// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and +// 1 and that the SETCC node has a single use. +static bool isXor1OfSetCC(SDValue Op) { + if (Op.getOpcode() != ISD::XOR) + return false; + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (N1C && N1C->getAPIntValue() == 1) { + return Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse(); + } + return false; +} + +SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Chain = Op.getOperand(0); + SDValue Cond = Op.getOperand(1); + SDValue Dest = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + SDValue CC; + bool Inverted = false; + + if (Cond.getOpcode() == ISD::SETCC) { + // Check for setcc([su]{add,sub,mul}o == 0). + if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && + isa<ConstantSDNode>(Cond.getOperand(1)) && + cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() && + Cond.getOperand(0).getResNo() == 1 && + (Cond.getOperand(0).getOpcode() == ISD::SADDO || + Cond.getOperand(0).getOpcode() == ISD::UADDO || + Cond.getOperand(0).getOpcode() == ISD::SSUBO || + Cond.getOperand(0).getOpcode() == ISD::USUBO || + Cond.getOperand(0).getOpcode() == ISD::SMULO || + Cond.getOperand(0).getOpcode() == ISD::UMULO)) { + Inverted = true; + Cond = Cond.getOperand(0); + } else { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } + } +#if 0 + // FIXME: LowerXALUO doesn't handle these!! + else if (Cond.getOpcode() == X86ISD::ADD || + Cond.getOpcode() == X86ISD::SUB || + Cond.getOpcode() == X86ISD::SMUL || + Cond.getOpcode() == X86ISD::UMUL) + Cond = LowerXALUO(Cond, DAG); +#endif + + // Look pass (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); + if (C && C->getAPIntValue() == 1) + Cond = Cond.getOperand(0); + } + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? + if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { + Cond = Cmp; + addTest = false; + } else { + switch (cast<ConstantSDNode>(CC)->getZExtValue()) { + default: break; + case X86::COND_O: + case X86::COND_B: + // These can only come from an arithmetic instruction with overflow, + // e.g. SADDO, UADDO. + Cond = Cond.getNode()->getOperand(1); + addTest = false; + break; + } + } + } + CondOpcode = Cond.getOpcode(); + if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (Inverted) + X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, MVT::i8); + addTest = false; + } else { + unsigned CondOpc; + if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { + SDValue Cmp = Cond.getOperand(0).getOperand(1); + if (CondOpc == ISD::OR) { + // Also, recognize the pattern generated by an FCMP_UNE. We can emit + // two branches instead of an explicit OR instruction with a + // separate test. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp)) { + CC = Cond.getOperand(0).getOperand(0); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = Cond.getOperand(1).getOperand(0); + Cond = Cmp; + addTest = false; + } + } else { // ISD::AND + // Also, recognize the pattern generated by an FCMP_OEQ. We can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp) && + Op.getNode()->hasOneUse()) { + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } + } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { + // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. + // It should be transformed during dag combiner except when the condition + // is set by a arithmetics with overflow node. + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + Cond = Cond.getOperand(0).getOperand(1); + addTest = false; + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { + // For FCMP_OEQ, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_P, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { + // For FCMP_UNE, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_UNE. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_NP, MVT::i8); + Cond = Cmp; + addTest = false; + Dest = FalseBB; + } + } + } + } + + if (addTest) { + // Look pass the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); + if (NewSetCC.getNode()) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DAG); + } + Cond = ConvertCmpIfNecessary(Cond, DAG); + return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cond); +} + + +// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. +// Calls to _alloca is needed to probe the stack when allocating more than 4k +// bytes in one go. Touching the stack at 4K increments is necessary to ensure +// that the guard pages used by the OS virtual memory manager are allocated in +// correct sequence. +SDValue +X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() || + getTargetMachine().Options.EnableSegmentedStacks) && + "This should be used only on Windows targets or when segmented stacks " + "are being used"); + assert(!Subtarget->isTargetEnvMacho() && "Not implemented"); + DebugLoc dl = Op.getDebugLoc(); + + // Get the inputs. + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + // FIXME: Ensure alignment here + + bool Is64Bit = Subtarget->is64Bit(); + EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32; + + if (getTargetMachine().Options.EnableSegmentedStacks) { + MachineFunction &MF = DAG.getMachineFunction(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + + if (Is64Bit) { + // The 64 bit implementation of segmented stacks needs to clobber both r10 + // r11. This makes it impossible to use it along with nested parameters. + const Function *F = MF.getFunction(); + + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) + if (I->hasNestAttr()) + report_fatal_error("Cannot use segmented stacks with functions that " + "have nested arguments."); + } + + const TargetRegisterClass *AddrRegClass = + getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32); + unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); + Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); + SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, + DAG.getRegister(Vreg, SPTy)); + SDValue Ops1[2] = { Value, Chain }; + return DAG.getMergeValues(Ops1, 2, dl); + } else { + SDValue Flag; + unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX); + + Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); + Flag = Chain.getValue(1); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); + Flag = Chain.getValue(1); + + Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); + + SDValue Ops1[2] = { Chain.getValue(0), Chain }; + return DAG.getMergeValues(Ops1, 2, dl); + } +} + +SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + DebugLoc DL = Op.getDebugLoc(); + + if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy()); + return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); + } + + // __va_list_tag: + // gp_offset (0 - 6 * 8) + // fp_offset (48 - 48 + 8 * 16) + // overflow_arg_area (point to parameters coming in memory). + // reg_save_area + SmallVector<SDValue, 8> MemOps; + SDValue FIN = Op.getOperand(1); + // Store gp_offset + SDValue Store = DAG.getStore(Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsGPOffset(), + MVT::i32), + FIN, MachinePointerInfo(SV), false, false, 0); + MemOps.push_back(Store); + + // Store fp_offset + FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), + FIN, DAG.getIntPtrConstant(4)); + Store = DAG.getStore(Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsFPOffset(), + MVT::i32), + FIN, MachinePointerInfo(SV, 4), false, false, 0); + MemOps.push_back(Store); + + // Store ptr to overflow_arg_area + FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), + FIN, DAG.getIntPtrConstant(4)); + SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy()); + Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, + MachinePointerInfo(SV, 8), + false, false, 0); + MemOps.push_back(Store); + + // Store ptr to reg_save_area. + FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), + FIN, DAG.getIntPtrConstant(8)); + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy()); + Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, + MachinePointerInfo(SV, 16), false, false, 0); + MemOps.push_back(Store); + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + &MemOps[0], MemOps.size()); +} + +SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget->is64Bit() && + "LowerVAARG only handles 64-bit va_arg!"); + assert((Subtarget->isTargetLinux() || + Subtarget->isTargetDarwin()) && + "Unhandled target in LowerVAARG"); + assert(Op.getNode()->getNumOperands() == 4); + SDValue Chain = Op.getOperand(0); + SDValue SrcPtr = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + unsigned Align = Op.getConstantOperandVal(3); + DebugLoc dl = Op.getDebugLoc(); + + EVT ArgVT = Op.getNode()->getValueType(0); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy); + uint8_t ArgMode; + + // Decide which area this value should be read from. + // TODO: Implement the AMD64 ABI in its entirety. This simple + // selection mechanism works only for the basic types. + if (ArgVT == MVT::f80) { + llvm_unreachable("va_arg for f80 not yet implemented"); + } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { + ArgMode = 2; // Argument passed in XMM register. Use fp_offset. + } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { + ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. + } else { + llvm_unreachable("Unhandled argument type in LowerVAARG"); + } + + if (ArgMode == 2) { + // Sanity Check: Make sure using fp_offset makes sense. + assert(!getTargetMachine().Options.UseSoftFloat && + !(DAG.getMachineFunction() + .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) && + Subtarget->hasSSE1()); + } + + // Insert VAARG_64 node into the DAG + // VAARG_64 returns two values: Variable Argument Address, Chain + SmallVector<SDValue, 11> InstOps; + InstOps.push_back(Chain); + InstOps.push_back(SrcPtr); + InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); + InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); + InstOps.push_back(DAG.getConstant(Align, MVT::i32)); + SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); + SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, + VTs, &InstOps[0], InstOps.size(), + MVT::i64, + MachinePointerInfo(SV), + /*Align=*/0, + /*Volatile=*/false, + /*ReadMem=*/true, + /*WriteMem=*/true); + Chain = VAARG.getValue(1); + + // Load the next argument and return it + return DAG.getLoad(ArgVT, dl, + Chain, + VAARG, + MachinePointerInfo(), + false, false, false, 0); +} + +SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { + // X86-64 va_list is a struct { i32, i32, i8*, i8* }. + assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); + SDValue Chain = Op.getOperand(0); + SDValue DstPtr = Op.getOperand(1); + SDValue SrcPtr = Op.getOperand(2); + const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + DebugLoc DL = Op.getDebugLoc(); + + return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, + DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, + false, + MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); +} + +// getTargetVShiftNOde - Handle vector element shifts where the shift amount +// may or may not be a constant. Takes immediate version of shift as input. +static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT, + SDValue SrcOp, SDValue ShAmt, + SelectionDAG &DAG) { + assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32"); + + if (isa<ConstantSDNode>(ShAmt)) { + // Constant may be a TargetConstant. Use a regular constant. + uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue(); + switch (Opc) { + default: llvm_unreachable("Unknown target vector shift node"); + case X86ISD::VSHLI: + case X86ISD::VSRLI: + case X86ISD::VSRAI: + return DAG.getNode(Opc, dl, VT, SrcOp, + DAG.getConstant(ShiftAmt, MVT::i32)); + } + } + + // Change opcode to non-immediate version + switch (Opc) { + default: llvm_unreachable("Unknown target vector shift node"); + case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; + case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; + case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; + } + + // Need to build a vector containing shift amount + // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0 + SDValue ShOps[4]; + ShOps[0] = ShAmt; + ShOps[1] = DAG.getConstant(0, MVT::i32); + ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32); + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4); + + // The return type has to be a 128-bit type with the same element + // type as the input type. + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); + + ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt); + return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); +} + +SDValue +X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + // Comparison intrinsics. + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_comieq_sd: + case Intrinsic::x86_sse2_comilt_sd: + case Intrinsic::x86_sse2_comile_sd: + case Intrinsic::x86_sse2_comigt_sd: + case Intrinsic::x86_sse2_comige_sd: + case Intrinsic::x86_sse2_comineq_sd: + case Intrinsic::x86_sse2_ucomieq_sd: + case Intrinsic::x86_sse2_ucomilt_sd: + case Intrinsic::x86_sse2_ucomile_sd: + case Intrinsic::x86_sse2_ucomigt_sd: + case Intrinsic::x86_sse2_ucomige_sd: + case Intrinsic::x86_sse2_ucomineq_sd: { + unsigned Opc; + ISD::CondCode CC; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse2_comieq_sd: + Opc = X86ISD::COMI; + CC = ISD::SETEQ; + break; + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse2_comilt_sd: + Opc = X86ISD::COMI; + CC = ISD::SETLT; + break; + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse2_comile_sd: + Opc = X86ISD::COMI; + CC = ISD::SETLE; + break; + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse2_comigt_sd: + Opc = X86ISD::COMI; + CC = ISD::SETGT; + break; + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse2_comige_sd: + Opc = X86ISD::COMI; + CC = ISD::SETGE; + break; + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse2_comineq_sd: + Opc = X86ISD::COMI; + CC = ISD::SETNE; + break; + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse2_ucomieq_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETEQ; + break; + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse2_ucomilt_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETLT; + break; + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse2_ucomile_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETLE; + break; + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse2_ucomigt_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETGT; + break; + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse2_ucomige_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETGE; + break; + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_ucomineq_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETNE; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); + assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); + SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), Cond); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + // Arithmetic intrinsics. + case Intrinsic::x86_sse2_pmulu_dq: + case Intrinsic::x86_avx2_pmulu_dq: + return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + + // SSE3/AVX horizontal add/sub intrinsics + case Intrinsic::x86_sse3_hadd_ps: + case Intrinsic::x86_sse3_hadd_pd: + case Intrinsic::x86_avx_hadd_ps_256: + case Intrinsic::x86_avx_hadd_pd_256: + case Intrinsic::x86_sse3_hsub_ps: + case Intrinsic::x86_sse3_hsub_pd: + case Intrinsic::x86_avx_hsub_ps_256: + case Intrinsic::x86_avx_hsub_pd_256: + case Intrinsic::x86_ssse3_phadd_w_128: + case Intrinsic::x86_ssse3_phadd_d_128: + case Intrinsic::x86_avx2_phadd_w: + case Intrinsic::x86_avx2_phadd_d: + case Intrinsic::x86_ssse3_phsub_w_128: + case Intrinsic::x86_ssse3_phsub_d_128: + case Intrinsic::x86_avx2_phsub_w: + case Intrinsic::x86_avx2_phsub_d: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse3_hadd_ps: + case Intrinsic::x86_sse3_hadd_pd: + case Intrinsic::x86_avx_hadd_ps_256: + case Intrinsic::x86_avx_hadd_pd_256: + Opcode = X86ISD::FHADD; + break; + case Intrinsic::x86_sse3_hsub_ps: + case Intrinsic::x86_sse3_hsub_pd: + case Intrinsic::x86_avx_hsub_ps_256: + case Intrinsic::x86_avx_hsub_pd_256: + Opcode = X86ISD::FHSUB; + break; + case Intrinsic::x86_ssse3_phadd_w_128: + case Intrinsic::x86_ssse3_phadd_d_128: + case Intrinsic::x86_avx2_phadd_w: + case Intrinsic::x86_avx2_phadd_d: + Opcode = X86ISD::HADD; + break; + case Intrinsic::x86_ssse3_phsub_w_128: + case Intrinsic::x86_ssse3_phsub_d_128: + case Intrinsic::x86_avx2_phsub_w: + case Intrinsic::x86_avx2_phsub_d: + Opcode = X86ISD::HSUB; + break; + } + return DAG.getNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + + // AVX2 variable shift intrinsics + case Intrinsic::x86_avx2_psllv_d: + case Intrinsic::x86_avx2_psllv_q: + case Intrinsic::x86_avx2_psllv_d_256: + case Intrinsic::x86_avx2_psllv_q_256: + case Intrinsic::x86_avx2_psrlv_d: + case Intrinsic::x86_avx2_psrlv_q: + case Intrinsic::x86_avx2_psrlv_d_256: + case Intrinsic::x86_avx2_psrlv_q_256: + case Intrinsic::x86_avx2_psrav_d: + case Intrinsic::x86_avx2_psrav_d_256: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_avx2_psllv_d: + case Intrinsic::x86_avx2_psllv_q: + case Intrinsic::x86_avx2_psllv_d_256: + case Intrinsic::x86_avx2_psllv_q_256: + Opcode = ISD::SHL; + break; + case Intrinsic::x86_avx2_psrlv_d: + case Intrinsic::x86_avx2_psrlv_q: + case Intrinsic::x86_avx2_psrlv_d_256: + case Intrinsic::x86_avx2_psrlv_q_256: + Opcode = ISD::SRL; + break; + case Intrinsic::x86_avx2_psrav_d: + case Intrinsic::x86_avx2_psrav_d_256: + Opcode = ISD::SRA; + break; + } + return DAG.getNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + + case Intrinsic::x86_ssse3_pshuf_b_128: + case Intrinsic::x86_avx2_pshuf_b: + return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + + case Intrinsic::x86_ssse3_psign_b_128: + case Intrinsic::x86_ssse3_psign_w_128: + case Intrinsic::x86_ssse3_psign_d_128: + case Intrinsic::x86_avx2_psign_b: + case Intrinsic::x86_avx2_psign_w: + case Intrinsic::x86_avx2_psign_d: + return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + + case Intrinsic::x86_sse41_insertps: + return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::x86_avx_vperm2f128_ps_256: + case Intrinsic::x86_avx_vperm2f128_pd_256: + case Intrinsic::x86_avx_vperm2f128_si_256: + case Intrinsic::x86_avx2_vperm2i128: + return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::x86_avx2_permd: + case Intrinsic::x86_avx2_permps: + // Operands intentionally swapped. Mask is last operand to intrinsic, + // but second operand for node/intruction. + return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), + Op.getOperand(2), Op.getOperand(1)); + + // ptest and testp intrinsics. The intrinsic these come from are designed to + // return an integer value, not just an instruction so lower it to the ptest + // or testp pattern and a setcc for the result. + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestz_256: + case Intrinsic::x86_avx_ptestc_256: + case Intrinsic::x86_avx_ptestnzc_256: + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + case Intrinsic::x86_avx_vtestc_pd_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: { + bool IsTestPacked = false; + unsigned X86CC; + switch (IntNo) { + default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_avx_ptestz_256: + // ZF = 1 + X86CC = X86::COND_E; + break; + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestc_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_avx_ptestc_256: + // CF = 1 + X86CC = X86::COND_B; + break; + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestnzc_256: + // ZF and CF = 0 + X86CC = X86::COND_A; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; + SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); + SDValue CC = DAG.getConstant(X86CC, MVT::i8); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + // SSE/AVX shift intrinsics + case Intrinsic::x86_sse2_psll_w: + case Intrinsic::x86_sse2_psll_d: + case Intrinsic::x86_sse2_psll_q: + case Intrinsic::x86_avx2_psll_w: + case Intrinsic::x86_avx2_psll_d: + case Intrinsic::x86_avx2_psll_q: + case Intrinsic::x86_sse2_psrl_w: + case Intrinsic::x86_sse2_psrl_d: + case Intrinsic::x86_sse2_psrl_q: + case Intrinsic::x86_avx2_psrl_w: + case Intrinsic::x86_avx2_psrl_d: + case Intrinsic::x86_avx2_psrl_q: + case Intrinsic::x86_sse2_psra_w: + case Intrinsic::x86_sse2_psra_d: + case Intrinsic::x86_avx2_psra_w: + case Intrinsic::x86_avx2_psra_d: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse2_psll_w: + case Intrinsic::x86_sse2_psll_d: + case Intrinsic::x86_sse2_psll_q: + case Intrinsic::x86_avx2_psll_w: + case Intrinsic::x86_avx2_psll_d: + case Intrinsic::x86_avx2_psll_q: + Opcode = X86ISD::VSHL; + break; + case Intrinsic::x86_sse2_psrl_w: + case Intrinsic::x86_sse2_psrl_d: + case Intrinsic::x86_sse2_psrl_q: + case Intrinsic::x86_avx2_psrl_w: + case Intrinsic::x86_avx2_psrl_d: + case Intrinsic::x86_avx2_psrl_q: + Opcode = X86ISD::VSRL; + break; + case Intrinsic::x86_sse2_psra_w: + case Intrinsic::x86_sse2_psra_d: + case Intrinsic::x86_avx2_psra_w: + case Intrinsic::x86_avx2_psra_d: + Opcode = X86ISD::VSRA; + break; + } + return DAG.getNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + + // SSE/AVX immediate shift intrinsics + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_avx2_pslli_w: + case Intrinsic::x86_avx2_pslli_d: + case Intrinsic::x86_avx2_pslli_q: + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_avx2_psrli_w: + case Intrinsic::x86_avx2_psrli_d: + case Intrinsic::x86_avx2_psrli_q: + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_avx2_psrai_w: + case Intrinsic::x86_avx2_psrai_d: { + unsigned Opcode; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_avx2_pslli_w: + case Intrinsic::x86_avx2_pslli_d: + case Intrinsic::x86_avx2_pslli_q: + Opcode = X86ISD::VSHLI; + break; + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_avx2_psrli_w: + case Intrinsic::x86_avx2_psrli_d: + case Intrinsic::x86_avx2_psrli_q: + Opcode = X86ISD::VSRLI; + break; + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_avx2_psrai_w: + case Intrinsic::x86_avx2_psrai_d: + Opcode = X86ISD::VSRAI; + break; + } + return getTargetVShiftNode(Opcode, dl, Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), DAG); + } + + // Fix vector shift instructions where the last operand is a non-immediate + // i32 value. + case Intrinsic::x86_mmx_pslli_w: + case Intrinsic::x86_mmx_pslli_d: + case Intrinsic::x86_mmx_pslli_q: + case Intrinsic::x86_mmx_psrli_w: + case Intrinsic::x86_mmx_psrli_d: + case Intrinsic::x86_mmx_psrli_q: + case Intrinsic::x86_mmx_psrai_w: + case Intrinsic::x86_mmx_psrai_d: { + SDValue ShAmt = Op.getOperand(2); + if (isa<ConstantSDNode>(ShAmt)) + return SDValue(); + + unsigned NewIntNo; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_mmx_pslli_w: + NewIntNo = Intrinsic::x86_mmx_psll_w; + break; + case Intrinsic::x86_mmx_pslli_d: + NewIntNo = Intrinsic::x86_mmx_psll_d; + break; + case Intrinsic::x86_mmx_pslli_q: + NewIntNo = Intrinsic::x86_mmx_psll_q; + break; + case Intrinsic::x86_mmx_psrli_w: + NewIntNo = Intrinsic::x86_mmx_psrl_w; + break; + case Intrinsic::x86_mmx_psrli_d: + NewIntNo = Intrinsic::x86_mmx_psrl_d; + break; + case Intrinsic::x86_mmx_psrli_q: + NewIntNo = Intrinsic::x86_mmx_psrl_q; + break; + case Intrinsic::x86_mmx_psrai_w: + NewIntNo = Intrinsic::x86_mmx_psra_w; + break; + case Intrinsic::x86_mmx_psrai_d: + NewIntNo = Intrinsic::x86_mmx_psra_d; + break; + } + + // The vector shift intrinsics with scalars uses 32b shift amounts but + // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits + // to be zero. + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt, + DAG.getConstant(0, MVT::i32)); +// FIXME this must be lowered to get rid of the invalid type. + + EVT VT = Op.getValueType(); + ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(NewIntNo, MVT::i32), + Op.getOperand(1), ShAmt); + } + case Intrinsic::x86_sse42_pcmpistria128: + case Intrinsic::x86_sse42_pcmpestria128: + case Intrinsic::x86_sse42_pcmpistric128: + case Intrinsic::x86_sse42_pcmpestric128: + case Intrinsic::x86_sse42_pcmpistrio128: + case Intrinsic::x86_sse42_pcmpestrio128: + case Intrinsic::x86_sse42_pcmpistris128: + case Intrinsic::x86_sse42_pcmpestris128: + case Intrinsic::x86_sse42_pcmpistriz128: + case Intrinsic::x86_sse42_pcmpestriz128: { + unsigned Opcode; + unsigned X86CC; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse42_pcmpistria128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpestria128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpistric128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpestric128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpistrio128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpestrio128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpistris128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpestris128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpistriz128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_E; + break; + case Intrinsic::x86_sse42_pcmpestriz128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_E; + break; + } + SmallVector<SDValue, 5> NewOps; + NewOps.append(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), + SDValue(PCMP.getNode(), 1)); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + case Intrinsic::x86_sse42_pcmpistri128: + case Intrinsic::x86_sse42_pcmpestri128: { + unsigned Opcode; + if (IntNo == Intrinsic::x86_sse42_pcmpistri128) + Opcode = X86ISD::PCMPISTRI; + else + Opcode = X86ISD::PCMPESTRI; + + SmallVector<SDValue, 5> NewOps; + NewOps.append(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size()); + } + } +} + +SDValue +X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + + // RDRAND intrinsics. + case Intrinsic::x86_rdrand_16: + case Intrinsic::x86_rdrand_32: + case Intrinsic::x86_rdrand_64: { + // Emit the node with the right value type. + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); + SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0)); + + // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise + // return the value from Rand, which is always 0, casted to i32. + SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), + DAG.getConstant(1, Op->getValueType(1)), + DAG.getConstant(X86::COND_B, MVT::i32), + SDValue(Result.getNode(), 1) }; + SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, + DAG.getVTList(Op->getValueType(1), MVT::Glue), + Ops, 4); + + // Return { result, isValid, chain }. + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, + SDValue(Result.getNode(), 2)); + } + } +} + +SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + DebugLoc dl = Op.getDebugLoc(); + + if (Depth > 0) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + SDValue Offset = + DAG.getConstant(TD->getPointerSize(), + Subtarget->is64Bit() ? MVT::i64 : MVT::i32); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, getPointerTy(), + FrameAddr, Offset), + MachinePointerInfo(), false, false, false, 0); + } + + // Just load the return address. + SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + RetAddrFI, MachinePointerInfo(), false, false, false, 0); +} + +SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, + MachinePointerInfo(), + false, false, false, 0); + return FrameAddr; +} + +SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, + SelectionDAG &DAG) const { + return DAG.getIntPtrConstant(2*TD->getPointerSize()); +} + +SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + + SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, + Subtarget->is64Bit() ? X86::RBP : X86::EBP, + getPointerTy()); + unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); + + SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame, + DAG.getIntPtrConstant(TD->getPointerSize())); + StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); + Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), + false, false, 0); + Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); + + return DAG.getNode(X86ISD::EH_RETURN, dl, + MVT::Other, + Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); +} + +SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + return Op.getOperand(0); +} + +SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + SDValue Root = Op.getOperand(0); + SDValue Trmp = Op.getOperand(1); // trampoline + SDValue FPtr = Op.getOperand(2); // nested function + SDValue Nest = Op.getOperand(3); // 'nest' parameter value + DebugLoc dl = Op.getDebugLoc(); + + const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + + if (Subtarget->is64Bit()) { + SDValue OutChains[6]; + + // Large code-model. + const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. + const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. + + const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10); + const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11); + + const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix + + // Load the pointer to the nested function into R11. + unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 + SDValue Addr = Trmp; + OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(2, MVT::i64)); + OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, + MachinePointerInfo(TrmpAddr, 2), + false, false, 2); + + // Load the 'nest' parameter value into R10. + // R10 is specified in X86CallingConv.td + OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(10, MVT::i64)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 10), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(12, MVT::i64)); + OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, + MachinePointerInfo(TrmpAddr, 12), + false, false, 2); + + // Jump to the nested function. + OpCode = (JMP64r << 8) | REX_WB; // jmpq *... + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(20, MVT::i64)); + OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 20), + false, false, 0); + + unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(22, MVT::i64)); + OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, + MachinePointerInfo(TrmpAddr, 22), + false, false, 0); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6); + } else { + const Function *Func = + cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); + CallingConv::ID CC = Func->getCallingConv(); + unsigned NestReg; + + switch (CC) { + default: + llvm_unreachable("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::X86_StdCall: { + // Pass 'nest' parameter in ECX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::ECX; + + // Check that ECX wasn't needed by an 'inreg' parameter. + FunctionType *FTy = Func->getFunctionType(); + const AttrListPtr &Attrs = Func->getAttributes(); + + if (!Attrs.isEmpty() && !Func->isVarArg()) { + unsigned InRegCount = 0; + unsigned Idx = 1; + + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I, ++Idx) + if (Attrs.paramHasAttr(Idx, Attribute::InReg)) + // FIXME: should only count parameters that are lowered to integers. + InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; + + if (InRegCount > 2) { + report_fatal_error("Nest register in use - reduce number of inreg" + " parameters!"); + } + } + break; + } + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::Fast: + // Pass 'nest' parameter in EAX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::EAX; + break; + } + + SDValue OutChains[4]; + SDValue Addr, Disp; + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(10, MVT::i32)); + Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); + + // This is storing the opcode for MOV32ri. + const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. + const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg); + OutChains[0] = DAG.getStore(Root, dl, + DAG.getConstant(MOV32ri|N86Reg, MVT::i8), + Trmp, MachinePointerInfo(TrmpAddr), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(1, MVT::i32)); + OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, + MachinePointerInfo(TrmpAddr, 1), + false, false, 1); + + const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(5, MVT::i32)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, + MachinePointerInfo(TrmpAddr, 5), + false, false, 1); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(6, MVT::i32)); + OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, + MachinePointerInfo(TrmpAddr, 6), + false, false, 1); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4); + } +} + +SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, + SelectionDAG &DAG) const { + /* + The rounding mode is in bits 11:10 of FPSR, and has the following + settings: + 00 Round to nearest + 01 Round to -inf + 10 Round to +inf + 11 Round to 0 + + FLT_ROUNDS, on the other hand, expects the following: + -1 Undefined + 0 Round to 0 + 1 Round to nearest + 2 Round to +inf + 3 Round to -inf + + To perform the conversion, we do: + (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) + */ + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetMachine &TM = MF.getTarget(); + const TargetFrameLowering &TFI = *TM.getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + EVT VT = Op.getValueType(); + DebugLoc DL = Op.getDebugLoc(); + + // Save FP Control Word to stack slot + int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), + MachineMemOperand::MOStore, 2, 2); + + SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; + SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, + DAG.getVTList(MVT::Other), + Ops, 2, MVT::i16, MMO); + + // Load FP Control Word from stack slot + SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, + MachinePointerInfo(), false, false, false, 0); + + // Transform as necessary + SDValue CWD1 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x800, MVT::i16)), + DAG.getConstant(11, MVT::i8)); + SDValue CWD2 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x400, MVT::i16)), + DAG.getConstant(9, MVT::i8)); + + SDValue RetVal = + DAG.getNode(ISD::AND, DL, MVT::i16, + DAG.getNode(ISD::ADD, DL, MVT::i16, + DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), + DAG.getConstant(1, MVT::i16)), + DAG.getConstant(3, MVT::i16)); + + + return DAG.getNode((VT.getSizeInBits() < 16 ? + ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); +} + +SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + // If src is zero (i.e. bsr sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits+NumBits-1, OpVT), + DAG.getConstant(X86::COND_E, MVT::i8), + Op.getValue(1) + }; + Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); + + // Finally xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse). + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + // And xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + unsigned NumBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + Op = Op.getOperand(0); + + // Issue a bsf (scan bits forward) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); + + // If src is zero (i.e. bsf sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits, VT), + DAG.getConstant(X86::COND_E, MVT::i8), + Op.getValue(1) + }; + return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops)); +} + +// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit +// ones, and then concatenate the result back. +static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getValueType(); + + assert(VT.is256BitVector() && VT.isInteger() && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + DebugLoc dl = Op.getDebugLoc(); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); + + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); +} + +SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType().is256BitVector() && + Op.getValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType().is256BitVector() && + Op.getValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget->hasAVX2()) + return Lower256IntArith(Op, DAG); + + assert((VT == MVT::v2i64 || VT == MVT::v4i64) && + "Only know how to lower V2I64/V4I64 multiply"); + + DebugLoc dl = Op.getDebugLoc(); + + // Ahi = psrlqi(a, 32); + // Bhi = psrlqi(b, 32); + // + // AloBlo = pmuludq(a, b); + // AloBhi = pmuludq(a, Bhi); + // AhiBlo = pmuludq(Ahi, b); + + // AloBhi = psllqi(AloBhi, 32); + // AhiBlo = psllqi(AhiBlo, 32); + // return AloBlo + AloBhi + AhiBlo; + + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + SDValue ShAmt = DAG.getConstant(32, MVT::i32); + + SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt); + SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt); + + // Bit cast to 32-bit vectors for MULUDQ + EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32; + A = DAG.getNode(ISD::BITCAST, dl, MulVT, A); + B = DAG.getNode(ISD::BITCAST, dl, MulVT, B); + Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi); + Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi); + + SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); + SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); + SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); + + AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt); + AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt); + + SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); + return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); +} + +SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + LLVMContext *Context = DAG.getContext(); + + if (!Subtarget->hasSSE2()) + return SDValue(); + + // Optimize shl/srl/sra with constant shift amount. + if (isSplatVector(Amt.getNode())) { + SDValue SclrAmt = Amt->getOperand(0); + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) { + uint64_t ShiftAmt = C->getZExtValue(); + + if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 || + (Subtarget->hasAVX2() && + (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) { + if (Op.getOpcode() == ISD::SHL) + return DAG.getNode(X86ISD::VSHLI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + if (Op.getOpcode() == ISD::SRL) + return DAG.getNode(X86ISD::VSRLI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64) + return DAG.getNode(X86ISD::VSRAI, dl, VT, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + } + + if (VT == MVT::v16i8) { + if (Op.getOpcode() == ISD::SHL) { + // Make a large shift. + SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); + // Zero out the rightmost bits. + SmallVector<SDValue, 16> V(16, + DAG.getConstant(uint8_t(-1U << ShiftAmt), + MVT::i8)); + return DAG.getNode(ISD::AND, dl, VT, SHL, + DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); + } + if (Op.getOpcode() == ISD::SRL) { + // Make a large shift. + SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); + // Zero out the leftmost bits. + SmallVector<SDValue, 16> V(16, + DAG.getConstant(uint8_t(-1U) >> ShiftAmt, + MVT::i8)); + return DAG.getNode(ISD::AND, dl, VT, SRL, + DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16)); + } + if (Op.getOpcode() == ISD::SRA) { + if (ShiftAmt == 7) { + // R s>> 7 === R s< 0 + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); + } + + // R s>> a === ((R u>> a) ^ m) - m + SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt, + MVT::i8)); + SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16); + Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); + Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); + return Res; + } + llvm_unreachable("Unknown shift opcode."); + } + + if (Subtarget->hasAVX2() && VT == MVT::v32i8) { + if (Op.getOpcode() == ISD::SHL) { + // Make a large shift. + SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL); + // Zero out the rightmost bits. + SmallVector<SDValue, 32> V(32, + DAG.getConstant(uint8_t(-1U << ShiftAmt), + MVT::i8)); + return DAG.getNode(ISD::AND, dl, VT, SHL, + DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); + } + if (Op.getOpcode() == ISD::SRL) { + // Make a large shift. + SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R, + DAG.getConstant(ShiftAmt, MVT::i32)); + SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL); + // Zero out the leftmost bits. + SmallVector<SDValue, 32> V(32, + DAG.getConstant(uint8_t(-1U) >> ShiftAmt, + MVT::i8)); + return DAG.getNode(ISD::AND, dl, VT, SRL, + DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32)); + } + if (Op.getOpcode() == ISD::SRA) { + if (ShiftAmt == 7) { + // R s>> 7 === R s< 0 + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); + } + + // R s>> a === ((R u>> a) ^ m) - m + SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt, + MVT::i8)); + SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32); + Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); + Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); + return Res; + } + llvm_unreachable("Unknown shift opcode."); + } + } + } + + // Lower SHL with variable shift amount. + if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { + Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1), + DAG.getConstant(23, MVT::i32)); + + const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U}; + Constant *C = ConstantDataVector::get(*Context, CV); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(), + false, false, false, 16); + + Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend); + Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); + Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); + return DAG.getNode(ISD::MUL, dl, VT, Op, R); + } + if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) { + assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq."); + + // a = a << 5; + Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1), + DAG.getConstant(5, MVT::i32)); + Op = DAG.getNode(ISD::BITCAST, dl, VT, Op); + + // Turn 'a' into a mask suitable for VSELECT + SDValue VSelM = DAG.getConstant(0x80, VT); + SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); + OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); + + SDValue CM1 = DAG.getConstant(0x0f, VT); + SDValue CM2 = DAG.getConstant(0x3f, VT); + + // r = VSELECT(r, psllw(r & (char16)15, 4), a); + SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1); + M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, + DAG.getConstant(4, MVT::i32), DAG); + M = DAG.getNode(ISD::BITCAST, dl, VT, M); + R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); + + // a += a + Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); + OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); + OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); + + // r = VSELECT(r, psllw(r & (char16)63, 2), a); + M = DAG.getNode(ISD::AND, dl, VT, R, CM2); + M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M, + DAG.getConstant(2, MVT::i32), DAG); + M = DAG.getNode(ISD::BITCAST, dl, VT, M); + R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R); + + // a += a + Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); + OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op); + OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM); + + // return VSELECT(r, r+r, a); + R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, + DAG.getNode(ISD::ADD, dl, VT, R, R), R); + return R; + } + + // Decompose 256-bit shifts into smaller 128-bit shifts. + if (VT.is256BitVector()) { + unsigned NumElems = VT.getVectorNumElements(); + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + // Extract the two vectors + SDValue V1 = Extract128BitVector(R, 0, DAG, dl); + SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); + + // Recreate the shift amount vectors + SDValue Amt1, Amt2; + if (Amt.getOpcode() == ISD::BUILD_VECTOR) { + // Constant shift amount + SmallVector<SDValue, 4> Amt1Csts; + SmallVector<SDValue, 4> Amt2Csts; + for (unsigned i = 0; i != NumElems/2; ++i) + Amt1Csts.push_back(Amt->getOperand(i)); + for (unsigned i = NumElems/2; i != NumElems; ++i) + Amt2Csts.push_back(Amt->getOperand(i)); + + Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, + &Amt1Csts[0], NumElems/2); + Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, + &Amt2Csts[0], NumElems/2); + } else { + // Variable shift amount + Amt1 = Extract128BitVector(Amt, 0, DAG, dl); + Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); + } + + // Issue new vector shifts for the smaller types + V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); + V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); + + // Concatenate the result back + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); + } + + return SDValue(); +} + +SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { + // Lower the "add/sub/mul with overflow" instruction into a regular ins plus + // a "setcc" instruction that checks the overflow flag. The "brcond" lowering + // looks for this combo and may remove the "setcc" instruction if the "setcc" + // has only one use. + SDNode *N = Op.getNode(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + unsigned BaseOp = 0; + unsigned Cond = 0; + DebugLoc DL = Op.getDebugLoc(); + switch (Op.getOpcode()) { + default: llvm_unreachable("Unknown ovf instruction!"); + case ISD::SADDO: + // A subtract of one will be selected as a INC. Note that INC doesn't + // set CF, so we can't do this for UADDO. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) + if (C->isOne()) { + BaseOp = X86ISD::INC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::ADD; + Cond = X86::COND_O; + break; + case ISD::UADDO: + BaseOp = X86ISD::ADD; + Cond = X86::COND_B; + break; + case ISD::SSUBO: + // A subtract of one will be selected as a DEC. Note that DEC doesn't + // set CF, so we can't do this for USUBO. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) + if (C->isOne()) { + BaseOp = X86ISD::DEC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::SUB; + Cond = X86::COND_O; + break; + case ISD::USUBO: + BaseOp = X86ISD::SUB; + Cond = X86::COND_B; + break; + case ISD::SMULO: + BaseOp = X86ISD::SMUL; + Cond = X86::COND_O; + break; + case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs + SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), + MVT::i32); + SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); + + SDValue SetCC = + DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(X86::COND_O, MVT::i32), + SDValue(Sum.getNode(), 2)); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); + } + } + + // Also sets EFLAGS. + SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); + SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); + + SDValue SetCC = + DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), + DAG.getConstant(Cond, MVT::i32), + SDValue(Sum.getNode(), 1)); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); +} + +SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); + EVT VT = Op.getValueType(); + + if (!Subtarget->hasSSE2() || !VT.isVector()) + return SDValue(); + + unsigned BitsDiff = VT.getScalarType().getSizeInBits() - + ExtraVT.getScalarType().getSizeInBits(); + SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32); + + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v8i32: + case MVT::v16i16: + if (!Subtarget->hasAVX()) + return SDValue(); + if (!Subtarget->hasAVX2()) { + // needs to be split + unsigned NumElems = VT.getVectorNumElements(); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); + + MVT EltVT = VT.getVectorElementType().getSimpleVT(); + EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + EVT ExtraEltVT = ExtraVT.getVectorElementType(); + unsigned ExtraNumElems = ExtraVT.getVectorNumElements(); + ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT, + ExtraNumElems/2); + SDValue Extra = DAG.getValueType(ExtraVT); + + LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra); + LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);; + } + // fall through + case MVT::v4i32: + case MVT::v8i16: { + SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, + Op.getOperand(0), ShAmt, DAG); + return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG); + } + } +} + + +SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{ + DebugLoc dl = Op.getDebugLoc(); + + // Go ahead and emit the fence on x86-64 even if we asked for no-sse2. + // There isn't any reason to disable it if the target processor supports it. + if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) { + SDValue Chain = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, MVT::i32); + SDValue Ops[] = { + DAG.getRegister(X86::ESP, MVT::i32), // Base + DAG.getTargetConstant(1, MVT::i8), // Scale + DAG.getRegister(0, MVT::i32), // Index + DAG.getTargetConstant(0, MVT::i32), // Disp + DAG.getRegister(0, MVT::i32), // Segment. + Zero, + Chain + }; + SDNode *Res = + DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, + array_lengthof(Ops)); + return SDValue(Res, 0); + } + + unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); + if (!isDev) + return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); + + unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); + unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); + + // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; + if (!Op1 && !Op2 && !Op3 && Op4) + return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0)); + + // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; + if (Op1 && !Op2 && !Op3 && !Op4) + return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0)); + + // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)), + // (MFENCE)>; + return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); +} + +SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( + cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); + SynchronizationScope FenceScope = static_cast<SynchronizationScope>( + cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); + + // The only fence that needs an instruction is a sequentially-consistent + // cross-thread fence. + if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { + // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for + // no-sse2). There isn't any reason to disable it if the target processor + // supports it. + if (Subtarget->hasSSE2() || Subtarget->is64Bit()) + return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); + + SDValue Chain = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, MVT::i32); + SDValue Ops[] = { + DAG.getRegister(X86::ESP, MVT::i32), // Base + DAG.getTargetConstant(1, MVT::i8), // Scale + DAG.getRegister(0, MVT::i32), // Index + DAG.getTargetConstant(0, MVT::i32), // Disp + DAG.getRegister(0, MVT::i32), // Segment. + Zero, + Chain + }; + SDNode *Res = + DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, + array_lengthof(Ops)); + return SDValue(Res, 0); + } + + // MEMBARRIER is a compiler barrier; it codegens to a no-op. + return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); +} + + +SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const { + EVT T = Op.getValueType(); + DebugLoc DL = Op.getDebugLoc(); + unsigned Reg = 0; + unsigned size = 0; + switch(T.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Invalid value type!"); + case MVT::i8: Reg = X86::AL; size = 1; break; + case MVT::i16: Reg = X86::AX; size = 2; break; + case MVT::i32: Reg = X86::EAX; size = 4; break; + case MVT::i64: + assert(Subtarget->is64Bit() && "Node not type legal!"); + Reg = X86::RAX; size = 8; + break; + } + SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, + Op.getOperand(2), SDValue()); + SDValue Ops[] = { cpIn.getValue(0), + Op.getOperand(1), + Op.getOperand(3), + DAG.getTargetConstant(size, MVT::i8), + cpIn.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); + SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, + Ops, 5, T, MMO); + SDValue cpOut = + DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); + return cpOut; +} + +SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->is64Bit() && "Result not type legalized?"); + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue TheChain = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); + SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); + SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, + rax.getValue(2)); + SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, + DAG.getConstant(32, MVT::i8)); + SDValue Ops[] = { + DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), + rdx.getValue(1) + }; + return DAG.getMergeValues(Ops, 2, dl); +} + +SDValue X86TargetLowering::LowerBITCAST(SDValue Op, + SelectionDAG &DAG) const { + EVT SrcVT = Op.getOperand(0).getValueType(); + EVT DstVT = Op.getValueType(); + assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && + Subtarget->hasMMX() && "Unexpected custom BITCAST"); + assert((DstVT == MVT::i64 || + (DstVT.isVector() && DstVT.getSizeInBits()==64)) && + "Unexpected custom BITCAST"); + // i64 <=> MMX conversions are Legal. + if (SrcVT==MVT::i64 && DstVT.isVector()) + return Op; + if (DstVT==MVT::i64 && SrcVT.isVector()) + return Op; + // MMX <=> MMX conversions are Legal. + if (SrcVT.isVector() && DstVT.isVector()) + return Op; + // All other conversions need to be expanded. + return SDValue(); +} + +SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const { + SDNode *Node = Op.getNode(); + DebugLoc dl = Node->getDebugLoc(); + EVT T = Node->getValueType(0); + SDValue negOp = DAG.getNode(ISD::SUB, dl, T, + DAG.getConstant(0, T), Node->getOperand(2)); + return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), negOp, + cast<AtomicSDNode>(Node)->getSrcValue(), + cast<AtomicSDNode>(Node)->getAlignment(), + cast<AtomicSDNode>(Node)->getOrdering(), + cast<AtomicSDNode>(Node)->getSynchScope()); +} + +static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { + SDNode *Node = Op.getNode(); + DebugLoc dl = Node->getDebugLoc(); + EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); + + // Convert seq_cst store -> xchg + // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) + // FIXME: On 32-bit, store -> fist or movq would be more efficient + // (The only way to get a 16-byte store is cmpxchg16b) + // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. + if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || + !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { + SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), Node->getOperand(2), + cast<AtomicSDNode>(Node)->getMemOperand(), + cast<AtomicSDNode>(Node)->getOrdering(), + cast<AtomicSDNode>(Node)->getSynchScope()); + return Swap.getValue(1); + } + // Other atomic stores have a simple pattern. + return Op; +} + +static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { + EVT VT = Op.getNode()->getValueType(0); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + + unsigned Opc; + bool ExtraOp = false; + switch (Op.getOpcode()) { + default: llvm_unreachable("Invalid code"); + case ISD::ADDC: Opc = X86ISD::ADD; break; + case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; + case ISD::SUBC: Opc = X86ISD::SUB; break; + case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; + } + + if (!ExtraOp) + return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), + Op.getOperand(1)); + return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), + Op.getOperand(1), Op.getOperand(2)); +} + +/// LowerOperation - Provide custom lowering hooks for some operations. +/// +SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Should not custom lower this!"); + case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG); + case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG); + case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG); + case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); + case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); + case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); + case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); + case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG); + case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::SHL_PARTS: + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); + case ISD::FABS: return LowerFABS(Op, DAG); + case ISD::FNEG: return LowerFNEG(Op, DAG); + case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); + case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + case ISD::VAARG: return LowerVAARG(Op, DAG); + case ISD::VACOPY: return LowerVACOPY(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG); + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::FRAME_TO_ARGS_OFFSET: + return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); + case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); + case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); + case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); + case ISD::CTLZ: return LowerCTLZ(Op, DAG); + case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, DAG); + case ISD::CTTZ: return LowerCTTZ(Op, DAG); + case ISD::MUL: return LowerMUL(Op, DAG); + case ISD::SRA: + case ISD::SRL: + case ISD::SHL: return LowerShift(Op, DAG); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: return LowerXALUO(Op, DAG); + case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); + case ISD::BITCAST: return LowerBITCAST(Op, DAG); + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); + case ISD::ADD: return LowerADD(Op, DAG); + case ISD::SUB: return LowerSUB(Op, DAG); + } +} + +static void ReplaceATOMIC_LOAD(SDNode *Node, + SmallVectorImpl<SDValue> &Results, + SelectionDAG &DAG) { + DebugLoc dl = Node->getDebugLoc(); + EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); + + // Convert wide load -> cmpxchg8b/cmpxchg16b + // FIXME: On 32-bit, load -> fild or movq would be more efficient + // (The only way to get a 16-byte load is cmpxchg16b) + // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment. + SDValue Zero = DAG.getConstant(0, VT); + SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT, + Node->getOperand(0), + Node->getOperand(1), Zero, Zero, + cast<AtomicSDNode>(Node)->getMemOperand(), + cast<AtomicSDNode>(Node)->getOrdering(), + cast<AtomicSDNode>(Node)->getSynchScope()); + Results.push_back(Swap.getValue(0)); + Results.push_back(Swap.getValue(1)); +} + +static void +ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG, unsigned NewOp) { + DebugLoc dl = Node->getDebugLoc(); + assert (Node->getValueType(0) == MVT::i64 && + "Only know how to expand i64 atomics"); + + SDValue Chain = Node->getOperand(0); + SDValue In1 = Node->getOperand(1); + SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Node->getOperand(2), DAG.getIntPtrConstant(0)); + SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Node->getOperand(2), DAG.getIntPtrConstant(1)); + SDValue Ops[] = { Chain, In1, In2L, In2H }; + SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); + SDValue Result = + DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, + cast<MemSDNode>(Node)->getMemOperand()); + SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); + Results.push_back(Result.getValue(2)); +} + +/// ReplaceNodeResults - Replace a node with an illegal result type +/// with a new node built out of custom code. +void X86TargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG) const { + DebugLoc dl = N->getDebugLoc(); + switch (N->getOpcode()) { + default: + llvm_unreachable("Do not know how to custom type legalize this operation!"); + case ISD::SIGN_EXTEND_INREG: + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: + // We don't want to expand or promote these. + return; + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; + + if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType())) + return; + + std::pair<SDValue,SDValue> Vals = + FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); + SDValue FIST = Vals.first, StackSlot = Vals.second; + if (FIST.getNode() != 0) { + EVT VT = N->getValueType(0); + // Return a load from the stack slot. + if (StackSlot.getNode() != 0) + Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, + MachinePointerInfo(), + false, false, false, 0)); + else + Results.push_back(FIST); + } + return; + } + case ISD::READCYCLECOUNTER: { + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue TheChain = N->getOperand(0); + SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); + SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, + rd.getValue(1)); + SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, + eax.getValue(2)); + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { eax, edx }; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); + Results.push_back(edx.getValue(1)); + return; + } + case ISD::ATOMIC_CMP_SWAP: { + EVT T = N->getValueType(0); + assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); + bool Regs64bit = T == MVT::i128; + EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; + SDValue cpInL, cpInH; + cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(0, HalfT)); + cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(1, HalfT)); + cpInL = DAG.getCopyToReg(N->getOperand(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + cpInL, SDValue()); + cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, + Regs64bit ? X86::RDX : X86::EDX, + cpInH, cpInL.getValue(1)); + SDValue swapInL, swapInH; + swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(0, HalfT)); + swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(1, HalfT)); + swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, + Regs64bit ? X86::RBX : X86::EBX, + swapInL, cpInH.getValue(1)); + swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, + Regs64bit ? X86::RCX : X86::ECX, + swapInH, swapInL.getValue(1)); + SDValue Ops[] = { swapInH.getValue(0), + N->getOperand(1), + swapInH.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); + unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : + X86ISD::LCMPXCHG8_DAG; + SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, + Ops, 3, T, MMO); + SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + HalfT, Result.getValue(1)); + SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, + Regs64bit ? X86::RDX : X86::EDX, + HalfT, cpOutL.getValue(2)); + SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2)); + Results.push_back(cpOutH.getValue(1)); + return; + } + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_SWAP: { + unsigned Opc; + switch (N->getOpcode()) { + default: llvm_unreachable("Unexpected opcode"); + case ISD::ATOMIC_LOAD_ADD: + Opc = X86ISD::ATOMADD64_DAG; + break; + case ISD::ATOMIC_LOAD_AND: + Opc = X86ISD::ATOMAND64_DAG; + break; + case ISD::ATOMIC_LOAD_NAND: + Opc = X86ISD::ATOMNAND64_DAG; + break; + case ISD::ATOMIC_LOAD_OR: + Opc = X86ISD::ATOMOR64_DAG; + break; + case ISD::ATOMIC_LOAD_SUB: + Opc = X86ISD::ATOMSUB64_DAG; + break; + case ISD::ATOMIC_LOAD_XOR: + Opc = X86ISD::ATOMXOR64_DAG; + break; + case ISD::ATOMIC_SWAP: + Opc = X86ISD::ATOMSWAP64_DAG; + break; + } + ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc); + return; + } + case ISD::ATOMIC_LOAD: + ReplaceATOMIC_LOAD(N, Results, DAG); + } +} + +const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + default: return NULL; + case X86ISD::BSF: return "X86ISD::BSF"; + case X86ISD::BSR: return "X86ISD::BSR"; + case X86ISD::SHLD: return "X86ISD::SHLD"; + case X86ISD::SHRD: return "X86ISD::SHRD"; + case X86ISD::FAND: return "X86ISD::FAND"; + case X86ISD::FOR: return "X86ISD::FOR"; + case X86ISD::FXOR: return "X86ISD::FXOR"; + case X86ISD::FSRL: return "X86ISD::FSRL"; + case X86ISD::FILD: return "X86ISD::FILD"; + case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; + case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; + case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; + case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; + case X86ISD::FLD: return "X86ISD::FLD"; + case X86ISD::FST: return "X86ISD::FST"; + case X86ISD::CALL: return "X86ISD::CALL"; + case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; + case X86ISD::BT: return "X86ISD::BT"; + case X86ISD::CMP: return "X86ISD::CMP"; + case X86ISD::COMI: return "X86ISD::COMI"; + case X86ISD::UCOMI: return "X86ISD::UCOMI"; + case X86ISD::SETCC: return "X86ISD::SETCC"; + case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; + case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd"; + case X86ISD::FSETCCss: return "X86ISD::FSETCCss"; + case X86ISD::CMOV: return "X86ISD::CMOV"; + case X86ISD::BRCOND: return "X86ISD::BRCOND"; + case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; + case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; + case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; + case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; + case X86ISD::Wrapper: return "X86ISD::Wrapper"; + case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; + case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; + case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; + case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; + case X86ISD::PINSRB: return "X86ISD::PINSRB"; + case X86ISD::PINSRW: return "X86ISD::PINSRW"; + case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; + case X86ISD::ANDNP: return "X86ISD::ANDNP"; + case X86ISD::PSIGN: return "X86ISD::PSIGN"; + case X86ISD::BLENDV: return "X86ISD::BLENDV"; + case X86ISD::BLENDPW: return "X86ISD::BLENDPW"; + case X86ISD::BLENDPS: return "X86ISD::BLENDPS"; + case X86ISD::BLENDPD: return "X86ISD::BLENDPD"; + case X86ISD::HADD: return "X86ISD::HADD"; + case X86ISD::HSUB: return "X86ISD::HSUB"; + case X86ISD::FHADD: return "X86ISD::FHADD"; + case X86ISD::FHSUB: return "X86ISD::FHSUB"; + case X86ISD::FMAX: return "X86ISD::FMAX"; + case X86ISD::FMIN: return "X86ISD::FMIN"; + case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; + case X86ISD::FRCP: return "X86ISD::FRCP"; + case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; + case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; + case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; + case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; + case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; + case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; + case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; + case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; + case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; + case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; + case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; + case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; + case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; + case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; + case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; + case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; + case X86ISD::VSEXT_MOVL: return "X86ISD::VSEXT_MOVL"; + case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; + case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; + case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; + case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; + case X86ISD::VSHL: return "X86ISD::VSHL"; + case X86ISD::VSRL: return "X86ISD::VSRL"; + case X86ISD::VSRA: return "X86ISD::VSRA"; + case X86ISD::VSHLI: return "X86ISD::VSHLI"; + case X86ISD::VSRLI: return "X86ISD::VSRLI"; + case X86ISD::VSRAI: return "X86ISD::VSRAI"; + case X86ISD::CMPP: return "X86ISD::CMPP"; + case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; + case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; + case X86ISD::ADD: return "X86ISD::ADD"; + case X86ISD::SUB: return "X86ISD::SUB"; + case X86ISD::ADC: return "X86ISD::ADC"; + case X86ISD::SBB: return "X86ISD::SBB"; + case X86ISD::SMUL: return "X86ISD::SMUL"; + case X86ISD::UMUL: return "X86ISD::UMUL"; + case X86ISD::INC: return "X86ISD::INC"; + case X86ISD::DEC: return "X86ISD::DEC"; + case X86ISD::OR: return "X86ISD::OR"; + case X86ISD::XOR: return "X86ISD::XOR"; + case X86ISD::AND: return "X86ISD::AND"; + case X86ISD::ANDN: return "X86ISD::ANDN"; + case X86ISD::BLSI: return "X86ISD::BLSI"; + case X86ISD::BLSMSK: return "X86ISD::BLSMSK"; + case X86ISD::BLSR: return "X86ISD::BLSR"; + case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; + case X86ISD::PTEST: return "X86ISD::PTEST"; + case X86ISD::TESTP: return "X86ISD::TESTP"; + case X86ISD::PALIGN: return "X86ISD::PALIGN"; + case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; + case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; + case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; + case X86ISD::SHUFP: return "X86ISD::SHUFP"; + case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; + case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; + case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; + case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; + case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; + case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; + case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; + case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; + case X86ISD::MOVSD: return "X86ISD::MOVSD"; + case X86ISD::MOVSS: return "X86ISD::MOVSS"; + case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; + case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; + case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; + case X86ISD::VPERMILP: return "X86ISD::VPERMILP"; + case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; + case X86ISD::VPERMV: return "X86ISD::VPERMV"; + case X86ISD::VPERMI: return "X86ISD::VPERMI"; + case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; + case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; + case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; + case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; + case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; + case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; + case X86ISD::WIN_FTOL: return "X86ISD::WIN_FTOL"; + case X86ISD::SAHF: return "X86ISD::SAHF"; + case X86ISD::RDRAND: return "X86ISD::RDRAND"; + case X86ISD::FMADD: return "X86ISD::FMADD"; + case X86ISD::FMSUB: return "X86ISD::FMSUB"; + case X86ISD::FNMADD: return "X86ISD::FNMADD"; + case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; + case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; + case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; + } +} + +// isLegalAddressingMode - Return true if the addressing mode represented +// by AM is legal for this target, for a load/store of the specified type. +bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, + Type *Ty) const { + // X86 supports extremely general addressing modes. + CodeModel::Model M = getTargetMachine().getCodeModel(); + Reloc::Model R = getTargetMachine().getRelocationModel(); + + // X86 allows a sign-extended 32-bit immediate field as a displacement. + if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) + return false; + + if (AM.BaseGV) { + unsigned GVFlags = + Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); + + // If a reference to this global requires an extra load, we can't fold it. + if (isGlobalStubReference(GVFlags)) + return false; + + // If BaseGV requires a register for the PIC base, we cannot also have a + // BaseReg specified. + if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) + return false; + + // If lower 4G is not available, then we must use rip-relative addressing. + if ((M != CodeModel::Small || R != Reloc::Static) && + Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) + return false; + } + + switch (AM.Scale) { + case 0: + case 1: + case 2: + case 4: + case 8: + // These scales always work. + break; + case 3: + case 5: + case 9: + // These scales are formed with basereg+scalereg. Only accept if there is + // no basereg yet. + if (AM.HasBaseReg) + return false; + break; + default: // Other stuff never works. + return false; + } + + return true; +} + + +bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + if (NumBits1 <= NumBits2) + return false; + return true; +} + +bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { + return Imm == (int32_t)Imm; +} + +bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { + // Can also use sub to handle negated immediates. + return Imm == (int32_t)Imm; +} + +bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (!VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + if (NumBits1 <= NumBits2) + return false; + return true; +} + +bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { + // i16 instructions are longer (0x66 prefix) and potentially slower. + return !(VT1 == MVT::i32 && VT2 == MVT::i16); +} + +/// isShuffleMaskLegal - Targets can use this to indicate that they only +/// support *some* VECTOR_SHUFFLE operations, those with specific masks. +/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values +/// are assumed to be legal. +bool +X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, + EVT VT) const { + // Very little shuffling can be done for 64-bit vectors right now. + if (VT.getSizeInBits() == 64) + return false; + + // FIXME: pshufb, blends, shifts. + return (VT.getVectorNumElements() == 2 || + ShuffleVectorSDNode::isSplatMask(&M[0], VT) || + isMOVLMask(M, VT) || + isSHUFPMask(M, VT, Subtarget->hasAVX()) || + isPSHUFDMask(M, VT) || + isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) || + isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) || + isPALIGNRMask(M, VT, Subtarget) || + isUNPCKLMask(M, VT, Subtarget->hasAVX2()) || + isUNPCKHMask(M, VT, Subtarget->hasAVX2()) || + isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) || + isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2())); +} + +bool +X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, + EVT VT) const { + unsigned NumElts = VT.getVectorNumElements(); + // FIXME: This collection of masks seems suspect. + if (NumElts == 2) + return true; + if (NumElts == 4 && VT.is128BitVector()) { + return (isMOVLMask(Mask, VT) || + isCommutedMOVLMask(Mask, VT, true) || + isSHUFPMask(Mask, VT, Subtarget->hasAVX()) || + isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true)); + } + return false; +} + +//===----------------------------------------------------------------------===// +// X86 Scheduler Hooks +//===----------------------------------------------------------------------===// + +// private utility function +MachineBasicBlock * +X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, + MachineBasicBlock *MBB, + unsigned regOpc, + unsigned immOpc, + unsigned LoadOpc, + unsigned CXchgOpc, + unsigned notOpc, + unsigned EAXreg, + const TargetRegisterClass *RC, + bool Invert) const { + // For the atomic bitwise operator, we generate + // thisMBB: + // newMBB: + // ld t1 = [bitinstr.addr] + // op t2 = t1, [bitinstr.val] + // not t3 = t2 (if Invert) + // mov EAX = t1 + // lcs dest = [bitinstr.addr], t3 [EAX is implicit] + // bz newMBB + // fallthrough -->nextMBB + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(bInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to itself and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + // Insert instructions into newMBB based on incoming instruction + assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 && + "unexpected number of operands"); + DebugLoc dl = bInstr->getDebugLoc(); + MachineOperand& destOper = bInstr->getOperand(0); + MachineOperand* argOpers[2 + X86::AddrNumOperands]; + int numArgs = bInstr->getNumOperands() - 1; + for (int i=0; i < numArgs; ++i) + argOpers[i] = &bInstr->getOperand(i+1); + + // x86 address has 4 operands: base, index, scale, and displacement + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] + int valArgIndx = lastAddrIndx + 1; + + unsigned t1 = F->getRegInfo().createVirtualRegister(RC); + MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + unsigned t2 = F->getRegInfo().createVirtualRegister(RC); + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); + MIB.addReg(t1); + (*MIB).addOperand(*argOpers[valArgIndx]); + + unsigned t3 = F->getRegInfo().createVirtualRegister(RC); + if (Invert) { + MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2); + } + else + t3 = t2; + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg); + MIB.addReg(t1); + + MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + MIB.addReg(t3); + assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(bInstr->memoperands_begin(), + bInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); + MIB.addReg(EAXreg); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + bInstr->eraseFromParent(); // The pseudo instruction is gone now. + return nextMBB; +} + +// private utility function: 64 bit atomics on 32 bit host. +MachineBasicBlock * +X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, + MachineBasicBlock *MBB, + unsigned regOpcL, + unsigned regOpcH, + unsigned immOpcL, + unsigned immOpcH, + bool Invert) const { + // For the atomic bitwise operator, we generate + // thisMBB (instructions are in pairs, except cmpxchg8b) + // ld t1,t2 = [bitinstr.addr] + // newMBB: + // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) + // op t5, t6 <- out1, out2, [bitinstr.val] + // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val]) + // neg t7, t8 < t5, t6 (if Invert) + // mov ECX, EBX <- t5, t6 + // mov EAX, EDX <- t1, t2 + // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit] + // mov t3, t4 <- EAX, EDX + // bz newMBB + // result in out1, out2 + // fallthrough -->nextMBB + + const TargetRegisterClass *RC = &X86::GR32RegClass; + const unsigned LoadOpc = X86::MOV32rm; + const unsigned NotOpc = X86::NOT32r; + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(bInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to itself and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + DebugLoc dl = bInstr->getDebugLoc(); + // Insert instructions into newMBB based on incoming instruction + // There are 8 "real" operands plus 9 implicit def/uses, ignored here. + assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 && + "unexpected number of operands"); + MachineOperand& dest1Oper = bInstr->getOperand(0); + MachineOperand& dest2Oper = bInstr->getOperand(1); + MachineOperand* argOpers[2 + X86::AddrNumOperands]; + for (int i=0; i < 2 + X86::AddrNumOperands; ++i) { + argOpers[i] = &bInstr->getOperand(i+2); + + // We use some of the operands multiple times, so conservatively just + // clear any kill flags that might be present. + if (argOpers[i]->isReg() && argOpers[i]->isUse()) + argOpers[i]->setIsKill(false); + } + + // x86 address has 5 operands: base, index, scale, displacement, and segment. + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] + + unsigned t1 = F->getRegInfo().createVirtualRegister(RC); + MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + unsigned t2 = F->getRegInfo().createVirtualRegister(RC); + MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); + // add 4 to displacement. + for (int i=0; i <= lastAddrIndx-2; ++i) + (*MIB).addOperand(*argOpers[i]); + MachineOperand newOp3 = *(argOpers[3]); + if (newOp3.isImm()) + newOp3.setImm(newOp3.getImm()+4); + else + newOp3.setOffset(newOp3.getOffset()+4); + (*MIB).addOperand(newOp3); + (*MIB).addOperand(*argOpers[lastAddrIndx]); + + // t3/4 are defined later, at the bottom of the loop + unsigned t3 = F->getRegInfo().createVirtualRegister(RC); + unsigned t4 = F->getRegInfo().createVirtualRegister(RC); + BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) + .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); + BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) + .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); + + // The subsequent operations should be using the destination registers of + // the PHI instructions. + t1 = dest1Oper.getReg(); + t2 = dest2Oper.getReg(); + + int valArgIndx = lastAddrIndx + 1; + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + unsigned t5 = F->getRegInfo().createVirtualRegister(RC); + unsigned t6 = F->getRegInfo().createVirtualRegister(RC); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); + if (regOpcL != X86::MOV32rr) + MIB.addReg(t1); + (*MIB).addOperand(*argOpers[valArgIndx]); + assert(argOpers[valArgIndx + 1]->isReg() == + argOpers[valArgIndx]->isReg()); + assert(argOpers[valArgIndx + 1]->isImm() == + argOpers[valArgIndx]->isImm()); + if (argOpers[valArgIndx + 1]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); + if (regOpcH != X86::MOV32rr) + MIB.addReg(t2); + (*MIB).addOperand(*argOpers[valArgIndx + 1]); + + unsigned t7, t8; + if (Invert) { + t7 = F->getRegInfo().createVirtualRegister(RC); + t8 = F->getRegInfo().createVirtualRegister(RC); + MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5); + MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6); + } else { + t7 = t5; + t8 = t6; + } + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); + MIB.addReg(t1); + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX); + MIB.addReg(t2); + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX); + MIB.addReg(t7); + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX); + MIB.addReg(t8); + + MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(bInstr->memoperands_begin(), + bInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3); + MIB.addReg(X86::EAX); + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4); + MIB.addReg(X86::EDX); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + bInstr->eraseFromParent(); // The pseudo instruction is gone now. + return nextMBB; +} + +// private utility function +MachineBasicBlock * +X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, + MachineBasicBlock *MBB, + unsigned cmovOpc) const { + // For the atomic min/max operator, we generate + // thisMBB: + // newMBB: + // ld t1 = [min/max.addr] + // mov t2 = [min/max.val] + // cmp t1, t2 + // cmov[cond] t2 = t1 + // mov EAX = t1 + // lcs dest = [bitinstr.addr], t2 [EAX is implicit] + // bz newMBB + // fallthrough -->nextMBB + // + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Transfer the remainder of thisMBB and its successor edges to nextMBB. + nextMBB->splice(nextMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(mInstr)), + thisMBB->end()); + nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to newMBB and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + DebugLoc dl = mInstr->getDebugLoc(); + // Insert instructions into newMBB based on incoming instruction + assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 && + "unexpected number of operands"); + MachineOperand& destOper = mInstr->getOperand(0); + MachineOperand* argOpers[2 + X86::AddrNumOperands]; + int numArgs = mInstr->getNumOperands() - 1; + for (int i=0; i < numArgs; ++i) + argOpers[i] = &mInstr->getOperand(i+1); + + // x86 address has 4 operands: base, index, scale, and displacement + int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] + int valArgIndx = lastAddrIndx + 1; + + unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass); + MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + // We only support register and immediate values + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + + unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2); + else + MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); + (*MIB).addOperand(*argOpers[valArgIndx]); + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); + MIB.addReg(t1); + + MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); + MIB.addReg(t1); + MIB.addReg(t2); + + // Generate movc + unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass); + MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); + MIB.addReg(t2); + MIB.addReg(t1); + + // Cmp and exchange if none has modified the memory location + MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + MIB.addReg(t3); + assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(mInstr->memoperands_begin(), + mInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); + MIB.addReg(X86::EAX); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + mInstr->eraseFromParent(); // The pseudo instruction is gone now. + return nextMBB; +} + +// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 +// or XMM0_V32I8 in AVX all of this code can be replaced with that +// in the .td file. +MachineBasicBlock * +X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, + unsigned numArgs, bool memArg) const { + assert(Subtarget->hasSSE42() && + "Target must have SSE4.2 or AVX features enabled"); + + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + unsigned Opc; + if (!Subtarget->hasAVX()) { + if (memArg) + Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; + else + Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; + } else { + if (memArg) + Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm; + else + Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr; + } + + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); + for (unsigned i = 0; i < numArgs; ++i) { + MachineOperand &Op = MI->getOperand(i+1); + if (!(Op.isReg() && Op.isImplicit())) + MIB.addOperand(Op); + } + BuildMI(*BB, MI, dl, + TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) + .addReg(X86::XMM0); + + MI->eraseFromParent(); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const { + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + // Address into RAX/EAX, other two args into ECX, EDX. + unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; + unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); + for (int i = 0; i < X86::AddrNumOperands; ++i) + MIB.addOperand(MI->getOperand(i)); + + unsigned ValOps = X86::AddrNumOperands; + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) + .addReg(MI->getOperand(ValOps).getReg()); + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) + .addReg(MI->getOperand(ValOps+1).getReg()); + + // The instruction doesn't actually take any operands though. + BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); + + MI->eraseFromParent(); // The pseudo is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitVAARG64WithCustomInserter( + MachineInstr *MI, + MachineBasicBlock *MBB) const { + // Emit va_arg instruction on X86-64. + + // Operands to this pseudo-instruction: + // 0 ) Output : destination address (reg) + // 1-5) Input : va_list address (addr, i64mem) + // 6 ) ArgSize : Size (in bytes) of vararg type + // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset + // 8 ) Align : Alignment of type + // 9 ) EFLAGS (implicit-def) + + assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); + assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); + + unsigned DestReg = MI->getOperand(0).getReg(); + MachineOperand &Base = MI->getOperand(1); + MachineOperand &Scale = MI->getOperand(2); + MachineOperand &Index = MI->getOperand(3); + MachineOperand &Disp = MI->getOperand(4); + MachineOperand &Segment = MI->getOperand(5); + unsigned ArgSize = MI->getOperand(6).getImm(); + unsigned ArgMode = MI->getOperand(7).getImm(); + unsigned Align = MI->getOperand(8).getImm(); + + // Memory Reference + assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + // Machine Information + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); + const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); + DebugLoc DL = MI->getDebugLoc(); + + // struct va_list { + // i32 gp_offset + // i32 fp_offset + // i64 overflow_area (address) + // i64 reg_save_area (address) + // } + // sizeof(va_list) = 24 + // alignment(va_list) = 8 + + unsigned TotalNumIntRegs = 6; + unsigned TotalNumXMMRegs = 8; + bool UseGPOffset = (ArgMode == 1); + bool UseFPOffset = (ArgMode == 2); + unsigned MaxOffset = TotalNumIntRegs * 8 + + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); + + /* Align ArgSize to a multiple of 8 */ + unsigned ArgSizeA8 = (ArgSize + 7) & ~7; + bool NeedsAlign = (Align > 8); + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *overflowMBB; + MachineBasicBlock *offsetMBB; + MachineBasicBlock *endMBB; + + unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB + unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB + unsigned OffsetReg = 0; + + if (!UseGPOffset && !UseFPOffset) { + // If we only pull from the overflow region, we don't create a branch. + // We don't need to alter control flow. + OffsetDestReg = 0; // unused + OverflowDestReg = DestReg; + + offsetMBB = NULL; + overflowMBB = thisMBB; + endMBB = thisMBB; + } else { + // First emit code to check if gp_offset (or fp_offset) is below the bound. + // If so, pull the argument from reg_save_area. (branch to offsetMBB) + // If not, pull from overflow_area. (branch to overflowMBB) + // + // thisMBB + // | . + // | . + // offsetMBB overflowMBB + // | . + // | . + // endMBB + + // Registers for the PHI in endMBB + OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); + OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); + + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *MF = MBB->getParent(); + overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); + offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); + endMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + // Insert the new basic blocks + MF->insert(MBBIter, offsetMBB); + MF->insert(MBBIter, overflowMBB); + MF->insert(MBBIter, endMBB); + + // Transfer the remainder of MBB and its successor edges to endMBB. + endMBB->splice(endMBB->begin(), thisMBB, + llvm::next(MachineBasicBlock::iterator(MI)), + thisMBB->end()); + endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Make offsetMBB and overflowMBB successors of thisMBB + thisMBB->addSuccessor(offsetMBB); + thisMBB->addSuccessor(overflowMBB); + + // endMBB is a successor of both offsetMBB and overflowMBB + offsetMBB->addSuccessor(endMBB); + overflowMBB->addSuccessor(endMBB); + + // Load the offset value into a register + OffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Check if there is enough room left to pull this argument. + BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) + .addReg(OffsetReg) + .addImm(MaxOffset + 8 - ArgSizeA8); + + // Branch to "overflowMBB" if offset >= max + // Fall through to "offsetMBB" otherwise + BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) + .addMBB(overflowMBB); + } + + // In offsetMBB, emit code to use the reg_save_area. + if (offsetMBB) { + assert(OffsetReg != 0); + + // Read the reg_save_area address. + unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 16) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Zero-extend the offset + unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) + .addImm(0) + .addReg(OffsetReg) + .addImm(X86::sub_32bit); + + // Add the offset to the reg_save_area to get the final address. + BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) + .addReg(OffsetReg64) + .addReg(RegSaveReg); + + // Compute the offset for the next argument + unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) + .addReg(OffsetReg) + .addImm(UseFPOffset ? 16 : 8); + + // Store it back into the va_list. + BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .addOperand(Segment) + .addReg(NextOffsetReg) + .setMemRefs(MMOBegin, MMOEnd); + + // Jump to endMBB + BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) + .addMBB(endMBB); + } + + // + // Emit code to use overflow area + // + + // Load the overflow_area address into a register. + unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 8) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // If we need to align it, do so. Otherwise, just copy the address + // to OverflowDestReg. + if (NeedsAlign) { + // Align the overflow address + assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); + unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); + + // aligned_addr = (addr + (align-1)) & ~(align-1) + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) + .addReg(OverflowAddrReg) + .addImm(Align-1); + + BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) + .addReg(TmpReg) + .addImm(~(uint64_t)(Align-1)); + } else { + BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) + .addReg(OverflowAddrReg); + } + + // Compute the next overflow address after this argument. + // (the overflow address should be kept 8-byte aligned) + unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) + .addReg(OverflowDestReg) + .addImm(ArgSizeA8); + + // Store the new overflow address. + BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 8) + .addOperand(Segment) + .addReg(NextAddrReg) + .setMemRefs(MMOBegin, MMOEnd); + + // If we branched, emit the PHI to the front of endMBB. + if (offsetMBB) { + BuildMI(*endMBB, endMBB->begin(), DL, + TII->get(X86::PHI), DestReg) + .addReg(OffsetDestReg).addMBB(offsetMBB) + .addReg(OverflowDestReg).addMBB(overflowMBB); + } + + // Erase the pseudo instruction + MI->eraseFromParent(); + + return endMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( + MachineInstr *MI, + MachineBasicBlock *MBB) const { + // Emit code to save XMM registers to the stack. The ABI says that the + // number of registers to save is given in %al, so it's theoretically + // possible to do an indirect jump trick to avoid saving all of them, + // however this code takes a simpler approach and just executes all + // of the stores if %al is non-zero. It's less code, and it's probably + // easier on the hardware branch predictor, and stores aren't all that + // expensive anyway. + + // Create the new basic blocks. One block contains all the XMM stores, + // and one block is the final destination regardless of whether any + // stores were performed. + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *F = MBB->getParent(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, XMMSaveMBB); + F->insert(MBBIter, EndMBB); + + // Transfer the remainder of MBB and its successor edges to EndMBB. + EndMBB->splice(EndMBB->begin(), MBB, + llvm::next(MachineBasicBlock::iterator(MI)), + MBB->end()); + EndMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // The original block will now fall through to the XMM save block. + MBB->addSuccessor(XMMSaveMBB); + // The XMMSaveMBB will fall through to the end block. + XMMSaveMBB->addSuccessor(EndMBB); + + // Now add the instructions. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned CountReg = MI->getOperand(0).getReg(); + int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); + int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); + + if (!Subtarget->isTargetWin64()) { + // If %al is 0, branch around the XMM save block. + BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); + BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + } + + unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr; + // In the XMM save block, save all the XMM argument registers. + for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { + int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; + MachineMemOperand *MMO = + F->getMachineMemOperand( + MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), + MachineMemOperand::MOStore, + /*Size=*/16, /*Align=*/16); + BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) + .addFrameIndex(RegSaveFrameIndex) + .addImm(/*Scale=*/1) + .addReg(/*IndexReg=*/0) + .addImm(/*Disp=*/Offset) + .addReg(/*Segment=*/0) + .addReg(MI->getOperand(i).getReg()) + .addMemOperand(MMO); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + + return EndMBB; +} + +// The EFLAGS operand of SelectItr might be missing a kill marker +// because there were multiple uses of EFLAGS, and ISel didn't know +// which to mark. Figure out whether SelectItr should have had a +// kill marker, and set it if it should. Returns the correct kill +// marker value. +static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, + MachineBasicBlock* BB, + const TargetRegisterInfo* TRI) { + // Scan forward through BB for a use/def of EFLAGS. + MachineBasicBlock::iterator miI(llvm::next(SelectItr)); + for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { + const MachineInstr& mi = *miI; + if (mi.readsRegister(X86::EFLAGS)) + return false; + if (mi.definesRegister(X86::EFLAGS)) + break; // Should have kill-flag - update below. + } + + // If we hit the end of the block, check whether EFLAGS is live into a + // successor. + if (miI == BB->end()) { + for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), + sEnd = BB->succ_end(); + sItr != sEnd; ++sItr) { + MachineBasicBlock* succ = *sItr; + if (succ->isLiveIn(X86::EFLAGS)) + return false; + } + } + + // We found a def, or hit the end of the basic block and EFLAGS wasn't live + // out. SelectMI should have a kill flag on EFLAGS. + SelectItr->addRegisterKilled(X86::EFLAGS, TRI); + return true; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // If the EFLAGS register isn't dead in the terminator, then claim that it's + // live into the sink and copy blocks. + const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo(); + if (!MI->killsRegister(X86::EFLAGS) && + !checkAndUpdateEFLAGSKill(MI, BB, TRI)) { + copy0MBB->addLiveIn(X86::EFLAGS); + sinkMBB->addLiveIn(X86::EFLAGS); + } + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // Create the conditional branch instruction. + unsigned Opc = + X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); + BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + copy0MBB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(X86::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) + .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return sinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB, + bool Is64Bit) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *MF = BB->getParent(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + + assert(getTargetMachine().Options.EnableSegmentedStacks); + + unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; + unsigned TlsOffset = Is64Bit ? 0x70 : 0x30; + + // BB: + // ... [Till the alloca] + // If stacklet is not large enough, jump to mallocMBB + // + // bumpMBB: + // Allocate by subtracting from RSP + // Jump to continueMBB + // + // mallocMBB: + // Allocate by call to runtime + // + // continueMBB: + // ... + // [rest of original BB] + // + + MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterClass *AddrRegClass = + getRegClassFor(Is64Bit ? MVT::i64:MVT::i32); + + unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), + bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), + tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), + SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), + sizeVReg = MI->getOperand(1).getReg(), + physSPReg = Is64Bit ? X86::RSP : X86::ESP; + + MachineFunction::iterator MBBIter = BB; + ++MBBIter; + + MF->insert(MBBIter, bumpMBB); + MF->insert(MBBIter, mallocMBB); + MF->insert(MBBIter, continueMBB); + + continueMBB->splice(continueMBB->begin(), BB, llvm::next + (MachineBasicBlock::iterator(MI)), BB->end()); + continueMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add code to the main basic block to check if the stack limit has been hit, + // and if so, jump to mallocMBB otherwise to bumpMBB. + BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); + BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) + .addReg(tmpSPVReg).addReg(sizeVReg); + BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr)) + .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) + .addReg(SPLimitVReg); + BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB); + + // bumpMBB simply decreases the stack pointer, since we know the current + // stacklet has enough space. + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); + + // Calls into a routine in libgcc to allocate more space from the heap. + const uint32_t *RegMask = + getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); + if (Is64Bit) { + BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) + .addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::RDI, RegState::Implicit) + .addReg(X86::RAX, RegState::ImplicitDefine); + } else { + BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) + .addImm(12); + BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::EAX, RegState::ImplicitDefine); + } + + if (!Is64Bit) + BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) + .addImm(16); + + BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) + .addReg(Is64Bit ? X86::RAX : X86::EAX); + BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB); + + // Set up the CFG correctly. + BB->addSuccessor(bumpMBB); + BB->addSuccessor(mallocMBB); + mallocMBB->addSuccessor(continueMBB); + bumpMBB->addSuccessor(continueMBB); + + // Take care of the PHI nodes. + BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), + MI->getOperand(0).getReg()) + .addReg(mallocPtrVReg).addMBB(mallocMBB) + .addReg(bumpSPPtrVReg).addMBB(bumpMBB); + + // Delete the original pseudo instruction. + MI->eraseFromParent(); + + // And we're done. + return continueMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + assert(!Subtarget->isTargetEnvMacho()); + + // The lowering is pretty easy: we're just emitting the call to _alloca. The + // non-trivial part is impdef of ESP. + + if (Subtarget->isTargetWin64()) { + if (Subtarget->isTargetCygMing()) { + // ___chkstk(Mingw64): + // Clobbers R10, R11, RAX and EFLAGS. + // Updates RSP. + BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) + .addExternalSymbol("___chkstk") + .addReg(X86::RAX, RegState::Implicit) + .addReg(X86::RSP, RegState::Implicit) + .addReg(X86::RAX, RegState::Define | RegState::Implicit) + .addReg(X86::RSP, RegState::Define | RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + } else { + // __chkstk(MSVCRT): does not update stack pointer. + // Clobbers R10, R11 and EFLAGS. + // FIXME: RAX(allocated size) might be reused and not killed. + BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA)) + .addExternalSymbol("__chkstk") + .addReg(X86::RAX, RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + // RAX has the offset to subtracted from RSP. + BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP) + .addReg(X86::RSP) + .addReg(X86::RAX); + } + } else { + const char *StackProbeSymbol = + Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; + + BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol(StackProbeSymbol) + .addReg(X86::EAX, RegState::Implicit) + .addReg(X86::ESP, RegState::Implicit) + .addReg(X86::EAX, RegState::Define | RegState::Implicit) + .addReg(X86::ESP, RegState::Define | RegState::Implicit) + .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, + MachineBasicBlock *BB) const { + // This is pretty easy. We're taking the value that we received from + // our load from the relocation, sticking it in either RDI (x86-64) + // or EAX and doing an indirect call. The return value will then + // be in the normal return register. + const X86InstrInfo *TII + = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *F = BB->getParent(); + + assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); + assert(MI->getOperand(3).isGlobal() && "This should be a global"); + + // Get a register mask for the lowered call. + // FIXME: The 32-bit calls have non-standard calling conventions. Use a + // proper register mask. + const uint32_t *RegMask = + getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C); + if (Subtarget->is64Bit()) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV64rm), X86::RDI) + .addReg(X86::RIP) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); + addDirectMem(MIB, X86::RDI); + MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(0) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(TII->getGlobalBaseReg(F)) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: llvm_unreachable("Unexpected instr type to insert"); + case X86::TAILJMPd64: + case X86::TAILJMPr64: + case X86::TAILJMPm64: + llvm_unreachable("TAILJMP64 would not be touched here."); + case X86::TCRETURNdi64: + case X86::TCRETURNri64: + case X86::TCRETURNmi64: + return BB; + case X86::WIN_ALLOCA: + return EmitLoweredWinAlloca(MI, BB); + case X86::SEG_ALLOCA_32: + return EmitLoweredSegAlloca(MI, BB, false); + case X86::SEG_ALLOCA_64: + return EmitLoweredSegAlloca(MI, BB, true); + case X86::TLSCall_32: + case X86::TLSCall_64: + return EmitLoweredTLSCall(MI, BB); + case X86::CMOV_GR8: + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_V4F32: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_V8F32: + case X86::CMOV_V4F64: + case X86::CMOV_V4I64: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + return EmitLoweredSelect(MI, BB); + + case X86::FP32_TO_INT16_IN_MEM: + case X86::FP32_TO_INT32_IN_MEM: + case X86::FP32_TO_INT64_IN_MEM: + case X86::FP64_TO_INT16_IN_MEM: + case X86::FP64_TO_INT32_IN_MEM: + case X86::FP64_TO_INT64_IN_MEM: + case X86::FP80_TO_INT16_IN_MEM: + case X86::FP80_TO_INT32_IN_MEM: + case X86::FP80_TO_INT64_IN_MEM: { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + MachineFunction *F = BB->getParent(); + int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FNSTCW16m)), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned OldCW = + F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), + CWFrameIdx); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) + .addImm(0xC7F); + + // Reload the modified control word now... + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) + .addReg(OldCW); + + // Get the X86 opcode to use. + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; + case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; + case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; + case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; + case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; + case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; + case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; + case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; + case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; + } + + X86AddressMode AM; + MachineOperand &Op = MI->getOperand(0); + if (Op.isReg()) { + AM.BaseType = X86AddressMode::RegBase; + AM.Base.Reg = Op.getReg(); + } else { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = Op.getIndex(); + } + Op = MI->getOperand(1); + if (Op.isImm()) + AM.Scale = Op.getImm(); + Op = MI->getOperand(2); + if (Op.isImm()) + AM.IndexReg = Op.getImm(); + Op = MI->getOperand(3); + if (Op.isGlobal()) { + AM.GV = Op.getGlobal(); + } else { + AM.Disp = Op.getImm(); + } + addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) + .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); + + // Reload the original control word now. + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; + } + // String/text processing lowering. + case X86::PCMPISTRM128REG: + case X86::VPCMPISTRM128REG: + case X86::PCMPISTRM128MEM: + case X86::VPCMPISTRM128MEM: + case X86::PCMPESTRM128REG: + case X86::VPCMPESTRM128REG: + case X86::PCMPESTRM128MEM: + case X86::VPCMPESTRM128MEM: { + unsigned NumArgs; + bool MemArg; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::PCMPISTRM128REG: + case X86::VPCMPISTRM128REG: + NumArgs = 3; MemArg = false; break; + case X86::PCMPISTRM128MEM: + case X86::VPCMPISTRM128MEM: + NumArgs = 3; MemArg = true; break; + case X86::PCMPESTRM128REG: + case X86::VPCMPESTRM128REG: + NumArgs = 5; MemArg = false; break; + case X86::PCMPESTRM128MEM: + case X86::VPCMPESTRM128MEM: + NumArgs = 5; MemArg = true; break; + } + return EmitPCMP(MI, BB, NumArgs, MemArg); + } + + // Thread synchronization. + case X86::MONITOR: + return EmitMonitor(MI, BB); + + // Atomic Lowering. + case X86::ATOMAND32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, + X86::AND32ri, X86::MOV32rm, + X86::LCMPXCHG32, + X86::NOT32r, X86::EAX, + &X86::GR32RegClass); + case X86::ATOMOR32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, + X86::OR32ri, X86::MOV32rm, + X86::LCMPXCHG32, + X86::NOT32r, X86::EAX, + &X86::GR32RegClass); + case X86::ATOMXOR32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, + X86::XOR32ri, X86::MOV32rm, + X86::LCMPXCHG32, + X86::NOT32r, X86::EAX, + &X86::GR32RegClass); + case X86::ATOMNAND32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, + X86::AND32ri, X86::MOV32rm, + X86::LCMPXCHG32, + X86::NOT32r, X86::EAX, + &X86::GR32RegClass, true); + case X86::ATOMMIN32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); + case X86::ATOMMAX32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); + case X86::ATOMUMIN32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); + case X86::ATOMUMAX32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); + + case X86::ATOMAND16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, + X86::AND16ri, X86::MOV16rm, + X86::LCMPXCHG16, + X86::NOT16r, X86::AX, + &X86::GR16RegClass); + case X86::ATOMOR16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, + X86::OR16ri, X86::MOV16rm, + X86::LCMPXCHG16, + X86::NOT16r, X86::AX, + &X86::GR16RegClass); + case X86::ATOMXOR16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, + X86::XOR16ri, X86::MOV16rm, + X86::LCMPXCHG16, + X86::NOT16r, X86::AX, + &X86::GR16RegClass); + case X86::ATOMNAND16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, + X86::AND16ri, X86::MOV16rm, + X86::LCMPXCHG16, + X86::NOT16r, X86::AX, + &X86::GR16RegClass, true); + case X86::ATOMMIN16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); + case X86::ATOMMAX16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); + case X86::ATOMUMIN16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); + case X86::ATOMUMAX16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); + + case X86::ATOMAND8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, + X86::AND8ri, X86::MOV8rm, + X86::LCMPXCHG8, + X86::NOT8r, X86::AL, + &X86::GR8RegClass); + case X86::ATOMOR8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, + X86::OR8ri, X86::MOV8rm, + X86::LCMPXCHG8, + X86::NOT8r, X86::AL, + &X86::GR8RegClass); + case X86::ATOMXOR8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, + X86::XOR8ri, X86::MOV8rm, + X86::LCMPXCHG8, + X86::NOT8r, X86::AL, + &X86::GR8RegClass); + case X86::ATOMNAND8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, + X86::AND8ri, X86::MOV8rm, + X86::LCMPXCHG8, + X86::NOT8r, X86::AL, + &X86::GR8RegClass, true); + // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. + // This group is for 64-bit host. + case X86::ATOMAND64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, + X86::AND64ri32, X86::MOV64rm, + X86::LCMPXCHG64, + X86::NOT64r, X86::RAX, + &X86::GR64RegClass); + case X86::ATOMOR64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, + X86::OR64ri32, X86::MOV64rm, + X86::LCMPXCHG64, + X86::NOT64r, X86::RAX, + &X86::GR64RegClass); + case X86::ATOMXOR64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, + X86::XOR64ri32, X86::MOV64rm, + X86::LCMPXCHG64, + X86::NOT64r, X86::RAX, + &X86::GR64RegClass); + case X86::ATOMNAND64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, + X86::AND64ri32, X86::MOV64rm, + X86::LCMPXCHG64, + X86::NOT64r, X86::RAX, + &X86::GR64RegClass, true); + case X86::ATOMMIN64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); + case X86::ATOMMAX64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); + case X86::ATOMUMIN64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); + case X86::ATOMUMAX64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); + + // This group does 64-bit operations on a 32-bit host. + case X86::ATOMAND6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::AND32rr, X86::AND32rr, + X86::AND32ri, X86::AND32ri, + false); + case X86::ATOMOR6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::OR32rr, X86::OR32rr, + X86::OR32ri, X86::OR32ri, + false); + case X86::ATOMXOR6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::XOR32rr, X86::XOR32rr, + X86::XOR32ri, X86::XOR32ri, + false); + case X86::ATOMNAND6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::AND32rr, X86::AND32rr, + X86::AND32ri, X86::AND32ri, + true); + case X86::ATOMADD6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::ADD32rr, X86::ADC32rr, + X86::ADD32ri, X86::ADC32ri, + false); + case X86::ATOMSUB6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::SUB32rr, X86::SBB32rr, + X86::SUB32ri, X86::SBB32ri, + false); + case X86::ATOMSWAP6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::MOV32rr, X86::MOV32rr, + X86::MOV32ri, X86::MOV32ri, + false); + case X86::VASTART_SAVE_XMM_REGS: + return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); + + case X86::VAARG_64: + return EmitVAARG64WithCustomInserter(MI, BB); + } +} + +//===----------------------------------------------------------------------===// +// X86 Optimization Hooks +//===----------------------------------------------------------------------===// + +void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + unsigned BitWidth = KnownZero.getBitWidth(); + unsigned Opc = Op.getOpcode(); + assert((Opc >= ISD::BUILTIN_OP_END || + Opc == ISD::INTRINSIC_WO_CHAIN || + Opc == ISD::INTRINSIC_W_CHAIN || + Opc == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + + KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. + switch (Opc) { + default: break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::ADC: + case X86ISD::SBB: + case X86ISD::SMUL: + case X86ISD::UMUL: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + // These nodes' second result is a boolean. + if (Op.getResNo() == 0) + break; + // Fallthrough + case X86ISD::SETCC: + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); + break; + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + unsigned NumLoBits = 0; + switch (IntId) { + default: break; + case Intrinsic::x86_sse_movmsk_ps: + case Intrinsic::x86_avx_movmsk_ps_256: + case Intrinsic::x86_sse2_movmsk_pd: + case Intrinsic::x86_avx_movmsk_pd_256: + case Intrinsic::x86_mmx_pmovmskb: + case Intrinsic::x86_sse2_pmovmskb_128: + case Intrinsic::x86_avx2_pmovmskb: { + // High bits of movmskp{s|d}, pmovmskb are known zero. + switch (IntId) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; + case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; + case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; + case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; + case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; + case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; + case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; + } + KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); + break; + } + } + break; + } + } +} + +unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, + unsigned Depth) const { + // SETCC_CARRY sets the dest to ~0 for true or 0 for false. + if (Op.getOpcode() == X86ISD::SETCC_CARRY) + return Op.getValueType().getScalarType().getSizeInBits(); + + // Fallback case. + return 1; +} + +/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the +/// node is a GlobalAddress + offset. +bool X86TargetLowering::isGAPlusOffset(SDNode *N, + const GlobalValue* &GA, + int64_t &Offset) const { + if (N->getOpcode() == X86ISD::Wrapper) { + if (isa<GlobalAddressSDNode>(N->getOperand(0))) { + GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); + Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); + return true; + } + } + return TargetLowering::isGAPlusOffset(N, GA, Offset); +} + +/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the +/// same as extracting the high 128-bit part of 256-bit vector and then +/// inserting the result into the low part of a new 256-bit vector +static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) { + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + + // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> + for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j) + if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || + SVOp->getMaskElt(j) >= 0) + return false; + + return true; +} + +/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the +/// same as extracting the low 128-bit part of 256-bit vector and then +/// inserting the result into the high part of a new 256-bit vector +static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) { + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + + // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> + for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j) + if (!isUndefOrEqual(SVOp->getMaskElt(i), j) || + SVOp->getMaskElt(j) >= 0) + return false; + + return true; +} + +/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. +static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget* Subtarget) { + DebugLoc dl = N->getDebugLoc(); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + + if (V1.getOpcode() == ISD::CONCAT_VECTORS && + V2.getOpcode() == ISD::CONCAT_VECTORS) { + // + // 0,0,0,... + // | + // V UNDEF BUILD_VECTOR UNDEF + // \ / \ / + // CONCAT_VECTOR CONCAT_VECTOR + // \ / + // \ / + // RESULT: V + zero extended + // + if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || + V2.getOperand(1).getOpcode() != ISD::UNDEF || + V1.getOperand(1).getOpcode() != ISD::UNDEF) + return SDValue(); + + if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) + return SDValue(); + + // To match the shuffle mask, the first half of the mask should + // be exactly the first vector, and all the rest a splat with the + // first element of the second one. + for (unsigned i = 0; i != NumElems/2; ++i) + if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || + !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) + return SDValue(); + + // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. + if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { + if (Ld->hasNUsesOfValue(1, 0)) { + SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); + SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; + SDValue ResNode = + DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2, + Ld->getMemoryVT(), + Ld->getPointerInfo(), + Ld->getAlignment(), + false/*isVolatile*/, true/*ReadMem*/, + false/*WriteMem*/); + return DAG.getNode(ISD::BITCAST, dl, VT, ResNode); + } + } + + // Emit a zeroed vector and insert the desired subvector on its + // first half. + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); + return DCI.CombineTo(N, InsV); + } + + //===--------------------------------------------------------------------===// + // Combine some shuffles into subvector extracts and inserts: + // + + // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> + if (isShuffleHigh128VectorInsertLow(SVOp)) { + SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl); + SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl); + return DCI.CombineTo(N, InsV); + } + + // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> + if (isShuffleLow128VectorInsertHigh(SVOp)) { + SDValue V = Extract128BitVector(V1, 0, DAG, dl); + SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl); + return DCI.CombineTo(N, InsV); + } + + return SDValue(); +} + +/// PerformShuffleCombine - Performs several different shuffle combines. +static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + DebugLoc dl = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + // Don't create instructions with illegal types after legalize types has run. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) + return SDValue(); + + // Combine 256-bit vector shuffles. This is only profitable when in AVX mode + if (Subtarget->hasAVX() && VT.is256BitVector() && + N->getOpcode() == ISD::VECTOR_SHUFFLE) + return PerformShuffleCombine256(N, DAG, DCI, Subtarget); + + // Only handle 128 wide vector from here on. + if (!VT.is128BitVector()) + return SDValue(); + + // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, + // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are + // consecutive, non-overlapping, and in the right order. + SmallVector<SDValue, 16> Elts; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) + Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); + + return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); +} + + +/// DCI, PerformTruncateCombine - Converts truncate operation to +/// a sequence of vector shuffle operations. +/// It is possible when we truncate 256-bit vector to 128-bit vector + +SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG, + DAGCombinerInfo &DCI) const { + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (!Subtarget->hasAVX()) + return SDValue(); + + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + EVT OpVT = Op.getValueType(); + DebugLoc dl = N->getDebugLoc(); + + if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) { + + if (Subtarget->hasAVX2()) { + // AVX2: v4i64 -> v4i32 + + // VPERMD + static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; + + Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op); + Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32), + ShufMask); + + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op, + DAG.getIntPtrConstant(0)); + } + + // AVX: v4i64 -> v4i32 + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, + DAG.getIntPtrConstant(0)); + + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, + DAG.getIntPtrConstant(2)); + + OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi); + + // PSHUFD + static const int ShufMask1[] = {0, 2, 0, 0}; + + SDValue Undef = DAG.getUNDEF(VT); + OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1); + OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1); + + // MOVLHPS + static const int ShufMask2[] = {0, 1, 4, 5}; + + return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2); + } + + if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) { + + if (Subtarget->hasAVX2()) { + // AVX2: v8i32 -> v8i16 + + Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op); + + // PSHUFB + SmallVector<SDValue,32> pshufbMask; + for (unsigned i = 0; i < 2; ++i) { + pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8)); + for (unsigned j = 0; j < 8; ++j) + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + } + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8, + &pshufbMask[0], 32); + Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV); + + Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op); + + static const int ShufMask[] = {0, 2, -1, -1}; + Op = DAG.getVectorShuffle(MVT::v4i64, dl, Op, DAG.getUNDEF(MVT::v4i64), + &ShufMask[0]); + + Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op, + DAG.getIntPtrConstant(0)); + + return DAG.getNode(ISD::BITCAST, dl, VT, Op); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op, + DAG.getIntPtrConstant(0)); + + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op, + DAG.getIntPtrConstant(4)); + + OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi); + + // PSHUFB + static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, + -1, -1, -1, -1, -1, -1, -1, -1}; + + SDValue Undef = DAG.getUNDEF(MVT::v16i8); + OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1); + OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1); + + OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi); + + // MOVLHPS + static const int ShufMask2[] = {0, 1, 4, 5}; + + SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2); + return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res); + } + + return SDValue(); +} + +/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target +/// specific shuffle of a load can be folded into a single element load. +/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but +/// shuffles have been customed lowered so we need to handle those here. +static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue InVec = N->getOperand(0); + SDValue EltNo = N->getOperand(1); + + if (!isa<ConstantSDNode>(EltNo)) + return SDValue(); + + EVT VT = InVec.getValueType(); + + bool HasShuffleIntoBitcast = false; + if (InVec.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!InVec.hasOneUse()) + return SDValue(); + EVT BCVT = InVec.getOperand(0).getValueType(); + if (BCVT.getVectorNumElements() != VT.getVectorNumElements()) + return SDValue(); + InVec = InVec.getOperand(0); + HasShuffleIntoBitcast = true; + } + + if (!isTargetShuffle(InVec.getOpcode())) + return SDValue(); + + // Don't duplicate a load with other uses. + if (!InVec.hasOneUse()) + return SDValue(); + + SmallVector<int, 16> ShuffleMask; + bool UnaryShuffle; + if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask, + UnaryShuffle)) + return SDValue(); + + // Select the input vector, guarding against out of range extract vector. + unsigned NumElems = VT.getVectorNumElements(); + int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); + int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; + SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) + : InVec.getOperand(1); + + // If inputs to shuffle are the same for both ops, then allow 2 uses + unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; + + if (LdNode.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) + return SDValue(); + + AllowedUses = 1; // only allow 1 load use if we have a bitcast + LdNode = LdNode.getOperand(0); + } + + if (!ISD::isNormalLoad(LdNode.getNode())) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); + + if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) + return SDValue(); + + if (HasShuffleIntoBitcast) { + // If there's a bitcast before the shuffle, check if the load type and + // alignment is valid. + unsigned Align = LN0->getAlignment(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NewAlign = TLI.getTargetData()-> + getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext())); + + if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) + return SDValue(); + } + + // All checks match so transform back to vector_shuffle so that DAG combiner + // can finish the job + DebugLoc dl = N->getDebugLoc(); + + // Create shuffle node taking into account the case that its a unary shuffle + SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1); + Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl, + InVec.getOperand(0), Shuffle, + &ShuffleMask[0]); + Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, + EltNo); +} + +/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index +/// generation and convert it from being a bunch of shuffles and extracts +/// to a simple store and scalar loads to extract the elements. +static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI); + if (NewOp.getNode()) + return NewOp; + + SDValue InputVector = N->getOperand(0); + + // Only operate on vectors of 4 elements, where the alternative shuffling + // gets to be more expensive. + if (InputVector.getValueType() != MVT::v4i32) + return SDValue(); + + // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a + // single use which is a sign-extend or zero-extend, and all elements are + // used. + SmallVector<SDNode *, 4> Uses; + unsigned ExtractedElements = 0; + for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), + UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { + if (UI.getUse().getResNo() != InputVector.getResNo()) + return SDValue(); + + SDNode *Extract = *UI; + if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + if (Extract->getValueType(0) != MVT::i32) + return SDValue(); + if (!Extract->hasOneUse()) + return SDValue(); + if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && + Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + if (!isa<ConstantSDNode>(Extract->getOperand(1))) + return SDValue(); + + // Record which element was extracted. + ExtractedElements |= + 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); + + Uses.push_back(Extract); + } + + // If not all the elements were used, this may not be worthwhile. + if (ExtractedElements != 15) + return SDValue(); + + // Ok, we've now decided to do the transformation. + DebugLoc dl = InputVector.getDebugLoc(); + + // Store the value to a temporary stack slot. + SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, + MachinePointerInfo(), false, false, 0); + + // Replace each use (extract) with a load of the appropriate element. + for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), + UE = Uses.end(); UI != UE; ++UI) { + SDNode *Extract = *UI; + + // cOMpute the element's address. + SDValue Idx = Extract->getOperand(1); + unsigned EltSize = + InputVector.getValueType().getVectorElementType().getSizeInBits()/8; + uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); + + SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), + StackPtr, OffsetVal); + + // Load the scalar. + SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, + ScalarAddr, MachinePointerInfo(), + false, false, false, 0); + + // Replace the exact with the load. + DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); + } + + // The replacement was made in place; don't return anything. + return SDValue(); +} + +/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT +/// nodes. +static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + DebugLoc DL = N->getDebugLoc(); + SDValue Cond = N->getOperand(0); + // Get the LHS/RHS of the select. + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + EVT VT = LHS.getValueType(); + + // If we have SSE[12] support, try to form min/max nodes. SSE min/max + // instructions match the semantics of the common C idiom x<y?x:y but not + // x<=y?x:y, because of how they handle negative zero (which can be + // ignored in unsafe-math mode). + if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && + VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) && + (Subtarget->hasSSE2() || + (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + unsigned Opcode = 0; + // Check for x CC y ? x : y. + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + switch (CC) { + default: break; + case ISD::SETULT: + // Converting this to a min would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETOLE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETULE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETOGE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGT: + // Converting this to a max would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMAX; + break; + } + // Check for x CC y ? y : x -- a min/max with reversed arms. + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { + switch (CC) { + default: break; + case ISD::SETOGE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGT: + // Converting this to a min would handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETULT: + // Converting this to a max would handle NaNs incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETOLE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETULE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMAX; + break; + } + } + + if (Opcode) + return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); + } + + // If this is a select between two integer constants, try to do some + // optimizations. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) + // Don't do this for crazy integer types. + if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { + // If this is efficiently invertible, canonicalize the LHSC/RHSC values + // so that TrueC (the true value) is larger than FalseC. + bool NeedsCondInvert = false; + + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && + // Efficiently invertible. + (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. + (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. + isa<ConstantSDNode>(Cond.getOperand(1))))) { + NeedsCondInvert = true; + std::swap(TrueC, FalseC); + } + + // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. + if (FalseC->getAPIntValue() == 0 && + TrueC->getAPIntValue().isPowerOf2()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, + DAG.getConstant(ShAmt, MVT::i8)); + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + return Cond; + } + } + } + } + + // Canonicalize max and min: + // (x > y) ? x : y -> (x >= y) ? x : y + // (x < y) ? x : y -> (x <= y) ? x : y + // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates + // the need for an extra compare + // against zero. e.g. + // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 + // subl %esi, %edi + // testl %edi, %edi + // movl $0, %eax + // cmovgl %edi, %eax + // => + // xorl %eax, %eax + // subl %esi, $edi + // cmovsl %eax, %edi + if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && + DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + switch (CC) { + default: break; + case ISD::SETLT: + case ISD::SETGT: { + ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; + Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(), + Cond.getOperand(0), Cond.getOperand(1), NewCC); + return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); + } + } + } + + // If we know that this node is legal then we know that it is going to be + // matched by one of the SSE/AVX BLEND instructions. These instructions only + // depend on the highest bit in each word. Try to use SimplifyDemandedBits + // to simplify previous instructions. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && + !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) { + unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits(); + + // Don't optimize vector selects that map to mask-registers. + if (BitWidth == 1) + return SDValue(); + + assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); + APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); + + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), + DCI.isBeforeLegalizeOps()); + if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || + TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO)) + DCI.CommitTargetLoweringOpt(TLO); + } + + return SDValue(); +} + +// Check whether a boolean test is testing a boolean value generated by +// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition +// code. +// +// Simplify the following patterns: +// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) +// to (Op EFLAGS Cond) +// +// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) +// to (Op EFLAGS !Cond) +// +// where Op could be BRCOND or CMOV. +// +static SDValue BoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { + // Quit if not CMP and SUB with its value result used. + if (Cmp.getOpcode() != X86ISD::CMP && + (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) + return SDValue(); + + // Quit if not used as a boolean value. + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + // Check CMP operands. One of them should be 0 or 1 and the other should be + // an SetCC or extended from it. + SDValue Op1 = Cmp.getOperand(0); + SDValue Op2 = Cmp.getOperand(1); + + SDValue SetCC; + const ConstantSDNode* C = 0; + bool needOppositeCond = (CC == X86::COND_E); + + if ((C = dyn_cast<ConstantSDNode>(Op1))) + SetCC = Op2; + else if ((C = dyn_cast<ConstantSDNode>(Op2))) + SetCC = Op1; + else // Quit if all operands are not constants. + return SDValue(); + + if (C->getZExtValue() == 1) + needOppositeCond = !needOppositeCond; + else if (C->getZExtValue() != 0) + // Quit if the constant is neither 0 or 1. + return SDValue(); + + // Skip 'zext' node. + if (SetCC.getOpcode() == ISD::ZERO_EXTEND) + SetCC = SetCC.getOperand(0); + + // Quit if not SETCC. + // FIXME: So far we only handle the boolean value generated from SETCC. If + // there is other ways to generate boolean values, we need handle them here + // as well. + if (SetCC.getOpcode() != X86ISD::SETCC) + return SDValue(); + + // Set the condition code or opposite one if necessary. + CC = X86::CondCode(SetCC.getConstantOperandVal(0)); + if (needOppositeCond) + CC = X86::GetOppositeBranchCondition(CC); + + return SetCC.getOperand(1); +} + +static bool IsValidFCMOVCondition(X86::CondCode CC) { + switch (CC) { + default: + return false; + case X86::COND_B: + case X86::COND_BE: + case X86::COND_E: + case X86::COND_P: + case X86::COND_AE: + case X86::COND_A: + case X86::COND_NE: + case X86::COND_NP: + return true; + } +} + +/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] +static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + DebugLoc DL = N->getDebugLoc(); + + // If the flag operand isn't dead, don't touch this CMOV. + if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) + return SDValue(); + + SDValue FalseOp = N->getOperand(0); + SDValue TrueOp = N->getOperand(1); + X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); + SDValue Cond = N->getOperand(3); + + if (CC == X86::COND_E || CC == X86::COND_NE) { + switch (Cond.getOpcode()) { + default: break; + case X86ISD::BSR: + case X86ISD::BSF: + // If operand of BSR / BSF are proven never zero, then ZF cannot be set. + if (DAG.isKnownNeverZero(Cond.getOperand(0))) + return (CC == X86::COND_E) ? FalseOp : TrueOp; + } + } + + SDValue Flags; + + Flags = BoolTestSetCCCombine(Cond, CC); + if (Flags.getNode() && + // Extra check as FCMOV only supports a subset of X86 cond. + (FalseOp.getValueType() != MVT::f80 || IsValidFCMOVCondition(CC))) { + SDValue Ops[] = { FalseOp, TrueOp, + DAG.getConstant(CC, MVT::i8), Flags }; + return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), + Ops, array_lengthof(Ops)); + } + + // If this is a select between two integer constants, try to do some + // optimizations. Note that the operands are ordered the opposite of SELECT + // operands. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { + // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is + // larger than FalseC (the false value). + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueC, FalseC); + } + + // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. + // This is efficient for any integer data type (including i8/i16) and + // shift amount. + if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, + DAG.getConstant(ShAmt, MVT::i8)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient + // for any integer data type, including i8/i16. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + } + } + } + return SDValue(); +} + + +/// PerformMulCombine - Optimize a single multiply with constant into two +/// in order to implement it with two cheaper instructions, e.g. +/// LEA + SHL, LEA + LEA. +static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i64) + return SDValue(); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!C) + return SDValue(); + uint64_t MulAmt = C->getZExtValue(); + if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) + return SDValue(); + + uint64_t MulAmt1 = 0; + uint64_t MulAmt2 = 0; + if ((MulAmt % 9) == 0) { + MulAmt1 = 9; + MulAmt2 = MulAmt / 9; + } else if ((MulAmt % 5) == 0) { + MulAmt1 = 5; + MulAmt2 = MulAmt / 5; + } else if ((MulAmt % 3) == 0) { + MulAmt1 = 3; + MulAmt2 = MulAmt / 3; + } + if (MulAmt2 && + (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ + DebugLoc DL = N->getDebugLoc(); + + if (isPowerOf2_64(MulAmt2) && + !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) + // If second multiplifer is pow2, issue it first. We want the multiply by + // 3, 5, or 9 to be folded into the addressing mode unless the lone use + // is an add. + std::swap(MulAmt1, MulAmt2); + + SDValue NewMul; + if (isPowerOf2_64(MulAmt1)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(MulAmt1, VT)); + + if (isPowerOf2_64(MulAmt2)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, + DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, + DAG.getConstant(MulAmt2, VT)); + + // Do not add new nodes to DAG combiner worklist. + DCI.CombineTo(N, NewMul, false); + } + return SDValue(); +} + +static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + EVT VT = N0.getValueType(); + + // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) + // since the result of setcc_c is all zero's or all ones. + if (VT.isInteger() && !VT.isVector() && + N1C && N0.getOpcode() == ISD::AND && + N0.getOperand(1).getOpcode() == ISD::Constant) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY || + ((N00.getOpcode() == ISD::ANY_EXTEND || + N00.getOpcode() == ISD::ZERO_EXTEND) && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { + APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + APInt ShAmt = N1C->getAPIntValue(); + Mask = Mask.shl(ShAmt); + if (Mask != 0) + return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, + N00, DAG.getConstant(Mask, VT)); + } + } + + + // Hardware support for vector shifts is sparse which makes us scalarize the + // vector operations in many cases. Also, on sandybridge ADD is faster than + // shl. + // (shl V, 1) -> add V,V + if (isSplatVector(N1.getNode())) { + assert(N0.getValueType().isVector() && "Invalid vector shift type"); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0)); + // We shift all of the values by one. In many cases we do not have + // hardware support for this operation. This is better expressed as an ADD + // of two values. + if (N1C && (1 == N1C->getZExtValue())) { + return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0); + } + } + + return SDValue(); +} + +/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts +/// when possible. +static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (N->getOpcode() == ISD::SHL) { + SDValue V = PerformSHLCombine(N, DAG); + if (V.getNode()) return V; + } + + // On X86 with SSE2 support, we can transform this to a vector shift if + // all elements are shifted by the same amount. We can't do this in legalize + // because the a constant vector is typically transformed to a constant pool + // so we have no knowledge of the shift amount. + if (!Subtarget->hasSSE2()) + return SDValue(); + + if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && + (!Subtarget->hasAVX2() || + (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) + return SDValue(); + + SDValue ShAmtOp = N->getOperand(1); + EVT EltVT = VT.getVectorElementType(); + DebugLoc DL = N->getDebugLoc(); + SDValue BaseShAmt = SDValue(); + if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned i = 0; + for (; i != NumElts; ++i) { + SDValue Arg = ShAmtOp.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + BaseShAmt = Arg; + break; + } + // Handle the case where the build_vector is all undef + // FIXME: Should DAG allow this? + if (i == NumElts) + return SDValue(); + + for (; i != NumElts; ++i) { + SDValue Arg = ShAmtOp.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + if (Arg != BaseShAmt) { + return SDValue(); + } + } + } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && + cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { + SDValue InVec = ShAmtOp.getOperand(0); + if (InVec.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = InVec.getValueType().getVectorNumElements(); + unsigned i = 0; + for (; i != NumElts; ++i) { + SDValue Arg = InVec.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + BaseShAmt = Arg; + break; + } + } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { + unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); + if (C->getZExtValue() == SplatIdx) + BaseShAmt = InVec.getOperand(1); + } + } + if (BaseShAmt.getNode() == 0) { + // Don't create instructions with illegal types after legalize + // types has run. + if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) && + !DCI.isBeforeLegalize()) + return SDValue(); + + BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, + DAG.getIntPtrConstant(0)); + } + } else + return SDValue(); + + // The shift amount is an i32. + if (EltVT.bitsGT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); + else if (EltVT.bitsLT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); + + // The shift amount is identical so we can do a vector shift. + SDValue ValOp = N->getOperand(0); + switch (N->getOpcode()) { + default: + llvm_unreachable("Unknown shift opcode!"); + case ISD::SHL: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v2i64: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v4i64: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG); + } + case ISD::SRA: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v4i32: + case MVT::v8i16: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG); + } + case ISD::SRL: + switch (VT.getSimpleVT().SimpleTy) { + default: return SDValue(); + case MVT::v2i64: + case MVT::v4i32: + case MVT::v8i16: + case MVT::v4i64: + case MVT::v8i32: + case MVT::v16i16: + return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG); + } + } +} + + +// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) +// where both setccs reference the same FP CMP, and rewrite for CMPEQSS +// and friends. Likewise for OR -> CMPNEQSS. +static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + unsigned opcode; + + // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but + // we're requiring SSE2 for both. + if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CMP0 = N0->getOperand(1); + SDValue CMP1 = N1->getOperand(1); + DebugLoc DL = N->getDebugLoc(); + + // The SETCCs should both refer to the same CMP. + if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) + return SDValue(); + + SDValue CMP00 = CMP0->getOperand(0); + SDValue CMP01 = CMP0->getOperand(1); + EVT VT = CMP00.getValueType(); + + if (VT == MVT::f32 || VT == MVT::f64) { + bool ExpectingFlags = false; + // Check for any users that want flags: + for (SDNode::use_iterator UI = N->use_begin(), + UE = N->use_end(); + !ExpectingFlags && UI != UE; ++UI) + switch (UI->getOpcode()) { + default: + case ISD::BR_CC: + case ISD::BRCOND: + case ISD::SELECT: + ExpectingFlags = true; + break; + case ISD::CopyToReg: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + break; + } + + if (!ExpectingFlags) { + enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); + enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); + + if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { + X86::CondCode tmp = cc0; + cc0 = cc1; + cc1 = tmp; + } + + if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || + (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { + bool is64BitFP = (CMP00.getValueType() == MVT::f64); + X86ISD::NodeType NTOperator = is64BitFP ? + X86ISD::FSETCCsd : X86ISD::FSETCCss; + // FIXME: need symbolic constants for these magic numbers. + // See X86ATTInstPrinter.cpp:printSSECC(). + unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; + SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01, + DAG.getConstant(x86cc, MVT::i8)); + SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32, + OnesOrZeroesF); + SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI, + DAG.getConstant(1, MVT::i32)); + SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed); + return OneBitOfTruth; + } + } + } + } + return SDValue(); +} + +/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector +/// so it can be folded inside ANDNP. +static bool CanFoldXORWithAllOnes(const SDNode *N) { + EVT VT = N->getValueType(0); + + // Match direct AllOnes for 128 and 256-bit vectors + if (ISD::isBuildVectorAllOnes(N)) + return true; + + // Look through a bit convert. + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + // Sometimes the operand may come from a insert_subvector building a 256-bit + // allones vector + if (VT.is256BitVector() && + N->getOpcode() == ISD::INSERT_SUBVECTOR) { + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + + if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && + V1.getOperand(0).getOpcode() == ISD::UNDEF && + ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && + ISD::isBuildVectorAllOnes(V2.getNode())) + return true; + } + + return false; +} + +static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); + if (R.getNode()) + return R; + + EVT VT = N->getValueType(0); + + // Create ANDN, BLSI, and BLSR instructions + // BLSI is X & (-X) + // BLSR is X & (X-1) + if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + DebugLoc DL = N->getDebugLoc(); + + // Check LHS for not + if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1))) + return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1); + // Check RHS for not + if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1))) + return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0); + + // Check LHS for neg + if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 && + isZero(N0.getOperand(0))) + return DAG.getNode(X86ISD::BLSI, DL, VT, N1); + + // Check RHS for neg + if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 && + isZero(N1.getOperand(0))) + return DAG.getNode(X86ISD::BLSI, DL, VT, N0); + + // Check LHS for X-1 + if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && + isAllOnes(N0.getOperand(1))) + return DAG.getNode(X86ISD::BLSR, DL, VT, N1); + + // Check RHS for X-1 + if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && + isAllOnes(N1.getOperand(1))) + return DAG.getNode(X86ISD::BLSR, DL, VT, N0); + + return SDValue(); + } + + // Want to form ANDNP nodes: + // 1) In the hopes of then easily combining them with OR and AND nodes + // to form PBLEND/PSIGN. + // 2) To match ANDN packed intrinsics + if (VT != MVT::v2i64 && VT != MVT::v4i64) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + DebugLoc DL = N->getDebugLoc(); + + // Check LHS for vnot + if (N0.getOpcode() == ISD::XOR && + //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) + CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); + + // Check RHS for vnot + if (N1.getOpcode() == ISD::XOR && + //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) + CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); + + return SDValue(); +} + +static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget); + if (R.getNode()) + return R; + + EVT VT = N->getValueType(0); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // look for psign/blend + if (VT == MVT::v2i64 || VT == MVT::v4i64) { + if (!Subtarget->hasSSSE3() || + (VT == MVT::v4i64 && !Subtarget->hasAVX2())) + return SDValue(); + + // Canonicalize pandn to RHS + if (N0.getOpcode() == X86ISD::ANDNP) + std::swap(N0, N1); + // or (and (m, y), (pandn m, x)) + if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { + SDValue Mask = N1.getOperand(0); + SDValue X = N1.getOperand(1); + SDValue Y; + if (N0.getOperand(0) == Mask) + Y = N0.getOperand(1); + if (N0.getOperand(1) == Mask) + Y = N0.getOperand(0); + + // Check to see if the mask appeared in both the AND and ANDNP and + if (!Y.getNode()) + return SDValue(); + + // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. + // Look through mask bitcast. + if (Mask.getOpcode() == ISD::BITCAST) + Mask = Mask.getOperand(0); + if (X.getOpcode() == ISD::BITCAST) + X = X.getOperand(0); + if (Y.getOpcode() == ISD::BITCAST) + Y = Y.getOperand(0); + + EVT MaskVT = Mask.getValueType(); + + // Validate that the Mask operand is a vector sra node. + // FIXME: what to do for bytes, since there is a psignb/pblendvb, but + // there is no psrai.b + if (Mask.getOpcode() != X86ISD::VSRAI) + return SDValue(); + + // Check that the SRA is all signbits. + SDValue SraC = Mask.getOperand(1); + unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); + unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); + if ((SraAmt + 1) != EltBits) + return SDValue(); + + DebugLoc DL = N->getDebugLoc(); + + // Now we know we at least have a plendvb with the mask val. See if + // we can form a psignb/w/d. + // psign = x.type == y.type == mask.type && y = sub(0, x); + if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && + ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && + X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { + assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && + "Unsupported VT for PSIGN"); + Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); + return DAG.getNode(ISD::BITCAST, DL, VT, Mask); + } + // PBLENDVB only available on SSE 4.1 + if (!Subtarget->hasSSE41()) + return SDValue(); + + EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; + + X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X); + Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y); + Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask); + Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); + return DAG.getNode(ISD::BITCAST, DL, VT, Mask); + } + } + + if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) + if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) + return SDValue(); + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SDValue ShAmt0 = N0.getOperand(1); + if (ShAmt0.getValueType() != MVT::i8) + return SDValue(); + SDValue ShAmt1 = N1.getOperand(1); + if (ShAmt1.getValueType() != MVT::i8) + return SDValue(); + if (ShAmt0.getOpcode() == ISD::TRUNCATE) + ShAmt0 = ShAmt0.getOperand(0); + if (ShAmt1.getOpcode() == ISD::TRUNCATE) + ShAmt1 = ShAmt1.getOperand(0); + + DebugLoc DL = N->getDebugLoc(); + unsigned Opc = X86ISD::SHLD; + SDValue Op0 = N0.getOperand(0); + SDValue Op1 = N1.getOperand(0); + if (ShAmt0.getOpcode() == ISD::SUB) { + Opc = X86ISD::SHRD; + std::swap(Op0, Op1); + std::swap(ShAmt0, ShAmt1); + } + + unsigned Bits = VT.getSizeInBits(); + if (ShAmt1.getOpcode() == ISD::SUB) { + SDValue Sum = ShAmt1.getOperand(0); + if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { + SDValue ShAmt1Op1 = ShAmt1.getOperand(1); + if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) + ShAmt1Op1 = ShAmt1Op1.getOperand(0); + if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) + return DAG.getNode(Opc, DL, VT, + Op0, Op1, + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { + ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); + if (ShAmt0C && + ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) + return DAG.getNode(Opc, DL, VT, + N0.getOperand(0), N1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + + return SDValue(); +} + +// Generate NEG and CMOV for integer abs. +static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + + // Since X86 does not have CMOV for 8-bit integer, we don't convert + // 8-bit integer abs to NEG and CMOV. + if (VT.isInteger() && VT.getSizeInBits() == 8) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + DebugLoc DL = N->getDebugLoc(); + + // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) + // and change it to SUB and CMOV. + if (VT.isInteger() && N->getOpcode() == ISD::XOR && + N0.getOpcode() == ISD::ADD && + N0.getOperand(1) == N1 && + N1.getOpcode() == ISD::SRA && + N1.getOperand(0) == N0.getOperand(0)) + if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) + if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { + // Generate SUB & CMOV. + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), + DAG.getConstant(0, VT), N0.getOperand(0)); + + SDValue Ops[] = { N0.getOperand(0), Neg, + DAG.getConstant(X86::COND_GE, MVT::i8), + SDValue(Neg.getNode(), 1) }; + return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), + Ops, array_lengthof(Ops)); + } + return SDValue(); +} + +// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes +static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (Subtarget->hasCMov()) { + SDValue RV = performIntegerAbsCombine(N, DAG); + if (RV.getNode()) + return RV; + } + + // Try forming BMI if it is available. + if (!Subtarget->hasBMI()) + return SDValue(); + + EVT VT = N->getValueType(0); + + if (VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions"); + + // Create BLSMSK instructions by finding X ^ (X-1) + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + DebugLoc DL = N->getDebugLoc(); + + if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 && + isAllOnes(N0.getOperand(1))) + return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1); + + if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 && + isAllOnes(N1.getOperand(1))) + return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0); + + return SDValue(); +} + +/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. +static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + LoadSDNode *Ld = cast<LoadSDNode>(N); + EVT RegVT = Ld->getValueType(0); + EVT MemVT = Ld->getMemoryVT(); + DebugLoc dl = Ld->getDebugLoc(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + ISD::LoadExtType Ext = Ld->getExtensionType(); + + // If this is a vector EXT Load then attempt to optimize it using a + // shuffle. We need SSE4 for the shuffles. + // TODO: It is possible to support ZExt by zeroing the undef values + // during the shuffle phase or after the shuffle. + if (RegVT.isVector() && RegVT.isInteger() && + Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) { + assert(MemVT != RegVT && "Cannot extend to the same type"); + assert(MemVT.isVector() && "Must load a vector from memory"); + + unsigned NumElems = RegVT.getVectorNumElements(); + unsigned RegSz = RegVT.getSizeInBits(); + unsigned MemSz = MemVT.getSizeInBits(); + assert(RegSz > MemSz && "Register size must be greater than the mem size"); + + // All sizes must be a power of two. + if (!isPowerOf2_32(RegSz * MemSz * NumElems)) + return SDValue(); + + // Attempt to load the original value using scalar loads. + // Find the largest scalar type that divides the total loaded size. + MVT SclrLoadTy = MVT::i8; + for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; + tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { + MVT Tp = (MVT::SimpleValueType)tp; + if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { + SclrLoadTy = Tp; + } + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && + (64 <= MemSz)) + SclrLoadTy = MVT::f64; + + // Calculate the number of scalar loads that we need to perform + // in order to load our vector from memory. + unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); + + // Represent our vector as a sequence of elements which are the + // largest scalar that we can load. + EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy, + RegSz/SclrLoadTy.getSizeInBits()); + + // Represent the data using the same element type that is stored in + // memory. In practice, we ''widen'' MemVT. + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + RegSz/MemVT.getScalarType().getSizeInBits()); + + assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && + "Invalid vector type"); + + // We can't shuffle using an illegal type. + if (!TLI.isTypeLegal(WideVecVT)) + return SDValue(); + + SmallVector<SDValue, 8> Chains; + SDValue Ptr = Ld->getBasePtr(); + SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8, + TLI.getPointerTy()); + SDValue Res = DAG.getUNDEF(LoadUnitVecVT); + + for (unsigned i = 0; i < NumLoads; ++i) { + // Perform a single load. + SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), + Ptr, Ld->getPointerInfo(), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), Ld->getAlignment()); + Chains.push_back(ScalarLoad.getValue(1)); + // Create the first element type using SCALAR_TO_VECTOR in order to avoid + // another round of DAGCombining. + if (i == 0) + Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); + else + Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, + ScalarLoad, DAG.getIntPtrConstant(i)); + + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + } + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], + Chains.size()); + + // Bitcast the loaded value to a vector of the original element type, in + // the size of the target vector type. + SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res); + unsigned SizeRatio = RegSz/MemSz; + + // Redistribute the loaded elements into the different locations. + SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i*SizeRatio] = i; + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, + DAG.getUNDEF(WideVecVT), + &ShuffleVec[0]); + + // Bitcast to the requested type. + Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff); + // Replace the original load with the new sequence + // and return the new chain. + return DCI.CombineTo(N, Shuff, TF, true); + } + + return SDValue(); +} + +/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. +static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + StoreSDNode *St = cast<StoreSDNode>(N); + EVT VT = St->getValue().getValueType(); + EVT StVT = St->getMemoryVT(); + DebugLoc dl = St->getDebugLoc(); + SDValue StoredVal = St->getOperand(1); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // If we are saving a concatenation of two XMM registers, perform two stores. + // On Sandy Bridge, 256-bit memory operations are executed by two + // 128-bit ports. However, on Haswell it is better to issue a single 256-bit + // memory operation. + if (VT.is256BitVector() && !Subtarget->hasAVX2() && + StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS && + StoredVal.getNumOperands() == 2) { + SDValue Value0 = StoredVal.getOperand(0); + SDValue Value1 = StoredVal.getOperand(1); + + SDValue Stride = DAG.getConstant(16, TLI.getPointerTy()); + SDValue Ptr0 = St->getBasePtr(); + SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); + + SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); + } + + // Optimize trunc store (of multiple scalars) to shuffle and store. + // First, pack all of the elements in one place. Next, store to memory + // in fewer chunks. + if (St->isTruncatingStore() && VT.isVector()) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NumElems = VT.getVectorNumElements(); + assert(StVT != VT && "Cannot truncate to the same type"); + unsigned FromSz = VT.getVectorElementType().getSizeInBits(); + unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); + + // From, To sizes and ElemCount must be pow of two + if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); + // We are going to use the original vector elt for storing. + // Accumulated smaller vector elements must be a multiple of the store size. + if (0 != (NumElems * FromSz) % ToSz) return SDValue(); + + unsigned SizeRatio = FromSz / ToSz; + + assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + StVT.getScalarType(), NumElems*SizeRatio); + + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue()); + SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + if (!TLI.isTypeLegal(WideVecVT)) + return SDValue(); + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, + DAG.getUNDEF(WideVecVT), + &ShuffleVec[0]); + // At this point all of the data is stored at the bottom of the + // register. We now need to save it to mem. + + // Find the largest store unit + MVT StoreType = MVT::i8; + for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; + tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { + MVT Tp = (MVT::SimpleValueType)tp; + if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) + StoreType = Tp; + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && + (64 <= NumElems * ToSz)) + StoreType = MVT::f64; + + // Bitcast the original vector into a vector of store-size units + EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), + StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); + assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); + SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff); + SmallVector<SDValue, 8> Chains; + SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, + TLI.getPointerTy()); + SDValue Ptr = St->getBasePtr(); + + // Perform one or more big stores into memory. + for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { + SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + StoreType, ShuffWide, + DAG.getIntPtrConstant(i)); + SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + Chains.push_back(Ch); + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], + Chains.size()); + } + + + // Turn load->store of MMX types into GPR load/stores. This avoids clobbering + // the FP state in cases where an emms may be missing. + // A preferable solution to the general problem is to figure out the right + // places to insert EMMS. This qualifies as a quick hack. + + // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. + if (VT.getSizeInBits() != 64) + return SDValue(); + + const Function *F = DAG.getMachineFunction().getFunction(); + bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); + bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps + && Subtarget->hasSSE2(); + if ((VT.isVector() || + (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && + isa<LoadSDNode>(St->getValue()) && + !cast<LoadSDNode>(St->getValue())->isVolatile() && + St->getChain().hasOneUse() && !St->isVolatile()) { + SDNode* LdVal = St->getValue().getNode(); + LoadSDNode *Ld = 0; + int TokenFactorIndex = -1; + SmallVector<SDValue, 8> Ops; + SDNode* ChainVal = St->getChain().getNode(); + // Must be a store of a load. We currently handle two cases: the load + // is a direct child, and it's under an intervening TokenFactor. It is + // possible to dig deeper under nested TokenFactors. + if (ChainVal == LdVal) + Ld = cast<LoadSDNode>(St->getChain()); + else if (St->getValue().hasOneUse() && + ChainVal->getOpcode() == ISD::TokenFactor) { + for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { + if (ChainVal->getOperand(i).getNode() == LdVal) { + TokenFactorIndex = i; + Ld = cast<LoadSDNode>(St->getValue()); + } else + Ops.push_back(ChainVal->getOperand(i)); + } + } + + if (!Ld || !ISD::isNormalLoad(Ld)) + return SDValue(); + + // If this is not the MMX case, i.e. we are just turning i64 load/store + // into f64 load/store, avoid the transformation if there are multiple + // uses of the loaded value. + if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) + return SDValue(); + + DebugLoc LdDL = Ld->getDebugLoc(); + DebugLoc StDL = N->getDebugLoc(); + // If we are a 64-bit capable x86, lower to a single movq load/store pair. + // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store + // pair instead. + if (Subtarget->is64Bit() || F64IsLegal) { + EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; + SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + Ld->getAlignment()); + SDValue NewChain = NewLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(NewChain); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], + Ops.size()); + } + return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), + St->getPointerInfo(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + } + + // Otherwise, lower to two pairs of 32-bit loads / stores. + SDValue LoAddr = Ld->getBasePtr(); + SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, + DAG.getConstant(4, MVT::i32)); + + SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, + Ld->getPointerInfo(), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), Ld->getAlignment()); + SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, + Ld->getPointerInfo().getWithOffset(4), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), + MinAlign(Ld->getAlignment(), 4)); + + SDValue NewChain = LoLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(LoLd); + Ops.push_back(HiLd); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], + Ops.size()); + } + + LoAddr = St->getBasePtr(); + HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, + DAG.getConstant(4, MVT::i32)); + + SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, + St->getPointerInfo(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, + St->getPointerInfo().getWithOffset(4), + St->isVolatile(), + St->isNonTemporal(), + MinAlign(St->getAlignment(), 4)); + return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); + } + return SDValue(); +} + +/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal" +/// and return the operands for the horizontal operation in LHS and RHS. A +/// horizontal operation performs the binary operation on successive elements +/// of its first operand, then on successive elements of its second operand, +/// returning the resulting values in a vector. For example, if +/// A = < float a0, float a1, float a2, float a3 > +/// and +/// B = < float b0, float b1, float b2, float b3 > +/// then the result of doing a horizontal operation on A and B is +/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. +/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form +/// A horizontal-op B, for some already available A and B, and if so then LHS is +/// set to A, RHS to B, and the routine returns 'true'. +/// Note that the binary operation should have the property that if one of the +/// operands is UNDEF then the result is UNDEF. +static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { + // Look for the following pattern: if + // A = < float a0, float a1, float a2, float a3 > + // B = < float b0, float b1, float b2, float b3 > + // and + // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> + // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> + // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > + // which is A horizontal-op B. + + // At least one of the operands should be a vector shuffle. + if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && + RHS.getOpcode() != ISD::VECTOR_SHUFFLE) + return false; + + EVT VT = LHS.getValueType(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for horizontal add/sub"); + + // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to + // operate independently on 128-bit lanes. + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts / NumLanes; + assert((NumLaneElts % 2 == 0) && + "Vector type should have an even number of elements in each lane"); + unsigned HalfLaneElts = NumLaneElts/2; + + // View LHS in the form + // LHS = VECTOR_SHUFFLE A, B, LMask + // If LHS is not a shuffle then pretend it is the shuffle + // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> + // NOTE: in what follows a default initialized SDValue represents an UNDEF of + // type VT. + SDValue A, B; + SmallVector<int, 16> LMask(NumElts); + if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) + A = LHS.getOperand(0); + if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) + B = LHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), LMask.begin()); + } else { + if (LHS.getOpcode() != ISD::UNDEF) + A = LHS; + for (unsigned i = 0; i != NumElts; ++i) + LMask[i] = i; + } + + // Likewise, view RHS in the form + // RHS = VECTOR_SHUFFLE C, D, RMask + SDValue C, D; + SmallVector<int, 16> RMask(NumElts); + if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) + C = RHS.getOperand(0); + if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) + D = RHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), RMask.begin()); + } else { + if (RHS.getOpcode() != ISD::UNDEF) + C = RHS; + for (unsigned i = 0; i != NumElts; ++i) + RMask[i] = i; + } + + // Check that the shuffles are both shuffling the same vectors. + if (!(A == C && B == D) && !(A == D && B == C)) + return false; + + // If everything is UNDEF then bail out: it would be better to fold to UNDEF. + if (!A.getNode() && !B.getNode()) + return false; + + // If A and B occur in reverse order in RHS, then "swap" them (which means + // rewriting the mask). + if (A != C) + CommuteVectorShuffleMask(RMask, NumElts); + + // At this point LHS and RHS are equivalent to + // LHS = VECTOR_SHUFFLE A, B, LMask + // RHS = VECTOR_SHUFFLE A, B, RMask + // Check that the masks correspond to performing a horizontal operation. + for (unsigned i = 0; i != NumElts; ++i) { + int LIdx = LMask[i], RIdx = RMask[i]; + + // Ignore any UNDEF components. + if (LIdx < 0 || RIdx < 0 || + (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || + (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) + continue; + + // Check that successive elements are being operated on. If not, this is + // not a horizontal operation. + unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs + unsigned LaneStart = (i/NumLaneElts) * NumLaneElts; + int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart; + if (!(LIdx == Index && RIdx == Index + 1) && + !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) + return false; + } + + LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. + RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. + return true; +} + +/// PerformFADDCombine - Do target-specific dag combines on floating point adds. +static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // Try to synthesize horizontal adds from adds of shuffles. + if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || + (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + isHorizontalBinOp(LHS, RHS, true)) + return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS); + return SDValue(); +} + +/// PerformFSUBCombine - Do target-specific dag combines on floating point subs. +static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // Try to synthesize horizontal subs from subs of shuffles. + if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || + (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + isHorizontalBinOp(LHS, RHS, false)) + return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS); + return SDValue(); +} + +/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and +/// X86ISD::FXOR nodes. +static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { + assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); + // F[X]OR(0.0, x) -> x + // F[X]OR(x, 0.0) -> x + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + return SDValue(); +} + +/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. +static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { + // FAND(0.0, x) -> 0.0 + // FAND(x, 0.0) -> 0.0 + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + return SDValue(); +} + +static SDValue PerformBTCombine(SDNode *N, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // BT ignores high bits in the bit index operand. + SDValue Op1 = N->getOperand(1); + if (Op1.hasOneUse()) { + unsigned BitWidth = Op1.getValueSizeInBits(); + APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || + TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) + DCI.CommitTargetLoweringOpt(TLO); + } + return SDValue(); +} + +static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue Op = N->getOperand(0); + if (Op.getOpcode() == ISD::BITCAST) + Op = Op.getOperand(0); + EVT VT = N->getValueType(0), OpVT = Op.getValueType(); + if (Op.getOpcode() == X86ISD::VZEXT_LOAD && + VT.getVectorElementType().getSizeInBits() == + OpVT.getVectorElementType().getSizeInBits()) { + return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); + } + return SDValue(); +} + +static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (!Subtarget->hasAVX()) + return SDValue(); + + EVT VT = N->getValueType(0); + SDValue Op = N->getOperand(0); + EVT OpVT = Op.getValueType(); + DebugLoc dl = N->getDebugLoc(); + + if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) || + (VT == MVT::v8i32 && OpVT == MVT::v8i16)) { + + if (Subtarget->hasAVX2()) + return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op); + + // Optimize vectors in AVX mode + // Sign extend v8i16 to v8i32 and + // v4i32 to v4i64 + // + // Divide input vector into two parts + // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} + // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 + // concat the vectors to original VT + + unsigned NumElems = OpVT.getVectorNumElements(); + SDValue Undef = DAG.getUNDEF(OpVT); + + SmallVector<int,8> ShufMask1(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask1[i] = i; + + SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]); + + SmallVector<int,8> ShufMask2(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask2[i] = i + NumElems/2; + + SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]); + + EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo); + OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); + } + return SDValue(); +} + +static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget* Subtarget) { + DebugLoc dl = N->getDebugLoc(); + EVT VT = N->getValueType(0); + + EVT ScalarVT = VT.getScalarType(); + if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasFMA()) + return SDValue(); + + SDValue A = N->getOperand(0); + SDValue B = N->getOperand(1); + SDValue C = N->getOperand(2); + + bool NegA = (A.getOpcode() == ISD::FNEG); + bool NegB = (B.getOpcode() == ISD::FNEG); + bool NegC = (C.getOpcode() == ISD::FNEG); + + // Negative multiplication when NegA xor NegB + bool NegMul = (NegA != NegB); + if (NegA) + A = A.getOperand(0); + if (NegB) + B = B.getOperand(0); + if (NegC) + C = C.getOperand(0); + + unsigned Opcode; + if (!NegMul) + Opcode = (!NegC)? X86ISD::FMADD : X86ISD::FMSUB; + else + Opcode = (!NegC)? X86ISD::FNMADD : X86ISD::FNMSUB; + return DAG.getNode(Opcode, dl, VT, A, B, C); +} + +static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> + // (and (i32 x86isd::setcc_carry), 1) + // This eliminates the zext. This transformation is necessary because + // ISD::SETCC is always legalized to i8. + DebugLoc dl = N->getDebugLoc(); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT OpVT = N0.getValueType(); + + if (N0.getOpcode() == ISD::AND && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() != X86ISD::SETCC_CARRY) + return SDValue(); + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!C || C->getZExtValue() != 1) + return SDValue(); + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, VT)); + } + + // Optimize vectors in AVX mode: + // + // v8i16 -> v8i32 + // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. + // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. + // Concat upper and lower parts. + // + // v4i32 -> v4i64 + // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. + // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. + // Concat upper and lower parts. + // + if (!DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (!Subtarget->hasAVX()) + return SDValue(); + + if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) || + ((VT == MVT::v4i64) && (OpVT == MVT::v4i32))) { + + if (Subtarget->hasAVX2()) + return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0); + + SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl); + SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec); + SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec); + + EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo); + OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); + } + + return SDValue(); +} + +// Optimize x == -y --> x+y == 0 +// x != -y --> x+y != 0 +static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) { + ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0))) + if (C->getAPIntValue() == 0 && LHS.hasOneUse()) { + SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), + LHS.getValueType(), RHS, LHS.getOperand(1)); + return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), + addV, DAG.getConstant(0, addV.getValueType()), CC); + } + if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0))) + if (C->getAPIntValue() == 0 && RHS.hasOneUse()) { + SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(), + RHS.getValueType(), LHS, RHS.getOperand(1)); + return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0), + addV, DAG.getConstant(0, addV.getValueType()), CC); + } + return SDValue(); +} + +// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT +static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) { + DebugLoc DL = N->getDebugLoc(); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); + SDValue EFLAGS = N->getOperand(1); + + // Materialize "setb reg" as "sbb reg,reg", since it can be extended without + // a zext and produces an all-ones bit which is more useful than 0/1 in some + // cases. + if (CC == X86::COND_B) + return DAG.getNode(ISD::AND, DL, MVT::i8, + DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), EFLAGS), + DAG.getConstant(1, MVT::i8)); + + SDValue Flags; + + Flags = BoolTestSetCCCombine(EFLAGS, CC); + if (Flags.getNode()) { + SDValue Cond = DAG.getConstant(CC, MVT::i8); + return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); + } + + return SDValue(); +} + +// Optimize branch condition evaluation. +// +static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + DebugLoc DL = N->getDebugLoc(); + SDValue Chain = N->getOperand(0); + SDValue Dest = N->getOperand(1); + SDValue EFLAGS = N->getOperand(3); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); + + SDValue Flags; + + Flags = BoolTestSetCCCombine(EFLAGS, CC); + if (Flags.getNode()) { + SDValue Cond = DAG.getConstant(CC, MVT::i8); + return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, + Flags); + } + + return SDValue(); +} + +static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) { + SDValue Op0 = N->getOperand(0); + EVT InVT = Op0->getValueType(0); + + // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32)) + if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { + DebugLoc dl = N->getDebugLoc(); + MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; + SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); + // Notice that we use SINT_TO_FP because we know that the high bits + // are zero and SINT_TO_FP is better supported by the hardware. + return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); + } + + return SDValue(); +} + +static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, + const X86TargetLowering *XTLI) { + SDValue Op0 = N->getOperand(0); + EVT InVT = Op0->getValueType(0); + + // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32)) + if (InVT == MVT::v8i8 || InVT == MVT::v4i8) { + DebugLoc dl = N->getDebugLoc(); + MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; + SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); + return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P); + } + + // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have + // a 32-bit target where SSE doesn't support i64->FP operations. + if (Op0.getOpcode() == ISD::LOAD) { + LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); + EVT VT = Ld->getValueType(0); + if (!Ld->isVolatile() && !N->getValueType(0).isVector() && + ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && + !XTLI->getSubtarget()->is64Bit() && + !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { + SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0), + Ld->getChain(), Op0, DAG); + DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); + return FILDChain; + } + } + return SDValue(); +} + +static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + + // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT() + if (VT == MVT::v8i8 || VT == MVT::v4i8) { + DebugLoc dl = N->getDebugLoc(); + MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32; + SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, I); + } + + return SDValue(); +} + +// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS +static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, + X86TargetLowering::DAGCombinerInfo &DCI) { + // If the LHS and RHS of the ADC node are zero, then it can't overflow and + // the result is either zero or one (depending on the input carry bit). + // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. + if (X86::isZeroNode(N->getOperand(0)) && + X86::isZeroNode(N->getOperand(1)) && + // We don't have a good way to replace an EFLAGS use, so only do this when + // dead right now. + SDValue(N, 1).use_empty()) { + DebugLoc DL = N->getDebugLoc(); + EVT VT = N->getValueType(0); + SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); + SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B,MVT::i8), + N->getOperand(2)), + DAG.getConstant(1, VT)); + return DCI.CombineTo(N, Res1, CarryOut); + } + + return SDValue(); +} + +// fold (add Y, (sete X, 0)) -> adc 0, Y +// (add Y, (setne X, 0)) -> sbb -1, Y +// (sub (sete X, 0), Y) -> sbb 0, Y +// (sub (setne X, 0), Y) -> adc -1, Y +static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { + DebugLoc DL = N->getDebugLoc(); + + // Look through ZExts. + SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); + if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) + return SDValue(); + + SDValue SetCC = Ext.getOperand(0); + if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) + return SDValue(); + + X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + SDValue Cmp = SetCC.getOperand(1); + if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || + !X86::isZeroNode(Cmp.getOperand(1)) || + !Cmp.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue CmpOp0 = Cmp.getOperand(0); + SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, + DAG.getConstant(1, CmpOp0.getValueType())); + + SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); + if (CC == X86::COND_NE) + return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, + DL, OtherVal.getValueType(), OtherVal, + DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); + return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, + DL, OtherVal.getValueType(), OtherVal, + DAG.getConstant(0, OtherVal.getValueType()), NewCmp); +} + +/// PerformADDCombine - Do target-specific dag combines on integer adds. +static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // Try to synthesize horizontal adds from adds of shuffles. + if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, true)) + return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1); + + return OptimizeConditionalInDecrement(N, DAG); +} + +static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // X86 can't encode an immediate LHS of a sub. See if we can push the + // negation into a preceding instruction. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { + // If the RHS of the sub is a XOR with one use and a constant, invert the + // immediate. Then add one to the LHS of the sub so we can turn + // X-Y -> X+~Y+1, saving one register. + if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && + isa<ConstantSDNode>(Op1.getOperand(1))) { + APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); + EVT VT = Op0.getValueType(); + SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT, + Op1.getOperand(0), + DAG.getConstant(~XorC, VT)); + return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor, + DAG.getConstant(C->getAPIntValue()+1, VT)); + } + } + + // Try to synthesize horizontal adds from adds of shuffles. + EVT VT = N->getValueType(0); + if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, true)) + return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1); + + return OptimizeConditionalInDecrement(N, DAG); +} + +SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + switch (N->getOpcode()) { + default: break; + case ISD::EXTRACT_VECTOR_ELT: + return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); + case ISD::VSELECT: + case ISD::SELECT: return PerformSELECTCombine(N, DAG, DCI, Subtarget); + case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); + case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); + case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); + case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); + case ISD::MUL: return PerformMulCombine(N, DAG, DCI); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); + case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); + case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); + case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); + case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); + case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); + case ISD::UINT_TO_FP: return PerformUINT_TO_FPCombine(N, DAG); + case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this); + case ISD::FP_TO_SINT: return PerformFP_TO_SINTCombine(N, DAG); + case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); + case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); + case X86ISD::FXOR: + case X86ISD::FOR: return PerformFORCombine(N, DAG); + case X86ISD::FAND: return PerformFANDCombine(N, DAG); + case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); + case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); + case ISD::TRUNCATE: return PerformTruncateCombine(N, DAG, DCI); + case ISD::SETCC: return PerformISDSETCCCombine(N, DAG); + case X86ISD::SETCC: return PerformSETCCCombine(N, DAG); + case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); + case X86ISD::SHUFP: // Handle all target specific shuffles + case X86ISD::PALIGN: + case X86ISD::UNPCKH: + case X86ISD::UNPCKL: + case X86ISD::MOVHLPS: + case X86ISD::MOVLHPS: + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::VPERMILP: + case X86ISD::VPERM2X128: + case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); + case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); + } + + return SDValue(); +} + +/// isTypeDesirableForOp - Return true if the target has native support for +/// the specified value type and it is 'desirable' to use the type for the +/// given node type. e.g. On x86 i16 is legal, but undesirable since i16 +/// instruction encodings are longer and some i16 instructions are slow. +bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { + if (!isTypeLegal(VT)) + return false; + if (VT != MVT::i16) + return true; + + switch (Opc) { + default: + return true; + case ISD::LOAD: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + case ISD::SHL: + case ISD::SRL: + case ISD::SUB: + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + return false; + } +} + +/// IsDesirableToPromoteOp - This method query the target whether it is +/// beneficial for dag combiner to promote the specified node. If true, it +/// should return the desired promotion type by reference. +bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { + EVT VT = Op.getValueType(); + if (VT != MVT::i16) + return false; + + bool Promote = false; + bool Commute = false; + switch (Op.getOpcode()) { + default: break; + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + // If the non-extending load has a single use and it's not live out, then it + // might be folded. + if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& + Op.hasOneUse()*/) { + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + // The only case where we'd want to promote LOAD (rather then it being + // promoted as an operand is when it's only use is liveout. + if (UI->getOpcode() != ISD::CopyToReg) + return false; + } + } + Promote = true; + break; + } + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + Promote = true; + break; + case ISD::SHL: + case ISD::SRL: { + SDValue N0 = Op.getOperand(0); + // Look out for (store (shl (load), x)). + if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) + return false; + Promote = true; + break; + } + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + Commute = true; + // fallthrough + case ISD::SUB: { + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + if (!Commute && MayFoldLoad(N1)) + return false; + // Avoid disabling potential load folding opportunities. + if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) + return false; + if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) + return false; + Promote = true; + } + } + + PVT = MVT::i32; + return Promote; +} + +//===----------------------------------------------------------------------===// +// X86 Inline Assembly Support +//===----------------------------------------------------------------------===// + +namespace { + // Helper to match a string separated by whitespace. + bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) { + s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace. + + for (unsigned i = 0, e = args.size(); i != e; ++i) { + StringRef piece(*args[i]); + if (!s.startswith(piece)) // Check if the piece matches. + return false; + + s = s.substr(piece.size()); + StringRef::size_type pos = s.find_first_not_of(" \t"); + if (pos == 0) // We matched a prefix. + return false; + + s = s.substr(pos); + } + + return s.empty(); + } + const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={}; +} + +bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { + InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); + + std::string AsmStr = IA->getAsmString(); + + IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); + if (!Ty || Ty->getBitWidth() % 16 != 0) + return false; + + // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" + SmallVector<StringRef, 4> AsmPieces; + SplitString(AsmStr, AsmPieces, ";\n"); + + switch (AsmPieces.size()) { + default: return false; + case 1: + // FIXME: this should verify that we are targeting a 486 or better. If not, + // we will turn this bswap into something that will be lowered to logical + // ops instead of emitting the bswap asm. For now, we don't support 486 or + // lower so don't worry about this. + // bswap $0 + if (matchAsm(AsmPieces[0], "bswap", "$0") || + matchAsm(AsmPieces[0], "bswapl", "$0") || + matchAsm(AsmPieces[0], "bswapq", "$0") || + matchAsm(AsmPieces[0], "bswap", "${0:q}") || + matchAsm(AsmPieces[0], "bswapl", "${0:q}") || + matchAsm(AsmPieces[0], "bswapq", "${0:q}")) { + // No need to check constraints, nothing other than the equivalent of + // "=r,0" would be valid here. + return IntrinsicLowering::LowerToByteSwap(CI); + } + + // rorw $$8, ${0:w} --> llvm.bswap.i16 + if (CI->getType()->isIntegerTy(16) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") || + matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) { + AsmPieces.clear(); + const std::string &ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + std::sort(AsmPieces.begin(), AsmPieces.end()); + if (AsmPieces.size() == 4 && + AsmPieces[0] == "~{cc}" && + AsmPieces[1] == "~{dirflag}" && + AsmPieces[2] == "~{flags}" && + AsmPieces[3] == "~{fpsr}") + return IntrinsicLowering::LowerToByteSwap(CI); + } + break; + case 3: + if (CI->getType()->isIntegerTy(32) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") && + matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") && + matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) { + AsmPieces.clear(); + const std::string &ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + std::sort(AsmPieces.begin(), AsmPieces.end()); + if (AsmPieces.size() == 4 && + AsmPieces[0] == "~{cc}" && + AsmPieces[1] == "~{dirflag}" && + AsmPieces[2] == "~{flags}" && + AsmPieces[3] == "~{fpsr}") + return IntrinsicLowering::LowerToByteSwap(CI); + } + + if (CI->getType()->isIntegerTy(64)) { + InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); + if (Constraints.size() >= 2 && + Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && + Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { + // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 + if (matchAsm(AsmPieces[0], "bswap", "%eax") && + matchAsm(AsmPieces[1], "bswap", "%edx") && + matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx")) + return IntrinsicLowering::LowerToByteSwap(CI); + } + } + break; + } + return false; +} + + + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +X86TargetLowering::ConstraintType +X86TargetLowering::getConstraintType(const std::string &Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'R': + case 'q': + case 'Q': + case 'f': + case 't': + case 'u': + case 'y': + case 'x': + case 'Y': + case 'l': + return C_RegisterClass; + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + return C_Register; + case 'I': + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'G': + case 'C': + case 'e': + case 'Z': + return C_Other; + default: + break; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + X86TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (CallOperandVal == NULL) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + case 'R': + case 'q': + case 'Q': + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_SpecificReg; + break; + case 'f': + case 't': + case 'u': + if (type->isFloatingPointTy()) + weight = CW_SpecificReg; + break; + case 'y': + if (type->isX86_MMXTy() && Subtarget->hasMMX()) + weight = CW_SpecificReg; + break; + case 'x': + case 'Y': + if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || + ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX())) + weight = CW_Register; + break; + case 'I': + if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { + if (C->getZExtValue() <= 31) + weight = CW_Constant; + } + break; + case 'J': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 63) + weight = CW_Constant; + } + break; + case 'K': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) + weight = CW_Constant; + } + break; + case 'L': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) + weight = CW_Constant; + } + break; + case 'M': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 3) + weight = CW_Constant; + } + break; + case 'N': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xff) + weight = CW_Constant; + } + break; + case 'G': + case 'C': + if (dyn_cast<ConstantFP>(CallOperandVal)) { + weight = CW_Constant; + } + break; + case 'e': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80000000LL) && + (C->getSExtValue() <= 0x7fffffffLL)) + weight = CW_Constant; + } + break; + case 'Z': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xffffffff) + weight = CW_Constant; + } + break; + } + return weight; +} + +/// LowerXConstraint - try to replace an X constraint, which matches anything, +/// with another that has more specific requirements based on the type of the +/// corresponding operand. +const char *X86TargetLowering:: +LowerXConstraint(EVT ConstraintVT) const { + // FP X constraints get lowered to SSE1/2 registers if available, otherwise + // 'f' like normal targets. + if (ConstraintVT.isFloatingPoint()) { + if (Subtarget->hasSSE2()) + return "Y"; + if (Subtarget->hasSSE1()) + return "x"; + } + + return TargetLowering::LowerXConstraint(ConstraintVT); +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDValue Result(0, 0); + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'I': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 31) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'J': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 63) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'K': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if ((int8_t)C->getSExtValue() == C->getSExtValue()) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'N': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 255) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'e': { + // 32-bit signed value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getSExtValue())) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); + break; + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + } + return; + } + case 'Z': { + // 32-bit unsigned value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getZExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + return; + } + case 'i': { + // Literal immediates are always ok. + if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); + break; + } + + // In any sort of PIC mode addresses need to be computed at runtime by + // adding in a register or some sort of table lookup. These can't + // be used as immediates. + if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) + return; + + // If we are in non-pic codegen mode, we allow the address of a global (with + // an optional displacement) to be used with 'i'. + GlobalAddressSDNode *GA = 0; + int64_t Offset = 0; + + // Match either (GA), (GA+C), (GA+C1+C2), etc. + while (1) { + if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { + Offset += GA->getOffset(); + break; + } else if (Op.getOpcode() == ISD::ADD) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } else if (Op.getOpcode() == ISD::SUB) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += -C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } + + // Otherwise, this isn't something we can handle, reject it. + return; + } + + const GlobalValue *GV = GA->getGlobal(); + // If we require an extra load to get this address, as in PIC mode, we + // can't accept it. + if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, + getTargetMachine()))) + return; + + Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), + GA->getValueType(0), Offset); + break; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +std::pair<unsigned, const TargetRegisterClass*> +X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, + EVT VT) const { + // First, see if this is a constraint that directly corresponds to an LLVM + // register class. + if (Constraint.size() == 1) { + // GCC Constraint Letters + switch (Constraint[0]) { + default: break; + // TODO: Slight differences here in allocation order and leaving + // RIP in the class. Do they matter any more here than they do + // in the normal allocation? + case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. + if (Subtarget->is64Bit()) { + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i64 || VT == MVT::f64) + return std::make_pair(0U, &X86::GR64RegClass); + break; + } + // 32-bit fallthrough + case 'Q': // Q_REGS + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32_ABCDRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_ABCDRegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); + if (VT == MVT::i64) + return std::make_pair(0U, &X86::GR64_ABCDRegClass); + break; + case 'r': // GENERAL_REGS + case 'l': // INDEX_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) + return std::make_pair(0U, &X86::GR32RegClass); + return std::make_pair(0U, &X86::GR64RegClass); + case 'R': // LEGACY_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_NOREXRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_NOREXRegClass); + if (VT == MVT::i32 || !Subtarget->is64Bit()) + return std::make_pair(0U, &X86::GR32_NOREXRegClass); + return std::make_pair(0U, &X86::GR64_NOREXRegClass); + case 'f': // FP Stack registers. + // If SSE is enabled for this VT, use f80 to ensure the isel moves the + // value to the correct fpstack register class. + if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP32RegClass); + if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP64RegClass); + return std::make_pair(0U, &X86::RFP80RegClass); + case 'y': // MMX_REGS if MMX allowed. + if (!Subtarget->hasMMX()) break; + return std::make_pair(0U, &X86::VR64RegClass); + case 'Y': // SSE_REGS if SSE2 allowed + if (!Subtarget->hasSSE2()) break; + // FALL THROUGH. + case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed + if (!Subtarget->hasSSE1()) break; + + switch (VT.getSimpleVT().SimpleTy) { + default: break; + // Scalar SSE types. + case MVT::f32: + case MVT::i32: + return std::make_pair(0U, &X86::FR32RegClass); + case MVT::f64: + case MVT::i64: + return std::make_pair(0U, &X86::FR64RegClass); + // Vector types. + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v2i64: + case MVT::v4f32: + case MVT::v2f64: + return std::make_pair(0U, &X86::VR128RegClass); + // AVX types. + case MVT::v32i8: + case MVT::v16i16: + case MVT::v8i32: + case MVT::v4i64: + case MVT::v8f32: + case MVT::v4f64: + return std::make_pair(0U, &X86::VR256RegClass); + } + break; + } + } + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + std::pair<unsigned, const TargetRegisterClass*> Res; + Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); + + // Not found as a standard register? + if (Res.second == 0) { + // Map st(0) -> st(7) -> ST0 + if (Constraint.size() == 7 && Constraint[0] == '{' && + tolower(Constraint[1]) == 's' && + tolower(Constraint[2]) == 't' && + Constraint[3] == '(' && + (Constraint[4] >= '0' && Constraint[4] <= '7') && + Constraint[5] == ')' && + Constraint[6] == '}') { + + Res.first = X86::ST0+Constraint[4]-'0'; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // GCC allows "st(0)" to be called just plain "st". + if (StringRef("{st}").equals_lower(Constraint)) { + Res.first = X86::ST0; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // flags -> EFLAGS + if (StringRef("{flags}").equals_lower(Constraint)) { + Res.first = X86::EFLAGS; + Res.second = &X86::CCRRegClass; + return Res; + } + + // 'A' means EAX + EDX. + if (Constraint == "A") { + Res.first = X86::EAX; + Res.second = &X86::GR32_ADRegClass; + return Res; + } + return Res; + } + + // Otherwise, check to see if this is a register class of the wrong value + // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to + // turn into {ax},{dx}. + if (Res.second->hasType(VT)) + return Res; // Correct type already, nothing to do. + + // All of the single-register GCC register classes map their values onto + // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we + // really want an 8-bit or 32-bit register, map to the appropriate register + // class and return the appropriate register. + if (Res.second == &X86::GR16RegClass) { + if (VT == MVT::i8) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::AL; break; + case X86::DX: DestReg = X86::DL; break; + case X86::CX: DestReg = X86::CL; break; + case X86::BX: DestReg = X86::BL; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = &X86::GR8RegClass; + } + } else if (VT == MVT::i32) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::EAX; break; + case X86::DX: DestReg = X86::EDX; break; + case X86::CX: DestReg = X86::ECX; break; + case X86::BX: DestReg = X86::EBX; break; + case X86::SI: DestReg = X86::ESI; break; + case X86::DI: DestReg = X86::EDI; break; + case X86::BP: DestReg = X86::EBP; break; + case X86::SP: DestReg = X86::ESP; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = &X86::GR32RegClass; + } + } else if (VT == MVT::i64) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::RAX; break; + case X86::DX: DestReg = X86::RDX; break; + case X86::CX: DestReg = X86::RCX; break; + case X86::BX: DestReg = X86::RBX; break; + case X86::SI: DestReg = X86::RSI; break; + case X86::DI: DestReg = X86::RDI; break; + case X86::BP: DestReg = X86::RBP; break; + case X86::SP: DestReg = X86::RSP; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = &X86::GR64RegClass; + } + } + } else if (Res.second == &X86::FR32RegClass || + Res.second == &X86::FR64RegClass || + Res.second == &X86::VR128RegClass) { + // Handle references to XMM physical registers that got mapped into the + // wrong class. This can happen with constraints like {xmm0} where the + // target independent register mapper will just pick the first match it can + // find, ignoring the required type. + + if (VT == MVT::f32 || VT == MVT::i32) + Res.second = &X86::FR32RegClass; + else if (VT == MVT::f64 || VT == MVT::i64) + Res.second = &X86::FR64RegClass; + else if (X86::VR128RegClass.hasType(VT)) + Res.second = &X86::VR128RegClass; + else if (X86::VR256RegClass.hasType(VT)) + Res.second = &X86::VR256RegClass; + } + + return Res; +} |