diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86ISelLowering.cpp | 28669 |
1 files changed, 28669 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp new file mode 100644 index 0000000..0927c2f --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -0,0 +1,28669 @@ +//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that X86 uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "X86ISelLowering.h" +#include "Utils/X86ShuffleDecode.h" +#include "X86CallingConv.h" +#include "X86FrameLowering.h" +#include "X86InstrBuilder.h" +#include "X86MachineFunctionInfo.h" +#include "X86TargetMachine.h" +#include "X86TargetObjectFile.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/CodeGen/IntrinsicLowering.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/WinEHFuncInfo.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetOptions.h" +#include "X86IntrinsicsInfo.h" +#include <bitset> +#include <numeric> +#include <cctype> +using namespace llvm; + +#define DEBUG_TYPE "x86-isel" + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> ExperimentalVectorWideningLegalization( + "x86-experimental-vector-widening-legalization", cl::init(false), + cl::desc("Enable an experimental vector type legalization through widening " + "rather than promotion."), + cl::Hidden); + +X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM, + const X86Subtarget &STI) + : TargetLowering(TM), Subtarget(&STI) { + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); + + // Set up the TargetLowering object. + + // X86 is weird. It always uses i8 for shift amounts and setcc results. + setBooleanContents(ZeroOrOneBooleanContent); + // X86-SSE is even stranger. It uses -1 or 0 for vector masks. + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // For 64-bit, since we have so many registers, use the ILP scheduler. + // For 32-bit, use the register pressure specific scheduling. + // For Atom, always use ILP scheduling. + if (Subtarget->isAtom()) + setSchedulingPreference(Sched::ILP); + else if (Subtarget->is64Bit()) + setSchedulingPreference(Sched::ILP); + else + setSchedulingPreference(Sched::RegPressure); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister()); + + // Bypass expensive divides on Atom when compiling with O2. + if (TM.getOptLevel() >= CodeGenOpt::Default) { + if (Subtarget->hasSlowDivide32()) + addBypassSlowDiv(32, 8); + if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit()) + addBypassSlowDiv(64, 16); + } + + if (Subtarget->isTargetKnownWindowsMSVC()) { + // Setup Windows compiler runtime calls. + setLibcallName(RTLIB::SDIV_I64, "_alldiv"); + setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); + setLibcallName(RTLIB::SREM_I64, "_allrem"); + setLibcallName(RTLIB::UREM_I64, "_aullrem"); + setLibcallName(RTLIB::MUL_I64, "_allmul"); + setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall); + setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall); + } + + if (Subtarget->isTargetDarwin()) { + // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. + setUseUnderscoreSetJmp(false); + setUseUnderscoreLongJmp(false); + } else if (Subtarget->isTargetWindowsGNU()) { + // MS runtime is weird: it exports _setjmp, but longjmp! + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(false); + } else { + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(true); + } + + // Set up the register classes. + addRegisterClass(MVT::i8, &X86::GR8RegClass); + addRegisterClass(MVT::i16, &X86::GR16RegClass); + addRegisterClass(MVT::i32, &X86::GR32RegClass); + if (Subtarget->is64Bit()) + addRegisterClass(MVT::i64, &X86::GR64RegClass); + + for (MVT VT : MVT::integer_valuetypes()) + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + + // We don't accept any truncstore of integer registers. + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i8 , Expand); + setTruncStoreAction(MVT::i32, MVT::i16, Expand); + setTruncStoreAction(MVT::i32, MVT::i8 , Expand); + setTruncStoreAction(MVT::i16, MVT::i8, Expand); + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // SETOEQ and SETUNE require checking two conditions. + setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); + + // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this + // operation. + setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) + // f32/f64 are legal, f80 is custom. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + else + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + } else if (!Subtarget->useSoftFloat()) { + // We have an algorithm for SSE2->double, and we turn this into a + // 64-bit FILD followed by conditional FADD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + // We have an algorithm for SSE2, and we turn this into a 64-bit + // FILD or VCVTUSI2SS/SD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + } + + // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have + // this operation. + setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + + if (!Subtarget->useSoftFloat()) { + // SSE has no i16 to fp conversion, only i32 + if (X86ScalarSSEf32) { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); + } + + // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have + // this operation. + setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); + + if (!Subtarget->useSoftFloat()) { + // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 + // are Legal, f80 is custom lowered. + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); + + if (X86ScalarSSEf32) { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand); + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand); + } + + // Handle FP_TO_UINT by promoting the destination to a larger signed + // conversion. + setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { + // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); + } else { + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); + } + } else if (!Subtarget->useSoftFloat()) { + // Since AVX is a superset of SSE3, only check for SSE here. + if (Subtarget->hasSSE1() && !Subtarget->hasSSE3()) + // Expand FP_TO_UINT into a select. + // FIXME: We would like to use a Custom expander here eventually to do + // the optimal thing for SSE vs. the default expansion in the legalizer. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); + else + // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom. + // With SSE3 we can use fisttpll to convert to a signed i64; without + // SSE, we're stuck with a fistpll. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom); + } + + // TODO: when we have SSE, these could be more efficient, by using movd/movq. + if (!X86ScalarSSEf64) { + setOperationAction(ISD::BITCAST , MVT::f32 , Expand); + setOperationAction(ISD::BITCAST , MVT::i32 , Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::BITCAST , MVT::f64 , Expand); + // Without SSE, i64->f64 goes through memory. + setOperationAction(ISD::BITCAST , MVT::i64 , Expand); + } + } + + // Scalar integer divide and remainder are lowered to use operations that + // produce two results, to match the available instructions. This exposes + // the two-result form to trivial CSE, which is able to combine x/y and x%y + // into a single instruction. + // + // Scalar integer multiply-high is also lowered to use two-result + // operations, to match the available instructions. However, plain multiply + // (low) operations are left as Legal, as there are single-result + // instructions for this in x86. Using the two-result multiply instructions + // when both high and low results are needed must be arranged by dagcombine. + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + + // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. + setOperationAction(ISD::ADDC, VT, Custom); + setOperationAction(ISD::ADDE, VT, Custom); + setOperationAction(ISD::SUBC, VT, Custom); + setOperationAction(ISD::SUBE, VT, Custom); + } + + setOperationAction(ISD::BR_JT , MVT::Other, Expand); + setOperationAction(ISD::BRCOND , MVT::Other, Custom); + setOperationAction(ISD::BR_CC , MVT::f32, Expand); + setOperationAction(ISD::BR_CC , MVT::f64, Expand); + setOperationAction(ISD::BR_CC , MVT::f80, Expand); + setOperationAction(ISD::BR_CC , MVT::f128, Expand); + setOperationAction(ISD::BR_CC , MVT::i8, Expand); + setOperationAction(ISD::BR_CC , MVT::i16, Expand); + setOperationAction(ISD::BR_CC , MVT::i32, Expand); + setOperationAction(ISD::BR_CC , MVT::i64, Expand); + setOperationAction(ISD::SELECT_CC , MVT::f32, Expand); + setOperationAction(ISD::SELECT_CC , MVT::f64, Expand); + setOperationAction(ISD::SELECT_CC , MVT::f80, Expand); + setOperationAction(ISD::SELECT_CC , MVT::f128, Expand); + setOperationAction(ISD::SELECT_CC , MVT::i8, Expand); + setOperationAction(ISD::SELECT_CC , MVT::i16, Expand); + setOperationAction(ISD::SELECT_CC , MVT::i32, Expand); + setOperationAction(ISD::SELECT_CC , MVT::i64, Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); + + if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) { + // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)` + // is. We should promote the value to 64-bits to solve this. + // This is what the CRT headers do - `fmodf` is an inline header + // function casting to f64 and calling `fmod`. + setOperationAction(ISD::FREM , MVT::f32 , Promote); + } else { + setOperationAction(ISD::FREM , MVT::f32 , Expand); + } + + setOperationAction(ISD::FREM , MVT::f64 , Expand); + setOperationAction(ISD::FREM , MVT::f80 , Expand); + setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); + + // Promote the i8 variants and force them on up to i32 which has a shorter + // encoding. + setOperationAction(ISD::CTTZ , MVT::i8 , Promote); + AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32); + setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote); + AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32); + if (Subtarget->hasBMI()) { + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + } else { + setOperationAction(ISD::CTTZ , MVT::i16 , Custom); + setOperationAction(ISD::CTTZ , MVT::i32 , Custom); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTTZ , MVT::i64 , Custom); + } + + if (Subtarget->hasLZCNT()) { + // When promoting the i8 variants, force them to i32 for a shorter + // encoding. + setOperationAction(ISD::CTLZ , MVT::i8 , Promote); + AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote); + AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + } else { + setOperationAction(ISD::CTLZ , MVT::i8 , Custom); + setOperationAction(ISD::CTLZ , MVT::i16 , Custom); + setOperationAction(ISD::CTLZ , MVT::i32 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::CTLZ , MVT::i64 , Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); + } + } + + // Special handling for half-precision floating point conversions. + // If we don't have F16C support, then lower half float conversions + // into library calls. + if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) { + setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); + } + + // There's never any support for operations beyond MVT::f32. + setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); + setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand); + + setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); + setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand); + setTruncStoreAction(MVT::f32, MVT::f16, Expand); + setTruncStoreAction(MVT::f64, MVT::f16, Expand); + setTruncStoreAction(MVT::f80, MVT::f16, Expand); + + if (Subtarget->hasPOPCNT()) { + setOperationAction(ISD::CTPOP , MVT::i8 , Promote); + } else { + setOperationAction(ISD::CTPOP , MVT::i8 , Expand); + setOperationAction(ISD::CTPOP , MVT::i16 , Expand); + setOperationAction(ISD::CTPOP , MVT::i32 , Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::CTPOP , MVT::i64 , Expand); + } + + setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); + + if (!Subtarget->hasMOVBE()) + setOperationAction(ISD::BSWAP , MVT::i16 , Expand); + + // These should be promoted to a larger select which is supported. + setOperationAction(ISD::SELECT , MVT::i1 , Promote); + // X86 wants to expand cmov itself. + setOperationAction(ISD::SELECT , MVT::i8 , Custom); + setOperationAction(ISD::SELECT , MVT::i16 , Custom); + setOperationAction(ISD::SELECT , MVT::i32 , Custom); + setOperationAction(ISD::SELECT , MVT::f32 , Custom); + setOperationAction(ISD::SELECT , MVT::f64 , Custom); + setOperationAction(ISD::SELECT , MVT::f80 , Custom); + setOperationAction(ISD::SELECT , MVT::f128 , Custom); + setOperationAction(ISD::SETCC , MVT::i8 , Custom); + setOperationAction(ISD::SETCC , MVT::i16 , Custom); + setOperationAction(ISD::SETCC , MVT::i32 , Custom); + setOperationAction(ISD::SETCC , MVT::f32 , Custom); + setOperationAction(ISD::SETCC , MVT::f64 , Custom); + setOperationAction(ISD::SETCC , MVT::f80 , Custom); + setOperationAction(ISD::SETCC , MVT::f128 , Custom); + setOperationAction(ISD::SETCCE , MVT::i8 , Custom); + setOperationAction(ISD::SETCCE , MVT::i16 , Custom); + setOperationAction(ISD::SETCCE , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SELECT , MVT::i64 , Custom); + setOperationAction(ISD::SETCC , MVT::i64 , Custom); + setOperationAction(ISD::SETCCE , MVT::i64 , Custom); + } + setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); + // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support + // SjLj exception handling but a light-weight setjmp/longjmp replacement to + // support continuation, user-level threading, and etc.. As a result, no + // other SjLj exception interfaces are implemented and please don't build + // your own exception handling based on them. + // LLVM/Clang supports zero-cost DWARF exception handling. + setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); + setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); + + // Darwin ABI issue. + setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); + setOperationAction(ISD::JumpTable , MVT::i32 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); + if (Subtarget->is64Bit()) + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); + setOperationAction(ISD::JumpTable , MVT::i64 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); + setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); + } + // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) + setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); + } + + if (Subtarget->hasSSE1()) + setOperationAction(ISD::PREFETCH , MVT::Other, Legal); + + setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom); + + // Expand certain atomics + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); + setOperationAction(ISD::ATOMIC_STORE, VT, Custom); + } + + if (Subtarget->hasCmpxchg16b()) { + setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); + } + + // FIXME - use subtarget debug flags + if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() && + !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) { + setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); + } + + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); + + setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); + setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex + setOperationAction(ISD::VASTART , MVT::Other, Custom); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::VAARG , MVT::Other, Custom); + setOperationAction(ISD::VACOPY , MVT::Other, Custom); + } else { + // TargetInfo::CharPtrBuiltinVaList + setOperationAction(ISD::VAARG , MVT::Other, Expand); + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + } + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); + + // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering. + setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom); + setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom); + + if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) { + // f32 and f64 use SSE. + // Set up the FP register classes. + addRegisterClass(MVT::f32, &X86::FR32RegClass); + addRegisterClass(MVT::f64, &X86::FR64RegClass); + + // Use ANDPD to simulate FABS. + setOperationAction(ISD::FABS , MVT::f64, Custom); + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f64, Custom); + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + // Use ANDPD and ORPD to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // Lower this to FGETSIGNx86 plus an AND. + setOperationAction(ISD::FGETSIGN, MVT::i64, Custom); + setOperationAction(ISD::FGETSIGN, MVT::i32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + + // Expand FP immediates into loads from the stack, except for the special + // cases we handle. + addLegalFPImmediate(APFloat(+0.0)); // xorpd + addLegalFPImmediate(APFloat(+0.0f)); // xorps + } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) { + // Use SSE for f32, x87 for f64. + // Set up the FP register classes. + addRegisterClass(MVT::f32, &X86::FR32RegClass); + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + + // Use ANDPS to simulate FABS. + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + + // Use ANDPS and ORPS to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + + // Special cases we handle for FP constants. + addLegalFPImmediate(APFloat(+0.0f)); // xorps + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + } + } else if (!Subtarget->useSoftFloat()) { + // f32 and f64 in x87. + // Set up the FP register classes. + addRegisterClass(MVT::f64, &X86::RFP64RegClass); + addRegisterClass(MVT::f32, &X86::RFP32RegClass); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + setOperationAction(ISD::UNDEF, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + setOperationAction(ISD::FSINCOS, MVT::f64, Expand); + setOperationAction(ISD::FSINCOS, MVT::f32, Expand); + } + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + addLegalFPImmediate(APFloat(+0.0f)); // FLD0 + addLegalFPImmediate(APFloat(+1.0f)); // FLD1 + addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS + } + + // We don't support FMA. + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + + // Long double always uses X87, except f128 in MMX. + if (!Subtarget->useSoftFloat()) { + if (Subtarget->is64Bit() && Subtarget->hasMMX()) { + addRegisterClass(MVT::f128, &X86::FR128RegClass); + ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); + setOperationAction(ISD::FABS , MVT::f128, Custom); + setOperationAction(ISD::FNEG , MVT::f128, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom); + } + + addRegisterClass(MVT::f80, &X86::RFP80RegClass); + setOperationAction(ISD::UNDEF, MVT::f80, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); + { + APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); + addLegalFPImmediate(TmpFlt); // FLD0 + TmpFlt.changeSign(); + addLegalFPImmediate(TmpFlt); // FLD0/FCHS + + bool ignored; + APFloat TmpFlt2(+1.0); + TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, + &ignored); + addLegalFPImmediate(TmpFlt2); // FLD1 + TmpFlt2.changeSign(); + addLegalFPImmediate(TmpFlt2); // FLD1/FCHS + } + + if (!TM.Options.UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f80, Expand); + setOperationAction(ISD::FCOS , MVT::f80, Expand); + setOperationAction(ISD::FSINCOS, MVT::f80, Expand); + } + + setOperationAction(ISD::FFLOOR, MVT::f80, Expand); + setOperationAction(ISD::FCEIL, MVT::f80, Expand); + setOperationAction(ISD::FTRUNC, MVT::f80, Expand); + setOperationAction(ISD::FRINT, MVT::f80, Expand); + setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand); + setOperationAction(ISD::FMA, MVT::f80, Expand); + } + + // Always use a library call for pow. + setOperationAction(ISD::FPOW , MVT::f32 , Expand); + setOperationAction(ISD::FPOW , MVT::f64 , Expand); + setOperationAction(ISD::FPOW , MVT::f80 , Expand); + + setOperationAction(ISD::FLOG, MVT::f80, Expand); + setOperationAction(ISD::FLOG2, MVT::f80, Expand); + setOperationAction(ISD::FLOG10, MVT::f80, Expand); + setOperationAction(ISD::FEXP, MVT::f80, Expand); + setOperationAction(ISD::FEXP2, MVT::f80, Expand); + setOperationAction(ISD::FMINNUM, MVT::f80, Expand); + setOperationAction(ISD::FMAXNUM, MVT::f80, Expand); + + // First set operation action for all vector types to either promote + // (for widening) or expand (for scalarization). Then we will selectively + // turn on ones that can be effectively codegen'd. + for (MVT VT : MVT::vector_valuetypes()) { + setOperationAction(ISD::ADD , VT, Expand); + setOperationAction(ISD::SUB , VT, Expand); + setOperationAction(ISD::FADD, VT, Expand); + setOperationAction(ISD::FNEG, VT, Expand); + setOperationAction(ISD::FSUB, VT, Expand); + setOperationAction(ISD::MUL , VT, Expand); + setOperationAction(ISD::FMUL, VT, Expand); + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::FDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::LOAD, VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand); + setOperationAction(ISD::FABS, VT, Expand); + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FMA, VT, Expand); + setOperationAction(ISD::FPOWI, VT, Expand); + setOperationAction(ISD::FSQRT, VT, Expand); + setOperationAction(ISD::FCOPYSIGN, VT, Expand); + setOperationAction(ISD::FFLOOR, VT, Expand); + setOperationAction(ISD::FCEIL, VT, Expand); + setOperationAction(ISD::FTRUNC, VT, Expand); + setOperationAction(ISD::FRINT, VT, Expand); + setOperationAction(ISD::FNEARBYINT, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Expand); + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::UMUL_LOHI, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Expand); + setOperationAction(ISD::UDIVREM, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + setOperationAction(ISD::CTPOP, VT, Expand); + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTLZ, VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::SHL, VT, Expand); + setOperationAction(ISD::SRA, VT, Expand); + setOperationAction(ISD::SRL, VT, Expand); + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + setOperationAction(ISD::BSWAP, VT, Expand); + setOperationAction(ISD::SETCC, VT, Expand); + setOperationAction(ISD::FLOG, VT, Expand); + setOperationAction(ISD::FLOG2, VT, Expand); + setOperationAction(ISD::FLOG10, VT, Expand); + setOperationAction(ISD::FEXP, VT, Expand); + setOperationAction(ISD::FEXP2, VT, Expand); + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + setOperationAction(ISD::FP_TO_SINT, VT, Expand); + setOperationAction(ISD::UINT_TO_FP, VT, Expand); + setOperationAction(ISD::SINT_TO_FP, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand); + setOperationAction(ISD::TRUNCATE, VT, Expand); + setOperationAction(ISD::SIGN_EXTEND, VT, Expand); + setOperationAction(ISD::ZERO_EXTEND, VT, Expand); + setOperationAction(ISD::ANY_EXTEND, VT, Expand); + setOperationAction(ISD::VSELECT, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + for (MVT InnerVT : MVT::vector_valuetypes()) { + setTruncStoreAction(InnerVT, VT, Expand); + + setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand); + + // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like + // types, we have to deal with them whether we ask for Expansion or not. + // Setting Expand causes its own optimisation problems though, so leave + // them legal. + if (VT.getVectorElementType() == MVT::i1) + setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); + + // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are + // split/scalarized right now. + if (VT.getVectorElementType() == MVT::f16) + setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); + } + } + + // FIXME: In order to prevent SSE instructions being expanded to MMX ones + // with -msoft-float, disable use of MMX as well. + if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) { + addRegisterClass(MVT::x86mmx, &X86::VR64RegClass); + // No operations on x86mmx supported, everything uses intrinsics. + } + + // MMX-sized vectors (other than x86mmx) are expected to be expanded + // into smaller operations. + for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) { + setOperationAction(ISD::MULHS, MMXTy, Expand); + setOperationAction(ISD::AND, MMXTy, Expand); + setOperationAction(ISD::OR, MMXTy, Expand); + setOperationAction(ISD::XOR, MMXTy, Expand); + setOperationAction(ISD::SCALAR_TO_VECTOR, MMXTy, Expand); + setOperationAction(ISD::SELECT, MMXTy, Expand); + setOperationAction(ISD::BITCAST, MMXTy, Expand); + } + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); + + if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) { + addRegisterClass(MVT::v4f32, &X86::VR128RegClass); + + setOperationAction(ISD::FADD, MVT::v4f32, Legal); + setOperationAction(ISD::FSUB, MVT::v4f32, Legal); + setOperationAction(ISD::FMUL, MVT::v4f32, Legal); + setOperationAction(ISD::FDIV, MVT::v4f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); + setOperationAction(ISD::FNEG, MVT::v4f32, Custom); + setOperationAction(ISD::FABS, MVT::v4f32, Custom); + setOperationAction(ISD::LOAD, MVT::v4f32, Legal); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); + setOperationAction(ISD::VSELECT, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::SELECT, MVT::v4f32, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom); + } + + if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) { + addRegisterClass(MVT::v2f64, &X86::VR128RegClass); + + // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM + // registers cannot be used even for integer operations. + addRegisterClass(MVT::v16i8, &X86::VR128RegClass); + addRegisterClass(MVT::v8i16, &X86::VR128RegClass); + addRegisterClass(MVT::v4i32, &X86::VR128RegClass); + addRegisterClass(MVT::v2i64, &X86::VR128RegClass); + + setOperationAction(ISD::ADD, MVT::v16i8, Legal); + setOperationAction(ISD::ADD, MVT::v8i16, Legal); + setOperationAction(ISD::ADD, MVT::v4i32, Legal); + setOperationAction(ISD::ADD, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v16i8, Custom); + setOperationAction(ISD::MUL, MVT::v4i32, Custom); + setOperationAction(ISD::MUL, MVT::v2i64, Custom); + setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom); + setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom); + setOperationAction(ISD::MULHU, MVT::v8i16, Legal); + setOperationAction(ISD::MULHS, MVT::v8i16, Legal); + setOperationAction(ISD::SUB, MVT::v16i8, Legal); + setOperationAction(ISD::SUB, MVT::v8i16, Legal); + setOperationAction(ISD::SUB, MVT::v4i32, Legal); + setOperationAction(ISD::SUB, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v8i16, Legal); + setOperationAction(ISD::FADD, MVT::v2f64, Legal); + setOperationAction(ISD::FSUB, MVT::v2f64, Legal); + setOperationAction(ISD::FMUL, MVT::v2f64, Legal); + setOperationAction(ISD::FDIV, MVT::v2f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); + setOperationAction(ISD::FNEG, MVT::v2f64, Custom); + setOperationAction(ISD::FABS, MVT::v2f64, Custom); + + setOperationAction(ISD::SMAX, MVT::v8i16, Legal); + setOperationAction(ISD::UMAX, MVT::v16i8, Legal); + setOperationAction(ISD::SMIN, MVT::v8i16, Legal); + setOperationAction(ISD::UMIN, MVT::v16i8, Legal); + + setOperationAction(ISD::SETCC, MVT::v2i64, Custom); + setOperationAction(ISD::SETCC, MVT::v16i8, Custom); + setOperationAction(ISD::SETCC, MVT::v8i16, Custom); + setOperationAction(ISD::SETCC, MVT::v4i32, Custom); + + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + setOperationAction(ISD::CTPOP, MVT::v16i8, Custom); + setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); + setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); + setOperationAction(ISD::CTPOP, MVT::v2i64, Custom); + + setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); + setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); + setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); + // ISD::CTTZ v2i64 - scalarization is faster. + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); + // ISD::CTTZ_ZERO_UNDEF v2i64 - scalarization is faster. + + // Custom lower build_vector, vector_shuffle, and extract_vector_elt. + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + + // We support custom legalizing of sext and anyext loads for specific + // memory vector types which we can load as a scalar (or sequence of + // scalars) and extend in-register to a legal 128-bit vector type. For sext + // loads these must work with a single scalar load. + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom); + } + + setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); + setOperationAction(ISD::VSELECT, MVT::v2f64, Custom); + setOperationAction(ISD::VSELECT, MVT::v2i64, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); + } + + // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. + for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v2i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v2i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v2i64); + setOperationAction(ISD::LOAD, VT, Promote); + AddPromotedToType (ISD::LOAD, VT, MVT::v2i64); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v2i64); + } + + // Custom lower v2i64 and v2f64 selects. + setOperationAction(ISD::LOAD, MVT::v2f64, Legal); + setOperationAction(ISD::LOAD, MVT::v2i64, Legal); + setOperationAction(ISD::SELECT, MVT::v2f64, Custom); + setOperationAction(ISD::SELECT, MVT::v2i64, Custom); + + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + + setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); + + setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); + // As there is no 64-bit GPR available, we need build a special custom + // sequence to convert from v2i32 to v2f32. + if (!Subtarget->is64Bit()) + setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom); + + setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); + setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal); + + setOperationAction(ISD::BITCAST, MVT::v2i32, Custom); + setOperationAction(ISD::BITCAST, MVT::v4i16, Custom); + setOperationAction(ISD::BITCAST, MVT::v8i8, Custom); + } + + if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) { + for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { + setOperationAction(ISD::FFLOOR, RoundedTy, Legal); + setOperationAction(ISD::FCEIL, RoundedTy, Legal); + setOperationAction(ISD::FTRUNC, RoundedTy, Legal); + setOperationAction(ISD::FRINT, RoundedTy, Legal); + setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal); + } + + setOperationAction(ISD::SMAX, MVT::v16i8, Legal); + setOperationAction(ISD::SMAX, MVT::v4i32, Legal); + setOperationAction(ISD::UMAX, MVT::v8i16, Legal); + setOperationAction(ISD::UMAX, MVT::v4i32, Legal); + setOperationAction(ISD::SMIN, MVT::v16i8, Legal); + setOperationAction(ISD::SMIN, MVT::v4i32, Legal); + setOperationAction(ISD::UMIN, MVT::v8i16, Legal); + setOperationAction(ISD::UMIN, MVT::v4i32, Legal); + + // FIXME: Do we need to handle scalar-to-vector here? + setOperationAction(ISD::MUL, MVT::v4i32, Legal); + + // We directly match byte blends in the backend as they match the VSELECT + // condition form. + setOperationAction(ISD::VSELECT, MVT::v16i8, Legal); + + // SSE41 brings specific instructions for doing vector sign extend even in + // cases where we don't have SRA. + for (MVT VT : MVT::integer_vector_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom); + } + + // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); + + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal); + + // i8 and i16 vectors are custom because the source register and source + // source memory operand types are not the same width. f32 vectors are + // custom since the immediate controlling the insert encodes additional + // information. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + + // FIXME: these should be Legal, but that's only for the case where + // the index is constant. For now custom expand to deal with that. + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); + } + } + + if (Subtarget->hasSSE2()) { + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom); + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom); + + setOperationAction(ISD::SRL, MVT::v8i16, Custom); + setOperationAction(ISD::SRL, MVT::v16i8, Custom); + + setOperationAction(ISD::SHL, MVT::v8i16, Custom); + setOperationAction(ISD::SHL, MVT::v16i8, Custom); + + setOperationAction(ISD::SRA, MVT::v8i16, Custom); + setOperationAction(ISD::SRA, MVT::v16i8, Custom); + + // In the customized shift lowering, the legal cases in AVX2 will be + // recognized. + setOperationAction(ISD::SRL, MVT::v2i64, Custom); + setOperationAction(ISD::SRL, MVT::v4i32, Custom); + + setOperationAction(ISD::SHL, MVT::v2i64, Custom); + setOperationAction(ISD::SHL, MVT::v4i32, Custom); + + setOperationAction(ISD::SRA, MVT::v2i64, Custom); + setOperationAction(ISD::SRA, MVT::v4i32, Custom); + } + + if (Subtarget->hasXOP()) { + setOperationAction(ISD::ROTL, MVT::v16i8, Custom); + setOperationAction(ISD::ROTL, MVT::v8i16, Custom); + setOperationAction(ISD::ROTL, MVT::v4i32, Custom); + setOperationAction(ISD::ROTL, MVT::v2i64, Custom); + setOperationAction(ISD::ROTL, MVT::v32i8, Custom); + setOperationAction(ISD::ROTL, MVT::v16i16, Custom); + setOperationAction(ISD::ROTL, MVT::v8i32, Custom); + setOperationAction(ISD::ROTL, MVT::v4i64, Custom); + } + + if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) { + addRegisterClass(MVT::v32i8, &X86::VR256RegClass); + addRegisterClass(MVT::v16i16, &X86::VR256RegClass); + addRegisterClass(MVT::v8i32, &X86::VR256RegClass); + addRegisterClass(MVT::v8f32, &X86::VR256RegClass); + addRegisterClass(MVT::v4i64, &X86::VR256RegClass); + addRegisterClass(MVT::v4f64, &X86::VR256RegClass); + + setOperationAction(ISD::LOAD, MVT::v8f32, Legal); + setOperationAction(ISD::LOAD, MVT::v4f64, Legal); + setOperationAction(ISD::LOAD, MVT::v4i64, Legal); + + setOperationAction(ISD::FADD, MVT::v8f32, Legal); + setOperationAction(ISD::FSUB, MVT::v8f32, Legal); + setOperationAction(ISD::FMUL, MVT::v8f32, Legal); + setOperationAction(ISD::FDIV, MVT::v8f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal); + setOperationAction(ISD::FCEIL, MVT::v8f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal); + setOperationAction(ISD::FRINT, MVT::v8f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal); + setOperationAction(ISD::FNEG, MVT::v8f32, Custom); + setOperationAction(ISD::FABS, MVT::v8f32, Custom); + + setOperationAction(ISD::FADD, MVT::v4f64, Legal); + setOperationAction(ISD::FSUB, MVT::v4f64, Legal); + setOperationAction(ISD::FMUL, MVT::v4f64, Legal); + setOperationAction(ISD::FDIV, MVT::v4f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); + setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal); + setOperationAction(ISD::FCEIL, MVT::v4f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal); + setOperationAction(ISD::FRINT, MVT::v4f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal); + setOperationAction(ISD::FNEG, MVT::v4f64, Custom); + setOperationAction(ISD::FABS, MVT::v4f64, Custom); + + // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted + // even though v8i16 is a legal type. + setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); + + setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal); + + setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal); + + setOperationAction(ISD::SRL, MVT::v16i16, Custom); + setOperationAction(ISD::SRL, MVT::v32i8, Custom); + + setOperationAction(ISD::SHL, MVT::v16i16, Custom); + setOperationAction(ISD::SHL, MVT::v32i8, Custom); + + setOperationAction(ISD::SRA, MVT::v16i16, Custom); + setOperationAction(ISD::SRA, MVT::v32i8, Custom); + + setOperationAction(ISD::SETCC, MVT::v32i8, Custom); + setOperationAction(ISD::SETCC, MVT::v16i16, Custom); + setOperationAction(ISD::SETCC, MVT::v8i32, Custom); + setOperationAction(ISD::SETCC, MVT::v4i64, Custom); + + setOperationAction(ISD::SELECT, MVT::v4f64, Custom); + setOperationAction(ISD::SELECT, MVT::v4i64, Custom); + setOperationAction(ISD::SELECT, MVT::v8f32, Custom); + + setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom); + + setOperationAction(ISD::CTPOP, MVT::v32i8, Custom); + setOperationAction(ISD::CTPOP, MVT::v16i16, Custom); + setOperationAction(ISD::CTPOP, MVT::v8i32, Custom); + setOperationAction(ISD::CTPOP, MVT::v4i64, Custom); + + setOperationAction(ISD::CTTZ, MVT::v32i8, Custom); + setOperationAction(ISD::CTTZ, MVT::v16i16, Custom); + setOperationAction(ISD::CTTZ, MVT::v8i32, Custom); + setOperationAction(ISD::CTTZ, MVT::v4i64, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v32i8, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i16, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom); + + if (Subtarget->hasAnyFMA()) { + setOperationAction(ISD::FMA, MVT::v8f32, Legal); + setOperationAction(ISD::FMA, MVT::v4f64, Legal); + setOperationAction(ISD::FMA, MVT::v4f32, Legal); + setOperationAction(ISD::FMA, MVT::v2f64, Legal); + setOperationAction(ISD::FMA, MVT::f32, Legal); + setOperationAction(ISD::FMA, MVT::f64, Legal); + } + + if (Subtarget->hasInt256()) { + setOperationAction(ISD::ADD, MVT::v4i64, Legal); + setOperationAction(ISD::ADD, MVT::v8i32, Legal); + setOperationAction(ISD::ADD, MVT::v16i16, Legal); + setOperationAction(ISD::ADD, MVT::v32i8, Legal); + + setOperationAction(ISD::SUB, MVT::v4i64, Legal); + setOperationAction(ISD::SUB, MVT::v8i32, Legal); + setOperationAction(ISD::SUB, MVT::v16i16, Legal); + setOperationAction(ISD::SUB, MVT::v32i8, Legal); + + setOperationAction(ISD::MUL, MVT::v4i64, Custom); + setOperationAction(ISD::MUL, MVT::v8i32, Legal); + setOperationAction(ISD::MUL, MVT::v16i16, Legal); + setOperationAction(ISD::MUL, MVT::v32i8, Custom); + + setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom); + setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom); + setOperationAction(ISD::MULHU, MVT::v16i16, Legal); + setOperationAction(ISD::MULHS, MVT::v16i16, Legal); + + setOperationAction(ISD::SMAX, MVT::v32i8, Legal); + setOperationAction(ISD::SMAX, MVT::v16i16, Legal); + setOperationAction(ISD::SMAX, MVT::v8i32, Legal); + setOperationAction(ISD::UMAX, MVT::v32i8, Legal); + setOperationAction(ISD::UMAX, MVT::v16i16, Legal); + setOperationAction(ISD::UMAX, MVT::v8i32, Legal); + setOperationAction(ISD::SMIN, MVT::v32i8, Legal); + setOperationAction(ISD::SMIN, MVT::v16i16, Legal); + setOperationAction(ISD::SMIN, MVT::v8i32, Legal); + setOperationAction(ISD::UMIN, MVT::v32i8, Legal); + setOperationAction(ISD::UMIN, MVT::v16i16, Legal); + setOperationAction(ISD::UMIN, MVT::v8i32, Legal); + + // The custom lowering for UINT_TO_FP for v8i32 becomes interesting + // when we have a 256bit-wide blend with immediate. + setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom); + + // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X + setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); + + setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i32, Legal); + } else { + setOperationAction(ISD::ADD, MVT::v4i64, Custom); + setOperationAction(ISD::ADD, MVT::v8i32, Custom); + setOperationAction(ISD::ADD, MVT::v16i16, Custom); + setOperationAction(ISD::ADD, MVT::v32i8, Custom); + + setOperationAction(ISD::SUB, MVT::v4i64, Custom); + setOperationAction(ISD::SUB, MVT::v8i32, Custom); + setOperationAction(ISD::SUB, MVT::v16i16, Custom); + setOperationAction(ISD::SUB, MVT::v32i8, Custom); + + setOperationAction(ISD::MUL, MVT::v4i64, Custom); + setOperationAction(ISD::MUL, MVT::v8i32, Custom); + setOperationAction(ISD::MUL, MVT::v16i16, Custom); + setOperationAction(ISD::MUL, MVT::v32i8, Custom); + + setOperationAction(ISD::SMAX, MVT::v32i8, Custom); + setOperationAction(ISD::SMAX, MVT::v16i16, Custom); + setOperationAction(ISD::SMAX, MVT::v8i32, Custom); + setOperationAction(ISD::UMAX, MVT::v32i8, Custom); + setOperationAction(ISD::UMAX, MVT::v16i16, Custom); + setOperationAction(ISD::UMAX, MVT::v8i32, Custom); + setOperationAction(ISD::SMIN, MVT::v32i8, Custom); + setOperationAction(ISD::SMIN, MVT::v16i16, Custom); + setOperationAction(ISD::SMIN, MVT::v8i32, Custom); + setOperationAction(ISD::UMIN, MVT::v32i8, Custom); + setOperationAction(ISD::UMIN, MVT::v16i16, Custom); + setOperationAction(ISD::UMIN, MVT::v8i32, Custom); + } + + // In the customized shift lowering, the legal cases in AVX2 will be + // recognized. + setOperationAction(ISD::SRL, MVT::v4i64, Custom); + setOperationAction(ISD::SRL, MVT::v8i32, Custom); + + setOperationAction(ISD::SHL, MVT::v4i64, Custom); + setOperationAction(ISD::SHL, MVT::v8i32, Custom); + + setOperationAction(ISD::SRA, MVT::v4i64, Custom); + setOperationAction(ISD::SRA, MVT::v8i32, Custom); + + // Custom lower several nodes for 256-bit types. + for (MVT VT : MVT::vector_valuetypes()) { + if (VT.getScalarSizeInBits() >= 32) { + setOperationAction(ISD::MLOAD, VT, Legal); + setOperationAction(ISD::MSTORE, VT, Legal); + } + // Extract subvector is special because the value type + // (result) is 128-bit but the source is 256-bit wide. + if (VT.is128BitVector()) { + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); + } + // Do not attempt to custom lower other non-256-bit vectors + if (!VT.is256BitVector()) + continue; + + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); + setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); + } + + if (Subtarget->hasInt256()) + setOperationAction(ISD::VSELECT, MVT::v32i8, Legal); + + // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64. + for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) { + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v4i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v4i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v4i64); + setOperationAction(ISD::LOAD, VT, Promote); + AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); + } + } + + if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) { + addRegisterClass(MVT::v16i32, &X86::VR512RegClass); + addRegisterClass(MVT::v16f32, &X86::VR512RegClass); + addRegisterClass(MVT::v8i64, &X86::VR512RegClass); + addRegisterClass(MVT::v8f64, &X86::VR512RegClass); + + addRegisterClass(MVT::i1, &X86::VK1RegClass); + addRegisterClass(MVT::v8i1, &X86::VK8RegClass); + addRegisterClass(MVT::v16i1, &X86::VK16RegClass); + + for (MVT VT : MVT::fp_vector_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal); + + setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i8, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i8, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i16, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i16, Legal); + setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i32, Legal); + setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i32, Legal); + + setOperationAction(ISD::BR_CC, MVT::i1, Expand); + setOperationAction(ISD::SETCC, MVT::i1, Custom); + setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); + setOperationAction(ISD::XOR, MVT::i1, Legal); + setOperationAction(ISD::OR, MVT::i1, Legal); + setOperationAction(ISD::AND, MVT::i1, Legal); + setOperationAction(ISD::SUB, MVT::i1, Custom); + setOperationAction(ISD::ADD, MVT::i1, Custom); + setOperationAction(ISD::MUL, MVT::i1, Custom); + setOperationAction(ISD::LOAD, MVT::v16f32, Legal); + setOperationAction(ISD::LOAD, MVT::v8f64, Legal); + setOperationAction(ISD::LOAD, MVT::v8i64, Legal); + setOperationAction(ISD::LOAD, MVT::v16i32, Legal); + setOperationAction(ISD::LOAD, MVT::v16i1, Legal); + + setOperationAction(ISD::FADD, MVT::v16f32, Legal); + setOperationAction(ISD::FSUB, MVT::v16f32, Legal); + setOperationAction(ISD::FMUL, MVT::v16f32, Legal); + setOperationAction(ISD::FDIV, MVT::v16f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v16f32, Legal); + setOperationAction(ISD::FNEG, MVT::v16f32, Custom); + setOperationAction(ISD::FABS, MVT::v16f32, Custom); + + setOperationAction(ISD::FADD, MVT::v8f64, Legal); + setOperationAction(ISD::FSUB, MVT::v8f64, Legal); + setOperationAction(ISD::FMUL, MVT::v8f64, Legal); + setOperationAction(ISD::FDIV, MVT::v8f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v8f64, Legal); + setOperationAction(ISD::FNEG, MVT::v8f64, Custom); + setOperationAction(ISD::FABS, MVT::v8f64, Custom); + setOperationAction(ISD::FMA, MVT::v8f64, Legal); + setOperationAction(ISD::FMA, MVT::v16f32, Legal); + + setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom); + setOperationAction(ISD::UINT_TO_FP, MVT::v16i16, Custom); + setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal); + setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal); + + setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal); + setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal); + setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal); + setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal); + setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal); + if (Subtarget->hasVLX()){ + setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal); + setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal); + setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal); + setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal); + setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal); + + setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal); + setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal); + setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal); + setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal); + setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal); + } else { + setOperationAction(ISD::MLOAD, MVT::v8i32, Custom); + setOperationAction(ISD::MLOAD, MVT::v8f32, Custom); + setOperationAction(ISD::MSTORE, MVT::v8i32, Custom); + setOperationAction(ISD::MSTORE, MVT::v8f32, Custom); + } + setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i1, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i1, Custom); + if (Subtarget->hasDQI()) { + setOperationAction(ISD::TRUNCATE, MVT::v2i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v4i1, Custom); + + setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal); + if (Subtarget->hasVLX()) { + setOperationAction(ISD::SINT_TO_FP, MVT::v4i64, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i64, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v4i64, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v4i64, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); + } + } + if (Subtarget->hasVLX()) { + setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); + } + setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom); + if (Subtarget->hasDQI()) { + setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom); + } + setOperationAction(ISD::FFLOOR, MVT::v16f32, Legal); + setOperationAction(ISD::FFLOOR, MVT::v8f64, Legal); + setOperationAction(ISD::FCEIL, MVT::v16f32, Legal); + setOperationAction(ISD::FCEIL, MVT::v8f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::v16f32, Legal); + setOperationAction(ISD::FTRUNC, MVT::v8f64, Legal); + setOperationAction(ISD::FRINT, MVT::v16f32, Legal); + setOperationAction(ISD::FRINT, MVT::v8f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v16f32, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v8f64, Legal); + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom); + + setOperationAction(ISD::SETCC, MVT::v16i1, Custom); + setOperationAction(ISD::SETCC, MVT::v8i1, Custom); + + setOperationAction(ISD::MUL, MVT::v8i64, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom); + setOperationAction(ISD::SELECT, MVT::v8f64, Custom); + setOperationAction(ISD::SELECT, MVT::v8i64, Custom); + setOperationAction(ISD::SELECT, MVT::v16f32, Custom); + setOperationAction(ISD::SELECT, MVT::v16i1, Custom); + setOperationAction(ISD::SELECT, MVT::v8i1, Custom); + + setOperationAction(ISD::SMAX, MVT::v16i32, Legal); + setOperationAction(ISD::SMAX, MVT::v8i64, Legal); + setOperationAction(ISD::UMAX, MVT::v16i32, Legal); + setOperationAction(ISD::UMAX, MVT::v8i64, Legal); + setOperationAction(ISD::SMIN, MVT::v16i32, Legal); + setOperationAction(ISD::SMIN, MVT::v8i64, Legal); + setOperationAction(ISD::UMIN, MVT::v16i32, Legal); + setOperationAction(ISD::UMIN, MVT::v8i64, Legal); + + setOperationAction(ISD::ADD, MVT::v8i64, Legal); + setOperationAction(ISD::ADD, MVT::v16i32, Legal); + + setOperationAction(ISD::SUB, MVT::v8i64, Legal); + setOperationAction(ISD::SUB, MVT::v16i32, Legal); + + setOperationAction(ISD::MUL, MVT::v16i32, Legal); + + setOperationAction(ISD::SRL, MVT::v8i64, Custom); + setOperationAction(ISD::SRL, MVT::v16i32, Custom); + + setOperationAction(ISD::SHL, MVT::v8i64, Custom); + setOperationAction(ISD::SHL, MVT::v16i32, Custom); + + setOperationAction(ISD::SRA, MVT::v8i64, Custom); + setOperationAction(ISD::SRA, MVT::v16i32, Custom); + + setOperationAction(ISD::AND, MVT::v8i64, Legal); + setOperationAction(ISD::OR, MVT::v8i64, Legal); + setOperationAction(ISD::XOR, MVT::v8i64, Legal); + setOperationAction(ISD::AND, MVT::v16i32, Legal); + setOperationAction(ISD::OR, MVT::v16i32, Legal); + setOperationAction(ISD::XOR, MVT::v16i32, Legal); + + if (Subtarget->hasCDI()) { + setOperationAction(ISD::CTLZ, MVT::v8i64, Legal); + setOperationAction(ISD::CTLZ, MVT::v16i32, Legal); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i32, Expand); + + setOperationAction(ISD::CTLZ, MVT::v8i16, Custom); + setOperationAction(ISD::CTLZ, MVT::v16i8, Custom); + setOperationAction(ISD::CTLZ, MVT::v16i16, Custom); + setOperationAction(ISD::CTLZ, MVT::v32i8, Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i16, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i8, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i16, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i8, Expand); + + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i64, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i32, Custom); + + if (Subtarget->hasVLX()) { + setOperationAction(ISD::CTLZ, MVT::v4i64, Legal); + setOperationAction(ISD::CTLZ, MVT::v8i32, Legal); + setOperationAction(ISD::CTLZ, MVT::v2i64, Legal); + setOperationAction(ISD::CTLZ, MVT::v4i32, Legal); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Expand); + + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); + } else { + setOperationAction(ISD::CTLZ, MVT::v4i64, Custom); + setOperationAction(ISD::CTLZ, MVT::v8i32, Custom); + setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); + setOperationAction(ISD::CTLZ, MVT::v4i32, Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Expand); + } + } // Subtarget->hasCDI() + + if (Subtarget->hasDQI()) { + setOperationAction(ISD::MUL, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v4i64, Legal); + setOperationAction(ISD::MUL, MVT::v8i64, Legal); + } + // Custom lower several nodes. + for (MVT VT : MVT::vector_valuetypes()) { + unsigned EltSize = VT.getVectorElementType().getSizeInBits(); + if (EltSize == 1) { + setOperationAction(ISD::AND, VT, Legal); + setOperationAction(ISD::OR, VT, Legal); + setOperationAction(ISD::XOR, VT, Legal); + } + if ((VT.is128BitVector() || VT.is256BitVector()) && EltSize >= 32) { + setOperationAction(ISD::MGATHER, VT, Custom); + setOperationAction(ISD::MSCATTER, VT, Custom); + } + // Extract subvector is special because the value type + // (result) is 256/128-bit but the source is 512-bit wide. + if (VT.is128BitVector() || VT.is256BitVector()) { + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); + } + if (VT.getVectorElementType() == MVT::i1) + setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); + + // Do not attempt to custom lower other non-512-bit vectors + if (!VT.is512BitVector()) + continue; + + if (EltSize >= 32) { + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Legal); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); + setOperationAction(ISD::MLOAD, VT, Legal); + setOperationAction(ISD::MSTORE, VT, Legal); + setOperationAction(ISD::MGATHER, VT, Legal); + setOperationAction(ISD::MSCATTER, VT, Custom); + } + } + for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) { + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v8i64); + } + }// has AVX-512 + + if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) { + addRegisterClass(MVT::v32i16, &X86::VR512RegClass); + addRegisterClass(MVT::v64i8, &X86::VR512RegClass); + + addRegisterClass(MVT::v32i1, &X86::VK32RegClass); + addRegisterClass(MVT::v64i1, &X86::VK64RegClass); + + setOperationAction(ISD::LOAD, MVT::v32i16, Legal); + setOperationAction(ISD::LOAD, MVT::v64i8, Legal); + setOperationAction(ISD::SETCC, MVT::v32i1, Custom); + setOperationAction(ISD::SETCC, MVT::v64i1, Custom); + setOperationAction(ISD::ADD, MVT::v32i16, Legal); + setOperationAction(ISD::ADD, MVT::v64i8, Legal); + setOperationAction(ISD::SUB, MVT::v32i16, Legal); + setOperationAction(ISD::SUB, MVT::v64i8, Legal); + setOperationAction(ISD::MUL, MVT::v32i16, Legal); + setOperationAction(ISD::MULHS, MVT::v32i16, Legal); + setOperationAction(ISD::MULHU, MVT::v32i16, Legal); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom); + setOperationAction(ISD::SELECT, MVT::v32i1, Custom); + setOperationAction(ISD::SELECT, MVT::v64i1, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom); + setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom); + setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i1, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i1, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom); + setOperationAction(ISD::VSELECT, MVT::v32i16, Legal); + setOperationAction(ISD::VSELECT, MVT::v64i8, Legal); + setOperationAction(ISD::TRUNCATE, MVT::v32i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v64i1, Custom); + setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i1, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i1, Custom); + + setOperationAction(ISD::SMAX, MVT::v64i8, Legal); + setOperationAction(ISD::SMAX, MVT::v32i16, Legal); + setOperationAction(ISD::UMAX, MVT::v64i8, Legal); + setOperationAction(ISD::UMAX, MVT::v32i16, Legal); + setOperationAction(ISD::SMIN, MVT::v64i8, Legal); + setOperationAction(ISD::SMIN, MVT::v32i16, Legal); + setOperationAction(ISD::UMIN, MVT::v64i8, Legal); + setOperationAction(ISD::UMIN, MVT::v32i16, Legal); + + setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal); + setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal); + if (Subtarget->hasVLX()) + setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal); + + if (Subtarget->hasCDI()) { + setOperationAction(ISD::CTLZ, MVT::v32i16, Custom); + setOperationAction(ISD::CTLZ, MVT::v64i8, Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i16, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v64i8, Expand); + } + + for (auto VT : { MVT::v64i8, MVT::v32i16 }) { + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VSELECT, VT, Legal); + setOperationAction(ISD::SRL, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v8i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v8i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v8i64); + } + } + + if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) { + addRegisterClass(MVT::v4i1, &X86::VK4RegClass); + addRegisterClass(MVT::v2i1, &X86::VK2RegClass); + + setOperationAction(ISD::SETCC, MVT::v4i1, Custom); + setOperationAction(ISD::SETCC, MVT::v2i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom); + setOperationAction(ISD::SELECT, MVT::v4i1, Custom); + setOperationAction(ISD::SELECT, MVT::v2i1, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i1, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i1, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i1, Custom); + + setOperationAction(ISD::AND, MVT::v8i32, Legal); + setOperationAction(ISD::OR, MVT::v8i32, Legal); + setOperationAction(ISD::XOR, MVT::v8i32, Legal); + setOperationAction(ISD::AND, MVT::v4i32, Legal); + setOperationAction(ISD::OR, MVT::v4i32, Legal); + setOperationAction(ISD::XOR, MVT::v4i32, Legal); + setOperationAction(ISD::SRA, MVT::v2i64, Custom); + setOperationAction(ISD::SRA, MVT::v4i64, Custom); + + setOperationAction(ISD::SMAX, MVT::v2i64, Legal); + setOperationAction(ISD::SMAX, MVT::v4i64, Legal); + setOperationAction(ISD::UMAX, MVT::v2i64, Legal); + setOperationAction(ISD::UMAX, MVT::v4i64, Legal); + setOperationAction(ISD::SMIN, MVT::v2i64, Legal); + setOperationAction(ISD::SMIN, MVT::v4i64, Legal); + setOperationAction(ISD::UMIN, MVT::v2i64, Legal); + setOperationAction(ISD::UMIN, MVT::v4i64, Legal); + } + + // We want to custom lower some of our intrinsics. + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); + if (!Subtarget->is64Bit()) { + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom); + } + + // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't + // handle type legalization for these operations here. + // + // FIXME: We really should do custom legalization for addition and + // subtraction on x86-32 once PR3203 is fixed. We really can't do much better + // than generic legalization for 64-bit multiplication-with-overflow, though. + for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) { + if (VT == MVT::i64 && !Subtarget->is64Bit()) + continue; + // Add/Sub/Mul with overflow operations are custom lowered. + setOperationAction(ISD::SADDO, VT, Custom); + setOperationAction(ISD::UADDO, VT, Custom); + setOperationAction(ISD::SSUBO, VT, Custom); + setOperationAction(ISD::USUBO, VT, Custom); + setOperationAction(ISD::SMULO, VT, Custom); + setOperationAction(ISD::UMULO, VT, Custom); + } + + if (!Subtarget->is64Bit()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, nullptr); + setLibcallName(RTLIB::SRL_I128, nullptr); + setLibcallName(RTLIB::SRA_I128, nullptr); + } + + // Combine sin / cos into one node or libcall if possible. + if (Subtarget->hasSinCos()) { + setLibcallName(RTLIB::SINCOS_F32, "sincosf"); + setLibcallName(RTLIB::SINCOS_F64, "sincos"); + if (Subtarget->isTargetDarwin()) { + // For MacOSX, we don't want the normal expansion of a libcall to sincos. + // We want to issue a libcall to __sincos_stret to avoid memory traffic. + setOperationAction(ISD::FSINCOS, MVT::f64, Custom); + setOperationAction(ISD::FSINCOS, MVT::f32, Custom); + } + } + + if (Subtarget->isTargetWin64()) { + setOperationAction(ISD::SDIV, MVT::i128, Custom); + setOperationAction(ISD::UDIV, MVT::i128, Custom); + setOperationAction(ISD::SREM, MVT::i128, Custom); + setOperationAction(ISD::UREM, MVT::i128, Custom); + setOperationAction(ISD::SDIVREM, MVT::i128, Custom); + setOperationAction(ISD::UDIVREM, MVT::i128, Custom); + } + + // We have target-specific dag combine patterns for the following nodes: + setTargetDAGCombine(ISD::VECTOR_SHUFFLE); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::BITCAST); + setTargetDAGCombine(ISD::VSELECT); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::SRA); + setTargetDAGCombine(ISD::SRL); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::ADD); + setTargetDAGCombine(ISD::FADD); + setTargetDAGCombine(ISD::FSUB); + setTargetDAGCombine(ISD::FNEG); + setTargetDAGCombine(ISD::FMA); + setTargetDAGCombine(ISD::FMINNUM); + setTargetDAGCombine(ISD::FMAXNUM); + setTargetDAGCombine(ISD::SUB); + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::MLOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::MSTORE); + setTargetDAGCombine(ISD::TRUNCATE); + setTargetDAGCombine(ISD::ZERO_EXTEND); + setTargetDAGCombine(ISD::ANY_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); + setTargetDAGCombine(ISD::SINT_TO_FP); + setTargetDAGCombine(ISD::UINT_TO_FP); + setTargetDAGCombine(ISD::SETCC); + setTargetDAGCombine(ISD::BUILD_VECTOR); + setTargetDAGCombine(ISD::MUL); + setTargetDAGCombine(ISD::XOR); + setTargetDAGCombine(ISD::MSCATTER); + setTargetDAGCombine(ISD::MGATHER); + + computeRegisterProperties(Subtarget->getRegisterInfo()); + + MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + MaxStoresPerMemsetOptSize = 8; + MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores + MaxStoresPerMemcpyOptSize = 4; + MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores + MaxStoresPerMemmoveOptSize = 4; + setPrefLoopAlignment(4); // 2^4 bytes. + + // A predictable cmov does not hurt on an in-order CPU. + // FIXME: Use a CPU attribute to trigger this, not a CPU model. + PredictableSelectIsExpensive = !Subtarget->isAtom(); + EnableExtLdPromotion = true; + setPrefFunctionAlignment(4); // 2^4 bytes. + + verifyIntrinsicTables(); +} + +// This has so far only been implemented for 64-bit MachO. +bool X86TargetLowering::useLoadStackGuardNode() const { + return Subtarget->isTargetMachO() && Subtarget->is64Bit(); +} + +TargetLoweringBase::LegalizeTypeAction +X86TargetLowering::getPreferredVectorAction(EVT VT) const { + if (ExperimentalVectorWideningLegalization && + VT.getVectorNumElements() != 1 && + VT.getVectorElementType().getSimpleVT() != MVT::i1) + return TypeWidenVector; + + return TargetLoweringBase::getPreferredVectorAction(VT); +} + +EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, + EVT VT) const { + if (!VT.isVector()) + return Subtarget->hasAVX512() ? MVT::i1: MVT::i8; + + if (VT.isSimple()) { + MVT VVT = VT.getSimpleVT(); + const unsigned NumElts = VVT.getVectorNumElements(); + const MVT EltVT = VVT.getVectorElementType(); + if (VVT.is512BitVector()) { + if (Subtarget->hasAVX512()) + if (EltVT == MVT::i32 || EltVT == MVT::i64 || + EltVT == MVT::f32 || EltVT == MVT::f64) + switch(NumElts) { + case 8: return MVT::v8i1; + case 16: return MVT::v16i1; + } + if (Subtarget->hasBWI()) + if (EltVT == MVT::i8 || EltVT == MVT::i16) + switch(NumElts) { + case 32: return MVT::v32i1; + case 64: return MVT::v64i1; + } + } + + if (VVT.is256BitVector() || VVT.is128BitVector()) { + if (Subtarget->hasVLX()) + if (EltVT == MVT::i32 || EltVT == MVT::i64 || + EltVT == MVT::f32 || EltVT == MVT::f64) + switch(NumElts) { + case 2: return MVT::v2i1; + case 4: return MVT::v4i1; + case 8: return MVT::v8i1; + } + if (Subtarget->hasBWI() && Subtarget->hasVLX()) + if (EltVT == MVT::i8 || EltVT == MVT::i16) + switch(NumElts) { + case 8: return MVT::v8i1; + case 16: return MVT::v16i1; + case 32: return MVT::v32i1; + } + } + } + + return VT.changeVectorElementTypeToInteger(); +} + +/// Helper for getByValTypeAlignment to determine +/// the desired ByVal argument alignment. +static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) { + if (MaxAlign == 16) + return; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { + if (VTy->getBitWidth() == 128) + MaxAlign = 16; + } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned EltAlign = 0; + getMaxByValAlign(ATy->getElementType(), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + } else if (StructType *STy = dyn_cast<StructType>(Ty)) { + for (auto *EltTy : STy->elements()) { + unsigned EltAlign = 0; + getMaxByValAlign(EltTy, EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + if (MaxAlign == 16) + break; + } + } +} + +/// Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. For X86, aggregates +/// that contain SSE vectors are placed at 16-byte boundaries while the rest +/// are at 4-byte boundaries. +unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty, + const DataLayout &DL) const { + if (Subtarget->is64Bit()) { + // Max of 8 and alignment of type. + unsigned TyAlign = DL.getABITypeAlignment(Ty); + if (TyAlign > 8) + return TyAlign; + return 8; + } + + unsigned Align = 4; + if (Subtarget->hasSSE1()) + getMaxByValAlign(Ty, Align); + return Align; +} + +/// Returns the target specific optimal type for load +/// and store operations as a result of memset, memcpy, and memmove +/// lowering. If DstAlign is zero that means it's safe to destination +/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it +/// means there isn't a need to check it against alignment requirement, +/// probably because the source does not need to be loaded. If 'IsMemset' is +/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that +/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy +/// source is constant so it does not need to be loaded. +/// It returns EVT::Other if the type should be determined using generic +/// target-independent logic. +EVT +X86TargetLowering::getOptimalMemOpType(uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool IsMemset, bool ZeroMemset, + bool MemcpyStrSrc, + MachineFunction &MF) const { + const Function *F = MF.getFunction(); + if ((!IsMemset || ZeroMemset) && + !F->hasFnAttribute(Attribute::NoImplicitFloat)) { + if (Size >= 16 && + (!Subtarget->isUnalignedMem16Slow() || + ((DstAlign == 0 || DstAlign >= 16) && + (SrcAlign == 0 || SrcAlign >= 16)))) { + if (Size >= 32) { + // FIXME: Check if unaligned 32-byte accesses are slow. + if (Subtarget->hasInt256()) + return MVT::v8i32; + if (Subtarget->hasFp256()) + return MVT::v8f32; + } + if (Subtarget->hasSSE2()) + return MVT::v4i32; + if (Subtarget->hasSSE1()) + return MVT::v4f32; + } else if (!MemcpyStrSrc && Size >= 8 && + !Subtarget->is64Bit() && + Subtarget->hasSSE2()) { + // Do not use f64 to lower memcpy if source is string constant. It's + // better to use i32 to avoid the loads. + return MVT::f64; + } + } + // This is a compromise. If we reach here, unaligned accesses may be slow on + // this target. However, creating smaller, aligned accesses could be even + // slower and would certainly be a lot more code. + if (Subtarget->is64Bit() && Size >= 8) + return MVT::i64; + return MVT::i32; +} + +bool X86TargetLowering::isSafeMemOpType(MVT VT) const { + if (VT == MVT::f32) + return X86ScalarSSEf32; + else if (VT == MVT::f64) + return X86ScalarSSEf64; + return true; +} + +bool +X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT, + unsigned, + unsigned, + bool *Fast) const { + if (Fast) { + switch (VT.getSizeInBits()) { + default: + // 8-byte and under are always assumed to be fast. + *Fast = true; + break; + case 128: + *Fast = !Subtarget->isUnalignedMem16Slow(); + break; + case 256: + *Fast = !Subtarget->isUnalignedMem32Slow(); + break; + // TODO: What about AVX-512 (512-bit) accesses? + } + } + // Misaligned accesses of any size are always allowed. + return true; +} + +/// Return the entry encoding for a jump table in the +/// current function. The returned value is a member of the +/// MachineJumpTableInfo::JTEntryKind enum. +unsigned X86TargetLowering::getJumpTableEncoding() const { + // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF + // symbol. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()) + return MachineJumpTableInfo::EK_Custom32; + + // Otherwise, use the normal jump table encoding heuristics. + return TargetLowering::getJumpTableEncoding(); +} + +bool X86TargetLowering::useSoftFloat() const { + return Subtarget->useSoftFloat(); +} + +const MCExpr * +X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, + const MachineBasicBlock *MBB, + unsigned uid,MCContext &Ctx) const{ + assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()); + // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF + // entries. + return MCSymbolRefExpr::create(MBB->getSymbol(), + MCSymbolRefExpr::VK_GOTOFF, Ctx); +} + +/// Returns relocation base for the given PIC jumptable. +SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + if (!Subtarget->is64Bit()) + // This doesn't have SDLoc associated with it, but is not really the + // same as a Register. + return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), + getPointerTy(DAG.getDataLayout())); + return Table; +} + +/// This returns the relocation base for the given PIC jumptable, +/// the same as getPICJumpTableRelocBase, but as an MCExpr. +const MCExpr *X86TargetLowering:: +getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, + MCContext &Ctx) const { + // X86-64 uses RIP relative addressing based on the jump table label. + if (Subtarget->isPICStyleRIPRel()) + return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); + + // Otherwise, the reference is relative to the PIC base. + return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); +} + +std::pair<const TargetRegisterClass *, uint8_t> +X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { + const TargetRegisterClass *RRC = nullptr; + uint8_t Cost = 1; + switch (VT.SimpleTy) { + default: + return TargetLowering::findRepresentativeClass(TRI, VT); + case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: + RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass; + break; + case MVT::x86mmx: + RRC = &X86::VR64RegClass; + break; + case MVT::f32: case MVT::f64: + case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: + case MVT::v4f32: case MVT::v2f64: + case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: + case MVT::v4f64: + RRC = &X86::VR128RegClass; + break; + } + return std::make_pair(RRC, Cost); +} + +bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, + unsigned &Offset) const { + if (!Subtarget->isTargetLinux()) + return false; + + if (Subtarget->is64Bit()) { + // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: + Offset = 0x28; + if (getTargetMachine().getCodeModel() == CodeModel::Kernel) + AddressSpace = 256; + else + AddressSpace = 257; + } else { + // %gs:0x14 on i386 + Offset = 0x14; + AddressSpace = 256; + } + return true; +} + +Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const { + if (!Subtarget->isTargetAndroid()) + return TargetLowering::getSafeStackPointerLocation(IRB); + + // Android provides a fixed TLS slot for the SafeStack pointer. See the + // definition of TLS_SLOT_SAFESTACK in + // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h + unsigned AddressSpace, Offset; + if (Subtarget->is64Bit()) { + // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs: + Offset = 0x48; + if (getTargetMachine().getCodeModel() == CodeModel::Kernel) + AddressSpace = 256; + else + AddressSpace = 257; + } else { + // %gs:0x24 on i386 + Offset = 0x24; + AddressSpace = 256; + } + + return ConstantExpr::getIntToPtr( + ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset), + Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace)); +} + +bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS, + unsigned DestAS) const { + assert(SrcAS != DestAS && "Expected different address spaces!"); + + return SrcAS < 256 && DestAS < 256; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "X86GenCallingConv.inc" + +bool X86TargetLowering::CanLowerReturn( + CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); + return CCInfo.CheckReturn(Outs, RetCC_X86); +} + +const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const { + static const MCPhysReg ScratchRegs[] = { X86::R11, 0 }; + return ScratchRegs; +} + +SDValue +X86TargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc dl, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + if (CallConv == CallingConv::X86_INTR && !Outs.empty()) + report_fatal_error("X86 interrupts may not return any value"); + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + SDValue Flag; + SmallVector<SDValue, 6> RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + // Operand #1 = Bytes To Pop + RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl, + MVT::i16)); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue ValToCopy = OutVals[i]; + EVT ValVT = ValToCopy.getValueType(); + + // Promote values to the appropriate types. + if (VA.getLocInfo() == CCValAssign::SExt) + ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy); + else if (VA.getLocInfo() == CCValAssign::AExt) { + if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1) + ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy); + else + ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy); + } + else if (VA.getLocInfo() == CCValAssign::BCvt) + ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy); + + assert(VA.getLocInfo() != CCValAssign::FPExt && + "Unexpected FP-extend for return value."); + + // If this is x86-64, and we disabled SSE, we can't return FP values, + // or SSE or MMX vectors. + if ((ValVT == MVT::f32 || ValVT == MVT::f64 || + VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && + (Subtarget->is64Bit() && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + // Likewise we can't return F64 values with SSE1 only. gcc does so, but + // llvm-gcc has never done it right and no one has noticed, so this + // should be OK for now. + if (ValVT == MVT::f64 && + (Subtarget->is64Bit() && !Subtarget->hasSSE2())) + report_fatal_error("SSE2 register return with SSE2 disabled"); + + // Returns in ST0/ST1 are handled specially: these are pushed as operands to + // the RET instruction and handled by the FP Stackifier. + if (VA.getLocReg() == X86::FP0 || + VA.getLocReg() == X86::FP1) { + // If this is a copy from an xmm register to ST(0), use an FPExtend to + // change the value to the FP stack register class. + if (isScalarFPTypeInSSEReg(VA.getValVT())) + ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); + RetOps.push_back(ValToCopy); + // Don't emit a copytoreg. + continue; + } + + // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 + // which is returned in RAX / RDX. + if (Subtarget->is64Bit()) { + if (ValVT == MVT::x86mmx) { + if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { + ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy); + ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + ValToCopy); + // If we don't have SSE2 available, convert to v4f32 so the generated + // register is legal. + if (!Subtarget->hasSSE2()) + ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy); + } + } + } + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + // All x86 ABIs require that for returning structs by value we copy + // the sret argument into %rax/%eax (depending on ABI) for the return. + // We saved the argument into a virtual register in the entry block, + // so now we copy the value out and into %rax/%eax. + // + // Checking Function.hasStructRetAttr() here is insufficient because the IR + // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is + // false, then an sret argument may be implicitly inserted in the SelDAG. In + // either case FuncInfo->setSRetReturnReg() will have been called. + if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { + SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg, + getPointerTy(MF.getDataLayout())); + + unsigned RetValReg + = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ? + X86::RAX : X86::EAX; + Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag); + Flag = Chain.getValue(1); + + // RAX/EAX now acts like a return value. + RetOps.push_back( + DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + X86ISD::NodeType opcode = X86ISD::RET_FLAG; + if (CallConv == CallingConv::X86_INTR) + opcode = X86ISD::IRET; + return DAG.getNode(opcode, dl, MVT::Other, RetOps); +} + +bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { + if (N->getNumValues() != 1) + return false; + if (!N->hasNUsesOfValue(1, 0)) + return false; + + SDValue TCChain = Chain; + SDNode *Copy = *N->use_begin(); + if (Copy->getOpcode() == ISD::CopyToReg) { + // If the copy has a glue operand, we conservatively assume it isn't safe to + // perform a tail call. + if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) + return false; + TCChain = Copy->getOperand(0); + } else if (Copy->getOpcode() != ISD::FP_EXTEND) + return false; + + bool HasRet = false; + for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); + UI != UE; ++UI) { + if (UI->getOpcode() != X86ISD::RET_FLAG) + return false; + // If we are returning more than one value, we can definitely + // not make a tail call see PR19530 + if (UI->getNumOperands() > 4) + return false; + if (UI->getNumOperands() == 4 && + UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue) + return false; + HasRet = true; + } + + if (!HasRet) + return false; + + Chain = TCChain; + return true; +} + +EVT +X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT, + ISD::NodeType ExtendKind) const { + MVT ReturnMVT; + // TODO: Is this also valid on 32-bit? + if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND) + ReturnMVT = MVT::i8; + else + ReturnMVT = MVT::i32; + + EVT MinVT = getRegisterType(Context, ReturnMVT); + return VT.bitsLT(MinVT) ? MinVT : VT; +} + +/// Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +/// +SDValue +X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + bool Is64Bit = Subtarget->is64Bit(); + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + EVT CopyVT = VA.getLocVT(); + + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) && + ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + + // If we prefer to use the value in xmm registers, copy it out as f80 and + // use a truncate to move it from fp stack reg to xmm reg. + bool RoundAfterCopy = false; + if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) && + isScalarFPTypeInSSEReg(VA.getValVT())) { + CopyVT = MVT::f80; + RoundAfterCopy = (CopyVT != VA.getLocVT()); + } + + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), + CopyVT, InFlag).getValue(1); + SDValue Val = Chain.getValue(0); + + if (RoundAfterCopy) + Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, + // This truncation won't change the value. + DAG.getIntPtrConstant(1, dl)); + + if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1) + Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); + + InFlag = Chain.getValue(2); + InVals.push_back(Val); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// C & StdCall & Fast Calling Convention implementation +//===----------------------------------------------------------------------===// +// StdCall calling convention seems to be standard for many Windows' API +// routines and around. It differs from C calling convention just a little: +// callee should clean up the stack, not caller. Symbols should be also +// decorated in some fancy way :) It doesn't support any vector arguments. +// For info on fast calling convention see Fast Calling Convention (tail call) +// implementation LowerX86_32FastCCCallTo. + +/// CallIsStructReturn - Determines whether a call uses struct return +/// semantics. +enum StructReturnType { + NotStructReturn, + RegStructReturn, + StackStructReturn +}; +static StructReturnType +callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) { + if (Outs.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Outs[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg() || IsMCU) + return RegStructReturn; + return StackStructReturn; +} + +/// Determines whether a function uses struct return semantics. +static StructReturnType +argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) { + if (Ins.empty()) + return NotStructReturn; + + const ISD::ArgFlagsTy &Flags = Ins[0].Flags; + if (!Flags.isSRet()) + return NotStructReturn; + if (Flags.isInReg() || IsMCU) + return RegStructReturn; + return StackStructReturn; +} + +/// Make a copy of an aggregate at address specified by "Src" to address +/// "Dst" with size and alignment information specified by the specific +/// parameter attribute. The copy will be passed as a byval function parameter. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG, + SDLoc dl) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); + + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + /*isVolatile*/false, /*AlwaysInline=*/true, + /*isTailCall*/false, + MachinePointerInfo(), MachinePointerInfo()); +} + +/// Return true if the calling convention is one that we can guarantee TCO for. +static bool canGuaranteeTCO(CallingConv::ID CC) { + return (CC == CallingConv::Fast || CC == CallingConv::GHC || + CC == CallingConv::HiPE || CC == CallingConv::HHVM); +} + +/// Return true if we might ever do TCO for calls with this calling convention. +static bool mayTailCallThisCC(CallingConv::ID CC) { + switch (CC) { + // C calling conventions: + case CallingConv::C: + case CallingConv::X86_64_Win64: + case CallingConv::X86_64_SysV: + // Callee pop conventions: + case CallingConv::X86_ThisCall: + case CallingConv::X86_StdCall: + case CallingConv::X86_VectorCall: + case CallingConv::X86_FastCall: + return true; + default: + return canGuaranteeTCO(CC); + } +} + +/// Return true if the function is being made into a tailcall target by +/// changing its ABI. +static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) { + return GuaranteedTailCallOpt && canGuaranteeTCO(CC); +} + +bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + auto Attr = + CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); + if (!CI->isTailCall() || Attr.getValueAsString() == "true") + return false; + + CallSite CS(CI); + CallingConv::ID CalleeCC = CS.getCallingConv(); + if (!mayTailCallThisCC(CalleeCC)) + return false; + + return true; +} + +SDValue +X86TargetLowering::LowerMemArgument(SDValue Chain, + CallingConv::ID CallConv, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + MachineFrameInfo *MFI, + unsigned i) const { + // Create the nodes corresponding to a load from this parameter slot. + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool AlwaysUseMutable = shouldGuaranteeTCO( + CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt); + bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); + EVT ValVT; + + // If value is passed by pointer we have address passed instead of the value + // itself. + bool ExtendedInMem = VA.isExtInLoc() && + VA.getValVT().getScalarType() == MVT::i1; + + if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem) + ValVT = VA.getLocVT(); + else + ValVT = VA.getValVT(); + + // Calculate SP offset of interrupt parameter, re-arrange the slot normally + // taken by a return address. + int Offset = 0; + if (CallConv == CallingConv::X86_INTR) { + const X86Subtarget& Subtarget = + static_cast<const X86Subtarget&>(DAG.getSubtarget()); + // X86 interrupts may take one or two arguments. + // On the stack there will be no return address as in regular call. + // Offset of last argument need to be set to -4/-8 bytes. + // Where offset of the first argument out of two, should be set to 0 bytes. + Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1); + } + + // FIXME: For now, all byval parameter objects are marked mutable. This can be + // changed with more analysis. + // In case of tail call optimization mark all arguments mutable. Since they + // could be overwritten by lowering of arguments in case of a tail call. + if (Flags.isByVal()) { + unsigned Bytes = Flags.getByValSize(); + if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects. + int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable); + // Adjust SP offset of interrupt parameter. + if (CallConv == CallingConv::X86_INTR) { + MFI->setObjectOffset(FI, Offset); + } + return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + } else { + int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, + VA.getLocMemOffset(), isImmutable); + // Adjust SP offset of interrupt parameter. + if (CallConv == CallingConv::X86_INTR) { + MFI->setObjectOffset(FI, Offset); + } + + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + SDValue Val = DAG.getLoad( + ValVT, dl, Chain, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, + false, false, 0); + return ExtendedInMem ? + DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val; + } +} + +// FIXME: Get this from tablegen. +static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv, + const X86Subtarget *Subtarget) { + assert(Subtarget->is64Bit()); + + if (Subtarget->isCallingConvWin64(CallConv)) { + static const MCPhysReg GPR64ArgRegsWin64[] = { + X86::RCX, X86::RDX, X86::R8, X86::R9 + }; + return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64)); + } + + static const MCPhysReg GPR64ArgRegs64Bit[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 + }; + return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit)); +} + +// FIXME: Get this from tablegen. +static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF, + CallingConv::ID CallConv, + const X86Subtarget *Subtarget) { + assert(Subtarget->is64Bit()); + if (Subtarget->isCallingConvWin64(CallConv)) { + // The XMM registers which might contain var arg parameters are shadowed + // in their paired GPR. So we only need to save the GPR to their home + // slots. + // TODO: __vectorcall will change this. + return None; + } + + const Function *Fn = MF.getFunction(); + bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat); + bool isSoftFloat = Subtarget->useSoftFloat(); + assert(!(isSoftFloat && NoImplicitFloatOps) && + "SSE register cannot be used when SSE is disabled!"); + if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) + // Kernel mode asks for SSE to be disabled, so there are no XMM argument + // registers. + return None; + + static const MCPhysReg XMMArgRegs64Bit[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit)); +} + +SDValue X86TargetLowering::LowerFormalArguments( + SDValue Chain, CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); + + const Function* Fn = MF.getFunction(); + if (Fn->hasExternalLinkage() && + Subtarget->isTargetCygMing() && + Fn->getName() == "main") + FuncInfo->setForceFramePointer(true); + + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); + + assert(!(isVarArg && canGuaranteeTCO(CallConv)) && + "Var args not supported with calling convention fastcc, ghc or hipe"); + + if (CallConv == CallingConv::X86_INTR) { + bool isLegal = Ins.size() == 1 || + (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) || + (!Is64Bit && Ins[1].VT == MVT::i32))); + if (!isLegal) + report_fatal_error("X86 interrupts may take one or two arguments"); + } + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64 + if (IsWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeFormalArguments(Ins, CC_X86); + + unsigned LastVal = ~0U; + SDValue ArgValue; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + // TODO: If an arg is passed in two places (e.g. reg and stack), skip later + // places. + assert(VA.getValNo() != LastVal && + "Don't support value assigned to multiple locs yet"); + (void)LastVal; + LastVal = VA.getValNo(); + + if (VA.isRegLoc()) { + EVT RegVT = VA.getLocVT(); + const TargetRegisterClass *RC; + if (RegVT == MVT::i32) + RC = &X86::GR32RegClass; + else if (Is64Bit && RegVT == MVT::i64) + RC = &X86::GR64RegClass; + else if (RegVT == MVT::f32) + RC = &X86::FR32RegClass; + else if (RegVT == MVT::f64) + RC = &X86::FR64RegClass; + else if (RegVT == MVT::f128) + RC = &X86::FR128RegClass; + else if (RegVT.is512BitVector()) + RC = &X86::VR512RegClass; + else if (RegVT.is256BitVector()) + RC = &X86::VR256RegClass; + else if (RegVT.is128BitVector()) + RC = &X86::VR128RegClass; + else if (RegVT == MVT::x86mmx) + RC = &X86::VR64RegClass; + else if (RegVT == MVT::i1) + RC = &X86::VK1RegClass; + else if (RegVT == MVT::v8i1) + RC = &X86::VK8RegClass; + else if (RegVT == MVT::v16i1) + RC = &X86::VK16RegClass; + else if (RegVT == MVT::v32i1) + RC = &X86::VK32RegClass; + else if (RegVT == MVT::v64i1) + RC = &X86::VK64RegClass; + else + llvm_unreachable("Unknown argument type!"); + + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + + // If this is an 8 or 16-bit value, it is really passed promoted to 32 + // bits. Insert an assert[sz]ext to capture this, then truncate to the + // right size. + if (VA.getLocInfo() == CCValAssign::SExt) + ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::BCvt) + ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue); + + if (VA.isExtInLoc()) { + // Handle MMX values passed in XMM regs. + if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1) + ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue); + else + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); + } + } else { + assert(VA.isMemLoc()); + ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); + } + + // If value is passed via pointer - do a load. + if (VA.getLocInfo() == CCValAssign::Indirect) + ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, + MachinePointerInfo(), false, false, false, 0); + + InVals.push_back(ArgValue); + } + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + // All x86 ABIs require that for returning structs by value we copy the + // sret argument into %rax/%eax (depending on ABI) for the return. Save + // the argument into a virtual register so that we can access it from the + // return points. + if (Ins[i].Flags.isSRet()) { + unsigned Reg = FuncInfo->getSRetReturnReg(); + if (!Reg) { + MVT PtrTy = getPointerTy(DAG.getDataLayout()); + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); + FuncInfo->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + break; + } + } + + unsigned StackSize = CCInfo.getNextStackOffset(); + // Align stack specially for tail calls. + if (shouldGuaranteeTCO(CallConv, + MF.getTarget().Options.GuaranteedTailCallOpt)) + StackSize = GetAlignedArgumentStackSize(StackSize, DAG); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. We + // can skip this if there are no va_start calls. + if (MFI->hasVAStart() && + (Is64Bit || (CallConv != CallingConv::X86_FastCall && + CallConv != CallingConv::X86_ThisCall))) { + FuncInfo->setVarArgsFrameIndex( + MFI->CreateFixedObject(1, StackSize, true)); + } + + // Figure out if XMM registers are in use. + assert(!(Subtarget->useSoftFloat() && + Fn->hasFnAttribute(Attribute::NoImplicitFloat)) && + "SSE register cannot be used when SSE is disabled!"); + + // 64-bit calling conventions support varargs and register parameters, so we + // have to do extra work to spill them in the prologue. + if (Is64Bit && isVarArg && MFI->hasVAStart()) { + // Find the first unallocated argument registers. + ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget); + ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget); + unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs); + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs); + assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && + "SSE register cannot be used when SSE is disabled!"); + + // Gather all the live in physical registers. + SmallVector<SDValue, 6> LiveGPRs; + SmallVector<SDValue, 8> LiveXMMRegs; + SDValue ALVal; + for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) { + unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass); + LiveGPRs.push_back( + DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64)); + } + if (!ArgXMMs.empty()) { + unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass); + ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8); + for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) { + unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass); + LiveXMMRegs.push_back( + DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32)); + } + } + + if (IsWin64) { + // Get to the caller-allocated home save location. Add 8 to account + // for the return address. + int HomeOffset = TFI.getOffsetOfLocalArea() + 8; + FuncInfo->setRegSaveFrameIndex( + MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); + // Fixup to set vararg frame on shadow area (4 x i64). + if (NumIntRegs < 4) + FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); + } else { + // For X86-64, if there are vararg parameters that are passed via + // registers, then we must store them to their spots on the stack so + // they may be loaded by deferencing the result of va_next. + FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); + FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16); + FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject( + ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false)); + } + + // Store the integer parameter registers. + SmallVector<SDValue, 8> MemOps; + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy(DAG.getDataLayout())); + unsigned Offset = FuncInfo->getVarArgsGPOffset(); + for (SDValue Val : LiveGPRs) { + SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + RSFIN, DAG.getIntPtrConstant(Offset, dl)); + SDValue Store = + DAG.getStore(Val.getValue(1), dl, Val, FIN, + MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), + FuncInfo->getRegSaveFrameIndex(), Offset), + false, false, 0); + MemOps.push_back(Store); + Offset += 8; + } + + if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) { + // Now store the XMM (fp + vector) parameter registers. + SmallVector<SDValue, 12> SaveXMMOps; + SaveXMMOps.push_back(Chain); + SaveXMMOps.push_back(ALVal); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getRegSaveFrameIndex(), dl)); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getVarArgsFPOffset(), dl)); + SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(), + LiveXMMRegs.end()); + MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, + MVT::Other, SaveXMMOps)); + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); + } + + if (isVarArg && MFI->hasMustTailInVarArgFunc()) { + // Find the largest legal vector type. + MVT VecVT = MVT::Other; + // FIXME: Only some x86_32 calling conventions support AVX512. + if (Subtarget->hasAVX512() && + (Is64Bit || (CallConv == CallingConv::X86_VectorCall || + CallConv == CallingConv::Intel_OCL_BI))) + VecVT = MVT::v16f32; + else if (Subtarget->hasAVX()) + VecVT = MVT::v8f32; + else if (Subtarget->hasSSE2()) + VecVT = MVT::v4f32; + + // We forward some GPRs and some vector types. + SmallVector<MVT, 2> RegParmTypes; + MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32; + RegParmTypes.push_back(IntVT); + if (VecVT != MVT::Other) + RegParmTypes.push_back(VecVT); + + // Compute the set of forwarded registers. The rest are scratch. + SmallVectorImpl<ForwardedRegister> &Forwards = + FuncInfo->getForwardedMustTailRegParms(); + CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86); + + // Conservatively forward AL on x86_64, since it might be used for varargs. + if (Is64Bit && !CCInfo.isAllocated(X86::AL)) { + unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass); + Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8)); + } + + // Copy all forwards from physical to virtual registers. + for (ForwardedRegister &F : Forwards) { + // FIXME: Can we use a less constrained schedule? + SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); + F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT)); + Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal); + } + } + + // Some CCs need callee pop. + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + MF.getTarget().Options.GuaranteedTailCallOpt)) { + FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. + } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) { + // X86 interrupts must pop the error code if present + FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4); + } else { + FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. + // If this is an sret function, the return should pop the hidden pointer. + if (!Is64Bit && !canGuaranteeTCO(CallConv) && + !Subtarget->getTargetTriple().isOSMSVCRT() && + argsAreStructReturn(Ins, Subtarget->isTargetMCU()) == StackStructReturn) + FuncInfo->setBytesToPopOnReturn(4); + } + + if (!Is64Bit) { + // RegSaveFrameIndex is X86-64 only. + FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); + if (CallConv == CallingConv::X86_FastCall || + CallConv == CallingConv::X86_ThisCall) + // fastcc functions can't have varargs. + FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); + } + + FuncInfo->setArgumentStackSize(StackSize); + + if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) { + EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn()); + if (Personality == EHPersonality::CoreCLR) { + assert(Is64Bit); + // TODO: Add a mechanism to frame lowering that will allow us to indicate + // that we'd prefer this slot be allocated towards the bottom of the frame + // (i.e. near the stack pointer after allocating the frame). Every + // funclet needs a copy of this slot in its (mostly empty) frame, and the + // offset from the bottom of this and each funclet's frame must be the + // same, so the size of funclets' (mostly empty) frames is dictated by + // how far this slot is from the bottom (since they allocate just enough + // space to accomodate holding this slot at the correct offset). + int PSPSymFI = MFI->CreateStackObject(8, 8, /*isSS=*/false); + EHInfo->PSPSymFrameIdx = PSPSymFI; + } + } + + return Chain; +} + +SDValue +X86TargetLowering::LowerMemOpCallTo(SDValue Chain, + SDValue StackPtr, SDValue Arg, + SDLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + ISD::ArgFlagsTy Flags) const { + unsigned LocMemOffset = VA.getLocMemOffset(); + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + StackPtr, PtrOff); + if (Flags.isByVal()) + return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); + + return DAG.getStore( + Chain, dl, Arg, PtrOff, + MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset), + false, false, 0); +} + +/// Emit a load of return address if tail call +/// optimization is performed and it is required. +SDValue +X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, + SDValue &OutRetAddr, SDValue Chain, + bool IsTailCall, bool Is64Bit, + int FPDiff, SDLoc dl) const { + // Adjust the Return address stack slot. + EVT VT = getPointerTy(DAG.getDataLayout()); + OutRetAddr = getReturnAddressFrameIndex(DAG); + + // Load the "old" Return address. + OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), + false, false, false, 0); + return SDValue(OutRetAddr.getNode(), 1); +} + +/// Emit a store of the return address if tail call +/// optimization is performed and it is required (FPDiff!=0). +static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF, + SDValue Chain, SDValue RetAddrFrIdx, + EVT PtrVT, unsigned SlotSize, + int FPDiff, SDLoc dl) { + // Store the return address to the appropriate stack slot. + if (!FPDiff) return Chain; + // Calculate the new stack slot for the return address. + int NewReturnAddrFI = + MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize, + false); + SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT); + Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, + MachinePointerInfo::getFixedStack( + DAG.getMachineFunction(), NewReturnAddrFI), + false, false, 0); + return Chain; +} + +/// Returns a vector_shuffle mask for an movs{s|d}, movd +/// operation of specified width. +static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + Mask.push_back(NumElems); + for (unsigned i = 1; i != NumElems; ++i) + Mask.push_back(i); + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +SDValue +X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &dl = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + CallingConv::ID CallConv = CLI.CallConv; + bool &isTailCall = CLI.IsTailCall; + bool isVarArg = CLI.IsVarArg; + + MachineFunction &MF = DAG.getMachineFunction(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isCallingConvWin64(CallConv); + StructReturnType SR = callIsStructReturn(Outs, Subtarget->isTargetMCU()); + bool IsSibcall = false; + X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>(); + auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); + + if (CallConv == CallingConv::X86_INTR) + report_fatal_error("X86 interrupts may not be called directly"); + + if (Attr.getValueAsString() == "true") + isTailCall = false; + + if (Subtarget->isPICStyleGOT() && + !MF.getTarget().Options.GuaranteedTailCallOpt) { + // If we are using a GOT, disable tail calls to external symbols with + // default visibility. Tail calling such a symbol requires using a GOT + // relocation, which forces early binding of the symbol. This breaks code + // that require lazy function symbol resolution. Using musttail or + // GuaranteedTailCallOpt will override this. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (!G || (!G->getGlobal()->hasLocalLinkage() && + G->getGlobal()->hasDefaultVisibility())) + isTailCall = false; + } + + bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall(); + if (IsMustTail) { + // Force this to be a tail call. The verifier rules are enough to ensure + // that we can lower this successfully without moving the return address + // around. + isTailCall = true; + } else if (isTailCall) { + // Check if it's really possible to do a tail call. + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + isVarArg, SR != NotStructReturn, + MF.getFunction()->hasStructRetAttr(), CLI.RetTy, + Outs, OutVals, Ins, DAG); + + // Sibcalls are automatically detected tailcalls which do not require + // ABI changes. + if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall) + IsSibcall = true; + + if (isTailCall) + ++NumTailCalls; + } + + assert(!(isVarArg && canGuaranteeTCO(CallConv)) && + "Var args not supported with calling convention fastcc, ghc or hipe"); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); + + // Allocate shadow area for Win64 + if (IsWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); + if (IsSibcall) + // This is a sibcall. The memory operands are available in caller's + // own caller's stack. + NumBytes = 0; + else if (MF.getTarget().Options.GuaranteedTailCallOpt && + canGuaranteeTCO(CallConv)) + NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); + + int FPDiff = 0; + if (isTailCall && !IsSibcall && !IsMustTail) { + // Lower arguments at fp - stackoffset + fpdiff. + unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn(); + + FPDiff = NumBytesCallerPushed - NumBytes; + + // Set the delta of movement of the returnaddr stackslot. + // But only set if delta is greater than previous delta. + if (FPDiff < X86Info->getTCReturnAddrDelta()) + X86Info->setTCReturnAddrDelta(FPDiff); + } + + unsigned NumBytesToPush = NumBytes; + unsigned NumBytesToPop = NumBytes; + + // If we have an inalloca argument, all stack space has already been allocated + // for us and be right at the top of the stack. We don't support multiple + // arguments passed in memory when using inalloca. + if (!Outs.empty() && Outs.back().Flags.isInAlloca()) { + NumBytesToPush = 0; + if (!ArgLocs.back().isMemLoc()) + report_fatal_error("cannot use inalloca attribute on a register " + "parameter"); + if (ArgLocs.back().getLocMemOffset() != 0) + report_fatal_error("any parameter with the inalloca attribute must be " + "the only memory argument"); + } + + if (!IsSibcall) + Chain = DAG.getCALLSEQ_START( + Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl); + + SDValue RetAddrFrIdx; + // Load return address for tail calls. + if (isTailCall && FPDiff) + Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, + Is64Bit, FPDiff, dl); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + + // Walk the register/memloc assignments, inserting copies/loads. In the case + // of tail call optimization arguments are handle later. + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + // Skip inalloca arguments, they have already been written. + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (Flags.isInAlloca()) + continue; + + CCValAssign &VA = ArgLocs[i]; + EVT RegVT = VA.getLocVT(); + SDValue Arg = OutVals[i]; + bool isByVal = Flags.isByVal(); + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::AExt: + if (Arg.getValueType().isVector() && + Arg.getValueType().getVectorElementType() == MVT::i1) + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); + else if (RegVT.is128BitVector()) { + // Special case: passing MMX values in XMM registers. + Arg = DAG.getBitcast(MVT::i64, Arg); + Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); + Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); + } else + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getBitcast(RegVT, Arg); + break; + case CCValAssign::Indirect: { + // Store the argument. + SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + Chain = DAG.getStore( + Chain, dl, Arg, SpillSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + false, false, 0); + Arg = SpillSlot; + break; + } + } + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + if (isVarArg && IsWin64) { + // Win64 ABI requires argument XMM reg to be copied to the corresponding + // shadow reg if callee is a varargs function. + unsigned ShadowReg = 0; + switch (VA.getLocReg()) { + case X86::XMM0: ShadowReg = X86::RCX; break; + case X86::XMM1: ShadowReg = X86::RDX; break; + case X86::XMM2: ShadowReg = X86::R8; break; + case X86::XMM3: ShadowReg = X86::R9; break; + } + if (ShadowReg) + RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); + } + } else if (!IsSibcall && (!isTailCall || isByVal)) { + assert(VA.isMemLoc()); + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), + getPointerTy(DAG.getDataLayout())); + MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, + dl, DAG, VA, Flags)); + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); + + if (Subtarget->isPICStyleGOT()) { + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (!isTailCall) { + RegsToPass.push_back(std::make_pair( + unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), + getPointerTy(DAG.getDataLayout())))); + } else { + // If we are tail calling and generating PIC/GOT style code load the + // address of the callee into ECX. The value in ecx is used as target of + // the tail jump. This is done to circumvent the ebx/callee-saved problem + // for tail calls on PIC/GOT architectures. Normally we would just put the + // address of GOT into ebx and then call target@PLT. But for tail calls + // ebx would be restored (since ebx is callee saved) before jumping to the + // target@PLT. + + // Note: The actual moving to ECX is done further down. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (G && !G->getGlobal()->hasLocalLinkage() && + G->getGlobal()->hasDefaultVisibility()) + Callee = LowerGlobalAddress(Callee, DAG); + else if (isa<ExternalSymbolSDNode>(Callee)) + Callee = LowerExternalSymbol(Callee, DAG); + } + } + + if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + + // Count the number of XMM registers allocated. + static const MCPhysReg XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs); + assert((Subtarget->hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + + RegsToPass.push_back(std::make_pair(unsigned(X86::AL), + DAG.getConstant(NumXMMRegs, dl, + MVT::i8))); + } + + if (isVarArg && IsMustTail) { + const auto &Forwards = X86Info->getForwardedMustTailRegParms(); + for (const auto &F : Forwards) { + SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT); + RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val)); + } + } + + // For tail calls lower the arguments to the 'real' stack slots. Sibcalls + // don't need this because the eligibility check rejects calls that require + // shuffling arguments passed in memory. + if (!IsSibcall && isTailCall) { + // Force all the incoming stack arguments to be loaded from the stack + // before any new outgoing arguments are stored to the stack, because the + // outgoing stack slots may alias the incoming argument stack slots, and + // the alias isn't otherwise explicit. This is slightly more conservative + // than necessary, because it means that each store effectively depends + // on every argument instead of just those arguments it would clobber. + SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); + + SmallVector<SDValue, 8> MemOpChains2; + SDValue FIN; + int FI = 0; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) + continue; + assert(VA.isMemLoc()); + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + // Skip inalloca arguments. They don't require any work. + if (Flags.isInAlloca()) + continue; + // Create frame index. + int32_t Offset = VA.getLocMemOffset()+FPDiff; + uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; + FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); + FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + + if (Flags.isByVal()) { + // Copy relative to framepointer. + SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl); + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(), + getPointerTy(DAG.getDataLayout())); + Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), + StackPtr, Source); + + MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, + ArgChain, + Flags, DAG, dl)); + } else { + // Store relative to framepointer. + MemOpChains2.push_back(DAG.getStore( + ArgChain, dl, Arg, FIN, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), + false, false, 0)); + } + } + + if (!MemOpChains2.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); + + // Store the return address to the appropriate stack slot. + Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, + getPointerTy(DAG.getDataLayout()), + RegInfo->getSlotSize(), FPDiff, dl); + } + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into registers. + SDValue InFlag; + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (DAG.getTarget().getCodeModel() == CodeModel::Large) { + assert(Is64Bit && "Large code model is only legal in 64-bit mode."); + // In the 64-bit large code model, we have to make all calls + // through a register, since the call instruction's 32-bit + // pc-relative offset may not be large enough to hold the whole + // address. + } else if (Callee->getOpcode() == ISD::GlobalAddress) { + // If the callee is a GlobalAddress node (quite common, every direct call + // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack + // it. + GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee); + + // We should use extra load for direct calls to dllimported functions in + // non-JIT mode. + const GlobalValue *GV = G->getGlobal(); + if (!GV->hasDLLImportStorageClass()) { + unsigned char OpFlags = 0; + bool ExtraLoad = false; + unsigned WrapperKind = ISD::DELETED_NODE; + + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to + // external symbols most go through the PLT in PIC mode. If the symbol + // has hidden or protected visibility, or if it is static or local, then + // we don't need to use the PLT - we can directly call it. + if (Subtarget->isTargetELF() && + DAG.getTarget().getRelocationModel() == Reloc::PIC_ && + GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + !GV->isStrongDefinitionForLinker() && + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) && + cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) { + // If the function is marked as non-lazy, generate an indirect call + // which loads from the GOT directly. This avoids runtime overhead + // at the cost of eager binding (and one extra byte of encoding). + OpFlags = X86II::MO_GOTPCREL; + WrapperKind = X86ISD::WrapperRIP; + ExtraLoad = true; + } + + Callee = DAG.getTargetGlobalAddress( + GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags); + + // Add a wrapper if needed. + if (WrapperKind != ISD::DELETED_NODE) + Callee = DAG.getNode(X86ISD::WrapperRIP, dl, + getPointerTy(DAG.getDataLayout()), Callee); + // Add extra indirection if needed. + if (ExtraLoad) + Callee = DAG.getLoad( + getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false, + false, 0); + } + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + unsigned char OpFlags = 0; + + // On ELF targets, in either X86-64 or X86-32 mode, direct calls to + // external symbols should go through the PLT. + if (Subtarget->isTargetELF() && + DAG.getTarget().getRelocationModel() == Reloc::PIC_) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (!Subtarget->getTargetTriple().isMacOSX() || + Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + Callee = DAG.getTargetExternalSymbol( + S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags); + } else if (Subtarget->isTarget64BitILP32() && + Callee->getValueType(0) == MVT::i32) { + // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI + Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + + if (!IsSibcall && isTailCall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytesToPop, dl, true), + DAG.getIntPtrConstant(0, dl, true), InFlag, dl); + InFlag = Chain.getValue(1); + } + + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (isTailCall) + Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32)); + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + + // If this is an invoke in a 32-bit function using a funclet-based + // personality, assume the function clobbers all registers. If an exception + // is thrown, the runtime will not restore CSRs. + // FIXME: Model this more precisely so that we can register allocate across + // the normal edge and spill and fill across the exceptional edge. + if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) { + const Function *CallerFn = MF.getFunction(); + EHPersonality Pers = + CallerFn->hasPersonalityFn() + ? classifyEHPersonality(CallerFn->getPersonalityFn()) + : EHPersonality::Unknown; + if (isFuncletEHPersonality(Pers)) + Mask = RegInfo->getNoPreservedMask(); + } + + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + if (isTailCall) { + // We used to do: + //// If this is the first return lowered for this function, add the regs + //// to the liveout set for the function. + // This isn't right, although it's probably harmless on x86; liveouts + // should be computed from returns not tail calls. Consider a void + // function making a tail call to a function returning int. + MF.getFrameInfo()->setHasTailCall(); + return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops); + } + + Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + unsigned NumBytesForCalleeToPop; + if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, + DAG.getTarget().Options.GuaranteedTailCallOpt)) + NumBytesForCalleeToPop = NumBytes; // Callee pops everything + else if (!Is64Bit && !canGuaranteeTCO(CallConv) && + !Subtarget->getTargetTriple().isOSMSVCRT() && + SR == StackStructReturn) + // If this is a call to a struct-return function, the callee + // pops the hidden struct pointer, so we have to push it back. + // This is common for Darwin/X86, Linux & Mingw32 targets. + // For MSVC Win32 targets, the caller pops the hidden struct pointer. + NumBytesForCalleeToPop = 4; + else + NumBytesForCalleeToPop = 0; // Callee pops nothing. + + // Returns a flag for retval copy to use. + if (!IsSibcall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytesToPop, dl, true), + DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl, + true), + InFlag, dl); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, + Ins, dl, DAG, InVals); +} + +//===----------------------------------------------------------------------===// +// Fast Calling Convention (tail call) implementation +//===----------------------------------------------------------------------===// + +// Like std call, callee cleans arguments, convention except that ECX is +// reserved for storing the tail called function address. Only 2 registers are +// free for argument passing (inreg). Tail call optimization is performed +// provided: +// * tailcallopt is enabled +// * caller/callee are fastcc +// On X86_64 architecture with GOT-style position independent code only local +// (within module) calls are supported at the moment. +// To keep the stack aligned according to platform abi the function +// GetAlignedArgumentStackSize ensures that argument delta is always multiples +// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) +// If a tail called function callee has more arguments than the caller the +// caller needs to make sure that there is room to move the RETADDR to. This is +// achieved by reserving an area the size of the argument delta right after the +// original RETADDR, but before the saved framepointer or the spilled registers +// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) +// stack layout: +// arg1 +// arg2 +// RETADDR +// [ new RETADDR +// move area ] +// (possible EBP) +// ESI +// EDI +// local1 .. + +/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align +/// requirement. +unsigned +X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, + SelectionDAG& DAG) const { + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + uint64_t AlignMask = StackAlignment - 1; + int64_t Offset = StackSize; + unsigned SlotSize = RegInfo->getSlotSize(); + if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { + // Number smaller than 12 so just add the difference. + Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); + } else { + // Mask out lower bits, add stackalignment once plus the 12 bytes. + Offset = ((~AlignMask) & Offset) + StackAlignment + + (StackAlignment-SlotSize); + } + return Offset; +} + +/// Return true if the given stack call argument is already available in the +/// same position (relatively) of the caller's incoming argument stack. +static +bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, + MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, + const X86InstrInfo *TII) { + unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; + int FI = INT_MAX; + if (Arg.getOpcode() == ISD::CopyFromReg) { + unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(VR)) + return false; + MachineInstr *Def = MRI->getVRegDef(VR); + if (!Def) + return false; + if (!Flags.isByVal()) { + if (!TII->isLoadFromStackSlot(Def, FI)) + return false; + } else { + unsigned Opcode = Def->getOpcode(); + if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r || + Opcode == X86::LEA64_32r) && + Def->getOperand(1).isFI()) { + FI = Def->getOperand(1).getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + } + } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { + if (Flags.isByVal()) + // ByVal argument is passed in as a pointer but it's now being + // dereferenced. e.g. + // define @foo(%struct.X* %A) { + // tail call @bar(%struct.X* byval %A) + // } + return false; + SDValue Ptr = Ld->getBasePtr(); + FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); + if (!FINode) + return false; + FI = FINode->getIndex(); + } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) { + FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg); + FI = FINode->getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + + assert(FI != INT_MAX); + if (!MFI->isFixedObjectIndex(FI)) + return false; + return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); +} + +/// Check whether the call is eligible for tail call optimization. Targets +/// that want to do tail call optimization should implement this function. +bool X86TargetLowering::IsEligibleForTailCallOptimization( + SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, + bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { + if (!mayTailCallThisCC(CalleeCC)) + return false; + + // If -tailcallopt is specified, make fastcc functions tail-callable. + MachineFunction &MF = DAG.getMachineFunction(); + const Function *CallerF = MF.getFunction(); + + // If the function return type is x86_fp80 and the callee return type is not, + // then the FP_EXTEND of the call result is not a nop. It's not safe to + // perform a tailcall optimization here. + if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty()) + return false; + + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); + bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC); + + // Win64 functions have extra shadow space for argument homing. Don't do the + // sibcall if the caller and callee have mismatched expectations for this + // space. + if (IsCalleeWin64 != IsCallerWin64) + return false; + + if (DAG.getTarget().Options.GuaranteedTailCallOpt) { + if (canGuaranteeTCO(CalleeCC) && CCMatch) + return true; + return false; + } + + // Look for obvious safe cases to perform tail call optimization that do not + // require ABI changes. This is what gcc calls sibcall. + + // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to + // emit a special epilogue. + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + if (RegInfo->needsStackRealignment(MF)) + return false; + + // Also avoid sibcall optimization if either caller or callee uses struct + // return semantics. + if (isCalleeStructRet || isCallerStructRet) + return false; + + // Do not sibcall optimize vararg calls unless all arguments are passed via + // registers. + if (isVarArg && !Outs.empty()) { + // Optimizing for varargs on Win64 is unlikely to be safe without + // additional testing. + if (IsCalleeWin64 || IsCallerWin64) + return false; + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) + if (!ArgLocs[i].isRegLoc()) + return false; + } + + // If the call result is in ST0 / ST1, it needs to be popped off the x87 + // stack. Therefore, if it's not used by the call it is not safe to optimize + // this into a sibcall. + bool Unused = false; + for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + if (!Ins[i].Used) { + Unused = true; + break; + } + } + if (Unused) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) + return false; + } + } + + // If the calling conventions do not match, then we'd better make sure the + // results are returned in the same way as what the caller expects. + if (!CCMatch) { + SmallVector<CCValAssign, 16> RVLocs1; + CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, + *DAG.getContext()); + CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); + + SmallVector<CCValAssign, 16> RVLocs2; + CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, + *DAG.getContext()); + CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); + + if (RVLocs1.size() != RVLocs2.size()) + return false; + for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { + if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) + return false; + if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) + return false; + if (RVLocs1[i].isRegLoc()) { + if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) + return false; + } else { + if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) + return false; + } + } + } + + unsigned StackArgsSize = 0; + + // If the callee takes no arguments then go on to check the results of the + // call. + if (!Outs.empty()) { + // Check if stack adjustment is needed. For now, do not do this if any + // argument is passed on the stack. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + // Allocate shadow area for Win64 + if (IsCalleeWin64) + CCInfo.AllocateStack(32, 8); + + CCInfo.AnalyzeCallOperands(Outs, CC_X86); + StackArgsSize = CCInfo.getNextStackOffset(); + + if (CCInfo.getNextStackOffset()) { + // Check if the arguments are already laid out in the right way as + // the caller's fixed stack objects. + MachineFrameInfo *MFI = MF.getFrameInfo(); + const MachineRegisterInfo *MRI = &MF.getRegInfo(); + const X86InstrInfo *TII = Subtarget->getInstrInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) { + if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, + MFI, MRI, TII)) + return false; + } + } + } + + // If the tailcall address may be in a register, then make sure it's + // possible to register allocate for it. In 32-bit, the call address can + // only target EAX, EDX, or ECX since the tail call must be scheduled after + // callee-saved registers are restored. These happen to be the same + // registers used to pass 'inreg' arguments so watch out for those. + if (!Subtarget->is64Bit() && + ((!isa<GlobalAddressSDNode>(Callee) && + !isa<ExternalSymbolSDNode>(Callee)) || + DAG.getTarget().getRelocationModel() == Reloc::PIC_)) { + unsigned NumInRegs = 0; + // In PIC we need an extra register to formulate the address computation + // for the callee. + unsigned MaxInRegs = + (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3; + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (!VA.isRegLoc()) + continue; + unsigned Reg = VA.getLocReg(); + switch (Reg) { + default: break; + case X86::EAX: case X86::EDX: case X86::ECX: + if (++NumInRegs == MaxInRegs) + return false; + break; + } + } + } + } + + bool CalleeWillPop = + X86::isCalleePop(CalleeCC, Subtarget->is64Bit(), isVarArg, + MF.getTarget().Options.GuaranteedTailCallOpt); + + if (unsigned BytesToPop = + MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) { + // If we have bytes to pop, the callee must pop them. + bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize; + if (!CalleePopMatches) + return false; + } else if (CalleeWillPop && StackArgsSize > 0) { + // If we don't have bytes to pop, make sure the callee doesn't pop any. + return false; + } + + return true; +} + +FastISel * +X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, + const TargetLibraryInfo *libInfo) const { + return X86::createFastISel(funcInfo, libInfo); +} + +//===----------------------------------------------------------------------===// +// Other Lowering Hooks +//===----------------------------------------------------------------------===// + +static bool MayFoldLoad(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); +} + +static bool MayFoldIntoStore(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); +} + +static bool isTargetShuffle(unsigned Opcode) { + switch(Opcode) { + default: return false; + case X86ISD::BLENDI: + case X86ISD::PSHUFB: + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::SHUFP: + case X86ISD::PALIGNR: + case X86ISD::MOVLHPS: + case X86ISD::MOVLHPD: + case X86ISD::MOVHLPS: + case X86ISD::MOVLPS: + case X86ISD::MOVLPD: + case X86ISD::MOVSHDUP: + case X86ISD::MOVSLDUP: + case X86ISD::MOVDDUP: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + case X86ISD::VPERMILPI: + case X86ISD::VPERM2X128: + case X86ISD::VPERMI: + case X86ISD::VPERMV: + case X86ISD::VPERMV3: + return true; + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT, + SDValue V1, unsigned TargetMask, + SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::VPERMILPI: + case X86ISD::VPERMI: + return DAG.getNode(Opc, dl, VT, V1, + DAG.getConstant(TargetMask, dl, MVT::i8)); + } +} + +static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT, + SDValue V1, SDValue V2, SelectionDAG &DAG) { + switch(Opc) { + default: llvm_unreachable("Unknown x86 shuffle node"); + case X86ISD::MOVLHPS: + case X86ISD::MOVLHPD: + case X86ISD::MOVHLPS: + case X86ISD::MOVLPS: + case X86ISD::MOVLPD: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + return DAG.getNode(Opc, dl, VT, V1, V2); + } +} + +SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + int ReturnAddrIndex = FuncInfo->getRAIndex(); + + if (ReturnAddrIndex == 0) { + // Set up a frame object for the return address. + unsigned SlotSize = RegInfo->getSlotSize(); + ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, + -(int64_t)SlotSize, + false); + FuncInfo->setRAIndex(ReturnAddrIndex); + } + + return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout())); +} + +bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, + bool hasSymbolicDisplacement) { + // Offset should fit into 32 bit immediate field. + if (!isInt<32>(Offset)) + return false; + + // If we don't have a symbolic displacement - we don't have any extra + // restrictions. + if (!hasSymbolicDisplacement) + return true; + + // FIXME: Some tweaks might be needed for medium code model. + if (M != CodeModel::Small && M != CodeModel::Kernel) + return false; + + // For small code model we assume that latest object is 16MB before end of 31 + // bits boundary. We may also accept pretty large negative constants knowing + // that all objects are in the positive half of address space. + if (M == CodeModel::Small && Offset < 16*1024*1024) + return true; + + // For kernel code model we know that all object resist in the negative half + // of 32bits address space. We may not accept negative offsets, since they may + // be just off and we may accept pretty large positive ones. + if (M == CodeModel::Kernel && Offset >= 0) + return true; + + return false; +} + +/// Determines whether the callee is required to pop its own arguments. +/// Callee pop is necessary to support tail calls. +bool X86::isCalleePop(CallingConv::ID CallingConv, + bool is64Bit, bool IsVarArg, bool GuaranteeTCO) { + // If GuaranteeTCO is true, we force some calls to be callee pop so that we + // can guarantee TCO. + if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO)) + return true; + + switch (CallingConv) { + default: + return false; + case CallingConv::X86_StdCall: + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::X86_VectorCall: + return !is64Bit; + } +} + +/// \brief Return true if the condition is an unsigned comparison operation. +static bool isX86CCUnsigned(unsigned X86CC) { + switch (X86CC) { + default: llvm_unreachable("Invalid integer condition!"); + case X86::COND_E: return true; + case X86::COND_G: return false; + case X86::COND_GE: return false; + case X86::COND_L: return false; + case X86::COND_LE: return false; + case X86::COND_NE: return true; + case X86::COND_B: return true; + case X86::COND_A: return true; + case X86::COND_BE: return true; + case X86::COND_AE: return true; + } +} + +static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) { + switch (SetCCOpcode) { + default: llvm_unreachable("Invalid integer condition!"); + case ISD::SETEQ: return X86::COND_E; + case ISD::SETGT: return X86::COND_G; + case ISD::SETGE: return X86::COND_GE; + case ISD::SETLT: return X86::COND_L; + case ISD::SETLE: return X86::COND_LE; + case ISD::SETNE: return X86::COND_NE; + case ISD::SETULT: return X86::COND_B; + case ISD::SETUGT: return X86::COND_A; + case ISD::SETULE: return X86::COND_BE; + case ISD::SETUGE: return X86::COND_AE; + } +} + +/// Do a one-to-one translation of a ISD::CondCode to the X86-specific +/// condition code, returning the condition code and the LHS/RHS of the +/// comparison to make. +static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP, + SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { + if (!isFP) { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { + // X > -1 -> X == 0, jump !sign. + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return X86::COND_NS; + } + if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { + // X < 0 -> X == 0, jump on sign. + return X86::COND_S; + } + if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { + // X < 1 -> X <= 0 + RHS = DAG.getConstant(0, DL, RHS.getValueType()); + return X86::COND_LE; + } + } + + return TranslateIntegerX86CC(SetCCOpcode); + } + + // First determine if it is required or is profitable to flip the operands. + + // If LHS is a foldable load, but RHS is not, flip the condition. + if (ISD::isNON_EXTLoad(LHS.getNode()) && + !ISD::isNON_EXTLoad(RHS.getNode())) { + SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); + std::swap(LHS, RHS); + } + + switch (SetCCOpcode) { + default: break; + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETUGT: + case ISD::SETUGE: + std::swap(LHS, RHS); + break; + } + + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + switch (SetCCOpcode) { + default: llvm_unreachable("Condcode should be pre-legalized away"); + case ISD::SETUEQ: + case ISD::SETEQ: return X86::COND_E; + case ISD::SETOLT: // flipped + case ISD::SETOGT: + case ISD::SETGT: return X86::COND_A; + case ISD::SETOLE: // flipped + case ISD::SETOGE: + case ISD::SETGE: return X86::COND_AE; + case ISD::SETUGT: // flipped + case ISD::SETULT: + case ISD::SETLT: return X86::COND_B; + case ISD::SETUGE: // flipped + case ISD::SETULE: + case ISD::SETLE: return X86::COND_BE; + case ISD::SETONE: + case ISD::SETNE: return X86::COND_NE; + case ISD::SETUO: return X86::COND_P; + case ISD::SETO: return X86::COND_NP; + case ISD::SETOEQ: + case ISD::SETUNE: return X86::COND_INVALID; + } +} + +/// Is there a floating point cmov for the specific X86 condition code? +/// Current x86 isa includes the following FP cmov instructions: +/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. +static bool hasFPCMov(unsigned X86CC) { + switch (X86CC) { + default: + return false; + case X86::COND_B: + case X86::COND_BE: + case X86::COND_E: + case X86::COND_P: + case X86::COND_A: + case X86::COND_AE: + case X86::COND_NE: + case X86::COND_NP: + return true; + } +} + +/// Returns true if the target can instruction select the +/// specified FP immediate natively. If false, the legalizer will +/// materialize the FP immediate as a load from a constant pool. +bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { + if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) + return true; + } + return false; +} + +bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load, + ISD::LoadExtType ExtTy, + EVT NewVT) const { + // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF + // relocation target a movq or addq instruction: don't let the load shrink. + SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr(); + if (BasePtr.getOpcode() == X86ISD::WrapperRIP) + if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0))) + return GA->getTargetFlags() != X86II::MO_GOTTPOFF; + return true; +} + +/// \brief Returns true if it is beneficial to convert a load of a constant +/// to just the constant itself. +bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, + Type *Ty) const { + assert(Ty->isIntegerTy()); + + unsigned BitSize = Ty->getPrimitiveSizeInBits(); + if (BitSize == 0 || BitSize > 64) + return false; + return true; +} + +bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, + unsigned Index) const { + if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) + return false; + + return (Index == 0 || Index == ResVT.getVectorNumElements()); +} + +bool X86TargetLowering::isCheapToSpeculateCttz() const { + // Speculate cttz only if we can directly use TZCNT. + return Subtarget->hasBMI(); +} + +bool X86TargetLowering::isCheapToSpeculateCtlz() const { + // Speculate ctlz only if we can directly use LZCNT. + return Subtarget->hasLZCNT(); +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size is undef. +static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) { + for (unsigned i = Pos, e = Pos + Size; i != e; ++i) + if (0 <= Mask[i]) + return false; + return true; +} + +/// Return true if Val is undef or if its value falls within the +/// specified range (L, H]. +static bool isUndefOrInRange(int Val, int Low, int Hi) { + return (Val < 0) || (Val >= Low && Val < Hi); +} + +/// Val is either less than zero (undef) or equal to the specified value. +static bool isUndefOrEqual(int Val, int CmpVal) { + return (Val < 0 || Val == CmpVal); +} + +/// Return true if every element in Mask, beginning +/// from position Pos and ending in Pos+Size, falls within the specified +/// sequential range (Low, Low+Size]. or is undef. +static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, + unsigned Pos, unsigned Size, int Low) { + for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) + if (!isUndefOrEqual(Mask[i], Low)) + return false; + return true; +} + +/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector +/// extract that is suitable for instruction that extract 128 or 256 bit vectors +static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) { + assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); + if (!isa<ConstantSDNode>(N->getOperand(1).getNode())) + return false; + + // The index should be aligned on a vecWidth-bit boundary. + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); + + MVT VT = N->getSimpleValueType(0); + unsigned ElSize = VT.getVectorElementType().getSizeInBits(); + bool Result = (Index * ElSize) % vecWidth == 0; + + return Result; +} + +/// Return true if the specified INSERT_SUBVECTOR +/// operand specifies a subvector insert that is suitable for input to +/// insertion of 128 or 256-bit subvectors +static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) { + assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width"); + if (!isa<ConstantSDNode>(N->getOperand(2).getNode())) + return false; + // The index should be aligned on a vecWidth-bit boundary. + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); + + MVT VT = N->getSimpleValueType(0); + unsigned ElSize = VT.getVectorElementType().getSizeInBits(); + bool Result = (Index * ElSize) % vecWidth == 0; + + return Result; +} + +bool X86::isVINSERT128Index(SDNode *N) { + return isVINSERTIndex(N, 128); +} + +bool X86::isVINSERT256Index(SDNode *N) { + return isVINSERTIndex(N, 256); +} + +bool X86::isVEXTRACT128Index(SDNode *N) { + return isVEXTRACTIndex(N, 128); +} + +bool X86::isVEXTRACT256Index(SDNode *N) { + return isVEXTRACTIndex(N, 256); +} + +static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) { + assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); + assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) && + "Illegal extract subvector for VEXTRACT"); + + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue(); + + MVT VecVT = N->getOperand(0).getSimpleValueType(); + MVT ElVT = VecVT.getVectorElementType(); + + unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); + return Index / NumElemsPerChunk; +} + +static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) { + assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width"); + assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) && + "Illegal insert subvector for VINSERT"); + + uint64_t Index = + cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue(); + + MVT VecVT = N->getSimpleValueType(0); + MVT ElVT = VecVT.getVectorElementType(); + + unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits(); + return Index / NumElemsPerChunk; +} + +/// Return the appropriate immediate to extract the specified +/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions. +unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) { + return getExtractVEXTRACTImmediate(N, 128); +} + +/// Return the appropriate immediate to extract the specified +/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions. +unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) { + return getExtractVEXTRACTImmediate(N, 256); +} + +/// Return the appropriate immediate to insert at the specified +/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions. +unsigned X86::getInsertVINSERT128Immediate(SDNode *N) { + return getInsertVINSERTImmediate(N, 128); +} + +/// Return the appropriate immediate to insert at the specified +/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions. +unsigned X86::getInsertVINSERT256Immediate(SDNode *N) { + return getInsertVINSERTImmediate(N, 256); +} + +/// Returns true if Elt is a constant zero or a floating point constant +0.0. +bool X86::isZeroNode(SDValue Elt) { + return isNullConstant(Elt) || isNullFPConstant(Elt); +} + +// Build a vector of constants +// Use an UNDEF node if MaskElt == -1. +// Spilt 64-bit constants in the 32-bit mode. +static SDValue getConstVector(ArrayRef<int> Values, MVT VT, + SelectionDAG &DAG, + SDLoc dl, bool IsMask = false) { + + SmallVector<SDValue, 32> Ops; + bool Split = false; + + MVT ConstVecVT = VT; + unsigned NumElts = VT.getVectorNumElements(); + bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64); + if (!In64BitMode && VT.getVectorElementType() == MVT::i64) { + ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2); + Split = true; + } + + MVT EltVT = ConstVecVT.getVectorElementType(); + for (unsigned i = 0; i < NumElts; ++i) { + bool IsUndef = Values[i] < 0 && IsMask; + SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) : + DAG.getConstant(Values[i], dl, EltVT); + Ops.push_back(OpNode); + if (Split) + Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) : + DAG.getConstant(0, dl, EltVT)); + } + SDValue ConstsNode = DAG.getNode(ISD::BUILD_VECTOR, dl, ConstVecVT, Ops); + if (Split) + ConstsNode = DAG.getBitcast(VT, ConstsNode); + return ConstsNode; +} + +/// Returns a vector of specified type with all zero elements. +static SDValue getZeroVector(MVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG, SDLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + + // Always build SSE zero vectors as <4 x i32> bitcasted + // to their dest type. This ensures they get CSE'd. + SDValue Vec; + if (VT.is128BitVector()) { // SSE + if (Subtarget->hasSSE2()) { // SSE2 + SDValue Cst = DAG.getConstant(0, dl, MVT::i32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + } else { // SSE1 + SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); + } + } else if (VT.is256BitVector()) { // AVX + if (Subtarget->hasInt256()) { // AVX2 + SDValue Cst = DAG.getConstant(0, dl, MVT::i32); + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); + } else { + // 256-bit logic and arithmetic instructions in AVX are all + // floating-point, no support for integer ops. Emit fp zeroed vectors. + SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32); + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops); + } + } else if (VT.is512BitVector()) { // AVX-512 + SDValue Cst = DAG.getConstant(0, dl, MVT::i32); + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, + Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); + } else if (VT.getVectorElementType() == MVT::i1) { + + assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16) + && "Unexpected vector type"); + assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8) + && "Unexpected vector type"); + SDValue Cst = DAG.getConstant(0, dl, MVT::i1); + SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst); + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); + } else + llvm_unreachable("Unexpected vector type"); + + return DAG.getBitcast(VT, Vec); +} + +static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, SDLoc dl, + unsigned vectorWidth) { + assert((vectorWidth == 128 || vectorWidth == 256) && + "Unsupported vector width"); + EVT VT = Vec.getValueType(); + EVT ElVT = VT.getVectorElementType(); + unsigned Factor = VT.getSizeInBits()/vectorWidth; + EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT, + VT.getVectorNumElements()/Factor); + + // Extract from UNDEF is UNDEF. + if (Vec.getOpcode() == ISD::UNDEF) + return DAG.getUNDEF(ResultVT); + + // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR + unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // This is the index of the first element of the vectorWidth-bit chunk + // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. + IdxVal &= ~(ElemsPerChunk - 1); + + // If the input is a buildvector just emit a smaller one. + if (Vec.getOpcode() == ISD::BUILD_VECTOR) + return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT, + makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk)); + + SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx); +} + +/// Generate a DAG to grab 128-bits from a vector > 128 bits. This +/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128 +/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4 +/// instructions or a simple subregister reference. Idx is an index in the +/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes +/// lowering EXTRACT_VECTOR_ELT operations easier. +static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, SDLoc dl) { + assert((Vec.getValueType().is256BitVector() || + Vec.getValueType().is512BitVector()) && "Unexpected vector size!"); + return ExtractSubVector(Vec, IdxVal, DAG, dl, 128); +} + +/// Generate a DAG to grab 256-bits from a 512-bit vector. +static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, SDLoc dl) { + assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!"); + return ExtractSubVector(Vec, IdxVal, DAG, dl, 256); +} + +static SDValue InsertSubVector(SDValue Result, SDValue Vec, + unsigned IdxVal, SelectionDAG &DAG, + SDLoc dl, unsigned vectorWidth) { + assert((vectorWidth == 128 || vectorWidth == 256) && + "Unsupported vector width"); + // Inserting UNDEF is Result + if (Vec.getOpcode() == ISD::UNDEF) + return Result; + EVT VT = Vec.getValueType(); + EVT ElVT = VT.getVectorElementType(); + EVT ResultVT = Result.getValueType(); + + // Insert the relevant vectorWidth bits. + unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // This is the index of the first element of the vectorWidth-bit chunk + // we want. Since ElemsPerChunk is a power of 2 just need to clear bits. + IdxVal &= ~(ElemsPerChunk - 1); + + SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx); +} + +/// Generate a DAG to put 128-bits into a vector > 128 bits. This +/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or +/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a +/// simple superregister reference. Idx is an index in the 128 bits +/// we want. It need not be aligned to a 128-bit boundary. That makes +/// lowering INSERT_VECTOR_ELT operations easier. +static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, SDLoc dl) { + assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); + + // For insertion into the zero index (low half) of a 256-bit vector, it is + // more efficient to generate a blend with immediate instead of an insert*128. + // We are still creating an INSERT_SUBVECTOR below with an undef node to + // extend the subvector to the size of the result vector. Make sure that + // we are not recursing on that node by checking for undef here. + if (IdxVal == 0 && Result.getValueType().is256BitVector() && + Result.getOpcode() != ISD::UNDEF) { + EVT ResultVT = Result.getValueType(); + SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl); + SDValue Undef = DAG.getUNDEF(ResultVT); + SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef, + Vec, ZeroIndex); + + // The blend instruction, and therefore its mask, depend on the data type. + MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT(); + if (ScalarType.isFloatingPoint()) { + // Choose either vblendps (float) or vblendpd (double). + unsigned ScalarSize = ScalarType.getSizeInBits(); + assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type"); + unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f; + SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8); + return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask); + } + + const X86Subtarget &Subtarget = + static_cast<const X86Subtarget &>(DAG.getSubtarget()); + + // AVX2 is needed for 256-bit integer blend support. + // Integers must be cast to 32-bit because there is only vpblendd; + // vpblendw can't be used for this because it has a handicapped mask. + + // If we don't have AVX2, then cast to float. Using a wrong domain blend + // is still more efficient than using the wrong domain vinsertf128 that + // will be created by InsertSubVector(). + MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32; + + SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8); + Vec256 = DAG.getBitcast(CastVT, Vec256); + Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask); + return DAG.getBitcast(ResultVT, Vec256); + } + + return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); +} + +static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, + SelectionDAG &DAG, SDLoc dl) { + assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!"); + return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256); +} + +/// Insert i1-subvector to i1-vector. +static SDValue Insert1BitVector(SDValue Op, SelectionDAG &DAG) { + + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue SubVec = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + + if (!isa<ConstantSDNode>(Idx)) + return SDValue(); + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + if (IdxVal == 0 && Vec.isUndef()) // the operation is legal + return Op; + + MVT OpVT = Op.getSimpleValueType(); + MVT SubVecVT = SubVec.getSimpleValueType(); + unsigned NumElems = OpVT.getVectorNumElements(); + unsigned SubVecNumElems = SubVecVT.getVectorNumElements(); + + assert(IdxVal + SubVecNumElems <= NumElems && + IdxVal % SubVecVT.getSizeInBits() == 0 && + "Unexpected index value in INSERT_SUBVECTOR"); + + // There are 3 possible cases: + // 1. Subvector should be inserted in the lower part (IdxVal == 0) + // 2. Subvector should be inserted in the upper part + // (IdxVal + SubVecNumElems == NumElems) + // 3. Subvector should be inserted in the middle (for example v2i1 + // to v16i1, index 2) + + SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); + SDValue Undef = DAG.getUNDEF(OpVT); + SDValue WideSubVec = + DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, SubVec, ZeroIdx); + if (Vec.isUndef()) + return DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + + if (ISD::isBuildVectorAllZeros(Vec.getNode())) { + unsigned ShiftLeft = NumElems - SubVecNumElems; + unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal; + WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec, + DAG.getConstant(ShiftLeft, dl, MVT::i8)); + return ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, OpVT, WideSubVec, + DAG.getConstant(ShiftRight, dl, MVT::i8)) : WideSubVec; + } + + if (IdxVal == 0) { + // Zero lower bits of the Vec + SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); + Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); + Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); + // Merge them together + return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec); + } + + // Simple case when we put subvector in the upper part + if (IdxVal + SubVecNumElems == NumElems) { + // Zero upper bits of the Vec + WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8); + Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits); + Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits); + return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec); + } + // Subvector should be inserted in the middle - use shuffle + SmallVector<int, 64> Mask; + for (unsigned i = 0; i < NumElems; ++i) + Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ? + i : i + NumElems); + return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask); +} + +/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128 +/// instructions. This is used because creating CONCAT_VECTOR nodes of +/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower +/// large BUILD_VECTORS. +static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT, + unsigned NumElems, SelectionDAG &DAG, + SDLoc dl) { + SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); + return Insert128BitVector(V, V2, NumElems/2, DAG, dl); +} + +static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT, + unsigned NumElems, SelectionDAG &DAG, + SDLoc dl) { + SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl); + return Insert256BitVector(V, V2, NumElems/2, DAG, dl); +} + +/// Returns a vector of specified type with all bits set. +/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with +/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately. +/// Then bitcast to their original type, ensuring they get CSE'd. +static SDValue getOnesVector(EVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG, SDLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + + SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32); + SDValue Vec; + if (VT.is512BitVector()) { + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst, + Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops); + } else if (VT.is256BitVector()) { + if (Subtarget->hasInt256()) { // AVX2 + SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops); + } else { // AVX + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl); + } + } else if (VT.is128BitVector()) { + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + } else + llvm_unreachable("Unexpected vector type"); + + return DAG.getBitcast(VT, Vec); +} + +/// Returns a vector_shuffle node for an unpackl operation. +static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + for (unsigned i = 0, e = NumElems/2; i != e; ++i) { + Mask.push_back(i); + Mask.push_back(i + NumElems); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// Returns a vector_shuffle node for an unpackh operation. +static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) { + Mask.push_back(i + Half); + Mask.push_back(i + NumElems + Half); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// Return a vector_shuffle of the specified vector of zero or undef vector. +/// This produces a shuffle where the low element of V2 is swizzled into the +/// zero/undef vector, landing at element Idx. +/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). +static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, + bool IsZero, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = V2.getSimpleValueType(); + SDValue V1 = IsZero + ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 16> MaskVec; + for (unsigned i = 0; i != NumElems; ++i) + // If this is the insertion idx, put the low elt of V2 here. + MaskVec.push_back(i == Idx ? NumElems : i); + return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]); +} + +/// Calculates the shuffle mask corresponding to the target-specific opcode. +/// Returns true if the Mask could be calculated. Sets IsUnary to true if only +/// uses one source. Note that this will set IsUnary for shuffles which use a +/// single input multiple times, and in those cases it will +/// adjust the mask to only have indices within that single input. +/// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero. +static bool getTargetShuffleMask(SDNode *N, MVT VT, + SmallVectorImpl<int> &Mask, bool &IsUnary) { + unsigned NumElems = VT.getVectorNumElements(); + SDValue ImmN; + + IsUnary = false; + bool IsFakeUnary = false; + switch(N->getOpcode()) { + case X86ISD::BLENDI: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + break; + case X86ISD::SHUFP: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::UNPCKH: + DecodeUNPCKHMask(VT, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::UNPCKL: + DecodeUNPCKLMask(VT, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::MOVHLPS: + DecodeMOVHLPSMask(NumElems, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::MOVLHPS: + DecodeMOVLHPSMask(NumElems, Mask); + IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1); + break; + case X86ISD::PALIGNR: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + break; + case X86ISD::PSHUFD: + case X86ISD::VPERMILPI: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFHW: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFLW: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::PSHUFB: { + IsUnary = true; + SDValue MaskNode = N->getOperand(1); + while (MaskNode->getOpcode() == ISD::BITCAST) + MaskNode = MaskNode->getOperand(0); + + if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { + // If we have a build-vector, then things are easy. + MVT VT = MaskNode.getSimpleValueType(); + assert(VT.isVector() && + "Can't produce a non-vector with a build_vector!"); + if (!VT.isInteger()) + return false; + + int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8; + + SmallVector<uint64_t, 32> RawMask; + for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) { + SDValue Op = MaskNode->getOperand(i); + if (Op->getOpcode() == ISD::UNDEF) { + RawMask.push_back((uint64_t)SM_SentinelUndef); + continue; + } + auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); + if (!CN) + return false; + APInt MaskElement = CN->getAPIntValue(); + + // We now have to decode the element which could be any integer size and + // extract each byte of it. + for (int j = 0; j < NumBytesPerElement; ++j) { + // Note that this is x86 and so always little endian: the low byte is + // the first byte of the mask. + RawMask.push_back(MaskElement.getLoBits(8).getZExtValue()); + MaskElement = MaskElement.lshr(8); + } + } + DecodePSHUFBMask(RawMask, Mask); + break; + } + + auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); + if (!MaskLoad) + return false; + + SDValue Ptr = MaskLoad->getBasePtr(); + if (Ptr->getOpcode() == X86ISD::Wrapper || + Ptr->getOpcode() == X86ISD::WrapperRIP) + Ptr = Ptr->getOperand(0); + + auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); + if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) + return false; + + if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) { + DecodePSHUFBMask(C, Mask); + if (Mask.empty()) + return false; + break; + } + + return false; + } + case X86ISD::VPERMI: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + IsUnary = true; + break; + case X86ISD::MOVSS: + case X86ISD::MOVSD: + DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask); + break; + case X86ISD::VPERM2X128: + ImmN = N->getOperand(N->getNumOperands()-1); + DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask); + if (Mask.empty()) return false; + // Mask only contains negative index if an element is zero. + if (std::any_of(Mask.begin(), Mask.end(), + [](int M){ return M == SM_SentinelZero; })) + return false; + break; + case X86ISD::MOVSLDUP: + DecodeMOVSLDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVSHDUP: + DecodeMOVSHDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVDDUP: + DecodeMOVDDUPMask(VT, Mask); + IsUnary = true; + break; + case X86ISD::MOVLHPD: + case X86ISD::MOVLPD: + case X86ISD::MOVLPS: + // Not yet implemented + return false; + case X86ISD::VPERMV: { + IsUnary = true; + SDValue MaskNode = N->getOperand(0); + while (MaskNode->getOpcode() == ISD::BITCAST) + MaskNode = MaskNode->getOperand(0); + + unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()); + SmallVector<uint64_t, 32> RawMask; + if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { + // If we have a build-vector, then things are easy. + assert(MaskNode.getSimpleValueType().isInteger() && + MaskNode.getSimpleValueType().getVectorNumElements() == + VT.getVectorNumElements()); + + for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { + SDValue Op = MaskNode->getOperand(i); + if (Op->getOpcode() == ISD::UNDEF) + RawMask.push_back((uint64_t)SM_SentinelUndef); + else if (isa<ConstantSDNode>(Op)) { + APInt MaskElement = cast<ConstantSDNode>(Op)->getAPIntValue(); + RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); + } else + return false; + } + DecodeVPERMVMask(RawMask, Mask); + break; + } + if (MaskNode->getOpcode() == X86ISD::VBROADCAST) { + unsigned NumEltsInMask = MaskNode->getNumOperands(); + MaskNode = MaskNode->getOperand(0); + if (auto *CN = dyn_cast<ConstantSDNode>(MaskNode)) { + APInt MaskEltValue = CN->getAPIntValue(); + for (unsigned i = 0; i < NumEltsInMask; ++i) + RawMask.push_back(MaskEltValue.getLoBits(MaskLoBits).getZExtValue()); + DecodeVPERMVMask(RawMask, Mask); + break; + } + // It may be a scalar load + } + + auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); + if (!MaskLoad) + return false; + + SDValue Ptr = MaskLoad->getBasePtr(); + if (Ptr->getOpcode() == X86ISD::Wrapper || + Ptr->getOpcode() == X86ISD::WrapperRIP) + Ptr = Ptr->getOperand(0); + + auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); + if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) + return false; + + if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) { + DecodeVPERMVMask(C, VT, Mask); + if (Mask.empty()) + return false; + break; + } + return false; + } + case X86ISD::VPERMV3: { + IsUnary = false; + SDValue MaskNode = N->getOperand(1); + while (MaskNode->getOpcode() == ISD::BITCAST) + MaskNode = MaskNode->getOperand(1); + + if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) { + // If we have a build-vector, then things are easy. + assert(MaskNode.getSimpleValueType().isInteger() && + MaskNode.getSimpleValueType().getVectorNumElements() == + VT.getVectorNumElements()); + + SmallVector<uint64_t, 32> RawMask; + unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()*2); + + for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) { + SDValue Op = MaskNode->getOperand(i); + if (Op->getOpcode() == ISD::UNDEF) + RawMask.push_back((uint64_t)SM_SentinelUndef); + else { + auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()); + if (!CN) + return false; + APInt MaskElement = CN->getAPIntValue(); + RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue()); + } + } + DecodeVPERMV3Mask(RawMask, Mask); + break; + } + + auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode); + if (!MaskLoad) + return false; + + SDValue Ptr = MaskLoad->getBasePtr(); + if (Ptr->getOpcode() == X86ISD::Wrapper || + Ptr->getOpcode() == X86ISD::WrapperRIP) + Ptr = Ptr->getOperand(0); + + auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr); + if (!MaskCP || MaskCP->isMachineConstantPoolEntry()) + return false; + + if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) { + DecodeVPERMV3Mask(C, VT, Mask); + if (Mask.empty()) + return false; + break; + } + return false; + } + default: llvm_unreachable("unknown target shuffle node"); + } + + // If we have a fake unary shuffle, the shuffle mask is spread across two + // inputs that are actually the same node. Re-map the mask to always point + // into the first input. + if (IsFakeUnary) + for (int &M : Mask) + if (M >= (int)Mask.size()) + M -= Mask.size(); + + return true; +} + +/// Returns the scalar element that will make up the ith +/// element of the result of the vector shuffle. +static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG, + unsigned Depth) { + if (Depth == 6) + return SDValue(); // Limit search depth. + + SDValue V = SDValue(N, 0); + EVT VT = V.getValueType(); + unsigned Opcode = V.getOpcode(); + + // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. + if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { + int Elt = SV->getMaskElt(Index); + + if (Elt < 0) + return DAG.getUNDEF(VT.getVectorElementType()); + + unsigned NumElems = VT.getVectorNumElements(); + SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0) + : SV->getOperand(1); + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1); + } + + // Recurse into target specific vector shuffles to find scalars. + if (isTargetShuffle(Opcode)) { + MVT ShufVT = V.getSimpleValueType(); + unsigned NumElems = ShufVT.getVectorNumElements(); + SmallVector<int, 16> ShuffleMask; + bool IsUnary; + + if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary)) + return SDValue(); + + int Elt = ShuffleMask[Index]; + if (Elt < 0) + return DAG.getUNDEF(ShufVT.getVectorElementType()); + + SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0) + : N->getOperand(1); + return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, + Depth+1); + } + + // Actual nodes that may contain scalar elements + if (Opcode == ISD::BITCAST) { + V = V.getOperand(0); + EVT SrcVT = V.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) + return SDValue(); + } + + if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) + return (Index == 0) ? V.getOperand(0) + : DAG.getUNDEF(VT.getVectorElementType()); + + if (V.getOpcode() == ISD::BUILD_VECTOR) + return V.getOperand(Index); + + return SDValue(); +} + +/// Custom lower build_vector of v16i8. +static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget* Subtarget, + const TargetLowering &TLI) { + if (NumNonZero > 8) + return SDValue(); + + SDLoc dl(Op); + SDValue V; + bool First = true; + + // SSE4.1 - use PINSRB to insert each byte directly. + if (Subtarget->hasSSE41()) { + for (unsigned i = 0; i < 16; ++i) { + bool isNonZero = (NonZeros & (1 << i)) != 0; + if (isNonZero) { + if (First) { + if (NumZero) + V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v16i8); + First = false; + } + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, + MVT::v16i8, V, Op.getOperand(i), + DAG.getIntPtrConstant(i, dl)); + } + } + + return V; + } + + // Pre-SSE4.1 - merge byte pairs and insert with PINSRW. + for (unsigned i = 0; i < 16; ++i) { + bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; + if (ThisIsNonZero && First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + + if ((i & 1) != 0) { + SDValue ThisElt, LastElt; + bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; + if (LastIsNonZero) { + LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, + MVT::i16, Op.getOperand(i-1)); + } + if (ThisIsNonZero) { + ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); + ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, + ThisElt, DAG.getConstant(8, dl, MVT::i8)); + if (LastIsNonZero) + ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); + } else + ThisElt = LastElt; + + if (ThisElt.getNode()) + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, + DAG.getIntPtrConstant(i/2, dl)); + } + } + + return DAG.getBitcast(MVT::v16i8, V); +} + +/// Custom lower build_vector of v8i16. +static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const X86Subtarget* Subtarget, + const TargetLowering &TLI) { + if (NumNonZero > 4) + return SDValue(); + + SDLoc dl(Op); + SDValue V; + bool First = true; + for (unsigned i = 0; i < 8; ++i) { + bool isNonZero = (NonZeros & (1 << i)) != 0; + if (isNonZero) { + if (First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, + MVT::v8i16, V, Op.getOperand(i), + DAG.getIntPtrConstant(i, dl)); + } + } + + return V; +} + +/// Custom lower build_vector of v4i32 or v4f32. +static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget, + const TargetLowering &TLI) { + // Find all zeroable elements. + std::bitset<4> Zeroable; + for (int i=0; i < 4; ++i) { + SDValue Elt = Op->getOperand(i); + Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)); + } + assert(Zeroable.size() - Zeroable.count() > 1 && + "We expect at least two non-zero elements!"); + + // We only know how to deal with build_vector nodes where elements are either + // zeroable or extract_vector_elt with constant index. + SDValue FirstNonZero; + unsigned FirstNonZeroIdx; + for (unsigned i=0; i < 4; ++i) { + if (Zeroable[i]) + continue; + SDValue Elt = Op->getOperand(i); + if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Elt.getOperand(1))) + return SDValue(); + // Make sure that this node is extracting from a 128-bit vector. + MVT VT = Elt.getOperand(0).getSimpleValueType(); + if (!VT.is128BitVector()) + return SDValue(); + if (!FirstNonZero.getNode()) { + FirstNonZero = Elt; + FirstNonZeroIdx = i; + } + } + + assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!"); + SDValue V1 = FirstNonZero.getOperand(0); + MVT VT = V1.getSimpleValueType(); + + // See if this build_vector can be lowered as a blend with zero. + SDValue Elt; + unsigned EltMaskIdx, EltIdx; + int Mask[4]; + for (EltIdx = 0; EltIdx < 4; ++EltIdx) { + if (Zeroable[EltIdx]) { + // The zero vector will be on the right hand side. + Mask[EltIdx] = EltIdx+4; + continue; + } + + Elt = Op->getOperand(EltIdx); + // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index. + EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue(); + if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx) + break; + Mask[EltIdx] = EltIdx; + } + + if (EltIdx == 4) { + // Let the shuffle legalizer deal with blend operations. + SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op)); + if (V1.getSimpleValueType() != VT) + V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1); + return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]); + } + + // See if we can lower this build_vector to a INSERTPS. + if (!Subtarget->hasSSE41()) + return SDValue(); + + SDValue V2 = Elt.getOperand(0); + if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx) + V1 = SDValue(); + + bool CanFold = true; + for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) { + if (Zeroable[i]) + continue; + + SDValue Current = Op->getOperand(i); + SDValue SrcVector = Current->getOperand(0); + if (!V1.getNode()) + V1 = SrcVector; + CanFold = SrcVector == V1 && + cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i; + } + + if (!CanFold) + return SDValue(); + + assert(V1.getNode() && "Expected at least two non-zero elements!"); + if (V1.getSimpleValueType() != MVT::v4f32) + V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1); + if (V2.getSimpleValueType() != MVT::v4f32) + V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2); + + // Ok, we can emit an INSERTPS instruction. + unsigned ZMask = Zeroable.to_ulong(); + + unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask; + assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); + SDLoc DL(Op); + SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, + DAG.getIntPtrConstant(InsertPSMask, DL)); + return DAG.getBitcast(VT, Result); +} + +/// Return a vector logical shift node. +static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, + unsigned NumBits, SelectionDAG &DAG, + const TargetLowering &TLI, SDLoc dl) { + assert(VT.is128BitVector() && "Unknown type for VShift"); + MVT ShVT = MVT::v2i64; + unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ; + SrcOp = DAG.getBitcast(ShVT, SrcOp); + MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT); + assert(NumBits % 8 == 0 && "Only support byte sized shifts"); + SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy); + return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal)); +} + +static SDValue +LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) { + + // Check if the scalar load can be widened into a vector load. And if + // the address is "base + cst" see if the cst can be "absorbed" into + // the shuffle mask. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { + SDValue Ptr = LD->getBasePtr(); + if (!ISD::isNormalLoad(LD) || LD->isVolatile()) + return SDValue(); + EVT PVT = LD->getValueType(0); + if (PVT != MVT::i32 && PVT != MVT::f32) + return SDValue(); + + int FI = -1; + int64_t Offset = 0; + if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { + FI = FINode->getIndex(); + Offset = 0; + } else if (DAG.isBaseWithConstantOffset(Ptr) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + Offset = Ptr.getConstantOperandVal(1); + Ptr = Ptr.getOperand(0); + } else { + return SDValue(); + } + + // FIXME: 256-bit vector instructions don't require a strict alignment, + // improve this code to support it better. + unsigned RequiredAlign = VT.getSizeInBits()/8; + SDValue Chain = LD->getChain(); + // Make sure the stack object alignment is at least 16 or 32. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) { + if (MFI->isFixedObjectIndex(FI)) { + // Can't change the alignment. FIXME: It's possible to compute + // the exact stack offset and reference FI + adjust offset instead. + // If someone *really* cares about this. That's the way to implement it. + return SDValue(); + } else { + MFI->setObjectAlignment(FI, RequiredAlign); + } + } + + // (Offset % 16 or 32) must be multiple of 4. Then address is then + // Ptr + (Offset & ~15). + if (Offset < 0) + return SDValue(); + if ((Offset % RequiredAlign) & 3) + return SDValue(); + int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1); + if (StartOffset) { + SDLoc DL(Ptr); + Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, + DAG.getConstant(StartOffset, DL, Ptr.getValueType())); + } + + int EltNo = (Offset - StartOffset) >> 2; + unsigned NumElems = VT.getVectorNumElements(); + + EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems); + SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr, + LD->getPointerInfo().getWithOffset(StartOffset), + false, false, false, 0); + + SmallVector<int, 8> Mask(NumElems, EltNo); + + return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]); + } + + return SDValue(); +} + +/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the +/// elements can be replaced by a single large load which has the same value as +/// a build_vector or insert_subvector whose loaded operands are 'Elts'. +/// +/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a +/// +/// FIXME: we'd also like to handle the case where the last elements are zero +/// rather than undef via VZEXT_LOAD, but we do not detect that case today. +/// There's even a handy isZeroNode for that purpose. +static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts, + SDLoc &DL, SelectionDAG &DAG, + bool isAfterLegalize) { + unsigned NumElems = Elts.size(); + + LoadSDNode *LDBase = nullptr; + unsigned LastLoadedElt = -1U; + + // For each element in the initializer, see if we've found a load or an undef. + // If we don't find an initial load element, or later load elements are + // non-consecutive, bail out. + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Elts[i]; + // Look through a bitcast. + if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST) + Elt = Elt.getOperand(0); + if (!Elt.getNode() || + (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) + return SDValue(); + if (!LDBase) { + if (Elt.getNode()->getOpcode() == ISD::UNDEF) + return SDValue(); + LDBase = cast<LoadSDNode>(Elt.getNode()); + LastLoadedElt = i; + continue; + } + if (Elt.getOpcode() == ISD::UNDEF) + continue; + + LoadSDNode *LD = cast<LoadSDNode>(Elt); + EVT LdVT = Elt.getValueType(); + // Each loaded element must be the correct fractional portion of the + // requested vector load. + if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems) + return SDValue(); + if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i)) + return SDValue(); + LastLoadedElt = i; + } + + // If we have found an entire vector of loads and undefs, then return a large + // load of the entire vector width starting at the base pointer. If we found + // consecutive loads for the low half, generate a vzext_load node. + if (LastLoadedElt == NumElems - 1) { + assert(LDBase && "Did not find base load for merging consecutive loads"); + EVT EltVT = LDBase->getValueType(0); + // Ensure that the input vector size for the merged loads matches the + // cumulative size of the input elements. + if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems) + return SDValue(); + + if (isAfterLegalize && + !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT)) + return SDValue(); + + SDValue NewLd = SDValue(); + + NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getPointerInfo(), LDBase->isVolatile(), + LDBase->isNonTemporal(), LDBase->isInvariant(), + LDBase->getAlignment()); + + if (LDBase->hasAnyUseOfValue(1)) { + SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + SDValue(LDBase, 1), + SDValue(NewLd.getNode(), 1)); + DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); + DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), + SDValue(NewLd.getNode(), 1)); + } + + return NewLd; + } + + //TODO: The code below fires only for for loading the low v2i32 / v2f32 + //of a v4i32 / v4f32. It's probably worth generalizing. + EVT EltVT = VT.getVectorElementType(); + if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) && + DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) { + SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); + SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; + SDValue ResNode = + DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64, + LDBase->getPointerInfo(), + LDBase->getAlignment(), + false/*isVolatile*/, true/*ReadMem*/, + false/*WriteMem*/); + + // Make sure the newly-created LOAD is in the same position as LDBase in + // terms of dependency. We create a TokenFactor for LDBase and ResNode, and + // update uses of LDBase's output chain to use the TokenFactor. + if (LDBase->hasAnyUseOfValue(1)) { + SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1)); + DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain); + DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1), + SDValue(ResNode.getNode(), 1)); + } + + return DAG.getBitcast(VT, ResNode); + } + return SDValue(); +} + +/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction +/// to generate a splat value for the following cases: +/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant. +/// 2. A splat shuffle which uses a scalar_to_vector node which comes from +/// a scalar load, or a constant. +/// The VBROADCAST node is returned when a pattern is found, +/// or SDValue() otherwise. +static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget, + SelectionDAG &DAG) { + // VBROADCAST requires AVX. + // TODO: Splats could be generated for non-AVX CPUs using SSE + // instructions, but there's less potential gain for only 128-bit vectors. + if (!Subtarget->hasAVX()) + return SDValue(); + + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) && + "Unsupported vector type for broadcast."); + + SDValue Ld; + bool ConstSplatVal; + + switch (Op.getOpcode()) { + default: + // Unknown pattern found. + return SDValue(); + + case ISD::BUILD_VECTOR: { + auto *BVOp = cast<BuildVectorSDNode>(Op.getNode()); + BitVector UndefElements; + SDValue Splat = BVOp->getSplatValue(&UndefElements); + + // We need a splat of a single value to use broadcast, and it doesn't + // make any sense if the value is only in one element of the vector. + if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1) + return SDValue(); + + Ld = Splat; + ConstSplatVal = (Ld.getOpcode() == ISD::Constant || + Ld.getOpcode() == ISD::ConstantFP); + + // Make sure that all of the users of a non-constant load are from the + // BUILD_VECTOR node. + if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode())) + return SDValue(); + break; + } + + case ISD::VECTOR_SHUFFLE: { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + + // Shuffles must have a splat mask where the first element is + // broadcasted. + if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0) + return SDValue(); + + SDValue Sc = Op.getOperand(0); + if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR && + Sc.getOpcode() != ISD::BUILD_VECTOR) { + + if (!Subtarget->hasInt256()) + return SDValue(); + + // Use the register form of the broadcast instruction available on AVX2. + if (VT.getSizeInBits() >= 256) + Sc = Extract128BitVector(Sc, 0, DAG, dl); + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc); + } + + Ld = Sc.getOperand(0); + ConstSplatVal = (Ld.getOpcode() == ISD::Constant || + Ld.getOpcode() == ISD::ConstantFP); + + // The scalar_to_vector node and the suspected + // load node must have exactly one user. + // Constants may have multiple users. + + // AVX-512 has register version of the broadcast + bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() && + Ld.getValueType().getSizeInBits() >= 32; + if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) && + !hasRegVer)) + return SDValue(); + break; + } + } + + unsigned ScalarSize = Ld.getValueType().getSizeInBits(); + bool IsGE256 = (VT.getSizeInBits() >= 256); + + // When optimizing for size, generate up to 5 extra bytes for a broadcast + // instruction to save 8 or more bytes of constant pool data. + // TODO: If multiple splats are generated to load the same constant, + // it may be detrimental to overall size. There needs to be a way to detect + // that condition to know if this is truly a size win. + bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); + + // Handle broadcasting a single constant scalar from the constant pool + // into a vector. + // On Sandybridge (no AVX2), it is still better to load a constant vector + // from the constant pool and not to broadcast it from a scalar. + // But override that restriction when optimizing for size. + // TODO: Check if splatting is recommended for other AVX-capable CPUs. + if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) { + EVT CVT = Ld.getValueType(); + assert(!CVT.isVector() && "Must not broadcast a vector type"); + + // Splat f32, i32, v4f64, v4i64 in all cases with AVX2. + // For size optimization, also splat v2f64 and v2i64, and for size opt + // with AVX2, also splat i8 and i16. + // With pattern matching, the VBROADCAST node may become a VMOVDDUP. + if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || + (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) { + const Constant *C = nullptr; + if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld)) + C = CI->getConstantIntValue(); + else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld)) + C = CF->getConstantFPValue(); + + assert(C && "Invalid constant type"); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue CP = + DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment(); + Ld = DAG.getLoad( + CVT, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, + false, false, Alignment); + + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + } + + bool IsLoad = ISD::isNormalLoad(Ld.getNode()); + + // Handle AVX2 in-register broadcasts. + if (!IsLoad && Subtarget->hasInt256() && + (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The scalar source must be a normal load. + if (!IsLoad) + return SDValue(); + + if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) || + (Subtarget->hasVLX() && ScalarSize == 64)) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + + // The integer check is needed for the 64-bit into 128-bit so it doesn't match + // double since there is no vbroadcastsd xmm + if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) { + if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64) + return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld); + } + + // Unsupported broadcast. + return SDValue(); +} + +/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real +/// underlying vector and index. +/// +/// Modifies \p ExtractedFromVec to the real vector and returns the real +/// index. +static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec, + SDValue ExtIdx) { + int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue(); + if (!isa<ShuffleVectorSDNode>(ExtractedFromVec)) + return Idx; + + // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already + // lowered this: + // (extract_vector_elt (v8f32 %vreg1), Constant<6>) + // to: + // (extract_vector_elt (vector_shuffle<2,u,u,u> + // (extract_subvector (v8f32 %vreg0), Constant<4>), + // undef) + // Constant<0>) + // In this case the vector is the extract_subvector expression and the index + // is 2, as specified by the shuffle. + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec); + SDValue ShuffleVec = SVOp->getOperand(0); + MVT ShuffleVecVT = ShuffleVec.getSimpleValueType(); + assert(ShuffleVecVT.getVectorElementType() == + ExtractedFromVec.getSimpleValueType().getVectorElementType()); + + int ShuffleIdx = SVOp->getMaskElt(Idx); + if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) { + ExtractedFromVec = ShuffleVec; + return ShuffleIdx; + } + return Idx; +} + +static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + // Skip if insert_vec_elt is not supported. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT)) + return SDValue(); + + SDLoc DL(Op); + unsigned NumElems = Op.getNumOperands(); + + SDValue VecIn1; + SDValue VecIn2; + SmallVector<unsigned, 4> InsertIndices; + SmallVector<int, 8> Mask(NumElems, -1); + + for (unsigned i = 0; i != NumElems; ++i) { + unsigned Opc = Op.getOperand(i).getOpcode(); + + if (Opc == ISD::UNDEF) + continue; + + if (Opc != ISD::EXTRACT_VECTOR_ELT) { + // Quit if more than 1 elements need inserting. + if (InsertIndices.size() > 1) + return SDValue(); + + InsertIndices.push_back(i); + continue; + } + + SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0); + SDValue ExtIdx = Op.getOperand(i).getOperand(1); + // Quit if non-constant index. + if (!isa<ConstantSDNode>(ExtIdx)) + return SDValue(); + int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx); + + // Quit if extracted from vector of different type. + if (ExtractedFromVec.getValueType() != VT) + return SDValue(); + + if (!VecIn1.getNode()) + VecIn1 = ExtractedFromVec; + else if (VecIn1 != ExtractedFromVec) { + if (!VecIn2.getNode()) + VecIn2 = ExtractedFromVec; + else if (VecIn2 != ExtractedFromVec) + // Quit if more than 2 vectors to shuffle + return SDValue(); + } + + if (ExtractedFromVec == VecIn1) + Mask[i] = Idx; + else if (ExtractedFromVec == VecIn2) + Mask[i] = Idx + NumElems; + } + + if (!VecIn1.getNode()) + return SDValue(); + + VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT); + SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]); + for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) { + unsigned Idx = InsertIndices[i]; + NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx), + DAG.getIntPtrConstant(Idx, DL)); + } + + return NV; +} + +static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) { + assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) && + Op.getScalarValueSizeInBits() == 1 && + "Can not convert non-constant vector"); + uint64_t Immediate = 0; + for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { + SDValue In = Op.getOperand(idx); + if (In.getOpcode() != ISD::UNDEF) + Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; + } + SDLoc dl(Op); + MVT VT = + MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8)); + return DAG.getConstant(Immediate, dl, VT); +} +// Lower BUILD_VECTOR operation for v8i1 and v16i1 types. +SDValue +X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const { + + MVT VT = Op.getSimpleValueType(); + assert((VT.getVectorElementType() == MVT::i1) && + "Unexpected type in LowerBUILD_VECTORvXi1!"); + + SDLoc dl(Op); + if (ISD::isBuildVectorAllZeros(Op.getNode())) { + SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1); + SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); + } + + if (ISD::isBuildVectorAllOnes(Op.getNode())) { + SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1); + SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst); + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); + } + + if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) { + SDValue Imm = ConvertI1VectorToInteger(Op, DAG); + if (Imm.getValueSizeInBits() == VT.getSizeInBits()) + return DAG.getBitcast(VT, Imm); + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + + // Vector has one or more non-const elements + uint64_t Immediate = 0; + SmallVector<unsigned, 16> NonConstIdx; + bool IsSplat = true; + bool HasConstElts = false; + int SplatIdx = -1; + for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) { + SDValue In = Op.getOperand(idx); + if (In.getOpcode() == ISD::UNDEF) + continue; + if (!isa<ConstantSDNode>(In)) + NonConstIdx.push_back(idx); + else { + Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx; + HasConstElts = true; + } + if (SplatIdx == -1) + SplatIdx = idx; + else if (In != Op.getOperand(SplatIdx)) + IsSplat = false; + } + + // for splat use " (select i1 splat_elt, all-ones, all-zeroes)" + if (IsSplat) + return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx), + DAG.getConstant(1, dl, VT), + DAG.getConstant(0, dl, VT)); + + // insert elements one by one + SDValue DstVec; + SDValue Imm; + if (Immediate) { + MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8)); + Imm = DAG.getConstant(Immediate, dl, ImmVT); + } + else if (HasConstElts) + Imm = DAG.getConstant(0, dl, VT); + else + Imm = DAG.getUNDEF(VT); + if (Imm.getValueSizeInBits() == VT.getSizeInBits()) + DstVec = DAG.getBitcast(VT, Imm); + else { + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm); + DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec, + DAG.getIntPtrConstant(0, dl)); + } + + for (unsigned i = 0; i < NonConstIdx.size(); ++i) { + unsigned InsertIdx = NonConstIdx[i]; + DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, + Op.getOperand(InsertIdx), + DAG.getIntPtrConstant(InsertIdx, dl)); + } + return DstVec; +} + +/// \brief Return true if \p N implements a horizontal binop and return the +/// operands for the horizontal binop into V0 and V1. +/// +/// This is a helper function of LowerToHorizontalOp(). +/// This function checks that the build_vector \p N in input implements a +/// horizontal operation. Parameter \p Opcode defines the kind of horizontal +/// operation to match. +/// For example, if \p Opcode is equal to ISD::ADD, then this function +/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode +/// is equal to ISD::SUB, then this function checks if this is a horizontal +/// arithmetic sub. +/// +/// This function only analyzes elements of \p N whose indices are +/// in range [BaseIdx, LastIdx). +static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode, + SelectionDAG &DAG, + unsigned BaseIdx, unsigned LastIdx, + SDValue &V0, SDValue &V1) { + EVT VT = N->getValueType(0); + + assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!"); + assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx && + "Invalid Vector in input!"); + + bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD); + bool CanFold = true; + unsigned ExpectedVExtractIdx = BaseIdx; + unsigned NumElts = LastIdx - BaseIdx; + V0 = DAG.getUNDEF(VT); + V1 = DAG.getUNDEF(VT); + + // Check if N implements a horizontal binop. + for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) { + SDValue Op = N->getOperand(i + BaseIdx); + + // Skip UNDEFs. + if (Op->getOpcode() == ISD::UNDEF) { + // Update the expected vector extract index. + if (i * 2 == NumElts) + ExpectedVExtractIdx = BaseIdx; + ExpectedVExtractIdx += 2; + continue; + } + + CanFold = Op->getOpcode() == Opcode && Op->hasOneUse(); + + if (!CanFold) + break; + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // Try to match the following pattern: + // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1)) + CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op0.getOperand(0) == Op1.getOperand(0) && + isa<ConstantSDNode>(Op0.getOperand(1)) && + isa<ConstantSDNode>(Op1.getOperand(1))); + if (!CanFold) + break; + + unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); + unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue(); + + if (i * 2 < NumElts) { + if (V0.getOpcode() == ISD::UNDEF) { + V0 = Op0.getOperand(0); + if (V0.getValueType() != VT) + return false; + } + } else { + if (V1.getOpcode() == ISD::UNDEF) { + V1 = Op0.getOperand(0); + if (V1.getValueType() != VT) + return false; + } + if (i * 2 == NumElts) + ExpectedVExtractIdx = BaseIdx; + } + + SDValue Expected = (i * 2 < NumElts) ? V0 : V1; + if (I0 == ExpectedVExtractIdx) + CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected; + else if (IsCommutable && I1 == ExpectedVExtractIdx) { + // Try to match the following dag sequence: + // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I)) + CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected; + } else + CanFold = false; + + ExpectedVExtractIdx += 2; + } + + return CanFold; +} + +/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by +/// a concat_vector. +/// +/// This is a helper function of LowerToHorizontalOp(). +/// This function expects two 256-bit vectors called V0 and V1. +/// At first, each vector is split into two separate 128-bit vectors. +/// Then, the resulting 128-bit vectors are used to implement two +/// horizontal binary operations. +/// +/// The kind of horizontal binary operation is defined by \p X86Opcode. +/// +/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to +/// the two new horizontal binop. +/// When Mode is set, the first horizontal binop dag node would take as input +/// the lower 128-bit of V0 and the upper 128-bit of V0. The second +/// horizontal binop dag node would take as input the lower 128-bit of V1 +/// and the upper 128-bit of V1. +/// Example: +/// HADD V0_LO, V0_HI +/// HADD V1_LO, V1_HI +/// +/// Otherwise, the first horizontal binop dag node takes as input the lower +/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop +/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1. +/// Example: +/// HADD V0_LO, V1_LO +/// HADD V0_HI, V1_HI +/// +/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower +/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to +/// the upper 128-bits of the result. +static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1, + SDLoc DL, SelectionDAG &DAG, + unsigned X86Opcode, bool Mode, + bool isUndefLO, bool isUndefHI) { + EVT VT = V0.getValueType(); + assert(VT.is256BitVector() && VT == V1.getValueType() && + "Invalid nodes in input!"); + + unsigned NumElts = VT.getVectorNumElements(); + SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL); + SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL); + SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL); + SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL); + EVT NewVT = V0_LO.getValueType(); + + SDValue LO = DAG.getUNDEF(NewVT); + SDValue HI = DAG.getUNDEF(NewVT); + + if (Mode) { + // Don't emit a horizontal binop if the result is expected to be UNDEF. + if (!isUndefLO && V0->getOpcode() != ISD::UNDEF) + LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI); + if (!isUndefHI && V1->getOpcode() != ISD::UNDEF) + HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI); + } else { + // Don't emit a horizontal binop if the result is expected to be UNDEF. + if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF || + V1_LO->getOpcode() != ISD::UNDEF)) + LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO); + + if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF || + V1_HI->getOpcode() != ISD::UNDEF)) + HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI); + } + + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI); +} + +/// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB +/// node. +static SDValue LowerToAddSub(const BuildVectorSDNode *BV, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + MVT VT = BV->getSimpleValueType(0); + if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) && + (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64))) + return SDValue(); + + SDLoc DL(BV); + unsigned NumElts = VT.getVectorNumElements(); + SDValue InVec0 = DAG.getUNDEF(VT); + SDValue InVec1 = DAG.getUNDEF(VT); + + assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 || + VT == MVT::v2f64) && "build_vector with an invalid type found!"); + + // Odd-numbered elements in the input build vector are obtained from + // adding two integer/float elements. + // Even-numbered elements in the input build vector are obtained from + // subtracting two integer/float elements. + unsigned ExpectedOpcode = ISD::FSUB; + unsigned NextExpectedOpcode = ISD::FADD; + bool AddFound = false; + bool SubFound = false; + + for (unsigned i = 0, e = NumElts; i != e; ++i) { + SDValue Op = BV->getOperand(i); + + // Skip 'undef' values. + unsigned Opcode = Op.getOpcode(); + if (Opcode == ISD::UNDEF) { + std::swap(ExpectedOpcode, NextExpectedOpcode); + continue; + } + + // Early exit if we found an unexpected opcode. + if (Opcode != ExpectedOpcode) + return SDValue(); + + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + + // Try to match the following pattern: + // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i)) + // Early exit if we cannot match that sequence. + if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Op0.getOperand(1)) || + !isa<ConstantSDNode>(Op1.getOperand(1)) || + Op0.getOperand(1) != Op1.getOperand(1)) + return SDValue(); + + unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue(); + if (I0 != i) + return SDValue(); + + // We found a valid add/sub node. Update the information accordingly. + if (i & 1) + AddFound = true; + else + SubFound = true; + + // Update InVec0 and InVec1. + if (InVec0.getOpcode() == ISD::UNDEF) { + InVec0 = Op0.getOperand(0); + if (InVec0.getSimpleValueType() != VT) + return SDValue(); + } + if (InVec1.getOpcode() == ISD::UNDEF) { + InVec1 = Op1.getOperand(0); + if (InVec1.getSimpleValueType() != VT) + return SDValue(); + } + + // Make sure that operands in input to each add/sub node always + // come from a same pair of vectors. + if (InVec0 != Op0.getOperand(0)) { + if (ExpectedOpcode == ISD::FSUB) + return SDValue(); + + // FADD is commutable. Try to commute the operands + // and then test again. + std::swap(Op0, Op1); + if (InVec0 != Op0.getOperand(0)) + return SDValue(); + } + + if (InVec1 != Op1.getOperand(0)) + return SDValue(); + + // Update the pair of expected opcodes. + std::swap(ExpectedOpcode, NextExpectedOpcode); + } + + // Don't try to fold this build_vector into an ADDSUB if the inputs are undef. + if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF && + InVec1.getOpcode() != ISD::UNDEF) + return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1); + + return SDValue(); +} + +/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible. +static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = BV->getSimpleValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumUndefsLO = 0; + unsigned NumUndefsHI = 0; + unsigned Half = NumElts/2; + + // Count the number of UNDEF operands in the build_vector in input. + for (unsigned i = 0, e = Half; i != e; ++i) + if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) + NumUndefsLO++; + + for (unsigned i = Half, e = NumElts; i != e; ++i) + if (BV->getOperand(i)->getOpcode() == ISD::UNDEF) + NumUndefsHI++; + + // Early exit if this is either a build_vector of all UNDEFs or all the + // operands but one are UNDEF. + if (NumUndefsLO + NumUndefsHI + 1 >= NumElts) + return SDValue(); + + SDLoc DL(BV); + SDValue InVec0, InVec1; + if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) { + // Try to match an SSE3 float HADD/HSUB. + if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); + } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) { + // Try to match an SSSE3 integer HADD/HSUB. + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) + return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1); + } + + if (!Subtarget->hasAVX()) + return SDValue(); + + if ((VT == MVT::v8f32 || VT == MVT::v4f64)) { + // Try to match an AVX horizontal add/sub of packed single/double + // precision floating point values from 256-bit vectors. + SDValue InVec2, InVec3; + if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.getOpcode() == ISD::UNDEF || + InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && + ((InVec1.getOpcode() == ISD::UNDEF || + InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) + return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1); + + if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.getOpcode() == ISD::UNDEF || + InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && + ((InVec1.getOpcode() == ISD::UNDEF || + InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) + return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1); + } else if (VT == MVT::v8i32 || VT == MVT::v16i16) { + // Try to match an AVX2 horizontal add/sub of signed integers. + SDValue InVec2, InVec3; + unsigned X86Opcode; + bool CanFold = true; + + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.getOpcode() == ISD::UNDEF || + InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && + ((InVec1.getOpcode() == ISD::UNDEF || + InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) + X86Opcode = X86ISD::HADD; + else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) && + isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) && + ((InVec0.getOpcode() == ISD::UNDEF || + InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) && + ((InVec1.getOpcode() == ISD::UNDEF || + InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3)) + X86Opcode = X86ISD::HSUB; + else + CanFold = false; + + if (CanFold) { + // Fold this build_vector into a single horizontal add/sub. + // Do this only if the target has AVX2. + if (Subtarget->hasAVX2()) + return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1); + + // Do not try to expand this build_vector into a pair of horizontal + // add/sub if we can emit a pair of scalar add/sub. + if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) + return SDValue(); + + // Convert this build_vector into a pair of horizontal binop followed by + // a concat vector. + bool isUndefLO = NumUndefsLO == Half; + bool isUndefHI = NumUndefsHI == Half; + return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false, + isUndefLO, isUndefHI); + } + } + + if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 || + VT == MVT::v16i16) && Subtarget->hasAVX()) { + unsigned X86Opcode; + if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::HADD; + else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::HSUB; + else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::FHADD; + else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1)) + X86Opcode = X86ISD::FHSUB; + else + return SDValue(); + + // Don't try to expand this build_vector into a pair of horizontal add/sub + // if we can simply emit a pair of scalar add/sub. + if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half) + return SDValue(); + + // Convert this build_vector into two horizontal add/sub followed by + // a concat vector. + bool isUndefLO = NumUndefsLO == Half; + bool isUndefHI = NumUndefsHI == Half; + return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true, + isUndefLO, isUndefHI); + } + + return SDValue(); +} + +SDValue +X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + + MVT VT = Op.getSimpleValueType(); + MVT ExtVT = VT.getVectorElementType(); + unsigned NumElems = Op.getNumOperands(); + + // Generate vectors for predicate vectors. + if (VT.getVectorElementType() == MVT::i1 && Subtarget->hasAVX512()) + return LowerBUILD_VECTORvXi1(Op, DAG); + + // Vectors containing all zeros can be matched by pxor and xorps later + if (ISD::isBuildVectorAllZeros(Op.getNode())) { + // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd + // and 2) ensure that i64 scalars are eliminated on x86-32 hosts. + if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) + return Op; + + return getZeroVector(VT, Subtarget, DAG, dl); + } + + // Vectors containing all ones can be matched by pcmpeqd on 128-bit width + // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use + // vpcmpeqd on 256-bit vectors. + if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) { + if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256())) + return Op; + + if (!VT.is512BitVector()) + return getOnesVector(VT, Subtarget, DAG, dl); + } + + BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode()); + if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG)) + return AddSub; + if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG)) + return HorizontalOp; + if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG)) + return Broadcast; + + unsigned EVTBits = ExtVT.getSizeInBits(); + + unsigned NumZero = 0; + unsigned NumNonZero = 0; + uint64_t NonZeros = 0; + bool IsAllConstants = true; + SmallSet<SDValue, 8> Values; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Op.getOperand(i); + if (Elt.getOpcode() == ISD::UNDEF) + continue; + Values.insert(Elt); + if (Elt.getOpcode() != ISD::Constant && + Elt.getOpcode() != ISD::ConstantFP) + IsAllConstants = false; + if (X86::isZeroNode(Elt)) + NumZero++; + else { + assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range. + NonZeros |= ((uint64_t)1 << i); + NumNonZero++; + } + } + + // All undef vector. Return an UNDEF. All zero vectors were handled above. + if (NumNonZero == 0) + return DAG.getUNDEF(VT); + + // Special case for single non-zero, non-undef, element. + if (NumNonZero == 1) { + unsigned Idx = countTrailingZeros(NonZeros); + SDValue Item = Op.getOperand(Idx); + + // If this is an insertion of an i64 value on x86-32, and if the top bits of + // the value are obviously zero, truncate the value to i32 and do the + // insertion that way. Only do this if the value is non-constant or if the + // value is a constant being inserted into element 0. It is cheaper to do + // a constant pool load than it is to do a movd + shuffle. + if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && + (!IsAllConstants || Idx == 0)) { + if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { + // Handle SSE only. + assert(VT == MVT::v2i64 && "Expected an SSE value type!"); + MVT VecVT = MVT::v4i32; + + // Truncate the value (which may itself be a constant) to i32, and + // convert it to a vector with movd (S2V+shuffle to zero extend). + Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); + return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef( + Item, Idx * 2, true, Subtarget, DAG)); + } + } + + // If we have a constant or non-constant insertion into the low element of + // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into + // the rest of the elements. This will be matched as movd/movq/movss/movsd + // depending on what the source datatype is. + if (Idx == 0) { + if (NumZero == 0) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + + if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || + (ExtVT == MVT::i64 && Subtarget->is64Bit())) { + if (VT.is512BitVector()) { + SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec, + Item, DAG.getIntPtrConstant(0, dl)); + } + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Expected an SSE value type!"); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. + return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + + // We can't directly insert an i8 or i16 into a vector, so zero extend + // it to i32 first. + if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { + Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); + if (VT.is256BitVector()) { + if (Subtarget->hasAVX()) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } else { + // Without AVX, we need to extend to a 128-bit vector and then + // insert into the 256-bit vector. + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); + SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl); + Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl); + } + } else { + assert(VT.is128BitVector() && "Expected an SSE value type!"); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG); + } + return DAG.getBitcast(VT, Item); + } + } + + // Is it a vector logical left shift? + if (NumElems == 2 && Idx == 1 && + X86::isZeroNode(Op.getOperand(0)) && + !X86::isZeroNode(Op.getOperand(1))) { + unsigned NumBits = VT.getSizeInBits(); + return getVShift(true, VT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + VT, Op.getOperand(1)), + NumBits/2, DAG, *this, dl); + } + + if (IsAllConstants) // Otherwise, it's better to do a constpool load. + return SDValue(); + + // Otherwise, if this is a vector with i32 or f32 elements, and the element + // is a non-constant being inserted into an element other than the low one, + // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka + // movd/movss) to move this into the low element, then shuffle it into + // place. + if (EVTBits == 32) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG); + } + } + + // Splat is obviously ok. Let legalizer expand it to a shuffle. + if (Values.size() == 1) { + if (EVTBits == 32) { + // Instead of a shuffle like this: + // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> + // Check if it's possible to issue this instead. + // shuffle (vload ptr)), undef, <1, 1, 1, 1> + unsigned Idx = countTrailingZeros(NonZeros); + SDValue Item = Op.getOperand(Idx); + if (Op.getNode()->isOnlyUserOf(Item.getNode())) + return LowerAsSplatVectorLoad(Item, VT, dl, DAG); + } + return SDValue(); + } + + // A vector full of immediates; various special cases are already + // handled, so this is best done with a single constant-pool load. + if (IsAllConstants) + return SDValue(); + + // For AVX-length vectors, see if we can use a vector load to get all of the + // elements, otherwise build the individual 128-bit pieces and use + // shuffles to put them in place. + if (VT.is256BitVector() || VT.is512BitVector()) { + SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems); + + // Check for a build vector of consecutive loads. + if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) + return LD; + + EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2); + + // Build both the lower and upper subvector. + SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, + makeArrayRef(&V[0], NumElems/2)); + SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, + makeArrayRef(&V[NumElems / 2], NumElems/2)); + + // Recreate the wider vector with the lower and upper part. + if (VT.is256BitVector()) + return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl); + return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl); + } + + // Let legalizer expand 2-wide build_vectors. + if (EVTBits == 64) { + if (NumNonZero == 1) { + // One half is zero or undef. + unsigned Idx = countTrailingZeros(NonZeros); + SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, + Op.getOperand(Idx)); + return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG); + } + return SDValue(); + } + + // If element VT is < 32 bits, convert it to inserts into a zero vector. + if (EVTBits == 8 && NumElems == 16) + if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero, + DAG, Subtarget, *this)) + return V; + + if (EVTBits == 16 && NumElems == 8) + if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero, + DAG, Subtarget, *this)) + return V; + + // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS + if (EVTBits == 32 && NumElems == 4) + if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this)) + return V; + + // If element VT is == 32 bits, turn it into a number of shuffles. + SmallVector<SDValue, 8> V(NumElems); + if (NumElems == 4 && NumZero > 0) { + for (unsigned i = 0; i < 4; ++i) { + bool isZero = !(NonZeros & (1ULL << i)); + if (isZero) + V[i] = getZeroVector(VT, Subtarget, DAG, dl); + else + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + } + + for (unsigned i = 0; i < 2; ++i) { + switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { + default: break; + case 0: + V[i] = V[i*2]; // Must be a zero vector. + break; + case 1: + V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); + break; + case 2: + V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + case 3: + V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + } + } + + bool Reverse1 = (NonZeros & 0x3) == 2; + bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2; + int MaskVec[] = { + Reverse1 ? 1 : 0, + Reverse1 ? 0 : 1, + static_cast<int>(Reverse2 ? NumElems+1 : NumElems), + static_cast<int>(Reverse2 ? NumElems : NumElems+1) + }; + return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); + } + + if (Values.size() > 1 && VT.is128BitVector()) { + // Check for a build vector of consecutive loads. + for (unsigned i = 0; i < NumElems; ++i) + V[i] = Op.getOperand(i); + + // Check for elements which are consecutive loads. + if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false)) + return LD; + + // Check for a build vector from mostly shuffle plus few inserting. + if (SDValue Sh = buildFromShuffleMostly(Op, DAG)) + return Sh; + + // For SSE 4.1, use insertps to put the high elements into the low element. + if (Subtarget->hasSSE41()) { + SDValue Result; + if (Op.getOperand(0).getOpcode() != ISD::UNDEF) + Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); + else + Result = DAG.getUNDEF(VT); + + for (unsigned i = 1; i < NumElems; ++i) { + if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, + Op.getOperand(i), DAG.getIntPtrConstant(i, dl)); + } + return Result; + } + + // Otherwise, expand into a number of unpckl*, start by extending each of + // our (non-undef) elements to the full vector width with the element in the + // bottom slot of the vector (which generates no code for SSE). + for (unsigned i = 0; i < NumElems; ++i) { + if (Op.getOperand(i).getOpcode() != ISD::UNDEF) + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + else + V[i] = DAG.getUNDEF(VT); + } + + // Next, we iteratively mix elements, e.g. for v4f32: + // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> + // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> + // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> + unsigned EltStride = NumElems >> 1; + while (EltStride != 0) { + for (unsigned i = 0; i < EltStride; ++i) { + // If V[i+EltStride] is undef and this is the first round of mixing, + // then it is safe to just drop this shuffle: V[i] is already in the + // right place, the one element (since it's the first round) being + // inserted as undef can be dropped. This isn't safe for successive + // rounds because they will permute elements within both vectors. + if (V[i+EltStride].getOpcode() == ISD::UNDEF && + EltStride == NumElems/2) + continue; + + V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); + } + EltStride >>= 1; + } + return V[0]; + } + return SDValue(); +} + +// 256-bit AVX can use the vinsertf128 instruction +// to create 256-bit vectors from two other 128-bit ones. +static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + MVT ResVT = Op.getSimpleValueType(); + + assert((ResVT.is256BitVector() || + ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide"); + + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + unsigned NumElems = ResVT.getVectorNumElements(); + if (ResVT.is256BitVector()) + return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl); + + if (Op.getNumOperands() == 4) { + MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), + ResVT.getVectorNumElements()/2); + SDValue V3 = Op.getOperand(2); + SDValue V4 = Op.getOperand(3); + return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl), + Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl); + } + return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl); +} + +static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op, + const X86Subtarget *Subtarget, + SelectionDAG & DAG) { + SDLoc dl(Op); + MVT ResVT = Op.getSimpleValueType(); + unsigned NumOfOperands = Op.getNumOperands(); + + assert(isPowerOf2_32(NumOfOperands) && + "Unexpected number of operands in CONCAT_VECTORS"); + + SDValue Undef = DAG.getUNDEF(ResVT); + if (NumOfOperands > 2) { + // Specialize the cases when all, or all but one, of the operands are undef. + unsigned NumOfDefinedOps = 0; + unsigned OpIdx = 0; + for (unsigned i = 0; i < NumOfOperands; i++) + if (!Op.getOperand(i).isUndef()) { + NumOfDefinedOps++; + OpIdx = i; + } + if (NumOfDefinedOps == 0) + return Undef; + if (NumOfDefinedOps == 1) { + unsigned SubVecNumElts = + Op.getOperand(OpIdx).getValueType().getVectorNumElements(); + SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, + Op.getOperand(OpIdx), IdxVal); + } + + MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(), + ResVT.getVectorNumElements()/2); + SmallVector<SDValue, 2> Ops; + for (unsigned i = 0; i < NumOfOperands/2; i++) + Ops.push_back(Op.getOperand(i)); + SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); + Ops.clear(); + for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++) + Ops.push_back(Op.getOperand(i)); + SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi); + } + + // 2 operands + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + unsigned NumElems = ResVT.getVectorNumElements(); + assert(V1.getValueType() == V2.getValueType() && + V1.getValueType().getVectorNumElements() == NumElems/2 && + "Unexpected operands in CONCAT_VECTORS"); + + if (ResVT.getSizeInBits() >= 16) + return Op; // The operation is legal with KUNPCK + + bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode()); + bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode()); + SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl); + if (IsZeroV1 && IsZeroV2) + return ZeroVec; + + SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl); + if (V2.isUndef()) + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx); + if (IsZeroV2) + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx); + + SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl); + if (V1.isUndef()) + V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal); + + if (IsZeroV1) + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal); + + V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal); +} + +static SDValue LowerCONCAT_VECTORS(SDValue Op, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + if (VT.getVectorElementType() == MVT::i1) + return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG); + + assert((VT.is256BitVector() && Op.getNumOperands() == 2) || + (VT.is512BitVector() && (Op.getNumOperands() == 2 || + Op.getNumOperands() == 4))); + + // AVX can use the vinsertf128 instruction to create 256-bit vectors + // from two other 128-bit ones. + + // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors + return LowerAVXCONCAT_VECTORS(Op, DAG); +} + +//===----------------------------------------------------------------------===// +// Vector shuffle lowering +// +// This is an experimental code path for lowering vector shuffles on x86. It is +// designed to handle arbitrary vector shuffles and blends, gracefully +// degrading performance as necessary. It works hard to recognize idiomatic +// shuffles and lower them to optimal instruction patterns without leaving +// a framework that allows reasonably efficient handling of all vector shuffle +// patterns. +//===----------------------------------------------------------------------===// + +/// \brief Tiny helper function to identify a no-op mask. +/// +/// This is a somewhat boring predicate function. It checks whether the mask +/// array input, which is assumed to be a single-input shuffle mask of the kind +/// used by the X86 shuffle instructions (not a fully general +/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an +/// in-place shuffle are 'no-op's. +static bool isNoopShuffleMask(ArrayRef<int> Mask) { + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] != -1 && Mask[i] != i) + return false; + return true; +} + +/// \brief Helper function to classify a mask as a single-input mask. +/// +/// This isn't a generic single-input test because in the vector shuffle +/// lowering we canonicalize single inputs to be the first input operand. This +/// means we can more quickly test for a single input by only checking whether +/// an input from the second operand exists. We also assume that the size of +/// mask corresponds to the size of the input vectors which isn't true in the +/// fully general case. +static bool isSingleInputShuffleMask(ArrayRef<int> Mask) { + for (int M : Mask) + if (M >= (int)Mask.size()) + return false; + return true; +} + +/// \brief Test whether there are elements crossing 128-bit lanes in this +/// shuffle mask. +/// +/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations +/// and we routinely test for these. +static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) { + int LaneSize = 128 / VT.getScalarSizeInBits(); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) + return true; + return false; +} + +/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane. +/// +/// This checks a shuffle mask to see if it is performing the same +/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies +/// that it is also not lane-crossing. It may however involve a blend from the +/// same lane of a second vector. +/// +/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is +/// non-trivial to compute in the face of undef lanes. The representation is +/// *not* suitable for use with existing 128-bit shuffles as it will contain +/// entries from both V1 and V2 inputs to the wider mask. +static bool +is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask, + SmallVectorImpl<int> &RepeatedMask) { + int LaneSize = 128 / VT.getScalarSizeInBits(); + RepeatedMask.resize(LaneSize, -1); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + if ((Mask[i] % Size) / LaneSize != i / LaneSize) + // This entry crosses lanes, so there is no way to model this shuffle. + return false; + + // Ok, handle the in-lane shuffles by detecting if and when they repeat. + if (RepeatedMask[i % LaneSize] == -1) + // This is the first non-undef entry in this slot of a 128-bit lane. + RepeatedMask[i % LaneSize] = + Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size; + else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i]) + // Found a mismatch with the repeated mask. + return false; + } + return true; +} + +/// \brief Checks whether a shuffle mask is equivalent to an explicit list of +/// arguments. +/// +/// This is a fast way to test a shuffle mask against a fixed pattern: +/// +/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... } +/// +/// It returns true if the mask is exactly as wide as the argument list, and +/// each element of the mask is either -1 (signifying undef) or the value given +/// in the argument. +static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask, + ArrayRef<int> ExpectedMask) { + if (Mask.size() != ExpectedMask.size()) + return false; + + int Size = Mask.size(); + + // If the values are build vectors, we can look through them to find + // equivalent inputs that make the shuffles equivalent. + auto *BV1 = dyn_cast<BuildVectorSDNode>(V1); + auto *BV2 = dyn_cast<BuildVectorSDNode>(V2); + + for (int i = 0; i < Size; ++i) + if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) { + auto *MaskBV = Mask[i] < Size ? BV1 : BV2; + auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2; + if (!MaskBV || !ExpectedBV || + MaskBV->getOperand(Mask[i] % Size) != + ExpectedBV->getOperand(ExpectedMask[i] % Size)) + return false; + } + + return true; +} + +/// \brief Get a 4-lane 8-bit shuffle immediate for a mask. +/// +/// This helper function produces an 8-bit shuffle immediate corresponding to +/// the ubiquitous shuffle encoding scheme used in x86 instructions for +/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for +/// example. +/// +/// NB: We rely heavily on "undef" masks preserving the input lane. +static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL, + SelectionDAG &DAG) { + assert(Mask.size() == 4 && "Only 4-lane shuffle masks"); + assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!"); + assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!"); + assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!"); + assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!"); + + unsigned Imm = 0; + Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0; + Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2; + Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4; + Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6; + return DAG.getConstant(Imm, DL, MVT::i8); +} + +/// \brief Compute whether each element of a shuffle is zeroable. +/// +/// A "zeroable" vector shuffle element is one which can be lowered to zero. +/// Either it is an undef element in the shuffle mask, the element of the input +/// referenced is undef, or the element of the input referenced is known to be +/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle +/// as many lanes with this technique as possible to simplify the remaining +/// shuffle. +static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask, + SDValue V1, SDValue V2) { + SmallBitVector Zeroable(Mask.size(), false); + + while (V1.getOpcode() == ISD::BITCAST) + V1 = V1->getOperand(0); + while (V2.getOpcode() == ISD::BITCAST) + V2 = V2->getOperand(0); + + bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); + bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); + + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + int M = Mask[i]; + // Handle the easy cases. + if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) { + Zeroable[i] = true; + continue; + } + + // If this is an index into a build_vector node (which has the same number + // of elements), dig out the input value and use it. + SDValue V = M < Size ? V1 : V2; + if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands()) + continue; + + SDValue Input = V.getOperand(M % Size); + // The UNDEF opcode check really should be dead code here, but not quite + // worth asserting on (it isn't invalid, just unexpected). + if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input)) + Zeroable[i] = true; + } + + return Zeroable; +} + +// X86 has dedicated unpack instructions that can handle specific blend +// operations: UNPCKH and UNPCKL. +static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask, + SDValue V1, SDValue V2, + SelectionDAG &DAG) { + int NumElts = VT.getVectorNumElements(); + int NumEltsInLane = 128 / VT.getScalarSizeInBits(); + SmallVector<int, 8> Unpckl; + SmallVector<int, 8> Unpckh; + + for (int i = 0; i < NumElts; ++i) { + unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane; + int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2); + int HiPos = LoPos + NumEltsInLane / 2; + Unpckl.push_back(LoPos); + Unpckh.push_back(HiPos); + } + + if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) + return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2); + if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2); + + // Commute and try again. + ShuffleVectorSDNode::commuteMask(Unpckl); + if (isShuffleEquivalent(V1, V2, Mask, Unpckl)) + return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1); + + ShuffleVectorSDNode::commuteMask(Unpckh); + if (isShuffleEquivalent(V1, V2, Mask, Unpckh)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1); + + return SDValue(); +} + +/// \brief Try to emit a bitmask instruction for a shuffle. +/// +/// This handles cases where we can model a blend exactly as a bitmask due to +/// one of the inputs being zeroable. +static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + MVT EltVT = VT.getVectorElementType(); + int NumEltBits = EltVT.getSizeInBits(); + MVT IntEltVT = MVT::getIntegerVT(NumEltBits); + SDValue Zero = DAG.getConstant(0, DL, IntEltVT); + SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, + IntEltVT); + if (EltVT.isFloatingPoint()) { + Zero = DAG.getBitcast(EltVT, Zero); + AllOnes = DAG.getBitcast(EltVT, AllOnes); + } + SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero); + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + SDValue V; + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Zeroable[i]) + continue; + if (Mask[i] % Size != i) + return SDValue(); // Not a blend. + if (!V) + V = Mask[i] < Size ? V1 : V2; + else if (V != (Mask[i] < Size ? V1 : V2)) + return SDValue(); // Can only let one input through the mask. + + VMaskOps[i] = AllOnes; + } + if (!V) + return SDValue(); // No non-zeroable elements! + + SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps); + V = DAG.getNode(VT.isFloatingPoint() + ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND, + DL, VT, V, VMask); + return V; +} + +/// \brief Try to emit a blend instruction for a shuffle using bit math. +/// +/// This is used as a fallback approach when first class blend instructions are +/// unavailable. Currently it is only suitable for integer vectors, but could +/// be generalized for floating point vectors if desirable. +static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(VT.isInteger() && "Only supports integer vector types!"); + MVT EltVT = VT.getVectorElementType(); + int NumEltBits = EltVT.getSizeInBits(); + SDValue Zero = DAG.getConstant(0, DL, EltVT); + SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL, + EltVT); + SmallVector<SDValue, 16> MaskOps; + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size) + return SDValue(); // Shuffled input! + MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero); + } + + SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps); + V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask); + // We have to cast V2 around. + MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64); + V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT, + DAG.getBitcast(MaskVT, V1Mask), + DAG.getBitcast(MaskVT, V2))); + return DAG.getNode(ISD::OR, DL, VT, V1, V2); +} + +/// \brief Try to emit a blend instruction for a shuffle. +/// +/// This doesn't do any checks for the availability of instructions for blending +/// these values. It relies on the availability of the X86ISD::BLENDI pattern to +/// be matched in the backend with the type given. What it does check for is +/// that the shuffle mask is a blend, or convertible into a blend with zero. +static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Original, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode()); + bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode()); + SmallVector<int, 8> Mask(Original.begin(), Original.end()); + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + bool ForceV1Zero = false, ForceV2Zero = false; + + // Attempt to generate the binary blend mask. If an input is zero then + // we can use any lane. + // TODO: generalize the zero matching to any scalar like isShuffleEquivalent. + unsigned BlendMask = 0; + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + int M = Mask[i]; + if (M < 0) + continue; + if (M == i) + continue; + if (M == i + Size) { + BlendMask |= 1u << i; + continue; + } + if (Zeroable[i]) { + if (V1IsZero) { + ForceV1Zero = true; + Mask[i] = i; + continue; + } + if (V2IsZero) { + ForceV2Zero = true; + BlendMask |= 1u << i; + Mask[i] = i + Size; + continue; + } + } + return SDValue(); // Shuffled input! + } + + // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs. + if (ForceV1Zero) + V1 = getZeroVector(VT, Subtarget, DAG, DL); + if (ForceV2Zero) + V2 = getZeroVector(VT, Subtarget, DAG, DL); + + auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) { + unsigned ScaledMask = 0; + for (int i = 0; i != Size; ++i) + if (BlendMask & (1u << i)) + for (int j = 0; j != Scale; ++j) + ScaledMask |= 1u << (i * Scale + j); + return ScaledMask; + }; + + switch (VT.SimpleTy) { + case MVT::v2f64: + case MVT::v4f32: + case MVT::v4f64: + case MVT::v8f32: + return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8)); + + case MVT::v4i64: + case MVT::v8i32: + assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); + // FALLTHROUGH + case MVT::v2i64: + case MVT::v4i32: + // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into + // that instruction. + if (Subtarget->hasAVX2()) { + // Scale the blend by the number of 32-bit dwords per element. + int Scale = VT.getScalarSizeInBits() / 32; + BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale); + MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32; + V1 = DAG.getBitcast(BlendVT, V1); + V2 = DAG.getBitcast(BlendVT, V2); + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8))); + } + // FALLTHROUGH + case MVT::v8i16: { + // For integer shuffles we need to expand the mask and cast the inputs to + // v8i16s prior to blending. + int Scale = 8 / VT.getVectorNumElements(); + BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale); + V1 = DAG.getBitcast(MVT::v8i16, V1); + V2 = DAG.getBitcast(MVT::v8i16, V2); + return DAG.getBitcast(VT, + DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8))); + } + + case MVT::v16i16: { + assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!"); + SmallVector<int, 8> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { + // We can lower these with PBLENDW which is mirrored across 128-bit lanes. + assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!"); + BlendMask = 0; + for (int i = 0; i < 8; ++i) + if (RepeatedMask[i] >= 16) + BlendMask |= 1u << i; + return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2, + DAG.getConstant(BlendMask, DL, MVT::i8)); + } + } + // FALLTHROUGH + case MVT::v16i8: + case MVT::v32i8: { + assert((VT.is128BitVector() || Subtarget->hasAVX2()) && + "256-bit byte-blends require AVX2 support!"); + + // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB. + if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG)) + return Masked; + + // Scale the blend by the number of bytes per element. + int Scale = VT.getScalarSizeInBits() / 8; + + // This form of blend is always done on bytes. Compute the byte vector + // type. + MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8); + + // Compute the VSELECT mask. Note that VSELECT is really confusing in the + // mix of LLVM's code generator and the x86 backend. We tell the code + // generator that boolean values in the elements of an x86 vector register + // are -1 for true and 0 for false. We then use the LLVM semantics of 'true' + // mapping a select to operand #1, and 'false' mapping to operand #2. The + // reality in x86 is that vector masks (pre-AVX-512) use only the high bit + // of the element (the remaining are ignored) and 0 in that high bit would + // mean operand #1 while 1 in the high bit would mean operand #2. So while + // the LLVM model for boolean values in vector elements gets the relevant + // bit set, it is set backwards and over constrained relative to x86's + // actual model. + SmallVector<SDValue, 32> VSELECTMask; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + for (int j = 0; j < Scale; ++j) + VSELECTMask.push_back( + Mask[i] < 0 ? DAG.getUNDEF(MVT::i8) + : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL, + MVT::i8)); + + V1 = DAG.getBitcast(BlendVT, V1); + V2 = DAG.getBitcast(BlendVT, V2); + return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT, + DAG.getNode(ISD::BUILD_VECTOR, DL, + BlendVT, VSELECTMask), + V1, V2)); + } + + default: + llvm_unreachable("Not a supported integer vector type!"); + } +} + +/// \brief Try to lower as a blend of elements from two inputs followed by +/// a single-input permutation. +/// +/// This matches the pattern where we can blend elements from two inputs and +/// then reduce the shuffle to a single-input permutation. +static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + // We build up the blend mask while checking whether a blend is a viable way + // to reduce the shuffle. + SmallVector<int, 32> BlendMask(Mask.size(), -1); + SmallVector<int, 32> PermuteMask(Mask.size(), -1); + + for (int i = 0, Size = Mask.size(); i < Size; ++i) { + if (Mask[i] < 0) + continue; + + assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds."); + + if (BlendMask[Mask[i] % Size] == -1) + BlendMask[Mask[i] % Size] = Mask[i]; + else if (BlendMask[Mask[i] % Size] != Mask[i]) + return SDValue(); // Can't blend in the needed input! + + PermuteMask[i] = Mask[i] % Size; + } + + SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); + return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask); +} + +/// \brief Generic routine to decompose a shuffle and blend into indepndent +/// blends and permutes. +/// +/// This matches the extremely common pattern for handling combined +/// shuffle+blend operations on newer X86 ISAs where we have very fast blend +/// operations. It will try to pick the best arrangement of shuffles and +/// blends. +static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT, + SDValue V1, + SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + // Shuffle the input elements into the desired positions in V1 and V2 and + // blend them together. + SmallVector<int, 32> V1Mask(Mask.size(), -1); + SmallVector<int, 32> V2Mask(Mask.size(), -1); + SmallVector<int, 32> BlendMask(Mask.size(), -1); + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] >= 0 && Mask[i] < Size) { + V1Mask[i] = Mask[i]; + BlendMask[i] = i; + } else if (Mask[i] >= Size) { + V2Mask[i] = Mask[i] - Size; + BlendMask[i] = i + Size; + } + + // Try to lower with the simpler initial blend strategy unless one of the + // input shuffles would be a no-op. We prefer to shuffle inputs as the + // shuffle may be able to fold with a load or other benefit. However, when + // we'll have to do 2x as many shuffles in order to achieve this, blending + // first is a better strategy. + if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) + if (SDValue BlendPerm = + lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG)) + return BlendPerm; + + V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); + return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask); +} + +/// \brief Try to lower a vector shuffle as a byte rotation. +/// +/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary +/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use +/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will +/// try to generically lower a vector shuffle through such an pattern. It +/// does not check for the profitability of lowering either as PALIGNR or +/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form. +/// This matches shuffle vectors that look like: +/// +/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2] +/// +/// Essentially it concatenates V1 and V2, shifts right by some number of +/// elements, and takes the low elements as the result. Note that while this is +/// specified as a *right shift* because x86 is little-endian, it is a *left +/// rotate* of the vector lanes. +static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, + ArrayRef<int> Mask, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!"); + + int NumElts = Mask.size(); + int NumLanes = VT.getSizeInBits() / 128; + int NumLaneElts = NumElts / NumLanes; + + // We need to detect various ways of spelling a rotation: + // [11, 12, 13, 14, 15, 0, 1, 2] + // [-1, 12, 13, 14, -1, -1, 1, -1] + // [-1, -1, -1, -1, -1, -1, 1, 2] + // [ 3, 4, 5, 6, 7, 8, 9, 10] + // [-1, 4, 5, 6, -1, -1, 9, -1] + // [-1, 4, 5, 6, -1, -1, -1, -1] + int Rotation = 0; + SDValue Lo, Hi; + for (int l = 0; l < NumElts; l += NumLaneElts) { + for (int i = 0; i < NumLaneElts; ++i) { + if (Mask[l + i] == -1) + continue; + assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!"); + + // Get the mod-Size index and lane correct it. + int LaneIdx = (Mask[l + i] % NumElts) - l; + // Make sure it was in this lane. + if (LaneIdx < 0 || LaneIdx >= NumLaneElts) + return SDValue(); + + // Determine where a rotated vector would have started. + int StartIdx = i - LaneIdx; + if (StartIdx == 0) + // The identity rotation isn't interesting, stop. + return SDValue(); + + // If we found the tail of a vector the rotation must be the missing + // front. If we found the head of a vector, it must be how much of the + // head. + int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx; + + if (Rotation == 0) + Rotation = CandidateRotation; + else if (Rotation != CandidateRotation) + // The rotations don't match, so we can't match this mask. + return SDValue(); + + // Compute which value this mask is pointing at. + SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2; + + // Compute which of the two target values this index should be assigned + // to. This reflects whether the high elements are remaining or the low + // elements are remaining. + SDValue &TargetV = StartIdx < 0 ? Hi : Lo; + + // Either set up this value if we've not encountered it before, or check + // that it remains consistent. + if (!TargetV) + TargetV = MaskV; + else if (TargetV != MaskV) + // This may be a rotation, but it pulls from the inputs in some + // unsupported interleaving. + return SDValue(); + } + } + + // Check that we successfully analyzed the mask, and normalize the results. + assert(Rotation != 0 && "Failed to locate a viable rotation!"); + assert((Lo || Hi) && "Failed to find a rotated input vector!"); + if (!Lo) + Lo = Hi; + else if (!Hi) + Hi = Lo; + + // The actual rotate instruction rotates bytes, so we need to scale the + // rotation based on how many bytes are in the vector lane. + int Scale = 16 / NumLaneElts; + + // SSSE3 targets can use the palignr instruction. + if (Subtarget->hasSSSE3()) { + // Cast the inputs to i8 vector of correct length to match PALIGNR. + MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes); + Lo = DAG.getBitcast(AlignVT, Lo); + Hi = DAG.getBitcast(AlignVT, Hi); + + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi, + DAG.getConstant(Rotation * Scale, DL, MVT::i8))); + } + + assert(VT.is128BitVector() && + "Rotate-based lowering only supports 128-bit lowering!"); + assert(Mask.size() <= 16 && + "Can shuffle at most 16 bytes in a 128-bit vector!"); + + // Default SSE2 implementation + int LoByteShift = 16 - Rotation * Scale; + int HiByteShift = Rotation * Scale; + + // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ. + Lo = DAG.getBitcast(MVT::v2i64, Lo); + Hi = DAG.getBitcast(MVT::v2i64, Hi); + + SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo, + DAG.getConstant(LoByteShift, DL, MVT::i8)); + SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi, + DAG.getConstant(HiByteShift, DL, MVT::i8)); + return DAG.getBitcast(VT, + DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift)); +} + +/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros). +/// +/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and +/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function +/// matches elements from one of the input vectors shuffled to the left or +/// right with zeroable elements 'shifted in'. It handles both the strictly +/// bit-wise element shifts and the byte shift across an entire 128-bit double +/// quad word lane. +/// +/// PSHL : (little-endian) left bit shift. +/// [ zz, 0, zz, 2 ] +/// [ -1, 4, zz, -1 ] +/// PSRL : (little-endian) right bit shift. +/// [ 1, zz, 3, zz] +/// [ -1, -1, 7, zz] +/// PSLLDQ : (little-endian) left byte shift +/// [ zz, 0, 1, 2, 3, 4, 5, 6] +/// [ zz, zz, -1, -1, 2, 3, 4, -1] +/// [ zz, zz, zz, zz, zz, zz, -1, 1] +/// PSRLDQ : (little-endian) right byte shift +/// [ 5, 6, 7, zz, zz, zz, zz, zz] +/// [ -1, 5, 6, 7, zz, zz, zz, zz] +/// [ 1, 2, -1, -1, -1, -1, zz, zz] +static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + + int Size = Mask.size(); + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + + auto CheckZeros = [&](int Shift, int Scale, bool Left) { + for (int i = 0; i < Size; i += Scale) + for (int j = 0; j < Shift; ++j) + if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))]) + return false; + + return true; + }; + + auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) { + for (int i = 0; i != Size; i += Scale) { + unsigned Pos = Left ? i + Shift : i; + unsigned Low = Left ? i : i + Shift; + unsigned Len = Scale - Shift; + if (!isSequentialOrUndefInRange(Mask, Pos, Len, + Low + (V == V1 ? 0 : Size))) + return SDValue(); + } + + int ShiftEltBits = VT.getScalarSizeInBits() * Scale; + bool ByteShift = ShiftEltBits > 64; + unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI) + : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI); + int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1); + + // Normalize the scale for byte shifts to still produce an i64 element + // type. + Scale = ByteShift ? Scale / 2 : Scale; + + // We need to round trip through the appropriate type for the shift. + MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale); + MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale); + assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) && + "Illegal integer vector type"); + V = DAG.getBitcast(ShiftVT, V); + + V = DAG.getNode(OpCode, DL, ShiftVT, V, + DAG.getConstant(ShiftAmt, DL, MVT::i8)); + return DAG.getBitcast(VT, V); + }; + + // SSE/AVX supports logical shifts up to 64-bit integers - so we can just + // keep doubling the size of the integer elements up to that. We can + // then shift the elements of the integer vector by whole multiples of + // their width within the elements of the larger integer vector. Test each + // multiple to see if we can find a match with the moved element indices + // and that the shifted in elements are all zeroable. + for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2) + for (int Shift = 1; Shift != Scale; ++Shift) + for (bool Left : {true, false}) + if (CheckZeros(Shift, Scale, Left)) + for (SDValue V : {V1, V2}) + if (SDValue Match = MatchShift(Shift, Scale, Left, V)) + return Match; + + // no match + return SDValue(); +} + +/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ. +static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + assert(!Zeroable.all() && "Fully zeroable shuffle mask"); + + int Size = Mask.size(); + int HalfSize = Size / 2; + assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size"); + + // Upper half must be undefined. + if (!isUndefInRange(Mask, HalfSize, HalfSize)) + return SDValue(); + + // EXTRQ: Extract Len elements from lower half of source, starting at Idx. + // Remainder of lower half result is zero and upper half is all undef. + auto LowerAsEXTRQ = [&]() { + // Determine the extraction length from the part of the + // lower half that isn't zeroable. + int Len = HalfSize; + for (; Len > 0; --Len) + if (!Zeroable[Len - 1]) + break; + assert(Len > 0 && "Zeroable shuffle mask"); + + // Attempt to match first Len sequential elements from the lower half. + SDValue Src; + int Idx = -1; + for (int i = 0; i != Len; ++i) { + int M = Mask[i]; + if (M < 0) + continue; + SDValue &V = (M < Size ? V1 : V2); + M = M % Size; + + // The extracted elements must start at a valid index and all mask + // elements must be in the lower half. + if (i > M || M >= HalfSize) + return SDValue(); + + if (Idx < 0 || (Src == V && Idx == (M - i))) { + Src = V; + Idx = M - i; + continue; + } + return SDValue(); + } + + if (Idx < 0) + return SDValue(); + + assert((Idx + Len) <= HalfSize && "Illegal extraction mask"); + int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; + int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; + return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src, + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + }; + + if (SDValue ExtrQ = LowerAsEXTRQ()) + return ExtrQ; + + // INSERTQ: Extract lowest Len elements from lower half of second source and + // insert over first source, starting at Idx. + // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... } + auto LowerAsInsertQ = [&]() { + for (int Idx = 0; Idx != HalfSize; ++Idx) { + SDValue Base; + + // Attempt to match first source from mask before insertion point. + if (isUndefInRange(Mask, 0, Idx)) { + /* EMPTY */ + } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) { + Base = V1; + } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) { + Base = V2; + } else { + continue; + } + + // Extend the extraction length looking to match both the insertion of + // the second source and the remaining elements of the first. + for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) { + SDValue Insert; + int Len = Hi - Idx; + + // Match insertion. + if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) { + Insert = V1; + } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) { + Insert = V2; + } else { + continue; + } + + // Match the remaining elements of the lower half. + if (isUndefInRange(Mask, Hi, HalfSize - Hi)) { + /* EMPTY */ + } else if ((!Base || (Base == V1)) && + isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) { + Base = V1; + } else if ((!Base || (Base == V2)) && + isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, + Size + Hi)) { + Base = V2; + } else { + continue; + } + + // We may not have a base (first source) - this can safely be undefined. + if (!Base) + Base = DAG.getUNDEF(VT); + + int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f; + int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f; + return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert, + DAG.getConstant(BitLen, DL, MVT::i8), + DAG.getConstant(BitIdx, DL, MVT::i8)); + } + } + + return SDValue(); + }; + + if (SDValue InsertQ = LowerAsInsertQ()) + return InsertQ; + + return SDValue(); +} + +/// \brief Lower a vector shuffle as a zero or any extension. +/// +/// Given a specific number of elements, element bit width, and extension +/// stride, produce either a zero or any extension based on the available +/// features of the subtarget. The extended elements are consecutive and +/// begin and can start from an offseted element index in the input; to +/// avoid excess shuffling the offset must either being in the bottom lane +/// or at the start of a higher lane. All extended elements must be from +/// the same lane. +static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend( + SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV, + ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) { + assert(Scale > 1 && "Need a scale to extend."); + int EltBits = VT.getScalarSizeInBits(); + int NumElements = VT.getVectorNumElements(); + int NumEltsPerLane = 128 / EltBits; + int OffsetLane = Offset / NumEltsPerLane; + assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && + "Only 8, 16, and 32 bit elements can be extended."); + assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits."); + assert(0 <= Offset && "Extension offset must be positive."); + assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) && + "Extension offset must be in the first lane or start an upper lane."); + + // Check that an index is in same lane as the base offset. + auto SafeOffset = [&](int Idx) { + return OffsetLane == (Idx / NumEltsPerLane); + }; + + // Shift along an input so that the offset base moves to the first element. + auto ShuffleOffset = [&](SDValue V) { + if (!Offset) + return V; + + SmallVector<int, 8> ShMask((unsigned)NumElements, -1); + for (int i = 0; i * Scale < NumElements; ++i) { + int SrcIdx = i + Offset; + ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1; + } + return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask); + }; + + // Found a valid zext mask! Try various lowering strategies based on the + // input type and available ISA extensions. + if (Subtarget->hasSSE41()) { + // Not worth offseting 128-bit vectors if scale == 2, a pattern using + // PUNPCK will catch this in a later shuffle match. + if (Offset && Scale == 2 && VT.is128BitVector()) + return SDValue(); + MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale), + NumElements / Scale); + InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, ShuffleOffset(InputV)); + return DAG.getBitcast(VT, InputV); + } + + assert(VT.is128BitVector() && "Only 128-bit vectors can be extended."); + + // For any extends we can cheat for larger element sizes and use shuffle + // instructions that can fold with a load and/or copy. + if (AnyExt && EltBits == 32) { + int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1, + -1}; + return DAG.getBitcast( + VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, + DAG.getBitcast(MVT::v4i32, InputV), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + } + if (AnyExt && EltBits == 16 && Scale > 2) { + int PSHUFDMask[4] = {Offset / 2, -1, + SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1}; + InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, + DAG.getBitcast(MVT::v4i32, InputV), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)); + int PSHUFWMask[4] = {1, -1, -1, -1}; + unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW); + return DAG.getBitcast( + VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16, + DAG.getBitcast(MVT::v8i16, InputV), + getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG))); + } + + // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes + // to 64-bits. + if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget->hasSSE4A()) { + assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!"); + assert(VT.is128BitVector() && "Unexpected vector width!"); + + int LoIdx = Offset * EltBits; + SDValue Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, + DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, + DAG.getConstant(EltBits, DL, MVT::i8), + DAG.getConstant(LoIdx, DL, MVT::i8))); + + if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) || + !SafeOffset(Offset + 1)) + return DAG.getNode(ISD::BITCAST, DL, VT, Lo); + + int HiIdx = (Offset + 1) * EltBits; + SDValue Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, + DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV, + DAG.getConstant(EltBits, DL, MVT::i8), + DAG.getConstant(HiIdx, DL, MVT::i8))); + return DAG.getNode(ISD::BITCAST, DL, VT, + DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi)); + } + + // If this would require more than 2 unpack instructions to expand, use + // pshufb when available. We can only use more than 2 unpack instructions + // when zero extending i8 elements which also makes it easier to use pshufb. + if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) { + assert(NumElements == 16 && "Unexpected byte vector width!"); + SDValue PSHUFBMask[16]; + for (int i = 0; i < 16; ++i) { + int Idx = Offset + (i / Scale); + PSHUFBMask[i] = DAG.getConstant( + (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8); + } + InputV = DAG.getBitcast(MVT::v16i8, InputV); + return DAG.getBitcast(VT, + DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV, + DAG.getNode(ISD::BUILD_VECTOR, DL, + MVT::v16i8, PSHUFBMask))); + } + + // If we are extending from an offset, ensure we start on a boundary that + // we can unpack from. + int AlignToUnpack = Offset % (NumElements / Scale); + if (AlignToUnpack) { + SmallVector<int, 8> ShMask((unsigned)NumElements, -1); + for (int i = AlignToUnpack; i < NumElements; ++i) + ShMask[i - AlignToUnpack] = i; + InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask); + Offset -= AlignToUnpack; + } + + // Otherwise emit a sequence of unpacks. + do { + unsigned UnpackLoHi = X86ISD::UNPCKL; + if (Offset >= (NumElements / 2)) { + UnpackLoHi = X86ISD::UNPCKH; + Offset -= (NumElements / 2); + } + + MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements); + SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT) + : getZeroVector(InputVT, Subtarget, DAG, DL); + InputV = DAG.getBitcast(InputVT, InputV); + InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext); + Scale /= 2; + EltBits *= 2; + NumElements /= 2; + } while (Scale > 1); + return DAG.getBitcast(VT, InputV); +} + +/// \brief Try to lower a vector shuffle as a zero extension on any microarch. +/// +/// This routine will try to do everything in its power to cleverly lower +/// a shuffle which happens to match the pattern of a zero extend. It doesn't +/// check for the profitability of this lowering, it tries to aggressively +/// match this pattern. It will use all of the micro-architectural details it +/// can to emit an efficient lowering. It handles both blends with all-zero +/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to +/// masking out later). +/// +/// The reason we have dedicated lowering for zext-style shuffles is that they +/// are both incredibly common and often quite performance sensitive. +static SDValue lowerVectorShuffleAsZeroOrAnyExtend( + SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + + int Bits = VT.getSizeInBits(); + int NumLanes = Bits / 128; + int NumElements = VT.getVectorNumElements(); + int NumEltsPerLane = NumElements / NumLanes; + assert(VT.getScalarSizeInBits() <= 32 && + "Exceeds 32-bit integer zero extension limit"); + assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size"); + + // Define a helper function to check a particular ext-scale and lower to it if + // valid. + auto Lower = [&](int Scale) -> SDValue { + SDValue InputV; + bool AnyExt = true; + int Offset = 0; + int Matches = 0; + for (int i = 0; i < NumElements; ++i) { + int M = Mask[i]; + if (M == -1) + continue; // Valid anywhere but doesn't tell us anything. + if (i % Scale != 0) { + // Each of the extended elements need to be zeroable. + if (!Zeroable[i]) + return SDValue(); + + // We no longer are in the anyext case. + AnyExt = false; + continue; + } + + // Each of the base elements needs to be consecutive indices into the + // same input vector. + SDValue V = M < NumElements ? V1 : V2; + M = M % NumElements; + if (!InputV) { + InputV = V; + Offset = M - (i / Scale); + } else if (InputV != V) + return SDValue(); // Flip-flopping inputs. + + // Offset must start in the lowest 128-bit lane or at the start of an + // upper lane. + // FIXME: Is it ever worth allowing a negative base offset? + if (!((0 <= Offset && Offset < NumEltsPerLane) || + (Offset % NumEltsPerLane) == 0)) + return SDValue(); + + // If we are offsetting, all referenced entries must come from the same + // lane. + if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane)) + return SDValue(); + + if ((M % NumElements) != (Offset + (i / Scale))) + return SDValue(); // Non-consecutive strided elements. + Matches++; + } + + // If we fail to find an input, we have a zero-shuffle which should always + // have already been handled. + // FIXME: Maybe handle this here in case during blending we end up with one? + if (!InputV) + return SDValue(); + + // If we are offsetting, don't extend if we only match a single input, we + // can always do better by using a basic PSHUF or PUNPCK. + if (Offset != 0 && Matches < 2) + return SDValue(); + + return lowerVectorShuffleAsSpecificZeroOrAnyExtend( + DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG); + }; + + // The widest scale possible for extending is to a 64-bit integer. + assert(Bits % 64 == 0 && + "The number of bits in a vector must be divisible by 64 on x86!"); + int NumExtElements = Bits / 64; + + // Each iteration, try extending the elements half as much, but into twice as + // many elements. + for (; NumExtElements < NumElements; NumExtElements *= 2) { + assert(NumElements % NumExtElements == 0 && + "The input vector size must be divisible by the extended size."); + if (SDValue V = Lower(NumElements / NumExtElements)) + return V; + } + + // General extends failed, but 128-bit vectors may be able to use MOVQ. + if (Bits != 128) + return SDValue(); + + // Returns one of the source operands if the shuffle can be reduced to a + // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits. + auto CanZExtLowHalf = [&]() { + for (int i = NumElements / 2; i != NumElements; ++i) + if (!Zeroable[i]) + return SDValue(); + if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0)) + return V1; + if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements)) + return V2; + return SDValue(); + }; + + if (SDValue V = CanZExtLowHalf()) { + V = DAG.getBitcast(MVT::v2i64, V); + V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V); + return DAG.getBitcast(VT, V); + } + + // No viable ext lowering found. + return SDValue(); +} + +/// \brief Try to get a scalar value for a specific element of a vector. +/// +/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar. +static SDValue getScalarValueForVectorElement(SDValue V, int Idx, + SelectionDAG &DAG) { + MVT VT = V.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + while (V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + // If the bitcasts shift the element size, we can't extract an equivalent + // element from it. + MVT NewVT = V.getSimpleValueType(); + if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) + return SDValue(); + + if (V.getOpcode() == ISD::BUILD_VECTOR || + (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) { + // Ensure the scalar operand is the same size as the destination. + // FIXME: Add support for scalar truncation where possible. + SDValue S = V.getOperand(Idx); + if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits()) + return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S); + } + + return SDValue(); +} + +/// \brief Helper to test for a load that can be folded with x86 shuffles. +/// +/// This is particularly important because the set of instructions varies +/// significantly based on whether the operand is a load or not. +static bool isShuffleFoldableLoad(SDValue V) { + while (V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + + return ISD::isNON_EXTLoad(V.getNode()); +} + +/// \brief Try to lower insertion of a single element into a zero vector. +/// +/// This is a common pattern that we have especially efficient patterns to lower +/// across all subtarget feature sets. +static SDValue lowerVectorShuffleAsElementInsertion( + SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + MVT ExtVT = VT; + MVT EltVT = VT.getVectorElementType(); + + int V2Index = std::find_if(Mask.begin(), Mask.end(), + [&Mask](int M) { return M >= (int)Mask.size(); }) - + Mask.begin(); + bool IsV1Zeroable = true; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (i != V2Index && !Zeroable[i]) { + IsV1Zeroable = false; + break; + } + + // Check for a single input from a SCALAR_TO_VECTOR node. + // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and + // all the smarts here sunk into that routine. However, the current + // lowering of BUILD_VECTOR makes that nearly impossible until the old + // vector shuffle lowering is dead. + SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(), + DAG); + if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) { + // We need to zext the scalar if it is smaller than an i32. + V2S = DAG.getBitcast(EltVT, V2S); + if (EltVT == MVT::i8 || EltVT == MVT::i16) { + // Using zext to expand a narrow element won't work for non-zero + // insertions. + if (!IsV1Zeroable) + return SDValue(); + + // Zero-extend directly to i32. + ExtVT = MVT::v4i32; + V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S); + } + V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S); + } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 || + EltVT == MVT::i16) { + // Either not inserting from the low element of the input or the input + // element size is too small to use VZEXT_MOVL to clear the high bits. + return SDValue(); + } + + if (!IsV1Zeroable) { + // If V1 can't be treated as a zero vector we have fewer options to lower + // this. We can't support integer vectors or non-zero targets cheaply, and + // the V1 elements can't be permuted in any way. + assert(VT == ExtVT && "Cannot change extended type when non-zeroable!"); + if (!VT.isFloatingPoint() || V2Index != 0) + return SDValue(); + SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end()); + V1Mask[V2Index] = -1; + if (!isNoopShuffleMask(V1Mask)) + return SDValue(); + // This is essentially a special case blend operation, but if we have + // general purpose blend operations, they are always faster. Bail and let + // the rest of the lowering handle these as blends. + if (Subtarget->hasSSE41()) + return SDValue(); + + // Otherwise, use MOVSD or MOVSS. + assert((EltVT == MVT::f32 || EltVT == MVT::f64) && + "Only two types of floating point element types to handle!"); + return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL, + ExtVT, V1, V2); + } + + // This lowering only works for the low element with floating point vectors. + if (VT.isFloatingPoint() && V2Index != 0) + return SDValue(); + + V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2); + if (ExtVT != VT) + V2 = DAG.getBitcast(VT, V2); + + if (V2Index != 0) { + // If we have 4 or fewer lanes we can cheaply shuffle the element into + // the desired position. Otherwise it is more efficient to do a vector + // shift left. We know that we can do a vector shift left because all + // the inputs are zero. + if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) { + SmallVector<int, 4> V2Shuffle(Mask.size(), 1); + V2Shuffle[V2Index] = 0; + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle); + } else { + V2 = DAG.getBitcast(MVT::v2i64, V2); + V2 = DAG.getNode( + X86ISD::VSHLDQ, DL, MVT::v2i64, V2, + DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL, + DAG.getTargetLoweringInfo().getScalarShiftAmountTy( + DAG.getDataLayout(), VT))); + V2 = DAG.getBitcast(VT, V2); + } + } + return V2; +} + +/// \brief Try to lower broadcast of a single - truncated - integer element, +/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements. +/// +/// This assumes we have AVX2. +static SDValue lowerVectorShuffleAsTruncBroadcast(SDLoc DL, MVT VT, SDValue V0, + int BroadcastIdx, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Subtarget->hasAVX2() && + "We can only lower integer broadcasts with AVX2!"); + + EVT EltVT = VT.getVectorElementType(); + EVT V0VT = V0.getValueType(); + + assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!"); + assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!"); + + EVT V0EltVT = V0VT.getVectorElementType(); + if (!V0EltVT.isInteger()) + return SDValue(); + + const unsigned EltSize = EltVT.getSizeInBits(); + const unsigned V0EltSize = V0EltVT.getSizeInBits(); + + // This is only a truncation if the original element type is larger. + if (V0EltSize <= EltSize) + return SDValue(); + + assert(((V0EltSize % EltSize) == 0) && + "Scalar type sizes must all be powers of 2 on x86!"); + + const unsigned V0Opc = V0.getOpcode(); + const unsigned Scale = V0EltSize / EltSize; + const unsigned V0BroadcastIdx = BroadcastIdx / Scale; + + if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) && + V0Opc != ISD::BUILD_VECTOR) + return SDValue(); + + SDValue Scalar = V0.getOperand(V0BroadcastIdx); + + // If we're extracting non-least-significant bits, shift so we can truncate. + // Hopefully, we can fold away the trunc/srl/load into the broadcast. + // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer + // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd. + if (const int OffsetIdx = BroadcastIdx % Scale) + Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar, + DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType())); + + return DAG.getNode(X86ISD::VBROADCAST, DL, VT, + DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar)); +} + +/// \brief Try to lower broadcast of a single element. +/// +/// For convenience, this code also bundles all of the subtarget feature set +/// filtering. While a little annoying to re-dispatch on type here, there isn't +/// a convenient way to factor it out. +/// FIXME: This is very similar to LowerVectorBroadcast - can we merge them? +static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V, + ArrayRef<int> Mask, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + if (!Subtarget->hasAVX()) + return SDValue(); + if (VT.isInteger() && !Subtarget->hasAVX2()) + return SDValue(); + + // Check that the mask is a broadcast. + int BroadcastIdx = -1; + for (int M : Mask) + if (M >= 0 && BroadcastIdx == -1) + BroadcastIdx = M; + else if (M >= 0 && M != BroadcastIdx) + return SDValue(); + + assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with " + "a sorted mask where the broadcast " + "comes from V1."); + + // Go up the chain of (vector) values to find a scalar load that we can + // combine with the broadcast. + for (;;) { + switch (V.getOpcode()) { + case ISD::CONCAT_VECTORS: { + int OperandSize = Mask.size() / V.getNumOperands(); + V = V.getOperand(BroadcastIdx / OperandSize); + BroadcastIdx %= OperandSize; + continue; + } + + case ISD::INSERT_SUBVECTOR: { + SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1); + auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2)); + if (!ConstantIdx) + break; + + int BeginIdx = (int)ConstantIdx->getZExtValue(); + int EndIdx = + BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements(); + if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) { + BroadcastIdx -= BeginIdx; + V = VInner; + } else { + V = VOuter; + } + continue; + } + } + break; + } + + // Check if this is a broadcast of a scalar. We special case lowering + // for scalars so that we can more effectively fold with loads. + // First, look through bitcast: if the original value has a larger element + // type than the shuffle, the broadcast element is in essence truncated. + // Make that explicit to ease folding. + if (V.getOpcode() == ISD::BITCAST && VT.isInteger()) + if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast( + DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG)) + return TruncBroadcast; + + // Also check the simpler case, where we can directly reuse the scalar. + if (V.getOpcode() == ISD::BUILD_VECTOR || + (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) { + V = V.getOperand(BroadcastIdx); + + // If the scalar isn't a load, we can't broadcast from it in AVX1. + // Only AVX2 has register broadcasts. + if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V)) + return SDValue(); + } else if (MayFoldLoad(V) && !cast<LoadSDNode>(V)->isVolatile()) { + // If we are broadcasting a load that is only used by the shuffle + // then we can reduce the vector load to the broadcasted scalar load. + LoadSDNode *Ld = cast<LoadSDNode>(V); + SDValue BaseAddr = Ld->getOperand(1); + EVT AddrVT = BaseAddr.getValueType(); + EVT SVT = VT.getScalarType(); + unsigned Offset = BroadcastIdx * SVT.getStoreSize(); + SDValue NewAddr = DAG.getNode( + ISD::ADD, DL, AddrVT, BaseAddr, + DAG.getConstant(Offset, DL, AddrVT)); + V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr, + DAG.getMachineFunction().getMachineMemOperand( + Ld->getMemOperand(), Offset, SVT.getStoreSize())); + } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) { + // We can't broadcast from a vector register without AVX2, and we can only + // broadcast from the zero-element of a vector register. + return SDValue(); + } + + return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V); +} + +// Check for whether we can use INSERTPS to perform the shuffle. We only use +// INSERTPS when the V1 elements are already in the correct locations +// because otherwise we can just always use two SHUFPS instructions which +// are much smaller to encode than a SHUFPS and an INSERTPS. We can also +// perform INSERTPS if a single V1 element is out of place and all V2 +// elements are zeroable. +static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + + unsigned ZMask = 0; + int V1DstIndex = -1; + int V2DstIndex = -1; + bool V1UsedInPlace = false; + + for (int i = 0; i < 4; ++i) { + // Synthesize a zero mask from the zeroable elements (includes undefs). + if (Zeroable[i]) { + ZMask |= 1 << i; + continue; + } + + // Flag if we use any V1 inputs in place. + if (i == Mask[i]) { + V1UsedInPlace = true; + continue; + } + + // We can only insert a single non-zeroable element. + if (V1DstIndex != -1 || V2DstIndex != -1) + return SDValue(); + + if (Mask[i] < 4) { + // V1 input out of place for insertion. + V1DstIndex = i; + } else { + // V2 input for insertion. + V2DstIndex = i; + } + } + + // Don't bother if we have no (non-zeroable) element for insertion. + if (V1DstIndex == -1 && V2DstIndex == -1) + return SDValue(); + + // Determine element insertion src/dst indices. The src index is from the + // start of the inserted vector, not the start of the concatenated vector. + unsigned V2SrcIndex = 0; + if (V1DstIndex != -1) { + // If we have a V1 input out of place, we use V1 as the V2 element insertion + // and don't use the original V2 at all. + V2SrcIndex = Mask[V1DstIndex]; + V2DstIndex = V1DstIndex; + V2 = V1; + } else { + V2SrcIndex = Mask[V2DstIndex] - 4; + } + + // If no V1 inputs are used in place, then the result is created only from + // the zero mask and the V2 insertion - so remove V1 dependency. + if (!V1UsedInPlace) + V1 = DAG.getUNDEF(MVT::v4f32); + + unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask; + assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!"); + + // Insert the V2 element into the desired position. + SDLoc DL(Op); + return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2, + DAG.getConstant(InsertPSMask, DL, MVT::i8)); +} + +/// \brief Try to lower a shuffle as a permute of the inputs followed by an +/// UNPCK instruction. +/// +/// This specifically targets cases where we end up with alternating between +/// the two inputs, and so can permute them into something that feeds a single +/// UNPCK instruction. Note that this routine only targets integer vectors +/// because for floating point vectors we have a generalized SHUFPS lowering +/// strategy that handles everything that doesn't *exactly* match an unpack, +/// making this clever lowering unnecessary. +static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(!VT.isFloatingPoint() && + "This routine only supports integer vectors."); + assert(!isSingleInputShuffleMask(Mask) && + "This routine should only be used when blending two inputs."); + assert(Mask.size() >= 2 && "Single element masks are invalid."); + + int Size = Mask.size(); + + int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) { + return M >= 0 && M % Size < Size / 2; + }); + int NumHiInputs = std::count_if( + Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; }); + + bool UnpackLo = NumLoInputs >= NumHiInputs; + + auto TryUnpack = [&](MVT UnpackVT, int Scale) { + SmallVector<int, 32> V1Mask(Mask.size(), -1); + SmallVector<int, 32> V2Mask(Mask.size(), -1); + + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + // Each element of the unpack contains Scale elements from this mask. + int UnpackIdx = i / Scale; + + // We only handle the case where V1 feeds the first slots of the unpack. + // We rely on canonicalization to ensure this is the case. + if ((UnpackIdx % 2 == 0) != (Mask[i] < Size)) + return SDValue(); + + // Setup the mask for this input. The indexing is tricky as we have to + // handle the unpack stride. + SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask; + VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] = + Mask[i] % Size; + } + + // If we will have to shuffle both inputs to use the unpack, check whether + // we can just unpack first and shuffle the result. If so, skip this unpack. + if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) && + !isNoopShuffleMask(V2Mask)) + return SDValue(); + + // Shuffle the inputs into place. + V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask); + V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask); + + // Cast the inputs to the type we will use to unpack them. + V1 = DAG.getBitcast(UnpackVT, V1); + V2 = DAG.getBitcast(UnpackVT, V2); + + // Unpack the inputs and cast the result back to the desired type. + return DAG.getBitcast( + VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, + UnpackVT, V1, V2)); + }; + + // We try each unpack from the largest to the smallest to try and find one + // that fits this mask. + int OrigNumElements = VT.getVectorNumElements(); + int OrigScalarSize = VT.getScalarSizeInBits(); + for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) { + int Scale = ScalarSize / OrigScalarSize; + int NumElements = OrigNumElements / Scale; + MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements); + if (SDValue Unpack = TryUnpack(UnpackVT, Scale)) + return Unpack; + } + + // If none of the unpack-rooted lowerings worked (or were profitable) try an + // initial unpack. + if (NumLoInputs == 0 || NumHiInputs == 0) { + assert((NumLoInputs > 0 || NumHiInputs > 0) && + "We have to have *some* inputs!"); + int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0; + + // FIXME: We could consider the total complexity of the permute of each + // possible unpacking. Or at the least we should consider how many + // half-crossings are created. + // FIXME: We could consider commuting the unpacks. + + SmallVector<int, 32> PermMask; + PermMask.assign(Size, -1); + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!"); + + PermMask[i] = + 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1); + } + return DAG.getVectorShuffle( + VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL, + DL, VT, V1, V2), + DAG.getUNDEF(VT), PermMask); + } + + return SDValue(); +} + +/// \brief Handle lowering of 2-lane 64-bit floating point shuffles. +/// +/// This is the basis function for the 2-lane 64-bit shuffles as we have full +/// support for floating point shuffles but not integer shuffles. These +/// instructions will incur a domain crossing penalty on some chips though so +/// it is better to avoid lowering through this for integer vectors where +/// possible. +static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); + + if (isSingleInputShuffleMask(Mask)) { + // Use low duplicate instructions for masks that match their pattern. + if (Subtarget->hasSSE3()) + if (isShuffleEquivalent(V1, V2, Mask, {0, 0})) + return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1); + + // Straight shuffle of a single input vector. Simulate this by using the + // single input as both of the "inputs" to this instruction.. + unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1); + + if (Subtarget->hasAVX()) { + // If we have AVX, we can use VPERMILPS which will allow folding a load + // into the shuffle. + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); + } + + return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); + } + assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!"); + assert(Mask[1] >= 2 && "Non-canonicalized blend!"); + + // If we have a single input, insert that into V1 if we can do so cheaply. + if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) { + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG)) + return Insertion; + // Try inverting the insertion since for v2 masks it is easy to do and we + // can't reliably sort the mask one way or the other. + int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2), + Mask[1] < 0 ? -1 : (Mask[1] ^ 2)}; + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG)) + return Insertion; + } + + // Try to use one of the special instruction patterns to handle two common + // blend patterns if a zero-blend above didn't work. + if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) || + isShuffleEquivalent(V1, V2, Mask, {1, 3})) + if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG)) + // We can either use a special instruction to load over the low double or + // to move just the low double. + return DAG.getNode( + isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD, + DL, MVT::v2f64, V2, + DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S)); + + if (Subtarget->hasSSE41()) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG)) + return V; + + unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1); + return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2, + DAG.getConstant(SHUFPDMask, DL, MVT::i8)); +} + +/// \brief Handle lowering of 2-lane 64-bit integer shuffles. +/// +/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by +/// the integer unit to minimize domain crossing penalties. However, for blends +/// it falls back to the floating point shuffle operation with appropriate bit +/// casting. +static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!"); + + if (isSingleInputShuffleMask(Mask)) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Straight shuffle of a single input vector. For everything from SSE2 + // onward this has a single fast instruction with no scary immediates. + // We have to map the mask as it is actually a v4i32 shuffle instruction. + V1 = DAG.getBitcast(MVT::v4i32, V1); + int WidenedMask[4] = { + std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1, + std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1}; + return DAG.getBitcast( + MVT::v2i64, + DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, + getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG))); + } + assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!"); + assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!"); + assert(Mask[0] < 2 && "We sort V1 to be the first input."); + assert(Mask[1] >= 2 && "We sort V2 to be the second input."); + + // If we have a blend of two PACKUS operations an the blend aligns with the + // low and half halves, we can just merge the PACKUS operations. This is + // particularly important as it lets us merge shuffles that this routine itself + // creates. + auto GetPackNode = [](SDValue V) { + while (V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + + return V.getOpcode() == X86ISD::PACKUS ? V : SDValue(); + }; + if (SDValue V1Pack = GetPackNode(V1)) + if (SDValue V2Pack = GetPackNode(V2)) + return DAG.getBitcast(MVT::v2i64, + DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, + Mask[0] == 0 ? V1Pack.getOperand(0) + : V1Pack.getOperand(1), + Mask[1] == 2 ? V2Pack.getOperand(0) + : V2Pack.getOperand(1))); + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG)) + return Shift; + + // When loading a scalar and then shuffling it into a vector we can often do + // the insertion cheaply. + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) + return Insertion; + // Try inverting the insertion since for v2 masks it is easy to do and we + // can't reliably sort the mask one way or the other. + int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2}; + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG)) + return Insertion; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget->hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + // Its more profitable for pre-SSSE3 to use shuffles/unpacks. + if (Subtarget->hasSSSE3()) + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // If we have direct support for blends, we should lower by decomposing into + // a permute. That will be faster than the domain cross. + if (IsBlendSupported) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, + Mask, DAG); + + // We implement this with SHUFPD which is pretty lame because it will likely + // incur 2 cycles of stall for integer vectors on Nehalem and older chips. + // However, all the alternatives are still more cycles and newer chips don't + // have this problem. It would be really nice if x86 had better shuffles here. + V1 = DAG.getBitcast(MVT::v2f64, V1); + V2 = DAG.getBitcast(MVT::v2f64, V2); + return DAG.getBitcast(MVT::v2i64, + DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask)); +} + +/// \brief Test whether this can be lowered with a single SHUFPS instruction. +/// +/// This is used to disable more specialized lowerings when the shufps lowering +/// will happen to be efficient. +static bool isSingleSHUFPSMask(ArrayRef<int> Mask) { + // This routine only handles 128-bit shufps. + assert(Mask.size() == 4 && "Unsupported mask size!"); + + // To lower with a single SHUFPS we need to have the low half and high half + // each requiring a single input. + if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4)) + return false; + if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4)) + return false; + + return true; +} + +/// \brief Lower a vector shuffle using the SHUFPS instruction. +/// +/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS. +/// It makes no assumptions about whether this is the *best* lowering, it simply +/// uses it. +static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + SDValue LowV = V1, HighV = V2; + int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]}; + + int NumV2Elements = + std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); + + if (NumV2Elements == 1) { + int V2Index = + std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) - + Mask.begin(); + + // Compute the index adjacent to V2Index and in the same half by toggling + // the low bit. + int V2AdjIndex = V2Index ^ 1; + + if (Mask[V2AdjIndex] == -1) { + // Handles all the cases where we have a single V2 element and an undef. + // This will only ever happen in the high lanes because we commute the + // vector otherwise. + if (V2Index < 2) + std::swap(LowV, HighV); + NewMask[V2Index] -= 4; + } else { + // Handle the case where the V2 element ends up adjacent to a V1 element. + // To make this work, blend them together as the first step. + int V1Index = V2AdjIndex; + int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0}; + V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, + getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); + + // Now proceed to reconstruct the final blend as we have the necessary + // high or low half formed. + if (V2Index < 2) { + LowV = V2; + HighV = V1; + } else { + HighV = V2; + } + NewMask[V1Index] = 2; // We put the V1 element in V2[2]. + NewMask[V2Index] = 0; // We shifted the V2 element into V2[0]. + } + } else if (NumV2Elements == 2) { + if (Mask[0] < 4 && Mask[1] < 4) { + // Handle the easy case where we have V1 in the low lanes and V2 in the + // high lanes. + NewMask[2] -= 4; + NewMask[3] -= 4; + } else if (Mask[2] < 4 && Mask[3] < 4) { + // We also handle the reversed case because this utility may get called + // when we detect a SHUFPS pattern but can't easily commute the shuffle to + // arrange things in the right direction. + NewMask[0] -= 4; + NewMask[1] -= 4; + HighV = V1; + LowV = V2; + } else { + // We have a mixture of V1 and V2 in both low and high lanes. Rather than + // trying to place elements directly, just blend them and set up the final + // shuffle to place them. + + // The first two blend mask elements are for V1, the second two are for + // V2. + int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1], + Mask[2] < 4 ? Mask[2] : Mask[3], + (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4, + (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4}; + V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, + getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG)); + + // Now we do a normal shuffle of V1 by giving V1 as both operands to + // a blend. + LowV = HighV = V1; + NewMask[0] = Mask[0] < 4 ? 0 : 2; + NewMask[1] = Mask[0] < 4 ? 2 : 0; + NewMask[2] = Mask[2] < 4 ? 1 : 3; + NewMask[3] = Mask[2] < 4 ? 3 : 1; + } + } + return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV, + getV4X86ShuffleImm8ForMask(NewMask, DL, DAG)); +} + +/// \brief Lower 4-lane 32-bit floating point shuffles. +/// +/// Uses instructions exclusively from the floating point unit to minimize +/// domain crossing penalties, as these are sufficient to implement all v4f32 +/// shuffles. +static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + int NumV2Elements = + std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); + + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Use even/odd duplicate instructions for masks that match their pattern. + if (Subtarget->hasSSE3()) { + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1); + if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3})) + return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1); + } + + if (Subtarget->hasAVX()) { + // If we have AVX, we can use VPERMILPS which will allow folding a load + // into the shuffle. + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // Otherwise, use a straight shuffle of a single input vector. We pass the + // input vector to both operands to simulate this with a SHUFPS. + return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // There are special ways we can lower some single-element blends. However, we + // have custom ways we can lower more complex single-element blends below that + // we defer to if both this and BLENDPS fail to match, so restrict this to + // when the V2 input is targeting element 0 of the mask -- that is the fast + // case here. + if (NumV2Elements == 1 && Mask[0] >= 4) + if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2, + Mask, Subtarget, DAG)) + return V; + + if (Subtarget->hasSSE41()) { + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Use INSERTPS if we can complete the shuffle efficiently. + if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG)) + return V; + + if (!isSingleSHUFPSMask(Mask)) + if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute( + DL, MVT::v4f32, V1, V2, Mask, DAG)) + return BlendPerm; + } + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG)) + return V; + + // Otherwise fall back to a SHUFPS lowering strategy. + return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG); +} + +/// \brief Lower 4-lane i32 vector shuffles. +/// +/// We try to handle these with integer-domain shuffles where we can, but for +/// blends we use the floating point domain blend instructions. +static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, + Mask, Subtarget, DAG)) + return ZExt; + + int NumV2Elements = + std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }); + + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Straight shuffle of a single input vector. For everything from SSE2 + // onward this has a single fast instruction with no scary immediates. + // We coerce the shuffle pattern to be compatible with UNPCK instructions + // but we aren't actually going to use the UNPCK instruction because doing + // so prevents folding a load into this instruction or making a copy. + const int UnpackLoMask[] = {0, 0, 1, 1}; + const int UnpackHiMask[] = {2, 2, 3, 3}; + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1})) + Mask = UnpackLoMask; + else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3})) + Mask = UnpackHiMask; + + return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + } + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG)) + return Shift; + + // There are special ways we can lower some single-element blends. + if (NumV2Elements == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2, + Mask, Subtarget, DAG)) + return V; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget->hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + if (SDValue Masked = + lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + // Its more profitable for pre-SSSE3 to use shuffles/unpacks. + if (Subtarget->hasSSSE3()) + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // If we have direct support for blends, we should lower by decomposing into + // a permute. That will be faster than the domain cross. + if (IsBlendSupported) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, + Mask, DAG); + + // Try to lower by permuting the inputs into an unpack instruction. + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1, + V2, Mask, DAG)) + return Unpack; + + // We implement this with SHUFPS because it can blend from two vectors. + // Because we're going to eventually use SHUFPS, we use SHUFPS even to build + // up the inputs, bypassing domain shift penalties that we would encur if we + // directly used PSHUFD on Nehalem and older. For newer chips, this isn't + // relevant. + return DAG.getBitcast( + MVT::v4i32, + DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1), + DAG.getBitcast(MVT::v4f32, V2), Mask)); +} + +/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2 +/// shuffle lowering, and the most complex part. +/// +/// The lowering strategy is to try to form pairs of input lanes which are +/// targeted at the same half of the final vector, and then use a dword shuffle +/// to place them onto the right half, and finally unpack the paired lanes into +/// their final position. +/// +/// The exact breakdown of how to form these dword pairs and align them on the +/// correct sides is really tricky. See the comments within the function for +/// more of the details. +/// +/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each +/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to +/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16 +/// vector, form the analogous 128-bit 8-element Mask. +static SDValue lowerV8I16GeneralSingleInputVectorShuffle( + SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!"); + MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); + + assert(Mask.size() == 8 && "Shuffle mask length doen't match!"); + MutableArrayRef<int> LoMask = Mask.slice(0, 4); + MutableArrayRef<int> HiMask = Mask.slice(4, 4); + + SmallVector<int, 4> LoInputs; + std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs), + [](int M) { return M >= 0; }); + std::sort(LoInputs.begin(), LoInputs.end()); + LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end()); + SmallVector<int, 4> HiInputs; + std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs), + [](int M) { return M >= 0; }); + std::sort(HiInputs.begin(), HiInputs.end()); + HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end()); + int NumLToL = + std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin(); + int NumHToL = LoInputs.size() - NumLToL; + int NumLToH = + std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin(); + int NumHToH = HiInputs.size() - NumLToH; + MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL); + MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH); + MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL); + MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH); + + // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all + // such inputs we can swap two of the dwords across the half mark and end up + // with <=2 inputs to each half in each half. Once there, we can fall through + // to the generic code below. For example: + // + // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] + // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5] + // + // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half + // and an existing 2-into-2 on the other half. In this case we may have to + // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or + // 1-into-3 which could cause us to cycle endlessly fixing each side in turn. + // Fortunately, we don't have to handle anything but a 2-into-2 pattern + // because any other situation (including a 3-into-1 or 1-into-3 in the other + // half than the one we target for fixing) will be fixed when we re-enter this + // path. We will also combine away any sequence of PSHUFD instructions that + // result into a single instruction. Here is an example of the tricky case: + // + // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3] + // + // This now has a 1-into-3 in the high half! Instead, we do two shuffles: + // + // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6] + // + // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h] + // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6] + // + // The result is fine to be handled by the generic logic. + auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs, + ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs, + int AOffset, int BOffset) { + assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) && + "Must call this with A having 3 or 1 inputs from the A half."); + assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) && + "Must call this with B having 1 or 3 inputs from the B half."); + assert(AToAInputs.size() + BToAInputs.size() == 4 && + "Must call this with either 3:1 or 1:3 inputs (summing to 4)."); + + bool ThreeAInputs = AToAInputs.size() == 3; + + // Compute the index of dword with only one word among the three inputs in + // a half by taking the sum of the half with three inputs and subtracting + // the sum of the actual three inputs. The difference is the remaining + // slot. + int ADWord, BDWord; + int &TripleDWord = ThreeAInputs ? ADWord : BDWord; + int &OneInputDWord = ThreeAInputs ? BDWord : ADWord; + int TripleInputOffset = ThreeAInputs ? AOffset : BOffset; + ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs; + int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0]; + int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset); + int TripleNonInputIdx = + TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0); + TripleDWord = TripleNonInputIdx / 2; + + // We use xor with one to compute the adjacent DWord to whichever one the + // OneInput is in. + OneInputDWord = (OneInput / 2) ^ 1; + + // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA + // and BToA inputs. If there is also such a problem with the BToB and AToB + // inputs, we don't try to fix it necessarily -- we'll recurse and see it in + // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it + // is essential that we don't *create* a 3<-1 as then we might oscillate. + if (BToBInputs.size() == 2 && AToBInputs.size() == 2) { + // Compute how many inputs will be flipped by swapping these DWords. We + // need + // to balance this to ensure we don't form a 3-1 shuffle in the other + // half. + int NumFlippedAToBInputs = + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) + + std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1); + int NumFlippedBToBInputs = + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) + + std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1); + if ((NumFlippedAToBInputs == 1 && + (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) || + (NumFlippedBToBInputs == 1 && + (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) { + // We choose whether to fix the A half or B half based on whether that + // half has zero flipped inputs. At zero, we may not be able to fix it + // with that half. We also bias towards fixing the B half because that + // will more commonly be the high half, and we have to bias one way. + auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord, + ArrayRef<int> Inputs) { + int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot. + bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(), + PinnedIdx ^ 1) != Inputs.end(); + // Determine whether the free index is in the flipped dword or the + // unflipped dword based on where the pinned index is. We use this bit + // in an xor to conditionally select the adjacent dword. + int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord)); + bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), + FixFreeIdx) != Inputs.end(); + if (IsFixIdxInput == IsFixFreeIdxInput) + FixFreeIdx += 1; + IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(), + FixFreeIdx) != Inputs.end(); + assert(IsFixIdxInput != IsFixFreeIdxInput && + "We need to be changing the number of flipped inputs!"); + int PSHUFHalfMask[] = {0, 1, 2, 3}; + std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]); + V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL, + MVT::v8i16, V, + getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG)); + + for (int &M : Mask) + if (M != -1 && M == FixIdx) + M = FixFreeIdx; + else if (M != -1 && M == FixFreeIdx) + M = FixIdx; + }; + if (NumFlippedBToBInputs != 0) { + int BPinnedIdx = + BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput; + FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs); + } else { + assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!"); + int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput; + FixFlippedInputs(APinnedIdx, ADWord, AToBInputs); + } + } + } + + int PSHUFDMask[] = {0, 1, 2, 3}; + PSHUFDMask[ADWord] = BDWord; + PSHUFDMask[BDWord] = ADWord; + V = DAG.getBitcast( + VT, + DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + + // Adjust the mask to match the new locations of A and B. + for (int &M : Mask) + if (M != -1 && M/2 == ADWord) + M = 2 * BDWord + M % 2; + else if (M != -1 && M/2 == BDWord) + M = 2 * ADWord + M % 2; + + // Recurse back into this routine to re-compute state now that this isn't + // a 3 and 1 problem. + return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget, + DAG); + }; + if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3)) + return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4); + else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3)) + return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0); + + // At this point there are at most two inputs to the low and high halves from + // each half. That means the inputs can always be grouped into dwords and + // those dwords can then be moved to the correct half with a dword shuffle. + // We use at most one low and one high word shuffle to collect these paired + // inputs into dwords, and finally a dword shuffle to place them. + int PSHUFLMask[4] = {-1, -1, -1, -1}; + int PSHUFHMask[4] = {-1, -1, -1, -1}; + int PSHUFDMask[4] = {-1, -1, -1, -1}; + + // First fix the masks for all the inputs that are staying in their + // original halves. This will then dictate the targets of the cross-half + // shuffles. + auto fixInPlaceInputs = + [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs, + MutableArrayRef<int> SourceHalfMask, + MutableArrayRef<int> HalfMask, int HalfOffset) { + if (InPlaceInputs.empty()) + return; + if (InPlaceInputs.size() == 1) { + SourceHalfMask[InPlaceInputs[0] - HalfOffset] = + InPlaceInputs[0] - HalfOffset; + PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2; + return; + } + if (IncomingInputs.empty()) { + // Just fix all of the in place inputs. + for (int Input : InPlaceInputs) { + SourceHalfMask[Input - HalfOffset] = Input - HalfOffset; + PSHUFDMask[Input / 2] = Input / 2; + } + return; + } + + assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!"); + SourceHalfMask[InPlaceInputs[0] - HalfOffset] = + InPlaceInputs[0] - HalfOffset; + // Put the second input next to the first so that they are packed into + // a dword. We find the adjacent index by toggling the low bit. + int AdjIndex = InPlaceInputs[0] ^ 1; + SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset; + std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex); + PSHUFDMask[AdjIndex / 2] = AdjIndex / 2; + }; + fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0); + fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4); + + // Now gather the cross-half inputs and place them into a free dword of + // their target half. + // FIXME: This operation could almost certainly be simplified dramatically to + // look more like the 3-1 fixing operation. + auto moveInputsToRightHalf = [&PSHUFDMask]( + MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs, + MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask, + MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset, + int DestOffset) { + auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) { + return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word; + }; + auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask, + int Word) { + int LowWord = Word & ~1; + int HighWord = Word | 1; + return isWordClobbered(SourceHalfMask, LowWord) || + isWordClobbered(SourceHalfMask, HighWord); + }; + + if (IncomingInputs.empty()) + return; + + if (ExistingInputs.empty()) { + // Map any dwords with inputs from them into the right half. + for (int Input : IncomingInputs) { + // If the source half mask maps over the inputs, turn those into + // swaps and use the swapped lane. + if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) { + if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) { + SourceHalfMask[SourceHalfMask[Input - SourceOffset]] = + Input - SourceOffset; + // We have to swap the uses in our half mask in one sweep. + for (int &M : HalfMask) + if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset) + M = Input; + else if (M == Input) + M = SourceHalfMask[Input - SourceOffset] + SourceOffset; + } else { + assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == + Input - SourceOffset && + "Previous placement doesn't match!"); + } + // Note that this correctly re-maps both when we do a swap and when + // we observe the other side of the swap above. We rely on that to + // avoid swapping the members of the input list directly. + Input = SourceHalfMask[Input - SourceOffset] + SourceOffset; + } + + // Map the input's dword into the correct half. + if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1) + PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2; + else + assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == + Input / 2 && + "Previous placement doesn't match!"); + } + + // And just directly shift any other-half mask elements to be same-half + // as we will have mirrored the dword containing the element into the + // same position within that half. + for (int &M : HalfMask) + if (M >= SourceOffset && M < SourceOffset + 4) { + M = M - SourceOffset + DestOffset; + assert(M >= 0 && "This should never wrap below zero!"); + } + return; + } + + // Ensure we have the input in a viable dword of its current half. This + // is particularly tricky because the original position may be clobbered + // by inputs being moved and *staying* in that half. + if (IncomingInputs.size() == 1) { + if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { + int InputFixed = std::find(std::begin(SourceHalfMask), + std::end(SourceHalfMask), -1) - + std::begin(SourceHalfMask) + SourceOffset; + SourceHalfMask[InputFixed - SourceOffset] = + IncomingInputs[0] - SourceOffset; + std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0], + InputFixed); + IncomingInputs[0] = InputFixed; + } + } else if (IncomingInputs.size() == 2) { + if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 || + isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) { + // We have two non-adjacent or clobbered inputs we need to extract from + // the source half. To do this, we need to map them into some adjacent + // dword slot in the source mask. + int InputsFixed[2] = {IncomingInputs[0] - SourceOffset, + IncomingInputs[1] - SourceOffset}; + + // If there is a free slot in the source half mask adjacent to one of + // the inputs, place the other input in it. We use (Index XOR 1) to + // compute an adjacent index. + if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) && + SourceHalfMask[InputsFixed[0] ^ 1] == -1) { + SourceHalfMask[InputsFixed[0]] = InputsFixed[0]; + SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; + InputsFixed[1] = InputsFixed[0] ^ 1; + } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) && + SourceHalfMask[InputsFixed[1] ^ 1] == -1) { + SourceHalfMask[InputsFixed[1]] = InputsFixed[1]; + SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0]; + InputsFixed[0] = InputsFixed[1] ^ 1; + } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 && + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) { + // The two inputs are in the same DWord but it is clobbered and the + // adjacent DWord isn't used at all. Move both inputs to the free + // slot. + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0]; + SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1]; + InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1); + InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1; + } else { + // The only way we hit this point is if there is no clobbering + // (because there are no off-half inputs to this half) and there is no + // free slot adjacent to one of the inputs. In this case, we have to + // swap an input with a non-input. + for (int i = 0; i < 4; ++i) + assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) && + "We can't handle any clobbers here!"); + assert(InputsFixed[1] != (InputsFixed[0] ^ 1) && + "Cannot have adjacent inputs here!"); + + SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1]; + SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1; + + // We also have to update the final source mask in this case because + // it may need to undo the above swap. + for (int &M : FinalSourceHalfMask) + if (M == (InputsFixed[0] ^ 1) + SourceOffset) + M = InputsFixed[1] + SourceOffset; + else if (M == InputsFixed[1] + SourceOffset) + M = (InputsFixed[0] ^ 1) + SourceOffset; + + InputsFixed[1] = InputsFixed[0] ^ 1; + } + + // Point everything at the fixed inputs. + for (int &M : HalfMask) + if (M == IncomingInputs[0]) + M = InputsFixed[0] + SourceOffset; + else if (M == IncomingInputs[1]) + M = InputsFixed[1] + SourceOffset; + + IncomingInputs[0] = InputsFixed[0] + SourceOffset; + IncomingInputs[1] = InputsFixed[1] + SourceOffset; + } + } else { + llvm_unreachable("Unhandled input size!"); + } + + // Now hoist the DWord down to the right half. + int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2; + assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free"); + PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2; + for (int &M : HalfMask) + for (int Input : IncomingInputs) + if (M == Input) + M = FreeDWord * 2 + Input % 2; + }; + moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask, + /*SourceOffset*/ 4, /*DestOffset*/ 0); + moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask, + /*SourceOffset*/ 0, /*DestOffset*/ 4); + + // Now enact all the shuffles we've computed to move the inputs into their + // target half. + if (!isNoopShuffleMask(PSHUFLMask)) + V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, + getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG)); + if (!isNoopShuffleMask(PSHUFHMask)) + V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, + getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG)); + if (!isNoopShuffleMask(PSHUFDMask)) + V = DAG.getBitcast( + VT, + DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + + // At this point, each half should contain all its inputs, and we can then + // just shuffle them into their final position. + assert(std::count_if(LoMask.begin(), LoMask.end(), + [](int M) { return M >= 4; }) == 0 && + "Failed to lift all the high half inputs to the low mask!"); + assert(std::count_if(HiMask.begin(), HiMask.end(), + [](int M) { return M >= 0 && M < 4; }) == 0 && + "Failed to lift all the low half inputs to the high mask!"); + + // Do a half shuffle for the low mask. + if (!isNoopShuffleMask(LoMask)) + V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V, + getV4X86ShuffleImm8ForMask(LoMask, DL, DAG)); + + // Do a half shuffle with the high mask after shifting its values down. + for (int &M : HiMask) + if (M >= 0) + M -= 4; + if (!isNoopShuffleMask(HiMask)) + V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V, + getV4X86ShuffleImm8ForMask(HiMask, DL, DAG)); + + return V; +} + +/// \brief Helper to form a PSHUFB-based shuffle+blend. +static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG, bool &V1InUse, + bool &V2InUse) { + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + SDValue V1Mask[16]; + SDValue V2Mask[16]; + V1InUse = false; + V2InUse = false; + + int Size = Mask.size(); + int Scale = 16 / Size; + for (int i = 0; i < 16; ++i) { + if (Mask[i / Scale] == -1) { + V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8); + } else { + const int ZeroMask = 0x80; + int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale + : ZeroMask; + int V2Idx = Mask[i / Scale] < Size + ? ZeroMask + : (Mask[i / Scale] - Size) * Scale + i % Scale; + if (Zeroable[i / Scale]) + V1Idx = V2Idx = ZeroMask; + V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8); + V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8); + V1InUse |= (ZeroMask != V1Idx); + V2InUse |= (ZeroMask != V2Idx); + } + } + + if (V1InUse) + V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, + DAG.getBitcast(MVT::v16i8, V1), + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask)); + if (V2InUse) + V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, + DAG.getBitcast(MVT::v16i8, V2), + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask)); + + // If we need shuffled inputs from both, blend the two. + SDValue V; + if (V1InUse && V2InUse) + V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2); + else + V = V1InUse ? V1 : V2; + + // Cast the result back to the correct type. + return DAG.getBitcast(VT, V); +} + +/// \brief Generic lowering of 8-lane i16 shuffles. +/// +/// This handles both single-input shuffles and combined shuffle/blends with +/// two inputs. The single input shuffles are immediately delegated to +/// a dedicated lowering routine. +/// +/// The blends are lowered in one of three fundamental ways. If there are few +/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle +/// of the input is significantly cheaper when lowered as an interleaving of +/// the two inputs, try to interleave them. Otherwise, blend the low and high +/// halves of the inputs separately (making them have relatively few inputs) +/// and then concatenate them. +static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> OrigMask = SVOp->getMask(); + int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3], + OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]}; + MutableArrayRef<int> Mask(MaskStorage); + + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG)) + return ZExt; + + auto isV1 = [](int M) { return M >= 0 && M < 8; }; + (void)isV1; + auto isV2 = [](int M) { return M >= 8; }; + + int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2); + + if (NumV2Inputs == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG)) + return Shift; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, + Mask, Subtarget, DAG)) + return Rotate; + + return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask, + Subtarget, DAG); + } + + assert(std::any_of(Mask.begin(), Mask.end(), isV1) && + "All single-input shuffles should be canonicalized to be V1-input " + "shuffles."); + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG)) + return Shift; + + // See if we can use SSE4A Extraction / Insertion. + if (Subtarget->hasSSE4A()) + if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG)) + return V; + + // There are special ways we can lower some single-element blends. + if (NumV2Inputs == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2, + Mask, Subtarget, DAG)) + return V; + + // We have different paths for blend lowering, but they all must use the + // *exact* same predicate. + bool IsBlendSupported = Subtarget->hasSSE41(); + if (IsBlendSupported) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + if (SDValue Masked = + lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG)) + return V; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (SDValue BitBlend = + lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG)) + return BitBlend; + + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, + V2, Mask, DAG)) + return Unpack; + + // If we can't directly blend but can use PSHUFB, that will be better as it + // can both shuffle and set up the inefficient blend. + if (!IsBlendSupported && Subtarget->hasSSSE3()) { + bool V1InUse, V2InUse; + return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG, + V1InUse, V2InUse); + } + + // We can always bit-blend if we have to so the fallback strategy is to + // decompose into single-input permutes and blends. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2, + Mask, DAG); +} + +/// \brief Check whether a compaction lowering can be done by dropping even +/// elements and compute how many times even elements must be dropped. +/// +/// This handles shuffles which take every Nth element where N is a power of +/// two. Example shuffle masks: +/// +/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14 +/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 +/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12 +/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28 +/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8 +/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24 +/// +/// Any of these lanes can of course be undef. +/// +/// This routine only supports N <= 3. +/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here +/// for larger N. +/// +/// \returns N above, or the number of times even elements must be dropped if +/// there is such a number. Otherwise returns zero. +static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) { + // Figure out whether we're looping over two inputs or just one. + bool IsSingleInput = isSingleInputShuffleMask(Mask); + + // The modulus for the shuffle vector entries is based on whether this is + // a single input or not. + int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2); + assert(isPowerOf2_32((uint32_t)ShuffleModulus) && + "We should only be called with masks with a power-of-2 size!"); + + uint64_t ModMask = (uint64_t)ShuffleModulus - 1; + + // We track whether the input is viable for all power-of-2 strides 2^1, 2^2, + // and 2^3 simultaneously. This is because we may have ambiguity with + // partially undef inputs. + bool ViableForN[3] = {true, true, true}; + + for (int i = 0, e = Mask.size(); i < e; ++i) { + // Ignore undef lanes, we'll optimistically collapse them to the pattern we + // want. + if (Mask[i] == -1) + continue; + + bool IsAnyViable = false; + for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) + if (ViableForN[j]) { + uint64_t N = j + 1; + + // The shuffle mask must be equal to (i * 2^N) % M. + if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask)) + IsAnyViable = true; + else + ViableForN[j] = false; + } + // Early exit if we exhaust the possible powers of two. + if (!IsAnyViable) + break; + } + + for (unsigned j = 0; j != array_lengthof(ViableForN); ++j) + if (ViableForN[j]) + return j + 1; + + // Return 0 as there is no viable power of two. + return 0; +} + +/// \brief Generic lowering of v16i8 shuffles. +/// +/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to +/// detect any complexity reducing interleaving. If that doesn't help, it uses +/// UNPCK to spread the i8 elements across two i16-element vectors, and uses +/// the existing lowering for v8i16 blends on each half, finally PACK-ing them +/// back together. +static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!"); + assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // Try to use a zext lowering. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend( + DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG)) + return ZExt; + + // See if we can use SSE4A Extraction / Insertion. + if (Subtarget->hasSSE4A()) + if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG)) + return V; + + int NumV2Elements = + std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; }); + + // For single-input shuffles, there are some nicer lowering tricks we can use. + if (NumV2Elements == 0) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Check whether we can widen this to an i16 shuffle by duplicating bytes. + // Notably, this handles splat and partial-splat shuffles more efficiently. + // However, it only makes sense if the pre-duplication shuffle simplifies + // things significantly. Currently, this means we need to be able to + // express the pre-duplication shuffle as an i16 shuffle. + // + // FIXME: We should check for other patterns which can be widened into an + // i16 shuffle as well. + auto canWidenViaDuplication = [](ArrayRef<int> Mask) { + for (int i = 0; i < 16; i += 2) + if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1]) + return false; + + return true; + }; + auto tryToWidenViaDuplication = [&]() -> SDValue { + if (!canWidenViaDuplication(Mask)) + return SDValue(); + SmallVector<int, 4> LoInputs; + std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs), + [](int M) { return M >= 0 && M < 8; }); + std::sort(LoInputs.begin(), LoInputs.end()); + LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), + LoInputs.end()); + SmallVector<int, 4> HiInputs; + std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs), + [](int M) { return M >= 8; }); + std::sort(HiInputs.begin(), HiInputs.end()); + HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), + HiInputs.end()); + + bool TargetLo = LoInputs.size() >= HiInputs.size(); + ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs; + ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs; + + int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1}; + SmallDenseMap<int, int, 8> LaneMap; + for (int I : InPlaceInputs) { + PreDupI16Shuffle[I/2] = I/2; + LaneMap[I] = I; + } + int j = TargetLo ? 0 : 4, je = j + 4; + for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) { + // Check if j is already a shuffle of this input. This happens when + // there are two adjacent bytes after we move the low one. + if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) { + // If we haven't yet mapped the input, search for a slot into which + // we can map it. + while (j < je && PreDupI16Shuffle[j] != -1) + ++j; + + if (j == je) + // We can't place the inputs into a single half with a simple i16 shuffle, so bail. + return SDValue(); + + // Map this input with the i16 shuffle. + PreDupI16Shuffle[j] = MovingInputs[i] / 2; + } + + // Update the lane map based on the mapping we ended up with. + LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2; + } + V1 = DAG.getBitcast( + MVT::v16i8, + DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), + DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle)); + + // Unpack the bytes to form the i16s that will be shuffled into place. + V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL, + MVT::v16i8, V1, V1); + + int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; + for (int i = 0; i < 16; ++i) + if (Mask[i] != -1) { + int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8); + assert(MappedMask < 8 && "Invalid v8 shuffle mask!"); + if (PostDupI16Shuffle[i / 2] == -1) + PostDupI16Shuffle[i / 2] = MappedMask; + else + assert(PostDupI16Shuffle[i / 2] == MappedMask && + "Conflicting entrties in the original shuffle!"); + } + return DAG.getBitcast( + MVT::v16i8, + DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1), + DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle)); + }; + if (SDValue V = tryToWidenViaDuplication()) + return V; + } + + if (SDValue Masked = + lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG)) + return Masked; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG)) + return V; + + // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly + // with PSHUFB. It is important to do this before we attempt to generate any + // blends but after all of the single-input lowerings. If the single input + // lowerings can find an instruction sequence that is faster than a PSHUFB, we + // want to preserve that and we can DAG combine any longer sequences into + // a PSHUFB in the end. But once we start blending from multiple inputs, + // the complexity of DAG combining bad patterns back into PSHUFB is too high, + // and there are *very* few patterns that would actually be faster than the + // PSHUFB approach because of its ability to zero lanes. + // + // FIXME: The only exceptions to the above are blends which are exact + // interleavings with direct instructions supporting them. We currently don't + // handle those well here. + if (Subtarget->hasSSSE3()) { + bool V1InUse = false; + bool V2InUse = false; + + SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask, + DAG, V1InUse, V2InUse); + + // If both V1 and V2 are in use and we can use a direct blend or an unpack, + // do so. This avoids using them to handle blends-with-zero which is + // important as a single pshufb is significantly faster for that. + if (V1InUse && V2InUse) { + if (Subtarget->hasSSE41()) + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2, + Mask, Subtarget, DAG)) + return Blend; + + // We can use an unpack to do the blending rather than an or in some + // cases. Even though the or may be (very minorly) more efficient, we + // preference this lowering because there are common cases where part of + // the complexity of the shuffles goes away when we do the final blend as + // an unpack. + // FIXME: It might be worth trying to detect if the unpack-feeding + // shuffles will both be pshufb, in which case we shouldn't bother with + // this. + if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack( + DL, MVT::v16i8, V1, V2, Mask, DAG)) + return Unpack; + } + + return PSHUFB; + } + + // There are special ways we can lower some single-element blends. + if (NumV2Elements == 1) + if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2, + Mask, Subtarget, DAG)) + return V; + + if (SDValue BitBlend = + lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG)) + return BitBlend; + + // Check whether a compaction lowering can be done. This handles shuffles + // which take every Nth element for some even N. See the helper function for + // details. + // + // We special case these as they can be particularly efficiently handled with + // the PACKUSB instruction on x86 and they show up in common patterns of + // rearranging bytes to truncate wide elements. + if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) { + // NumEvenDrops is the power of two stride of the elements. Another way of + // thinking about it is that we need to drop the even elements this many + // times to get the original input. + bool IsSingleInput = isSingleInputShuffleMask(Mask); + + // First we need to zero all the dropped bytes. + assert(NumEvenDrops <= 3 && + "No support for dropping even elements more than 3 times."); + // We use the mask type to pick which bytes are preserved based on how many + // elements are dropped. + MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 }; + SDValue ByteClearMask = DAG.getBitcast( + MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1])); + V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask); + if (!IsSingleInput) + V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask); + + // Now pack things back together. + V1 = DAG.getBitcast(MVT::v8i16, V1); + V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2); + SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2); + for (int i = 1; i < NumEvenDrops; ++i) { + Result = DAG.getBitcast(MVT::v8i16, Result); + Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result); + } + + return Result; + } + + // Handle multi-input cases by blending single-input shuffles. + if (NumV2Elements > 0) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, + Mask, DAG); + + // The fallback path for single-input shuffles widens this into two v8i16 + // vectors with unpacks, shuffles those, and then pulls them back together + // with a pack. + SDValue V = V1; + + int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; + int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1}; + for (int i = 0; i < 16; ++i) + if (Mask[i] >= 0) + (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i]; + + SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL); + + SDValue VLoHalf, VHiHalf; + // Check if any of the odd lanes in the v16i8 are used. If not, we can mask + // them out and avoid using UNPCK{L,H} to extract the elements of V as + // i16s. + if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask), + [](int M) { return M >= 0 && M % 2 == 1; }) && + std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask), + [](int M) { return M >= 0 && M % 2 == 1; })) { + // Use a mask to drop the high bytes. + VLoHalf = DAG.getBitcast(MVT::v8i16, V); + VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf, + DAG.getConstant(0x00FF, DL, MVT::v8i16)); + + // This will be a single vector shuffle instead of a blend so nuke VHiHalf. + VHiHalf = DAG.getUNDEF(MVT::v8i16); + + // Squash the masks to point directly into VLoHalf. + for (int &M : LoBlendMask) + if (M >= 0) + M /= 2; + for (int &M : HiBlendMask) + if (M >= 0) + M /= 2; + } else { + // Otherwise just unpack the low half of V into VLoHalf and the high half into + // VHiHalf so that we can blend them as i16s. + VLoHalf = DAG.getBitcast( + MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero)); + VHiHalf = DAG.getBitcast( + MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero)); + } + + SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask); + SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask); + + return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV); +} + +/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles. +/// +/// This routine breaks down the specific type of 128-bit shuffle and +/// dispatches to the lowering routines accordingly. +static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, + MVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + switch (VT.SimpleTy) { + case MVT::v2i64: + return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v2f64: + return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v4i32: + return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v4f32: + return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v8i16: + return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v16i8: + return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG); + + default: + llvm_unreachable("Unimplemented!"); + } +} + +/// \brief Helper function to test whether a shuffle mask could be +/// simplified by widening the elements being shuffled. +/// +/// Appends the mask for wider elements in WidenedMask if valid. Otherwise +/// leaves it in an unspecified state. +/// +/// NOTE: This must handle normal vector shuffle masks and *target* vector +/// shuffle masks. The latter have the special property of a '-2' representing +/// a zero-ed lane of a vector. +static bool canWidenShuffleElements(ArrayRef<int> Mask, + SmallVectorImpl<int> &WidenedMask) { + for (int i = 0, Size = Mask.size(); i < Size; i += 2) { + // If both elements are undef, its trivial. + if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) { + WidenedMask.push_back(SM_SentinelUndef); + continue; + } + + // Check for an undef mask and a mask value properly aligned to fit with + // a pair of values. If we find such a case, use the non-undef mask's value. + if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) { + WidenedMask.push_back(Mask[i + 1] / 2); + continue; + } + if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) { + WidenedMask.push_back(Mask[i] / 2); + continue; + } + + // When zeroing, we need to spread the zeroing across both lanes to widen. + if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) { + if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) && + (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) { + WidenedMask.push_back(SM_SentinelZero); + continue; + } + return false; + } + + // Finally check if the two mask values are adjacent and aligned with + // a pair. + if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) { + WidenedMask.push_back(Mask[i] / 2); + continue; + } + + // Otherwise we can't safely widen the elements used in this shuffle. + return false; + } + assert(WidenedMask.size() == Mask.size() / 2 && + "Incorrect size of mask after widening the elements!"); + + return true; +} + +/// \brief Generic routine to split vector shuffle into half-sized shuffles. +/// +/// This routine just extracts two subvectors, shuffles them independently, and +/// then concatenates them back together. This should work effectively with all +/// AVX vector shuffle types. +static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(VT.getSizeInBits() >= 256 && + "Only for 256-bit or wider vector shuffles!"); + assert(V1.getSimpleValueType() == VT && "Bad operand type!"); + assert(V2.getSimpleValueType() == VT && "Bad operand type!"); + + ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2); + ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2); + + int NumElements = VT.getVectorNumElements(); + int SplitNumElements = NumElements / 2; + MVT ScalarVT = VT.getVectorElementType(); + MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2); + + // Rather than splitting build-vectors, just build two narrower build + // vectors. This helps shuffling with splats and zeros. + auto SplitVector = [&](SDValue V) { + while (V.getOpcode() == ISD::BITCAST) + V = V->getOperand(0); + + MVT OrigVT = V.getSimpleValueType(); + int OrigNumElements = OrigVT.getVectorNumElements(); + int OrigSplitNumElements = OrigNumElements / 2; + MVT OrigScalarVT = OrigVT.getVectorElementType(); + MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2); + + SDValue LoV, HiV; + + auto *BV = dyn_cast<BuildVectorSDNode>(V); + if (!BV) { + LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, + DAG.getIntPtrConstant(0, DL)); + HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V, + DAG.getIntPtrConstant(OrigSplitNumElements, DL)); + } else { + + SmallVector<SDValue, 16> LoOps, HiOps; + for (int i = 0; i < OrigSplitNumElements; ++i) { + LoOps.push_back(BV->getOperand(i)); + HiOps.push_back(BV->getOperand(i + OrigSplitNumElements)); + } + LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps); + HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps); + } + return std::make_pair(DAG.getBitcast(SplitVT, LoV), + DAG.getBitcast(SplitVT, HiV)); + }; + + SDValue LoV1, HiV1, LoV2, HiV2; + std::tie(LoV1, HiV1) = SplitVector(V1); + std::tie(LoV2, HiV2) = SplitVector(V2); + + // Now create two 4-way blends of these half-width vectors. + auto HalfBlend = [&](ArrayRef<int> HalfMask) { + bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false; + SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask; + for (int i = 0; i < SplitNumElements; ++i) { + int M = HalfMask[i]; + if (M >= NumElements) { + if (M >= NumElements + SplitNumElements) + UseHiV2 = true; + else + UseLoV2 = true; + V2BlendMask.push_back(M - NumElements); + V1BlendMask.push_back(-1); + BlendMask.push_back(SplitNumElements + i); + } else if (M >= 0) { + if (M >= SplitNumElements) + UseHiV1 = true; + else + UseLoV1 = true; + V2BlendMask.push_back(-1); + V1BlendMask.push_back(M); + BlendMask.push_back(i); + } else { + V2BlendMask.push_back(-1); + V1BlendMask.push_back(-1); + BlendMask.push_back(-1); + } + } + + // Because the lowering happens after all combining takes place, we need to + // manually combine these blend masks as much as possible so that we create + // a minimal number of high-level vector shuffle nodes. + + // First try just blending the halves of V1 or V2. + if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2) + return DAG.getUNDEF(SplitVT); + if (!UseLoV2 && !UseHiV2) + return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); + if (!UseLoV1 && !UseHiV1) + return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); + + SDValue V1Blend, V2Blend; + if (UseLoV1 && UseHiV1) { + V1Blend = + DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask); + } else { + // We only use half of V1 so map the usage down into the final blend mask. + V1Blend = UseLoV1 ? LoV1 : HiV1; + for (int i = 0; i < SplitNumElements; ++i) + if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements) + BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements); + } + if (UseLoV2 && UseHiV2) { + V2Blend = + DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask); + } else { + // We only use half of V2 so map the usage down into the final blend mask. + V2Blend = UseLoV2 ? LoV2 : HiV2; + for (int i = 0; i < SplitNumElements; ++i) + if (BlendMask[i] >= SplitNumElements) + BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0); + } + return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask); + }; + SDValue Lo = HalfBlend(LoMask); + SDValue Hi = HalfBlend(HiMask); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi); +} + +/// \brief Either split a vector in halves or decompose the shuffles and the +/// blend. +/// +/// This is provided as a good fallback for many lowerings of non-single-input +/// shuffles with more than one 128-bit lane. In those cases, we want to select +/// between splitting the shuffle into 128-bit components and stitching those +/// back together vs. extracting the single-input shuffles and blending those +/// results. +static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + SelectionDAG &DAG) { + assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to " + "lower single-input shuffles as it " + "could then recurse on itself."); + int Size = Mask.size(); + + // If this can be modeled as a broadcast of two elements followed by a blend, + // prefer that lowering. This is especially important because broadcasts can + // often fold with memory operands. + auto DoBothBroadcast = [&] { + int V1BroadcastIdx = -1, V2BroadcastIdx = -1; + for (int M : Mask) + if (M >= Size) { + if (V2BroadcastIdx == -1) + V2BroadcastIdx = M - Size; + else if (M - Size != V2BroadcastIdx) + return false; + } else if (M >= 0) { + if (V1BroadcastIdx == -1) + V1BroadcastIdx = M; + else if (M != V1BroadcastIdx) + return false; + } + return true; + }; + if (DoBothBroadcast()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, + DAG); + + // If the inputs all stem from a single 128-bit lane of each input, then we + // split them rather than blending because the split will decompose to + // unusually few instructions. + int LaneCount = VT.getSizeInBits() / 128; + int LaneSize = Size / LaneCount; + SmallBitVector LaneInputs[2]; + LaneInputs[0].resize(LaneCount, false); + LaneInputs[1].resize(LaneCount, false); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0) + LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true; + if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1) + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + + // Otherwise, just fall back to decomposed shuffles and a blend. This requires + // that the decomposed single-input shuffles don't end up here. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); +} + +/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as +/// a permutation and blend of those lanes. +/// +/// This essentially blends the out-of-lane inputs to each lane into the lane +/// from a permuted copy of the vector. This lowering strategy results in four +/// instructions in the worst case for a single-input cross lane shuffle which +/// is lower than any other fully general cross-lane shuffle strategy I'm aware +/// of. Special cases for each particular shuffle pattern should be handled +/// prior to trying this lowering. +static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT, + SDValue V1, SDValue V2, + ArrayRef<int> Mask, + SelectionDAG &DAG) { + // FIXME: This should probably be generalized for 512-bit vectors as well. + assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!"); + int LaneSize = Mask.size() / 2; + + // If there are only inputs from one 128-bit lane, splitting will in fact be + // less expensive. The flags track whether the given lane contains an element + // that crosses to another lane. + bool LaneCrossing[2] = {false, false}; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize) + LaneCrossing[(Mask[i] % Size) / LaneSize] = true; + if (!LaneCrossing[0] || !LaneCrossing[1]) + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + + if (isSingleInputShuffleMask(Mask)) { + SmallVector<int, 32> FlippedBlendMask; + for (int i = 0, Size = Mask.size(); i < Size; ++i) + FlippedBlendMask.push_back( + Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize) + ? Mask[i] + : Mask[i] % LaneSize + + (i / LaneSize) * LaneSize + Size)); + + // Flip the vector, and blend the results which should now be in-lane. The + // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and + // 5 for the high source. The value 3 selects the high half of source 2 and + // the value 2 selects the low half of source 2. We only use source 2 to + // allow folding it into a memory operand. + unsigned PERMMask = 3 | 2 << 4; + SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT), + V1, DAG.getConstant(PERMMask, DL, MVT::i8)); + return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask); + } + + // This now reduces to two single-input shuffles of V1 and V2 which at worst + // will be handled by the above logic and a blend of the results, much like + // other patterns in AVX. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering 2-lane 128-bit shuffles. +static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + // TODO: If minimizing size and one of the inputs is a zero vector and the + // the zero vector has only one use, we could use a VPERM2X128 to save the + // instruction bytes needed to explicitly generate the zero vector. + + // Blends are faster and handle all the non-lane-crossing cases. + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode()); + bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode()); + + // If either input operand is a zero vector, use VPERM2X128 because its mask + // allows us to replace the zero input with an implicit zero. + if (!IsV1Zero && !IsV2Zero) { + // Check for patterns which can be matched with a single insert of a 128-bit + // subvector. + bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}); + if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) { + MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements() / 2); + SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1, + DAG.getIntPtrConstant(0, DL)); + SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, + OnlyUsesV1 ? V1 : V2, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV); + } + } + + // Otherwise form a 128-bit permutation. After accounting for undefs, + // convert the 64-bit shuffle mask selection values into 128-bit + // selection bits by dividing the indexes by 2 and shifting into positions + // defined by a vperm2*128 instruction's immediate control byte. + + // The immediate permute control byte looks like this: + // [1:0] - select 128 bits from sources for low half of destination + // [2] - ignore + // [3] - zero low half of destination + // [5:4] - select 128 bits from sources for high half of destination + // [6] - ignore + // [7] - zero high half of destination + + int MaskLO = Mask[0]; + if (MaskLO == SM_SentinelUndef) + MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1]; + + int MaskHI = Mask[2]; + if (MaskHI == SM_SentinelUndef) + MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3]; + + unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4; + + // If either input is a zero vector, replace it with an undef input. + // Shuffle mask values < 4 are selecting elements of V1. + // Shuffle mask values >= 4 are selecting elements of V2. + // Adjust each half of the permute mask by clearing the half that was + // selecting the zero vector and setting the zero mask bit. + if (IsV1Zero) { + V1 = DAG.getUNDEF(VT); + if (MaskLO < 4) + PermMask = (PermMask & 0xf0) | 0x08; + if (MaskHI < 4) + PermMask = (PermMask & 0x0f) | 0x80; + } + if (IsV2Zero) { + V2 = DAG.getUNDEF(VT); + if (MaskLO >= 4) + PermMask = (PermMask & 0xf0) | 0x08; + if (MaskHI >= 4) + PermMask = (PermMask & 0x0f) | 0x80; + } + + return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2, + DAG.getConstant(PermMask, DL, MVT::i8)); +} + +/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then +/// shuffling each lane. +/// +/// This will only succeed when the result of fixing the 128-bit lanes results +/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in +/// each 128-bit lanes. This handles many cases where we can quickly blend away +/// the lane crosses early and then use simpler shuffles within each lane. +/// +/// FIXME: It might be worthwhile at some point to support this without +/// requiring the 128-bit lane-relative shuffles to be repeating, but currently +/// in x86 only floating point has interesting non-repeating shuffles, and even +/// those are still *marginally* more expensive. +static SDValue lowerVectorShuffleByMerging128BitLanes( + SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + assert(!isSingleInputShuffleMask(Mask) && + "This is only useful with multiple inputs."); + + int Size = Mask.size(); + int LaneSize = 128 / VT.getScalarSizeInBits(); + int NumLanes = Size / LaneSize; + assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles."); + + // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also + // check whether the in-128-bit lane shuffles share a repeating pattern. + SmallVector<int, 4> Lanes; + Lanes.resize(NumLanes, -1); + SmallVector<int, 4> InLaneMask; + InLaneMask.resize(LaneSize, -1); + for (int i = 0; i < Size; ++i) { + if (Mask[i] < 0) + continue; + + int j = i / LaneSize; + + if (Lanes[j] < 0) { + // First entry we've seen for this lane. + Lanes[j] = Mask[i] / LaneSize; + } else if (Lanes[j] != Mask[i] / LaneSize) { + // This doesn't match the lane selected previously! + return SDValue(); + } + + // Check that within each lane we have a consistent shuffle mask. + int k = i % LaneSize; + if (InLaneMask[k] < 0) { + InLaneMask[k] = Mask[i] % LaneSize; + } else if (InLaneMask[k] != Mask[i] % LaneSize) { + // This doesn't fit a repeating in-lane mask. + return SDValue(); + } + } + + // First shuffle the lanes into place. + MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64, + VT.getSizeInBits() / 64); + SmallVector<int, 8> LaneMask; + LaneMask.resize(NumLanes * 2, -1); + for (int i = 0; i < NumLanes; ++i) + if (Lanes[i] >= 0) { + LaneMask[2 * i + 0] = 2*Lanes[i] + 0; + LaneMask[2 * i + 1] = 2*Lanes[i] + 1; + } + + V1 = DAG.getBitcast(LaneVT, V1); + V2 = DAG.getBitcast(LaneVT, V2); + SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask); + + // Cast it back to the type we actually want. + LaneShuffle = DAG.getBitcast(VT, LaneShuffle); + + // Now do a simple shuffle that isn't lane crossing. + SmallVector<int, 8> NewMask; + NewMask.resize(Size, -1); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0) + NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize; + assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) && + "Must not introduce lane crosses at this point!"); + + return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask); +} + +/// Lower shuffles where an entire half of a 256-bit vector is UNDEF. +/// This allows for fast cases such as subvector extraction/insertion +/// or shuffling smaller vector types which can lower more efficiently. +static SDValue lowerVectorShuffleWithUndefHalf(SDLoc DL, MVT VT, SDValue V1, + SDValue V2, ArrayRef<int> Mask, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(VT.getSizeInBits() == 256 && "Expected 256-bit vector"); + + unsigned NumElts = VT.getVectorNumElements(); + unsigned HalfNumElts = NumElts / 2; + MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts); + + bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts); + bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts); + if (!UndefLower && !UndefUpper) + return SDValue(); + + // Upper half is undef and lower half is whole upper subvector. + // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u> + if (UndefUpper && + isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) { + SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, + DAG.getIntPtrConstant(HalfNumElts, DL)); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, + DAG.getIntPtrConstant(0, DL)); + } + + // Lower half is undef and upper half is whole lower subvector. + // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1> + if (UndefLower && + isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) { + SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1, + DAG.getIntPtrConstant(0, DL)); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi, + DAG.getIntPtrConstant(HalfNumElts, DL)); + } + + // AVX2 supports efficient immediate 64-bit element cross-lane shuffles. + if (UndefLower && Subtarget->hasAVX2() && + (VT == MVT::v4f64 || VT == MVT::v4i64)) + return SDValue(); + + // If the shuffle only uses the lower halves of the input operands, + // then extract them and perform the 'half' shuffle at half width. + // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u> + int HalfIdx1 = -1, HalfIdx2 = -1; + SmallVector<int, 8> HalfMask; + unsigned Offset = UndefLower ? HalfNumElts : 0; + for (unsigned i = 0; i != HalfNumElts; ++i) { + int M = Mask[i + Offset]; + if (M < 0) { + HalfMask.push_back(M); + continue; + } + + // Determine which of the 4 half vectors this element is from. + // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2. + int HalfIdx = M / HalfNumElts; + + // Only shuffle using the lower halves of the inputs. + // TODO: Investigate usefulness of shuffling with upper halves. + if (HalfIdx != 0 && HalfIdx != 2) + return SDValue(); + + // Determine the element index into its half vector source. + int HalfElt = M % HalfNumElts; + + // We can shuffle with up to 2 half vectors, set the new 'half' + // shuffle mask accordingly. + if (-1 == HalfIdx1 || HalfIdx1 == HalfIdx) { + HalfMask.push_back(HalfElt); + HalfIdx1 = HalfIdx; + continue; + } + if (-1 == HalfIdx2 || HalfIdx2 == HalfIdx) { + HalfMask.push_back(HalfElt + HalfNumElts); + HalfIdx2 = HalfIdx; + continue; + } + + // Too many half vectors referenced. + return SDValue(); + } + assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length"); + + auto GetHalfVector = [&](int HalfIdx) { + if (HalfIdx < 0) + return DAG.getUNDEF(HalfVT); + SDValue V = (HalfIdx < 2 ? V1 : V2); + HalfIdx = (HalfIdx % 2) * HalfNumElts; + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V, + DAG.getIntPtrConstant(HalfIdx, DL)); + }; + + SDValue Half1 = GetHalfVector(HalfIdx1); + SDValue Half2 = GetHalfVector(HalfIdx2); + SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, + DAG.getIntPtrConstant(Offset, DL)); +} + +/// \brief Test whether the specified input (0 or 1) is in-place blended by the +/// given mask. +/// +/// This returns true if the elements from a particular input are already in the +/// slot required by the given mask and require no permutation. +static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) { + assert((Input == 0 || Input == 1) && "Only two inputs to shuffles."); + int Size = Mask.size(); + for (int i = 0; i < Size; ++i) + if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i) + return false; + + return true; +} + +static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + + // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, .. + // Mask for V4F64; 0/1, 4/5, 2/3, 6/7.. + assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD"); + int NumElts = VT.getVectorNumElements(); + bool ShufpdMask = true; + bool CommutableMask = true; + unsigned Immediate = 0; + for (int i = 0; i < NumElts; ++i) { + if (Mask[i] < 0) + continue; + int Val = (i & 6) + NumElts * (i & 1); + int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1); + if (Mask[i] < Val || Mask[i] > Val + 1) + ShufpdMask = false; + if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1) + CommutableMask = false; + Immediate |= (Mask[i] % 2) << i; + } + if (ShufpdMask) + return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2, + DAG.getConstant(Immediate, DL, MVT::i8)); + if (CommutableMask) + return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1, + DAG.getConstant(Immediate, DL, MVT::i8)); + return SDValue(); +} + +/// \brief Handle lowering of 4-lane 64-bit floating point shuffles. +/// +/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2 +/// isn't available. +static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + + SmallVector<int, 4> WidenedMask; + if (canWidenShuffleElements(Mask, WidenedMask)) + return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget, + DAG); + + if (isSingleInputShuffleMask(Mask)) { + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // Use low duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2})) + return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1); + + if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) { + // Non-half-crossing single input shuffles can be lowerid with an + // interleaved permutation. + unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) | + ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3); + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1, + DAG.getConstant(VPERMILPMask, DL, MVT::i8)); + } + + // With AVX2 we have direct support for this permutation. + if (Subtarget->hasAVX2()) + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Otherwise, fall back. + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask, + DAG); + } + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG)) + return V; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Check if the blend happens to exactly fit that of SHUFPD. + if (SDValue Op = + lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG)) + return Op; + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. However, if we have AVX2 and either inputs are already in place, + // we will be able to shuffle even across lanes the other input in a single + // instruction so skip this pattern. + if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || + isShuffleMaskInputInPlace(1, Mask)))) + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // If we have AVX2 then we always want to lower with a blend because an v4 we + // can fully permute the elements. + if (Subtarget->hasAVX2()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, + Mask, DAG); + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 4-lane 64-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v4i64 shuffling.. +static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!"); + assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!"); + + SmallVector<int, 4> WidenedMask; + if (canWidenShuffleElements(Mask, WidenedMask)) + return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget, + DAG); + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // When the shuffle is mirrored between the 128-bit lanes of the unit, we can + // use lower latency instructions that will operate on both 128-bit lanes. + SmallVector<int, 2> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) { + if (isSingleInputShuffleMask(Mask)) { + int PSHUFDMask[] = {-1, -1, -1, -1}; + for (int i = 0; i < 2; ++i) + if (RepeatedMask[i] >= 0) { + PSHUFDMask[2 * i] = 2 * RepeatedMask[i]; + PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1; + } + return DAG.getBitcast( + MVT::v4i64, + DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, + DAG.getBitcast(MVT::v8i32, V1), + getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG))); + } + } + + // AVX2 provides a direct instruction for permuting a single input across + // lanes. + if (isSingleInputShuffleMask(Mask)) + return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1, + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG)) + return Shift; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG)) + return V; + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. However, if we have AVX2 and either inputs are already in place, + // we will be able to shuffle even across lanes the other input in a single + // instruction so skip this pattern. + if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) || + isShuffleMaskInputInPlace(1, Mask)))) + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic blend lowering. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, + Mask, DAG); +} + +/// \brief Handle lowering of 8-lane 32-bit floating point shuffles. +/// +/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2 +/// isn't available. +static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // If the shuffle mask is repeated in each 128-bit lane, we have many more + // options to efficiently lower the shuffle. + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) { + assert(RepeatedMask.size() == 4 && + "Repeated masks must be half the mask width!"); + + // Use even/odd duplicate instructions for masks that match their pattern. + if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6})) + return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1); + if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7})) + return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1); + + if (isSingleInputShuffleMask(Mask)) + return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG)) + return V; + + // Otherwise, fall back to a SHUFPS sequence. Here it is important that we + // have already handled any direct blends. We also need to squash the + // repeated mask into a simulated v4f32 mask. + for (int i = 0; i < 4; ++i) + if (RepeatedMask[i] >= 8) + RepeatedMask[i] -= 4; + return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG); + } + + // If we have a single input shuffle with different shuffle patterns in the + // two 128-bit lanes use the variable mask to VPERMILPS. + if (isSingleInputShuffleMask(Mask)) { + SDValue VPermMask[8]; + for (int i = 0; i < 8; ++i) + VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) + : DAG.getConstant(Mask[i], DL, MVT::i32); + if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask)) + return DAG.getNode( + X86ISD::VPERMILPV, DL, MVT::v8f32, V1, + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask)); + + if (Subtarget->hasAVX2()) + return DAG.getNode( + X86ISD::VPERMV, DL, MVT::v8f32, + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); + + // Otherwise, fall back. + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask, + DAG); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // If we have AVX2 then we always want to lower with a blend because at v8 we + // can fully permute the elements. + if (Subtarget->hasAVX2()) + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, + Mask, DAG); + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 8-lane 32-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v8i32 shuffling.. +static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2, + Mask, Subtarget, DAG)) + return ZExt; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + // If the shuffle mask is repeated in each 128-bit lane we can use more + // efficient instructions that mirror the shuffles across the two 128-bit + // lanes. + SmallVector<int, 4> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) { + assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!"); + if (isSingleInputShuffleMask(Mask)) + return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1, + getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG)); + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG)) + return V; + } + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG)) + return Shift; + + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + // If the shuffle patterns aren't repeated but it is a single input, directly + // generate a cross-lane VPERMD instruction. + if (isSingleInputShuffleMask(Mask)) { + SDValue VPermMask[8]; + for (int i = 0; i < 8; ++i) + VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32) + : DAG.getConstant(Mask[i], DL, MVT::i32); + return DAG.getNode( + X86ISD::VPERMV, DL, MVT::v8i32, + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic blend lowering. + return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, + Mask, DAG); +} + +/// \brief Handle lowering of 16-lane 16-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v16i16 shuffling.. +static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2, + Mask, Subtarget, DAG)) + return ZExt; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (isSingleInputShuffleMask(Mask)) { + // There are no generalized cross-lane shuffle operations available on i16 + // element types. + if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2, + Mask, DAG); + + SmallVector<int, 8> RepeatedMask; + if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) { + // As this is a single-input shuffle, the repeated mask should be + // a strictly valid v8i16 mask that we can pass through to the v8i16 + // lowering to handle even the v16 case. + return lowerV8I16GeneralSingleInputVectorShuffle( + DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG); + } + + SDValue PSHUFBMask[32]; + for (int i = 0; i < 16; ++i) { + if (Mask[i] == -1) { + PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8); + continue; + } + + int M = i < 8 ? Mask[i] : Mask[i] - 8; + assert(M >= 0 && M < 8 && "Invalid single-input mask!"); + PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8); + PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8); + } + return DAG.getBitcast(MVT::v16i16, + DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, + DAG.getBitcast(MVT::v32i8, V1), + DAG.getNode(ISD::BUILD_VECTOR, DL, + MVT::v32i8, PSHUFBMask))); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG); +} + +/// \brief Handle lowering of 32-lane 8-bit integer shuffles. +/// +/// This routine is only called when we have AVX2 and thus a reasonable +/// instruction set for v32i8 shuffling.. +static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); + assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!"); + + // Whenever we can lower this as a zext, that instruction is strictly faster + // than any alternative. It also allows us to fold memory operands into the + // shuffle in many cases. + if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2, + Mask, Subtarget, DAG)) + return ZExt; + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, + Mask, Subtarget, DAG)) + return Broadcast; + + if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask, + Subtarget, DAG)) + return Blend; + + // Use dedicated unpack instructions for masks that match their pattern. + if (SDValue V = + lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG)) + return V; + + // Try to use shift instructions. + if (SDValue Shift = + lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG)) + return Shift; + + // Try to use byte rotation instructions. + if (SDValue Rotate = lowerVectorShuffleAsByteRotate( + DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) + return Rotate; + + if (isSingleInputShuffleMask(Mask)) { + // There are no generalized cross-lane shuffle operations available on i8 + // element types. + if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) + return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2, + Mask, DAG); + + SDValue PSHUFBMask[32]; + for (int i = 0; i < 32; ++i) + PSHUFBMask[i] = + Mask[i] < 0 + ? DAG.getUNDEF(MVT::i8) + : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL, + MVT::i8); + + return DAG.getNode( + X86ISD::PSHUFB, DL, MVT::v32i8, V1, + DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask)); + } + + // Try to simplify this by merging 128-bit lanes to enable a lane-based + // shuffle. + if (SDValue Result = lowerVectorShuffleByMerging128BitLanes( + DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG)) + return Result; + + // Otherwise fall back on generic lowering. + return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG); +} + +/// \brief High-level routine to lower various 256-bit x86 vector shuffles. +/// +/// This routine either breaks down the specific type of a 256-bit x86 vector +/// shuffle or splits it into two 128-bit shuffles and fuses the results back +/// together based on the available instructions. +static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, + MVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + + // If we have a single input to the zero element, insert that into V1 if we + // can do so cheaply. + int NumElts = VT.getVectorNumElements(); + int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) { + return M >= NumElts; + }); + + if (NumV2Elements == 1 && Mask[0] >= NumElts) + if (SDValue Insertion = lowerVectorShuffleAsElementInsertion( + DL, VT, V1, V2, Mask, Subtarget, DAG)) + return Insertion; + + // Handle special cases where the lower or upper half is UNDEF. + if (SDValue V = + lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG)) + return V; + + // There is a really nice hard cut-over between AVX1 and AVX2 that means we + // can check for those subtargets here and avoid much of the subtarget + // querying in the per-vector-type lowering routines. With AVX1 we have + // essentially *zero* ability to manipulate a 256-bit vector with integer + // types. Since we'll use floating point types there eventually, just + // immediately cast everything to a float and operate entirely in that domain. + if (VT.isInteger() && !Subtarget->hasAVX2()) { + int ElementBits = VT.getScalarSizeInBits(); + if (ElementBits < 32) + // No floating point type available, decompose into 128-bit vectors. + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); + + MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits), + VT.getVectorNumElements()); + V1 = DAG.getBitcast(FpVT, V1); + V2 = DAG.getBitcast(FpVT, V2); + return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask)); + } + + switch (VT.SimpleTy) { + case MVT::v4f64: + return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v4i64: + return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v8f32: + return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v8i32: + return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v16i16: + return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v32i8: + return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG); + + default: + llvm_unreachable("Not a valid 256-bit x86 vector type!"); + } +} + +/// \brief Try to lower a vector shuffle as a 128-bit shuffles. +static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT, + ArrayRef<int> Mask, + SDValue V1, SDValue V2, + SelectionDAG &DAG) { + assert(VT.getScalarSizeInBits() == 64 && + "Unexpected element type size for 128bit shuffle."); + + // To handle 256 bit vector requires VLX and most probably + // function lowerV2X128VectorShuffle() is better solution. + assert(VT.is512BitVector() && "Unexpected vector size for 128bit shuffle."); + + SmallVector<int, 4> WidenedMask; + if (!canWidenShuffleElements(Mask, WidenedMask)) + return SDValue(); + + // Form a 128-bit permutation. + // Convert the 64-bit shuffle mask selection values into 128-bit selection + // bits defined by a vshuf64x2 instruction's immediate control byte. + unsigned PermMask = 0, Imm = 0; + unsigned ControlBitsNum = WidenedMask.size() / 2; + + for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) { + if (WidenedMask[i] == SM_SentinelZero) + return SDValue(); + + // Use first element in place of undef mask. + Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i]; + PermMask |= (Imm % WidenedMask.size()) << (i * ControlBitsNum); + } + + return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2, + DAG.getConstant(PermMask, DL, MVT::i8)); +} + +static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT, + ArrayRef<int> Mask, SDValue V1, + SDValue V2, SelectionDAG &DAG) { + + assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV"); + + MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); + MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements()); + + SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true); + if (isSingleInputShuffleMask(Mask)) + return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1); + + return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2); +} + +/// \brief Handle lowering of 8-lane 64-bit floating point shuffles. +static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (SDValue Shuf128 = + lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG)) + return Shuf128; + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG)) + return Unpck; + + return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 16-lane 32-bit floating point shuffles. +static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG)) + return Unpck; + + return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 8-lane 64-bit integer shuffles. +static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!"); + + if (SDValue Shuf128 = + lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG)) + return Shuf128; + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG)) + return Unpck; + + return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 16-lane 32-bit integer shuffles. +static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!"); + + if (SDValue Unpck = + lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG)) + return Unpck; + + return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 32-lane 16-bit integer shuffles. +static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!"); + assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!"); + + return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG); +} + +/// \brief Handle lowering of 64-lane 8-bit integer shuffles. +static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); + assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!"); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!"); + assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!"); + + // FIXME: Implement direct support for this type! + return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG); +} + +/// \brief High-level routine to lower various 512-bit x86 vector shuffles. +/// +/// This routine either breaks down the specific type of a 512-bit x86 vector +/// shuffle or splits it into two 256-bit shuffles and fuses the results back +/// together based on the available instructions. +static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, + MVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Subtarget->hasAVX512() && + "Cannot lower 512-bit vectors w/ basic ISA!"); + + // Check for being able to broadcast a single element. + if (SDValue Broadcast = + lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG)) + return Broadcast; + + // Dispatch to each element type for lowering. If we don't have supprot for + // specific element type shuffles at 512 bits, immediately split them and + // lower them. Each lowering routine of a given type is allowed to assume that + // the requisite ISA extensions for that element type are available. + switch (VT.SimpleTy) { + case MVT::v8f64: + return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v16f32: + return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v8i64: + return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v16i32: + return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG); + case MVT::v32i16: + if (Subtarget->hasBWI()) + return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG); + break; + case MVT::v64i8: + if (Subtarget->hasBWI()) + return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG); + break; + + default: + llvm_unreachable("Not a valid 512-bit x86 vector type!"); + } + + // Otherwise fall back on splitting. + return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG); +} + +// Lower vXi1 vector shuffles. +// There is no a dedicated instruction on AVX-512 that shuffles the masks. +// The only way to shuffle bits is to sign-extend the mask vector to SIMD +// vector, shuffle and then truncate it back. +static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2, + MVT VT, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + assert(Subtarget->hasAVX512() && + "Cannot lower 512-bit vectors w/o basic ISA!"); + MVT ExtVT; + switch (VT.SimpleTy) { + default: + llvm_unreachable("Expected a vector of i1 elements"); + case MVT::v2i1: + ExtVT = MVT::v2i64; + break; + case MVT::v4i1: + ExtVT = MVT::v4i32; + break; + case MVT::v8i1: + ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL + break; + case MVT::v16i1: + ExtVT = MVT::v16i32; + break; + case MVT::v32i1: + ExtVT = MVT::v32i16; + break; + case MVT::v64i1: + ExtVT = MVT::v64i8; + break; + } + + if (ISD::isBuildVectorAllZeros(V1.getNode())) + V1 = getZeroVector(ExtVT, Subtarget, DAG, DL); + else if (ISD::isBuildVectorAllOnes(V1.getNode())) + V1 = getOnesVector(ExtVT, Subtarget, DAG, DL); + else + V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1); + + if (V2.isUndef()) + V2 = DAG.getUNDEF(ExtVT); + else if (ISD::isBuildVectorAllZeros(V2.getNode())) + V2 = getZeroVector(ExtVT, Subtarget, DAG, DL); + else if (ISD::isBuildVectorAllOnes(V2.getNode())) + V2 = getOnesVector(ExtVT, Subtarget, DAG, DL); + else + V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2); + return DAG.getNode(ISD::TRUNCATE, DL, VT, + DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask)); +} +/// \brief Top-level lowering for x86 vector shuffles. +/// +/// This handles decomposition, canonicalization, and lowering of all x86 +/// vector shuffles. Most of the specific lowering strategies are encapsulated +/// above in helper routines. The canonicalization attempts to widen shuffles +/// to involve fewer lanes of wider elements, consolidate symmetric patterns +/// s.t. only one of the two inputs needs to be tested, etc. +static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + ArrayRef<int> Mask = SVOp->getMask(); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + MVT VT = Op.getSimpleValueType(); + int NumElements = VT.getVectorNumElements(); + SDLoc dl(Op); + bool Is1BitVector = (VT.getVectorElementType() == MVT::i1); + + assert((VT.getSizeInBits() != 64 || Is1BitVector) && + "Can't lower MMX shuffles"); + + bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; + bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; + if (V1IsUndef && V2IsUndef) + return DAG.getUNDEF(VT); + + // When we create a shuffle node we put the UNDEF node to second operand, + // but in some cases the first operand may be transformed to UNDEF. + // In this case we should just commute the node. + if (V1IsUndef) + return DAG.getCommutedVectorShuffle(*SVOp); + + // Check for non-undef masks pointing at an undef vector and make the masks + // undef as well. This makes it easier to match the shuffle based solely on + // the mask. + if (V2IsUndef) + for (int M : Mask) + if (M >= NumElements) { + SmallVector<int, 8> NewMask(Mask.begin(), Mask.end()); + for (int &M : NewMask) + if (M >= NumElements) + M = -1; + return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask); + } + + // We actually see shuffles that are entirely re-arrangements of a set of + // zero inputs. This mostly happens while decomposing complex shuffles into + // simple ones. Directly lower these as a buildvector of zeros. + SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2); + if (Zeroable.all()) + return getZeroVector(VT, Subtarget, DAG, dl); + + // Try to collapse shuffles into using a vector type with fewer elements but + // wider element types. We cap this to not form integers or floating point + // elements wider than 64 bits, but it might be interesting to form i128 + // integers to handle flipping the low and high halves of AVX 256-bit vectors. + SmallVector<int, 16> WidenedMask; + if (VT.getScalarSizeInBits() < 64 && !Is1BitVector && + canWidenShuffleElements(Mask, WidenedMask)) { + MVT NewEltVT = VT.isFloatingPoint() + ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2) + : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2); + MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); + // Make sure that the new vector type is legal. For example, v2f64 isn't + // legal on SSE1. + if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { + V1 = DAG.getBitcast(NewVT, V1); + V2 = DAG.getBitcast(NewVT, V2); + return DAG.getBitcast( + VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask)); + } + } + + int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0; + for (int M : SVOp->getMask()) + if (M < 0) + ++NumUndefElements; + else if (M < NumElements) + ++NumV1Elements; + else + ++NumV2Elements; + + // Commute the shuffle as needed such that more elements come from V1 than + // V2. This allows us to match the shuffle pattern strictly on how many + // elements come from V1 without handling the symmetric cases. + if (NumV2Elements > NumV1Elements) + return DAG.getCommutedVectorShuffle(*SVOp); + + // When the number of V1 and V2 elements are the same, try to minimize the + // number of uses of V2 in the low half of the vector. When that is tied, + // ensure that the sum of indices for V1 is equal to or lower than the sum + // indices for V2. When those are equal, try to ensure that the number of odd + // indices for V1 is lower than the number of odd indices for V2. + if (NumV1Elements == NumV2Elements) { + int LowV1Elements = 0, LowV2Elements = 0; + for (int M : SVOp->getMask().slice(0, NumElements / 2)) + if (M >= NumElements) + ++LowV2Elements; + else if (M >= 0) + ++LowV1Elements; + if (LowV2Elements > LowV1Elements) { + return DAG.getCommutedVectorShuffle(*SVOp); + } else if (LowV2Elements == LowV1Elements) { + int SumV1Indices = 0, SumV2Indices = 0; + for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) + if (SVOp->getMask()[i] >= NumElements) + SumV2Indices += i; + else if (SVOp->getMask()[i] >= 0) + SumV1Indices += i; + if (SumV2Indices < SumV1Indices) { + return DAG.getCommutedVectorShuffle(*SVOp); + } else if (SumV2Indices == SumV1Indices) { + int NumV1OddIndices = 0, NumV2OddIndices = 0; + for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i) + if (SVOp->getMask()[i] >= NumElements) + NumV2OddIndices += i % 2; + else if (SVOp->getMask()[i] >= 0) + NumV1OddIndices += i % 2; + if (NumV2OddIndices < NumV1OddIndices) + return DAG.getCommutedVectorShuffle(*SVOp); + } + } + } + + // For each vector width, delegate to a specialized lowering routine. + if (VT.is128BitVector()) + return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); + + if (VT.is256BitVector()) + return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); + + if (VT.is512BitVector()) + return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); + + if (Is1BitVector) + return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG); + llvm_unreachable("Unimplemented!"); +} + +// This function assumes its argument is a BUILD_VECTOR of constants or +// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is +// true. +static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector, + unsigned &MaskValue) { + MaskValue = 0; + unsigned NumElems = BuildVector->getNumOperands(); + + // There are 2 lanes if (NumElems > 8), and 1 lane otherwise. + // We don't handle the >2 lanes case right now. + unsigned NumLanes = (NumElems - 1) / 8 + 1; + if (NumLanes > 2) + return false; + + unsigned NumElemsInLane = NumElems / NumLanes; + + // Blend for v16i16 should be symmetric for the both lanes. + for (unsigned i = 0; i < NumElemsInLane; ++i) { + SDValue EltCond = BuildVector->getOperand(i); + SDValue SndLaneEltCond = + (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond; + + int Lane1Cond = -1, Lane2Cond = -1; + if (isa<ConstantSDNode>(EltCond)) + Lane1Cond = !isNullConstant(EltCond); + if (isa<ConstantSDNode>(SndLaneEltCond)) + Lane2Cond = !isNullConstant(SndLaneEltCond); + + unsigned LaneMask = 0; + if (Lane1Cond == Lane2Cond || Lane2Cond < 0) + // Lane1Cond != 0, means we want the first argument. + // Lane1Cond == 0, means we want the second argument. + // The encoding of this argument is 0 for the first argument, 1 + // for the second. Therefore, invert the condition. + LaneMask = !Lane1Cond << i; + else if (Lane1Cond < 0) + LaneMask = !Lane2Cond << i; + else + return false; + + MaskValue |= LaneMask; + if (NumLanes == 2) + MaskValue |= LaneMask << NumElemsInLane; + } + return true; +} + +/// \brief Try to lower a VSELECT instruction to a vector shuffle. +static SDValue lowerVSELECTtoVectorShuffle(SDValue Op, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDValue Cond = Op.getOperand(0); + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) + return SDValue(); + auto *CondBV = cast<BuildVectorSDNode>(Cond); + + // Only non-legal VSELECTs reach this lowering, convert those into generic + // shuffles and re-use the shuffle lowering path for blends. + SmallVector<int, 32> Mask; + for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) { + SDValue CondElt = CondBV->getOperand(i); + Mask.push_back( + isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0) + : -1); + } + return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask); +} + +SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { + // A vselect where all conditions and data are constants can be optimized into + // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). + if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) && + ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) && + ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode())) + return SDValue(); + + // Try to lower this to a blend-style vector shuffle. This can handle all + // constant condition cases. + if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG)) + return BlendOp; + + // Variable blends are only legal from SSE4.1 onward. + if (!Subtarget->hasSSE41()) + return SDValue(); + + // Only some types will be legal on some subtargets. If we can emit a legal + // VSELECT-matching blend, return Op, and but if we need to expand, return + // a null value. + switch (Op.getSimpleValueType().SimpleTy) { + default: + // Most of the vector types have blends past SSE4.1. + return Op; + + case MVT::v32i8: + // The byte blends for AVX vectors were introduced only in AVX2. + if (Subtarget->hasAVX2()) + return Op; + + return SDValue(); + + case MVT::v8i16: + case MVT::v16i16: + // AVX-512 BWI and VLX features support VSELECT with i16 elements. + if (Subtarget->hasBWI() && Subtarget->hasVLX()) + return Op; + + // FIXME: We should custom lower this by fixing the condition and using i8 + // blends. + return SDValue(); + } +} + +static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + if (!Op.getOperand(0).getSimpleValueType().is128BitVector()) + return SDValue(); + + if (VT.getSizeInBits() == 8) { + SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT.getSizeInBits() == 16) { + // If Idx is 0, it's cheaper to do a move instead of a pextrw. + if (isNullConstant(Op.getOperand(1))) + return DAG.getNode( + ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), + Op.getOperand(1))); + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT == MVT::f32) { + // EXTRACTPS outputs to a GPR32 register which will require a movd to copy + // the result back to FR32 register. It's only worth matching if the + // result has a single use which is a store or a bitcast to i32. And in + // the case of a store, it's not worth it if the index is a constant 0, + // because a MOVSSmr can be used instead, which is smaller and faster. + if (!Op.hasOneUse()) + return SDValue(); + SDNode *User = *Op.getNode()->use_begin(); + if ((User->getOpcode() != ISD::STORE || + isNullConstant(Op.getOperand(1))) && + (User->getOpcode() != ISD::BITCAST || + User->getValueType(0) != MVT::i32)) + return SDValue(); + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Op.getOperand(0)), + Op.getOperand(1)); + return DAG.getBitcast(MVT::f32, Extract); + } + + if (VT == MVT::i32 || VT == MVT::i64) { + // ExtractPS/pextrq works with constant index. + if (isa<ConstantSDNode>(Op.getOperand(1))) + return Op; + } + return SDValue(); +} + +/// Extract one bit from mask vector, like v16i1 or v8i1. +/// AVX-512 feature. +SDValue +X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const { + SDValue Vec = Op.getOperand(0); + SDLoc dl(Vec); + MVT VecVT = Vec.getSimpleValueType(); + SDValue Idx = Op.getOperand(1); + MVT EltVT = Op.getSimpleValueType(); + + assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector"); + assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) && + "Unexpected vector type in ExtractBitFromMaskVector"); + + // variable index can't be handled in mask registers, + // extend vector to VR512 + if (!isa<ConstantSDNode>(Idx)) { + MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); + SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + ExtVT.getVectorElementType(), Ext, Idx); + return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt); + } + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + const TargetRegisterClass* rc = getRegClassFor(VecVT); + if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8)) + rc = getRegClassFor(MVT::v16i1); + unsigned MaxSift = rc->getSize()*8 - 1; + Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec, + DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8)); + Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec, + DAG.getConstant(MaxSift, dl, MVT::i8)); + return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec, + DAG.getIntPtrConstant(0, dl)); +} + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + MVT VecVT = Vec.getSimpleValueType(); + SDValue Idx = Op.getOperand(1); + + if (Op.getSimpleValueType() == MVT::i1) + return ExtractBitFromMaskVector(Op, DAG); + + if (!isa<ConstantSDNode>(Idx)) { + if (VecVT.is512BitVector() || + (VecVT.is256BitVector() && Subtarget->hasInt256() && + VecVT.getVectorElementType().getSizeInBits() == 32)) { + + MVT MaskEltVT = + MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits()); + MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() / + MaskEltVT.getSizeInBits()); + + Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT, + getZeroVector(MaskVT, Subtarget, DAG, dl), Idx, + DAG.getConstant(0, dl, PtrVT)); + SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm, + DAG.getConstant(0, dl, PtrVT)); + } + return SDValue(); + } + + // If this is a 256-bit vector result, first extract the 128-bit vector and + // then extract the element from the 128-bit vector. + if (VecVT.is256BitVector() || VecVT.is512BitVector()) { + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + // Get the 128-bit vector. + Vec = Extract128BitVector(Vec, IdxVal, DAG, dl); + MVT EltVT = VecVT.getVectorElementType(); + + unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits(); + assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2"); + + // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2 + // this can be done with a mask. + IdxVal &= ElemsPerChunk - 1; + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec, + DAG.getConstant(IdxVal, dl, MVT::i32)); + } + + assert(VecVT.is128BitVector() && "Unexpected vector length"); + + if (Subtarget->hasSSE41()) + if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG)) + return Res; + + MVT VT = Op.getSimpleValueType(); + // TODO: handle v16i8. + if (VT.getSizeInBits() == 16) { + SDValue Vec = Op.getOperand(0); + if (isNullConstant(Op.getOperand(1))) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getBitcast(MVT::v4i32, Vec), + Op.getOperand(1))); + // Transform it so it match pextrw which produces a 32-bit result. + MVT EltVT = MVT::i32; + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } + + if (VT.getSizeInBits() == 32) { + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return Op; + + // SHUFPS the element to the lowest double word, then movss. + int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 }; + MVT VVT = Op.getOperand(0).getSimpleValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0, dl)); + } + + if (VT.getSizeInBits() == 64) { + // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b + // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught + // to match extract_elt for f64. + if (isNullConstant(Op.getOperand(1))) + return Op; + + // UNPCKHPD the element to the lowest double word, then movsd. + // Note if the lower 64 bits of the result of the UNPCKHPD is then stored + // to a f64mem, the whole operation is folded into a single MOVHPDmr. + int Mask[2] = { 1, -1 }; + MVT VVT = Op.getOperand(0).getSimpleValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0, dl)); + } + + return SDValue(); +} + +/// Insert one bit to mask vector, like v16i1 or v8i1. +/// AVX-512 feature. +SDValue +X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue Elt = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + MVT VecVT = Vec.getSimpleValueType(); + + if (!isa<ConstantSDNode>(Idx)) { + // Non constant index. Extend source and destination, + // insert element and then truncate the result. + MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32); + MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32); + SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT, + DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec), + DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx); + return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp); + } + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt); + if (IdxVal) + EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec, + DAG.getConstant(IdxVal, dl, MVT::i8)); + if (Vec.getOpcode() == ISD::UNDEF) + return EltInVec; + return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec); +} + +SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + + if (EltVT == MVT::i1) + return InsertBitToMaskVector(Op, DAG); + + SDLoc dl(Op); + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + if (!isa<ConstantSDNode>(N2)) + return SDValue(); + auto *N2C = cast<ConstantSDNode>(N2); + unsigned IdxVal = N2C->getZExtValue(); + + // If the vector is wider than 128 bits, extract the 128-bit subvector, insert + // into that, and then insert the subvector back into the result. + if (VT.is256BitVector() || VT.is512BitVector()) { + // With a 256-bit vector, we can insert into the zero element efficiently + // using a blend if we have AVX or AVX2 and the right data type. + if (VT.is256BitVector() && IdxVal == 0) { + // TODO: It is worthwhile to cast integer to floating point and back + // and incur a domain crossing penalty if that's what we'll end up + // doing anyway after extracting to a 128-bit vector. + if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) || + (Subtarget->hasAVX2() && EltVT == MVT::i32)) { + SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1); + N2 = DAG.getIntPtrConstant(1, dl); + return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2); + } + } + + // Get the desired 128-bit vector chunk. + SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl); + + // Insert the element into the desired chunk. + unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits(); + assert(isPowerOf2_32(NumEltsIn128)); + // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo. + unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1); + + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1, + DAG.getConstant(IdxIn128, dl, MVT::i32)); + + // Insert the changed part back into the bigger vector + return Insert128BitVector(N0, V, IdxVal, DAG, dl); + } + assert(VT.is128BitVector() && "Only 128-bit vector types should be left!"); + + if (Subtarget->hasSSE41()) { + if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) { + unsigned Opc; + if (VT == MVT::v8i16) { + Opc = X86ISD::PINSRW; + } else { + assert(VT == MVT::v16i8); + Opc = X86ISD::PINSRB; + } + + // Transform it so it match pinsr{b,w} which expects a GR32 as its second + // argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(Opc, dl, VT, N0, N1, N2); + } + + if (EltVT == MVT::f32) { + // Bits [7:6] of the constant are the source select. This will always be + // zero here. The DAG Combiner may combine an extract_elt index into + // these bits. For example (insert (extract, 3), 2) could be matched by + // putting the '3' into bits [7:6] of X86ISD::INSERTPS. + // Bits [5:4] of the constant are the destination select. This is the + // value of the incoming immediate. + // Bits [3:0] of the constant are the zero mask. The DAG Combiner may + // combine either bitwise AND or insert of float 0.0 to set these bits. + + bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize(); + if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) { + // If this is an insertion of 32-bits into the low 32-bits of + // a vector, we prefer to generate a blend with immediate rather + // than an insertps. Blends are simpler operations in hardware and so + // will always have equal or better performance than insertps. + // But if optimizing for size and there's a load folding opportunity, + // generate insertps because blendps does not have a 32-bit memory + // operand form. + N2 = DAG.getIntPtrConstant(1, dl); + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2); + } + N2 = DAG.getIntPtrConstant(IdxVal << 4, dl); + // Create this as a scalar to vector.. + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); + } + + if (EltVT == MVT::i32 || EltVT == MVT::i64) { + // PINSR* works with constant index. + return Op; + } + } + + if (EltVT == MVT::i8) + return SDValue(); + + if (EltVT.getSizeInBits() == 16) { + // Transform it so it match pinsrw which expects a 16-bit value in a GR32 + // as its second argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(IdxVal, dl); + return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); + } + return SDValue(); +} + +static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + MVT OpVT = Op.getSimpleValueType(); + + // If this is a 256-bit vector result, first insert into a 128-bit + // vector and then insert into the 256-bit vector. + if (!OpVT.is128BitVector()) { + // Insert into a 128-bit vector. + unsigned SizeFactor = OpVT.getSizeInBits()/128; + MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(), + OpVT.getVectorNumElements() / SizeFactor); + + Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0)); + + // Insert the 128-bit vector. + return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl); + } + + if (OpVT == MVT::v1i64 && + Op.getOperand(0).getValueType() == MVT::i64) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); + + SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); + assert(OpVT.is128BitVector() && "Expected an SSE type!"); + return DAG.getBitcast( + OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt)); +} + +// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in +// a simple subregister reference or explicit instructions to grab +// upper bits of a vector. +static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + SDValue In = Op.getOperand(0); + SDValue Idx = Op.getOperand(1); + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + MVT ResVT = Op.getSimpleValueType(); + MVT InVT = In.getSimpleValueType(); + + if (Subtarget->hasFp256()) { + if (ResVT.is128BitVector() && + (InVT.is256BitVector() || InVT.is512BitVector()) && + isa<ConstantSDNode>(Idx)) { + return Extract128BitVector(In, IdxVal, DAG, dl); + } + if (ResVT.is256BitVector() && InVT.is512BitVector() && + isa<ConstantSDNode>(Idx)) { + return Extract256BitVector(In, IdxVal, DAG, dl); + } + } + return SDValue(); +} + +// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a +// simple superregister reference or explicit instructions to insert +// the upper bits of a vector. +static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + if (!Subtarget->hasAVX()) + return SDValue(); + + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue SubVec = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + + if (!isa<ConstantSDNode>(Idx)) + return SDValue(); + + unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + MVT OpVT = Op.getSimpleValueType(); + MVT SubVecVT = SubVec.getSimpleValueType(); + + // Fold two 16-byte subvector loads into one 32-byte load: + // (insert_subvector (insert_subvector undef, (load addr), 0), + // (load addr + 16), Elts/2) + // --> load32 addr + if ((IdxVal == OpVT.getVectorNumElements() / 2) && + Vec.getOpcode() == ISD::INSERT_SUBVECTOR && + OpVT.is256BitVector() && SubVecVT.is128BitVector()) { + auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2)); + if (Idx2 && Idx2->getZExtValue() == 0) { + SDValue SubVec2 = Vec.getOperand(1); + // If needed, look through a bitcast to get to the load. + if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST) + SubVec2 = SubVec2.getOperand(0); + + if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) { + bool Fast; + unsigned Alignment = FirstLd->getAlignment(); + unsigned AS = FirstLd->getAddressSpace(); + const X86TargetLowering *TLI = Subtarget->getTargetLowering(); + if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), + OpVT, AS, Alignment, &Fast) && Fast) { + SDValue Ops[] = { SubVec2, SubVec }; + if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false)) + return Ld; + } + } + } + } + + if ((OpVT.is256BitVector() || OpVT.is512BitVector()) && + SubVecVT.is128BitVector()) + return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl); + + if (OpVT.is512BitVector() && SubVecVT.is256BitVector()) + return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl); + + if (OpVT.getVectorElementType() == MVT::i1) + return Insert1BitVector(Op, DAG); + + return SDValue(); +} + +// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as +// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is +// one of the above mentioned nodes. It has to be wrapped because otherwise +// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only +// be used to form addressing mode. These wrapped nodes will be selected +// into MOV32ri. +SDValue +X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = DAG.getTarget().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetConstantPool( + CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag); + SDLoc DL(CP); + Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); + // With PIC, the address is actually $g + Offset. + if (OpFlag) { + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + } + + return Result; +} + +SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = DAG.getTarget().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag); + SDLoc DL(JT); + Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (OpFlag) + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + + return Result; +} + +SDValue +X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { + const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = DAG.getTarget().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) { + if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF()) + OpFlag = X86II::MO_GOTPCREL; + WrapperKind = X86ISD::WrapperRIP; + } else if (Subtarget->isPICStyleGOT()) { + OpFlag = X86II::MO_GOT; + } else if (Subtarget->isPICStyleStubPIC()) { + OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE; + } else if (Subtarget->isPICStyleStubNoDynamic()) { + OpFlag = X86II::MO_DARWIN_NONLAZY; + } + + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag); + + SDLoc DL(Op); + Result = DAG.getNode(WrapperKind, DL, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ && + !Subtarget->is64Bit()) { + Result = + DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result); + } + + // For symbols that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlag)) + Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), + false, false, false, 0); + + return Result; +} + +SDValue +X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + // Create the TargetBlockAddressAddress node. + unsigned char OpFlags = + Subtarget->ClassifyBlockAddressReference(); + CodeModel::Model M = DAG.getTarget().getCodeModel(); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset(); + SDLoc dl(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); + } + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl, + int64_t Offset, SelectionDAG &DAG) const { + // Create the TargetGlobalAddress node, folding in the constant + // offset if it is legal. + unsigned char OpFlags = + Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()); + CodeModel::Model M = DAG.getTarget().getCodeModel(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result; + if (OpFlags == X86II::MO_NO_FLAG && + X86::isOffsetSuitableForCodeModel(Offset, M)) { + // A direct static reference to a global. + Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); + Offset = 0; + } else { + Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags); + } + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result); + } + + // For globals that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlags)) + Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), + false, false, false, 0); + + // If there was a non-zero offset that we didn't fold, create an explicit + // addition for it. + if (Offset != 0) + Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, + DAG.getConstant(Offset, dl, PtrVT)); + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); + return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG); +} + +static SDValue +GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, + SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, + unsigned char OperandFlags, bool LocalDynamic = false) { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SDLoc dl(GA); + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), + OperandFlags); + + X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR + : X86ISD::TLSADDR; + + if (InFlag) { + SDValue Ops[] = { Chain, TGA, *InFlag }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops); + } else { + SDValue Ops[] = { Chain, TGA }; + Chain = DAG.getNode(CallType, dl, NodeTys, Ops); + } + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + MFI->setAdjustsStack(true); + MFI->setHasCalls(true); + + SDValue Flag = Chain.getValue(1); + return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit +static SDValue +LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + SDValue InFlag; + SDLoc dl(GA); // ? function entry point might be better + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, + SDLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + + return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit +static SDValue +LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, + X86::RAX, X86II::MO_TLSGD); +} + +static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA, + SelectionDAG &DAG, + const EVT PtrVT, + bool is64Bit) { + SDLoc dl(GA); + + // Get the start address of the TLS block for this module. + X86MachineFunctionInfo* MFI = DAG.getMachineFunction() + .getInfo<X86MachineFunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + SDValue Base; + if (is64Bit) { + Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX, + X86II::MO_TLSLD, /*LocalDynamic=*/true); + } else { + SDValue InFlag; + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, + X86II::MO_TLSLDM, /*LocalDynamic=*/true); + } + + // Note: the CleanupLocalDynamicTLSPass will remove redundant computations + // of Base. + + // Build x@dtpoff. + unsigned char OperandFlags = X86II::MO_DTPOFF; + unsigned WrapperKind = X86ISD::Wrapper; + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + // Add x@dtpoff with the base. + return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base); +} + +// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model. +static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT, TLSModel::Model model, + bool is64Bit, bool isPIC) { + SDLoc dl(GA); + + // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). + Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), + is64Bit ? 257 : 256)); + + SDValue ThreadPointer = + DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl), + MachinePointerInfo(Ptr), false, false, false, 0); + + unsigned char OperandFlags = 0; + // Most TLS accesses are not RIP relative, even on x86-64. One exception is + // initialexec. + unsigned WrapperKind = X86ISD::Wrapper; + if (model == TLSModel::LocalExec) { + OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; + } else if (model == TLSModel::InitialExec) { + if (is64Bit) { + OperandFlags = X86II::MO_GOTTPOFF; + WrapperKind = X86ISD::WrapperRIP; + } else { + OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF; + } + } else { + llvm_unreachable("Unexpected model"); + } + + // emit "addl x@ntpoff,%eax" (local exec) + // or "addl x@indntpoff,%eax" (initial exec) + // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic) + SDValue TGA = + DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + if (model == TLSModel::InitialExec) { + if (isPIC && !is64Bit) { + Offset = DAG.getNode(ISD::ADD, dl, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), + Offset); + } + + Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), + false, false, false, 0); + } + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); +} + +SDValue +X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + + // Cygwin uses emutls. + // FIXME: It may be EmulatedTLS-generic also for X86-Android. + if (Subtarget->isTargetWindowsCygwin()) + return LowerToTLSEmulatedModel(GA, DAG); + + const GlobalValue *GV = GA->getGlobal(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (Subtarget->isTargetELF()) { + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(GA, DAG); + TLSModel::Model model = DAG.getTarget().getTLSModel(GV); + switch (model) { + case TLSModel::GeneralDynamic: + if (Subtarget->is64Bit()) + return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT); + return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT); + case TLSModel::LocalDynamic: + return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT, + Subtarget->is64Bit()); + case TLSModel::InitialExec: + case TLSModel::LocalExec: + return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget->is64Bit(), + DAG.getTarget().getRelocationModel() == + Reloc::PIC_); + } + llvm_unreachable("Unknown TLS model."); + } + + if (Subtarget->isTargetDarwin()) { + // Darwin only has one model of TLS. Lower to that. + unsigned char OpFlag = 0; + unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? + X86ISD::WrapperRIP : X86ISD::Wrapper; + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) && + !Subtarget->is64Bit(); + if (PIC32) + OpFlag = X86II::MO_TLVP_PIC_BASE; + else + OpFlag = X86II::MO_TLVP; + SDLoc DL(Op); + SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, + GA->getValueType(0), + GA->getOffset(), OpFlag); + SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result); + + // With PIC32, the address is actually $g + Offset. + if (PIC32) + Offset = DAG.getNode(ISD::ADD, DL, PtrVT, + DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), + Offset); + + // Lowering the machine isd will make sure everything is in the right + // location. + SDValue Chain = DAG.getEntryNode(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Args[] = { Chain, Offset }; + Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args); + + // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setAdjustsStack(true); + + // And our return value (tls address) is in the standard call return value + // location. + unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1)); + } + + if (Subtarget->isTargetKnownWindowsMSVC() || + Subtarget->isTargetWindowsGNU()) { + // Just use the implicit TLS architecture + // Need to generate someting similar to: + // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage + // ; from TEB + // mov ecx, dword [rel _tls_index]: Load index (from C runtime) + // mov rcx, qword [rdx+rcx*8] + // mov eax, .tls$:tlsvar + // [rax+rcx] contains the address + // Windows 64bit: gs:0x58 + // Windows 32bit: fs:__tls_array + + SDLoc dl(GA); + SDValue Chain = DAG.getEntryNode(); + + // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or + // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly + // use its literal value of 0x2C. + Value *Ptr = Constant::getNullValue(Subtarget->is64Bit() + ? Type::getInt8PtrTy(*DAG.getContext(), + 256) + : Type::getInt32PtrTy(*DAG.getContext(), + 257)); + + SDValue TlsArray = Subtarget->is64Bit() + ? DAG.getIntPtrConstant(0x58, dl) + : (Subtarget->isTargetWindowsGNU() + ? DAG.getIntPtrConstant(0x2C, dl) + : DAG.getExternalSymbol("_tls_array", PtrVT)); + + SDValue ThreadPointer = + DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false, + false, false, 0); + + SDValue res; + if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) { + res = ThreadPointer; + } else { + // Load the _tls_index variable + SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT); + if (Subtarget->is64Bit()) + IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX, + MachinePointerInfo(), MVT::i32, false, false, + false, 0); + else + IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false, + false, false, 0); + + auto &DL = DAG.getDataLayout(); + SDValue Scale = + DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT); + IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale); + + res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX); + } + + res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false, + false, 0); + + // Get the offset of start of .tls section + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, + GA->getValueType(0), + GA->getOffset(), X86II::MO_SECREL); + SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA); + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset); + } + + llvm_unreachable("TLS not implemented for this target."); +} + +/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values +/// and take a 2 x i32 value to shift plus a shift amount. +static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) { + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + MVT VT = Op.getSimpleValueType(); + unsigned VTBits = VT.getSizeInBits(); + SDLoc dl(Op); + bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the + // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away + // during isel. + SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits - 1, dl, MVT::i8)); + SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, dl, MVT::i8)) + : DAG.getConstant(0, dl, VT); + + SDValue Tmp2, Tmp3; + if (Op.getOpcode() == ISD::SHL_PARTS) { + Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); + } else { + Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); + Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); + } + + // If the shift amount is larger or equal than the width of a part we can't + // rely on the results of shld/shrd. Insert a test and select the appropriate + // values for large shift amounts. + SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits, dl, MVT::i8)); + SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + AndNode, DAG.getConstant(0, dl, MVT::i8)); + + SDValue Hi, Lo; + SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; + SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; + + if (Op.getOpcode() == ISD::SHL_PARTS) { + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); + } else { + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0); + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1); + } + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, dl); +} + +SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue Src = Op.getOperand(0); + MVT SrcVT = Src.getSimpleValueType(); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + if (SrcVT.isVector()) { + if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) { + return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT, + DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src, + DAG.getUNDEF(SrcVT))); + } + if (SrcVT.getVectorElementType() == MVT::i1) { + MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements()); + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), + DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src)); + } + return SDValue(); + } + + assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 && + "Unknown SINT_TO_FP to lower!"); + + // These are really Legal; return the operand so the caller accepts it as + // Legal. + if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) + return Op; + if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && + Subtarget->is64Bit()) { + return Op; + } + + unsigned Size = SrcVT.getSizeInBits()/8; + MachineFunction &MF = DAG.getMachineFunction(); + auto PtrVT = getPointerTy(MF.getDataLayout()); + int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + SDValue Chain = DAG.getStore( + DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false, + false, 0); + return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); +} + +SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, + SDValue StackSlot, + SelectionDAG &DAG) const { + // Build the FILD + SDLoc DL(Op); + SDVTList Tys; + bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); + if (useSSE) + Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); + else + Tys = DAG.getVTList(Op.getValueType(), MVT::Other); + + unsigned ByteSize = SrcVT.getSizeInBits()/8; + + FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot); + MachineMemOperand *MMO; + if (FI) { + int SSFI = FI->getIndex(); + MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOLoad, ByteSize, ByteSize); + } else { + MMO = cast<LoadSDNode>(StackSlot)->getMemOperand(); + StackSlot = StackSlot.getOperand(1); + } + SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; + SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : + X86ISD::FILD, DL, + Tys, Ops, SrcVT, MMO); + + if (useSSE) { + Chain = Result.getValue(1); + SDValue InFlag = Result.getValue(2); + + // FIXME: Currently the FST is flagged to the FILD_FLAG. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned SSFISize = Op.getValueType().getSizeInBits()/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); + auto PtrVT = getPointerTy(MF.getDataLayout()); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + Tys = DAG.getVTList(MVT::Other); + SDValue Ops[] = { + Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag + }; + MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOStore, SSFISize, SSFISize); + + Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, + Ops, Op.getValueType(), MMO); + Result = DAG.getLoad( + Op.getValueType(), DL, Chain, StackSlot, + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + false, false, false, 0); + } + + return Result; +} + +// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, + SelectionDAG &DAG) const { + // This algorithm is not obvious. Here it is what we're trying to output: + /* + movq %rax, %xmm0 + punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U } + subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 } + #ifdef __SSE3__ + haddpd %xmm0, %xmm0 + #else + pshufd $0x4e, %xmm0, %xmm1 + addpd %xmm1, %xmm0 + #endif + */ + + SDLoc dl(Op); + LLVMContext *Context = DAG.getContext(); + + // Build some magic constants. + static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 }; + Constant *C0 = ConstantDataVector::get(*Context, CV0); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16); + + SmallVector<Constant*,2> CV1; + CV1.push_back( + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, 0x4330000000000000ULL)))); + CV1.push_back( + ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble, + APInt(64, 0x4530000000000000ULL)))); + Constant *C1 = ConstantVector::get(CV1); + SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16); + + // Load the 64-bit value into an XMM register. + SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, + Op.getOperand(0)); + SDValue CLod0 = + DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + false, false, false, 16); + SDValue Unpck1 = + getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0); + + SDValue CLod1 = + DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + false, false, false, 16); + SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1); + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); + SDValue Result; + + if (Subtarget->hasSSE3()) { + // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'. + Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub); + } else { + SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub); + SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32, + S2F, 0x4E, DAG); + Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, + DAG.getBitcast(MVT::v2f64, Shuffle), Sub); + } + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result, + DAG.getIntPtrConstant(0, dl)); +} + +// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + // FP constant to bias correct the final result. + SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, + MVT::f64); + + // Load the 32-bit value into an XMM register. + SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + Op.getOperand(0)); + + // Zero out the upper parts of the register. + Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG); + + Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getBitcast(MVT::v2f64, Load), + DAG.getIntPtrConstant(0, dl)); + + // Or the load with the bias. + SDValue Or = DAG.getNode( + ISD::OR, dl, MVT::v2i64, + DAG.getBitcast(MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)), + DAG.getBitcast(MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias))); + Or = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl)); + + // Subtract the bias. + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); + + // Handle final rounding. + MVT DestVT = Op.getSimpleValueType(); + + if (DestVT.bitsLT(MVT::f64)) + return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, + DAG.getIntPtrConstant(0, dl)); + if (DestVT.bitsGT(MVT::f64)) + return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); + + // Handle final rounding. + return Sub; +} + +static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG, + const X86Subtarget &Subtarget) { + // The algorithm is the following: + // #ifdef __SSE4_1__ + // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); + // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), + // (uint4) 0x53000000, 0xaa); + // #else + // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; + // uint4 hi = (v >> 16) | (uint4) 0x53000000; + // #endif + // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); + // return (float4) lo + fhi; + + // We shouldn't use it when unsafe-fp-math is enabled though: we might later + // reassociate the two FADDs, and if we do that, the algorithm fails + // spectacularly (PR24512). + // FIXME: If we ever have some kind of Machine FMF, this should be marked + // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because + // there's also the MachineCombiner reassociations happening on Machine IR. + if (DAG.getTarget().Options.UnsafeFPMath) + return SDValue(); + + SDLoc DL(Op); + SDValue V = Op->getOperand(0); + MVT VecIntVT = V.getSimpleValueType(); + bool Is128 = VecIntVT == MVT::v4i32; + MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32; + // If we convert to something else than the supported type, e.g., to v4f64, + // abort early. + if (VecFloatVT != Op->getSimpleValueType(0)) + return SDValue(); + + unsigned NumElts = VecIntVT.getVectorNumElements(); + assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) && + "Unsupported custom type"); + assert(NumElts <= 8 && "The size of the constant array must be fixed"); + + // In the #idef/#else code, we have in common: + // - The vector of constants: + // -- 0x4b000000 + // -- 0x53000000 + // - A shift: + // -- v >> 16 + + // Create the splat vector for 0x4b000000. + SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32); + SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow, + CstLow, CstLow, CstLow, CstLow}; + SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, + makeArrayRef(&CstLowArray[0], NumElts)); + // Create the splat vector for 0x53000000. + SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32); + SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh, + CstHigh, CstHigh, CstHigh, CstHigh}; + SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, + makeArrayRef(&CstHighArray[0], NumElts)); + + // Create the right shift. + SDValue CstShift = DAG.getConstant(16, DL, MVT::i32); + SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift, + CstShift, CstShift, CstShift, CstShift}; + SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, + makeArrayRef(&CstShiftArray[0], NumElts)); + SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift); + + SDValue Low, High; + if (Subtarget.hasSSE41()) { + MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16; + // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa); + SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow); + SDValue VecBitcast = DAG.getBitcast(VecI16VT, V); + // Low will be bitcasted right away, so do not bother bitcasting back to its + // original type. + Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast, + VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); + // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16), + // (uint4) 0x53000000, 0xaa); + SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh); + SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift); + // High will be bitcasted right away, so do not bother bitcasting back to + // its original type. + High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast, + VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32)); + } else { + SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32); + SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask, + CstMask, CstMask, CstMask); + // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000; + SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask); + Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow); + + // uint4 hi = (v >> 16) | (uint4) 0x53000000; + High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh); + } + + // Create the vector constant for -(0x1.0p39f + 0x1.0p23f). + SDValue CstFAdd = DAG.getConstantFP( + APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32); + SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd, + CstFAdd, CstFAdd, CstFAdd, CstFAdd}; + SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT, + makeArrayRef(&CstFAddArray[0], NumElts)); + + // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f); + SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High); + // TODO: Are there any fast-math-flags to propagate here? + SDValue FHigh = + DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd); + // return (float4) lo + fhi; + SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low); + return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh); +} + +SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op, + SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + MVT SVT = N0.getSimpleValueType(); + SDLoc dl(Op); + + switch (SVT.SimpleTy) { + default: + llvm_unreachable("Custom UINT_TO_FP is not supported!"); + case MVT::v4i8: + case MVT::v4i16: + case MVT::v8i8: + case MVT::v8i16: { + MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements()); + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), + DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0)); + } + case MVT::v4i32: + case MVT::v8i32: + return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget); + case MVT::v16i8: + case MVT::v16i16: + assert(Subtarget->hasAVX512()); + return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(), + DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0)); + } +} + +SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + SDLoc dl(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (Op.getSimpleValueType().isVector()) + return lowerUINT_TO_FP_vec(Op, DAG); + + // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't + // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform + // the optimization here. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); + + MVT SrcVT = N0.getSimpleValueType(); + MVT DstVT = Op.getSimpleValueType(); + + if (Subtarget->hasAVX512() && isScalarFPTypeInSSEReg(DstVT) && + (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget->is64Bit()))) { + // Conversions from unsigned i32 to f32/f64 are legal, + // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode. + return Op; + } + + if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i64(Op, DAG); + if (SrcVT == MVT::i32 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i32(Op, DAG); + if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32) + return SDValue(); + + // Make a 64-bit buffer, and use it to build an FILD. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); + if (SrcVT == MVT::i32) { + SDValue WordOff = DAG.getConstant(4, dl, PtrVT); + SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, WordOff); + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, MachinePointerInfo(), + false, false, 0); + SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32), + OffsetSlot, MachinePointerInfo(), + false, false, 0); + SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); + return Fild; + } + + assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, MachinePointerInfo(), + false, false, 0); + // For i64 source, we need to add the appropriate power of 2 if the input + // was negative. This is the same as the optimization in + // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, + // we must be careful to do the computation in x87 extended precision, not + // in SSE. (The generic code can't know it's OK to do this, or how to.) + int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); + MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( + MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), + MachineMemOperand::MOLoad, 8, 8); + + SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); + SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; + SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, + MVT::i64, MMO); + + APInt FF(32, 0x5F800000ULL); + + // Check whether the sign bit is set. + SDValue SignSet = DAG.getSetCC( + dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), + Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); + + // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. + SDValue FudgePtr = DAG.getConstantPool( + ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT); + + // Get a pointer to FF if the sign bit was set, or to 0 otherwise. + SDValue Zero = DAG.getIntPtrConstant(0, dl); + SDValue Four = DAG.getIntPtrConstant(4, dl); + SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, + Zero, Four); + FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset); + + // Load the value out, extending it from f32 to f80. + // FIXME: Avoid the extend by constructing the right constant pool? + SDValue Fudge = DAG.getExtLoad( + ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, + false, false, false, 4); + // Extend everything to 80 bits to force it to be done on x87. + // TODO: Are there any fast-math-flags to propagate here? + SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); + return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, + DAG.getIntPtrConstant(0, dl)); +} + +// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation +// is legal, or has an fp128 or f16 source (which needs to be promoted to f32), +// just return an <SDValue(), SDValue()> pair. +// Otherwise it is assumed to be a conversion from one of f32, f64 or f80 +// to i16, i32 or i64, and we lower it to a legal sequence. +// If lowered to the final integer result we return a <result, SDValue()> pair. +// Otherwise we lower it to a sequence ending with a FIST, return a +// <FIST, StackSlot> pair, and the caller is responsible for loading +// the final integer result from StackSlot. +std::pair<SDValue,SDValue> +X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, + bool IsSigned, bool IsReplace) const { + SDLoc DL(Op); + + EVT DstTy = Op.getValueType(); + EVT TheVT = Op.getOperand(0).getValueType(); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) { + // f16 must be promoted before using the lowering in this routine. + // fp128 does not use this lowering. + return std::make_pair(SDValue(), SDValue()); + } + + // If using FIST to compute an unsigned i64, we'll need some fixup + // to handle values above the maximum signed i64. A FIST is always + // used for the 32-bit subtarget, but also for f80 on a 64-bit target. + bool UnsignedFixup = !IsSigned && + DstTy == MVT::i64 && + (!Subtarget->is64Bit() || + !isScalarFPTypeInSSEReg(TheVT)); + + if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) { + // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST. + // The low 32 bits of the fist result will have the correct uint32 result. + assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); + DstTy = MVT::i64; + } + + assert(DstTy.getSimpleVT() <= MVT::i64 && + DstTy.getSimpleVT() >= MVT::i16 && + "Unknown FP_TO_INT to lower!"); + + // These are really Legal. + if (DstTy == MVT::i32 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + if (Subtarget->is64Bit() && + DstTy == MVT::i64 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + + // We lower FP->int64 into FISTP64 followed by a load from a temporary + // stack slot. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned MemSize = DstTy.getSizeInBits()/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + + unsigned Opc; + switch (DstTy.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); + case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; + case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; + case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; + } + + SDValue Chain = DAG.getEntryNode(); + SDValue Value = Op.getOperand(0); + SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment. + + if (UnsignedFixup) { + // + // Conversion to unsigned i64 is implemented with a select, + // depending on whether the source value fits in the range + // of a signed i64. Let Thresh be the FP equivalent of + // 0x8000000000000000ULL. + // + // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000; + // FistSrc = (Value < Thresh) ? Value : (Value - Thresh); + // Fist-to-mem64 FistSrc + // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent + // to XOR'ing the high 32 bits with Adjust. + // + // Being a power of 2, Thresh is exactly representable in all FP formats. + // For X87 we'd like to use the smallest FP type for this constant, but + // for DAG type consistency we have to match the FP operand type. + + APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000)); + LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK; + bool LosesInfo = false; + if (TheVT == MVT::f64) + // The rounding mode is irrelevant as the conversion should be exact. + Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &LosesInfo); + else if (TheVT == MVT::f80) + Status = Thresh.convert(APFloat::x87DoubleExtended, + APFloat::rmNearestTiesToEven, &LosesInfo); + + assert(Status == APFloat::opOK && !LosesInfo && + "FP conversion should have been exact"); + + SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT); + + SDValue Cmp = DAG.getSetCC(DL, + getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), TheVT), + Value, ThreshVal, ISD::SETLT); + Adjust = DAG.getSelect(DL, MVT::i32, Cmp, + DAG.getConstant(0, DL, MVT::i32), + DAG.getConstant(0x80000000, DL, MVT::i32)); + SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal); + Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(), + *DAG.getContext(), TheVT), + Value, ThreshVal, ISD::SETLT); + Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub); + } + + // FIXME This causes a redundant load/store if the SSE-class value is already + // in memory, such as if it is on the callstack. + if (isScalarFPTypeInSSEReg(TheVT)) { + assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); + Chain = DAG.getStore(Chain, DL, Value, StackSlot, + MachinePointerInfo::getFixedStack(MF, SSFI), false, + false, 0); + SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); + SDValue Ops[] = { + Chain, StackSlot, DAG.getValueType(TheVT) + }; + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOLoad, MemSize, MemSize); + Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO); + Chain = Value.getValue(1); + SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + StackSlot = DAG.getFrameIndex(SSFI, PtrVT); + } + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOStore, MemSize, MemSize); + + if (UnsignedFixup) { + + // Insert the FIST, load its result as two i32's, + // and XOR the high i32 with Adjust. + + SDValue FistOps[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), + FistOps, DstTy, MMO); + + SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot, + MachinePointerInfo(), + false, false, false, 0); + SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot, + DAG.getConstant(4, DL, PtrVT)); + + SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr, + MachinePointerInfo(), + false, false, false, 0); + High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust); + + if (Subtarget->is64Bit()) { + // Join High32 and Low32 into a 64-bit result. + // (High32 << 32) | Low32 + Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32); + High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32); + High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32, + DAG.getConstant(32, DL, MVT::i8)); + SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32); + return std::make_pair(Result, SDValue()); + } + + SDValue ResultOps[] = { Low32, High32 }; + + SDValue pair = IsReplace + ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps) + : DAG.getMergeValues(ResultOps, DL); + return std::make_pair(pair, SDValue()); + } else { + // Build the FP_TO_INT*_IN_MEM + SDValue Ops[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), + Ops, DstTy, MMO); + return std::make_pair(FIST, StackSlot); + } +} + +static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + SDLoc dl(Op); + + if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) + return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In); + + // Optimize vectors in AVX mode: + // + // v8i16 -> v8i32 + // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32. + // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32. + // Concat upper and lower parts. + // + // v4i32 -> v4i64 + // Use vpunpckldq for 4 lower elements v4i32 -> v2i64. + // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64. + // Concat upper and lower parts. + // + + if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) && + ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) && + ((VT != MVT::v4i64) || (InVT != MVT::v4i32))) + return SDValue(); + + if (Subtarget->hasInt256()) + return DAG.getNode(X86ISD::VZEXT, dl, VT, In); + + SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl); + SDValue Undef = DAG.getUNDEF(InVT); + bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND; + SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef); + + MVT HVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getBitcast(HVT, OpLo); + OpHi = DAG.getBitcast(HVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + +static SDValue LowerZERO_EXTEND_AVX512(SDValue Op, + const X86Subtarget *Subtarget, SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + SDLoc DL(Op); + unsigned int NumElts = VT.getVectorNumElements(); + if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) + return SDValue(); + + if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) + return DAG.getNode(X86ISD::VZEXT, DL, VT, In); + + assert(InVT.getVectorElementType() == MVT::i1); + MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; + SDValue One = + DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT); + SDValue Zero = + DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT); + + SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero); + if (VT.is512BitVector()) + return V; + return DAG.getNode(X86ISD::VTRUNC, DL, VT, V); +} + +static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + if (Subtarget->hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) + return Res; + + return SDValue(); +} + +static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT SVT = In.getSimpleValueType(); + + if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1) + return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG); + + if (Subtarget->hasFp256()) + if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget)) + return Res; + + assert(!VT.is256BitVector() || !SVT.is128BitVector() || + VT.getVectorNumElements() != SVT.getVectorNumElements()); + return SDValue(); +} + +static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT InVT = In.getSimpleValueType(); + + assert(VT.getVectorElementType() == MVT::i1 && "Unexected vector type."); + + // Shift LSB to MSB and use VPMOVB2M - SKX. + unsigned ShiftInx = InVT.getScalarSizeInBits() - 1; + if ((InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 && + Subtarget->hasBWI()) || // legal, will go to VPMOVB2M, VPMOVW2M + ((InVT.is256BitVector() || InVT.is128BitVector()) && + InVT.getScalarSizeInBits() <= 16 && Subtarget->hasBWI() && + Subtarget->hasVLX())) { // legal, will go to VPMOVB2M, VPMOVW2M + // Shift packed bytes not supported natively, bitcast to dword + MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16); + SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT, + DAG.getBitcast(ExtVT, In), + DAG.getConstant(ShiftInx, DL, ExtVT)); + ShiftNode = DAG.getBitcast(InVT, ShiftNode); + return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode); + } + if ((InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 && + Subtarget->hasDQI()) || // legal, will go to VPMOVD2M, VPMOVQ2M + ((InVT.is256BitVector() || InVT.is128BitVector()) && + InVT.getScalarSizeInBits() >= 32 && Subtarget->hasDQI() && + Subtarget->hasVLX())) { // legal, will go to VPMOVD2M, VPMOVQ2M + + SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In, + DAG.getConstant(ShiftInx, DL, InVT)); + return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode); + } + + // Shift LSB to MSB, extend if necessary and use TESTM. + unsigned NumElts = InVT.getVectorNumElements(); + if (InVT.getSizeInBits() < 512 && + (InVT.getScalarType() == MVT::i8 || InVT.getScalarType() == MVT::i16 || + !Subtarget->hasVLX())) { + assert((NumElts == 8 || NumElts == 16) && "Unexected vector type."); + + // TESTD/Q should be used (if BW supported we use CVT2MASK above), + // so vector should be extended to packed dword/qword. + MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts); + In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In); + InVT = ExtVT; + ShiftInx = InVT.getScalarSizeInBits() - 1; + } + + SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In, + DAG.getConstant(ShiftInx, DL, InVT)); + return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode); +} + +SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT InVT = In.getSimpleValueType(); + + if (VT == MVT::i1) { + assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) && + "Invalid scalar TRUNCATE operation"); + if (InVT.getSizeInBits() >= 32) + return SDValue(); + In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In); + return DAG.getNode(ISD::TRUNCATE, DL, VT, In); + } + assert(VT.getVectorNumElements() == InVT.getVectorNumElements() && + "Invalid TRUNCATE operation"); + + if (VT.getVectorElementType() == MVT::i1) + return LowerTruncateVecI1(Op, DAG, Subtarget); + + // vpmovqb/w/d, vpmovdb/w, vpmovwb + if (Subtarget->hasAVX512()) { + // word to byte only under BWI + if (InVT == MVT::v16i16 && !Subtarget->hasBWI()) // v16i16 -> v16i8 + return DAG.getNode(X86ISD::VTRUNC, DL, VT, + DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In)); + return DAG.getNode(X86ISD::VTRUNC, DL, VT, In); + } + if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) { + // On AVX2, v4i64 -> v4i32 becomes VPERMD. + if (Subtarget->hasInt256()) { + static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1}; + In = DAG.getBitcast(MVT::v8i32, In); + In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32), + ShufMask); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In, + DAG.getIntPtrConstant(0, DL)); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0, DL)); + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(2, DL)); + OpLo = DAG.getBitcast(MVT::v4i32, OpLo); + OpHi = DAG.getBitcast(MVT::v4i32, OpHi); + static const int ShufMask[] = {0, 2, 4, 6}; + return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask); + } + + if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) { + // On AVX2, v8i32 -> v8i16 becomed PSHUFB. + if (Subtarget->hasInt256()) { + In = DAG.getBitcast(MVT::v32i8, In); + + SmallVector<SDValue,32> pshufbMask; + for (unsigned i = 0; i < 2; ++i) { + pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8)); + for (unsigned j = 0; j < 8; ++j) + pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8)); + } + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask); + In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV); + In = DAG.getBitcast(MVT::v4i64, In); + + static const int ShufMask[] = {0, 2, -1, -1}; + In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64), + &ShufMask[0]); + In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(0, DL)); + return DAG.getBitcast(VT, In); + } + + SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(0, DL)); + + SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(4, DL)); + + OpLo = DAG.getBitcast(MVT::v16i8, OpLo); + OpHi = DAG.getBitcast(MVT::v16i8, OpHi); + + // The PSHUFB mask: + static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13, + -1, -1, -1, -1, -1, -1, -1, -1}; + + SDValue Undef = DAG.getUNDEF(MVT::v16i8); + OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1); + OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1); + + OpLo = DAG.getBitcast(MVT::v4i32, OpLo); + OpHi = DAG.getBitcast(MVT::v4i32, OpHi); + + // The MOVLHPS Mask: + static const int ShufMask2[] = {0, 1, 4, 5}; + SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2); + return DAG.getBitcast(MVT::v8i16, res); + } + + // Handle truncation of V256 to V128 using shuffles. + if (!VT.is128BitVector() || !InVT.is256BitVector()) + return SDValue(); + + assert(Subtarget->hasFp256() && "256-bit vector without AVX!"); + + unsigned NumElems = VT.getVectorNumElements(); + MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2); + + SmallVector<int, 16> MaskVec(NumElems * 2, -1); + // Prepare truncation shuffle mask + for (unsigned i = 0; i != NumElems; ++i) + MaskVec[i] = i * 2; + SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In), + DAG.getUNDEF(NVT), &MaskVec[0]); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, + DAG.getIntPtrConstant(0, DL)); +} + +SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + assert(!Op.getSimpleValueType().isVector()); + + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, + /*IsSigned=*/ true, /*IsReplace=*/ false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. + if (!FIST.getNode()) + return Op; + + if (StackSlot.getNode()) + // Load the result. + return DAG.getLoad(Op.getValueType(), SDLoc(Op), + FIST, StackSlot, MachinePointerInfo(), + false, false, false, 0); + + // The node is the result. + return FIST; +} + +SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, + SelectionDAG &DAG) const { + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, + /*IsSigned=*/ false, /*IsReplace=*/ false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. + if (!FIST.getNode()) + return Op; + + if (StackSlot.getNode()) + // Load the result. + return DAG.getLoad(Op.getValueType(), SDLoc(Op), + FIST, StackSlot, MachinePointerInfo(), + false, false, false, 0); + + // The node is the result. + return FIST; +} + +static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) { + SDLoc DL(Op); + MVT VT = Op.getSimpleValueType(); + SDValue In = Op.getOperand(0); + MVT SVT = In.getSimpleValueType(); + + assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!"); + + return DAG.getNode(X86ISD::VFPEXT, DL, VT, + DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, + In, DAG.getUNDEF(SVT))); +} + +/// The only differences between FABS and FNEG are the mask and the logic op. +/// FNEG also has a folding opportunity for FNEG(FABS(x)). +static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) { + assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) && + "Wrong opcode for lowering FABS or FNEG."); + + bool IsFABS = (Op.getOpcode() == ISD::FABS); + + // If this is a FABS and it has an FNEG user, bail out to fold the combination + // into an FNABS. We'll lower the FABS after that if it is still in use. + if (IsFABS) + for (SDNode *User : Op->uses()) + if (User->getOpcode() == ISD::FNEG) + return Op; + + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + bool IsF128 = (VT == MVT::f128); + + // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to + // decide if we should generate a 16-byte constant mask when we only need 4 or + // 8 bytes for the scalar case. + + MVT LogicVT; + MVT EltVT; + unsigned NumElts; + + if (VT.isVector()) { + LogicVT = VT; + EltVT = VT.getVectorElementType(); + NumElts = VT.getVectorNumElements(); + } else if (IsF128) { + // SSE instructions are used for optimized f128 logical operations. + LogicVT = MVT::f128; + EltVT = VT; + NumElts = 1; + } else { + // There are no scalar bitwise logical SSE/AVX instructions, so we + // generate a 16-byte vector constant and logic op even for the scalar case. + // Using a 16-byte mask allows folding the load of the mask with + // the logic op, so it can save (~4 bytes) on code size. + LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32; + EltVT = VT; + NumElts = (VT == MVT::f64) ? 2 : 4; + } + + unsigned EltBits = EltVT.getSizeInBits(); + LLVMContext *Context = DAG.getContext(); + // For FABS, mask is 0x7f...; for FNEG, mask is 0x80... + APInt MaskElt = + IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits); + Constant *C = ConstantInt::get(*Context, MaskElt); + C = ConstantVector::getSplat(NumElts, C); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout())); + unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); + SDValue Mask = + DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + false, false, false, Alignment); + + SDValue Op0 = Op.getOperand(0); + bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS); + unsigned LogicOp = + IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR; + SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0; + + if (VT.isVector() || IsF128) + return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); + + // For the scalar case extend to a 128-bit vector, perform the logic op, + // and extract the scalar result back out. + Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand); + SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode, + DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + LLVMContext *Context = DAG.getContext(); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + MVT SrcVT = Op1.getSimpleValueType(); + bool IsF128 = (VT == MVT::f128); + + // If second operand is smaller, extend it first. + if (SrcVT.bitsLT(VT)) { + Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); + SrcVT = VT; + } + // And if it is bigger, shrink it first. + if (SrcVT.bitsGT(VT)) { + Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl)); + SrcVT = VT; + } + + // At this point the operands and the result should have the same + // type, and that won't be f80 since that is not custom lowered. + assert((VT == MVT::f64 || VT == MVT::f32 || IsF128) && + "Unexpected type in LowerFCOPYSIGN"); + + const fltSemantics &Sem = + VT == MVT::f64 ? APFloat::IEEEdouble : + (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle); + const unsigned SizeInBits = VT.getSizeInBits(); + + SmallVector<Constant *, 4> CV( + VT == MVT::f64 ? 2 : (IsF128 ? 1 : 4), + ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0)))); + + // First, clear all bits but the sign bit from the second operand (sign). + CV[0] = ConstantFP::get(*Context, + APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1))); + Constant *C = ConstantVector::get(CV); + auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16); + + // Perform all logic operations as 16-byte vectors because there are no + // scalar FP logic instructions in SSE. This allows load folding of the + // constants into the logic instructions. + MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : (IsF128 ? MVT::f128 : MVT::v4f32); + SDValue Mask1 = + DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + false, false, false, 16); + if (!IsF128) + Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1); + SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1); + + // Next, clear the sign bit from the first operand (magnitude). + // If it's a constant, we can clear it here. + if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) { + APFloat APF = Op0CN->getValueAPF(); + // If the magnitude is a positive zero, the sign bit alone is enough. + if (APF.isPosZero()) + return IsF128 ? SignBit : + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit, + DAG.getIntPtrConstant(0, dl)); + APF.clearSign(); + CV[0] = ConstantFP::get(*Context, APF); + } else { + CV[0] = ConstantFP::get( + *Context, + APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1))); + } + C = ConstantVector::get(CV); + CPIdx = DAG.getConstantPool(C, PtrVT, 16); + SDValue Val = + DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), + false, false, false, 16); + // If the magnitude operand wasn't a constant, we need to AND out the sign. + if (!isa<ConstantFPSDNode>(Op0)) { + if (!IsF128) + Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0); + Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val); + } + // OR the magnitude value with the sign bit. + Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit); + return IsF128 ? Val : + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val, + DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) { + SDValue N0 = Op.getOperand(0); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1). + SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0, + DAG.getConstant(1, dl, VT)); + return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT)); +} + +// Check whether an OR'd tree is PTEST-able. +static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree."); + + if (!Subtarget->hasSSE41()) + return SDValue(); + + if (!Op->hasOneUse()) + return SDValue(); + + SDNode *N = Op.getNode(); + SDLoc DL(N); + + SmallVector<SDValue, 8> Opnds; + DenseMap<SDValue, unsigned> VecInMap; + SmallVector<SDValue, 8> VecIns; + EVT VT = MVT::Other; + + // Recognize a special case where a vector is casted into wide integer to + // test all 0s. + Opnds.push_back(N->getOperand(0)); + Opnds.push_back(N->getOperand(1)); + + for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) { + SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot; + // BFS traverse all OR'd operands. + if (I->getOpcode() == ISD::OR) { + Opnds.push_back(I->getOperand(0)); + Opnds.push_back(I->getOperand(1)); + // Re-evaluate the number of nodes to be traversed. + e += 2; // 2 more nodes (LHS and RHS) are pushed. + continue; + } + + // Quit if a non-EXTRACT_VECTOR_ELT + if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + // Quit if without a constant index. + SDValue Idx = I->getOperand(1); + if (!isa<ConstantSDNode>(Idx)) + return SDValue(); + + SDValue ExtractedFromVec = I->getOperand(0); + DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec); + if (M == VecInMap.end()) { + VT = ExtractedFromVec.getValueType(); + // Quit if not 128/256-bit vector. + if (!VT.is128BitVector() && !VT.is256BitVector()) + return SDValue(); + // Quit if not the same type. + if (VecInMap.begin() != VecInMap.end() && + VT != VecInMap.begin()->first.getValueType()) + return SDValue(); + M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first; + VecIns.push_back(ExtractedFromVec); + } + M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue(); + } + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Not extracted from 128-/256-bit vector."); + + unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U; + + for (DenseMap<SDValue, unsigned>::const_iterator + I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) { + // Quit if not all elements are used. + if (I->second != FullMask) + return SDValue(); + } + + MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64; + + // Cast all vectors into TestVT for PTEST. + for (unsigned i = 0, e = VecIns.size(); i < e; ++i) + VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]); + + // If more than one full vectors are evaluated, OR them first before PTEST. + for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) { + // Each iteration will OR 2 nodes and append the result until there is only + // 1 node left, i.e. the final OR'd value of all vectors. + SDValue LHS = VecIns[Slot]; + SDValue RHS = VecIns[Slot + 1]; + VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS)); + } + + return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, + VecIns.back(), VecIns.back()); +} + +/// \brief return true if \c Op has a use that doesn't just read flags. +static bool hasNonFlagsUse(SDValue Op) { + for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE; + ++UI) { + SDNode *User = *UI; + unsigned UOpNo = UI.getOperandNo(); + if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { + // Look pass truncate. + UOpNo = User->use_begin().getOperandNo(); + User = *User->use_begin(); + } + + if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC && + !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) + return true; + } + return false; +} + +/// Emit nodes that will be selected as "test Op0,Op0", or something +/// equivalent. +SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl, + SelectionDAG &DAG) const { + if (Op.getValueType() == MVT::i1) { + SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op); + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp, + DAG.getConstant(0, dl, MVT::i8)); + } + // CF and OF aren't always set the way we want. Determine which + // of these we need. + bool NeedCF = false; + bool NeedOF = false; + switch (X86CC) { + default: break; + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + NeedCF = true; + break; + case X86::COND_G: case X86::COND_GE: + case X86::COND_L: case X86::COND_LE: + case X86::COND_O: case X86::COND_NO: { + // Check if we really need to set the + // Overflow flag. If NoSignedWrap is present + // that is not actually needed. + switch (Op->getOpcode()) { + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::SHL: { + const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode()); + if (BinNode->Flags.hasNoSignedWrap()) + break; + } + default: + NeedOF = true; + break; + } + break; + } + } + // See if we can use the EFLAGS value from the operand instead of + // doing a separate TEST. TEST always sets OF and CF to 0, so unless + // we prove that the arithmetic won't overflow, we can't use OF or CF. + if (Op.getResNo() != 0 || NeedOF || NeedCF) { + // Emit a CMP with 0, which is the TEST pattern. + //if (Op.getValueType() == MVT::i1) + // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op, + // DAG.getConstant(0, MVT::i1)); + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, dl, Op.getValueType())); + } + unsigned Opcode = 0; + unsigned NumOperands = 0; + + // Truncate operations may prevent the merge of the SETCC instruction + // and the arithmetic instruction before it. Attempt to truncate the operands + // of the arithmetic instruction and use a reduced bit-width instruction. + bool NeedTruncation = false; + SDValue ArithOp = Op; + if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) { + SDValue Arith = Op->getOperand(0); + // Both the trunc and the arithmetic op need to have one user each. + if (Arith->hasOneUse()) + switch (Arith.getOpcode()) { + default: break; + case ISD::ADD: + case ISD::SUB: + case ISD::AND: + case ISD::OR: + case ISD::XOR: { + NeedTruncation = true; + ArithOp = Arith; + } + } + } + + // NOTICE: In the code below we use ArithOp to hold the arithmetic operation + // which may be the result of a CAST. We use the variable 'Op', which is the + // non-casted variable when we check for possible users. + switch (ArithOp.getOpcode()) { + case ISD::ADD: + // Due to an isel shortcoming, be conservative if this add is likely to be + // selected as part of a load-modify-store instruction. When the root node + // in a match is a store, isel doesn't know how to remap non-chain non-flag + // uses of other nodes in the match, such as the ADD in this case. This + // leads to the ADD being left around and reselected, with the result being + // two adds in the output. Alas, even if none our users are stores, that + // doesn't prove we're O.K. Ergo, if we have any parents that aren't + // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require + // climbing the DAG back to the root, and it doesn't seem to be worth the + // effort. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && + UI->getOpcode() != ISD::SETCC && + UI->getOpcode() != ISD::STORE) + goto default_case; + + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) { + // An add of one will be selected as an INC. + if (C->isOne() && !Subtarget->slowIncDec()) { + Opcode = X86ISD::INC; + NumOperands = 1; + break; + } + + // An add of negative one (subtract of one) will be selected as a DEC. + if (C->isAllOnesValue() && !Subtarget->slowIncDec()) { + Opcode = X86ISD::DEC; + NumOperands = 1; + break; + } + } + + // Otherwise use a regular EFLAGS-setting add. + Opcode = X86ISD::ADD; + NumOperands = 2; + break; + case ISD::SHL: + case ISD::SRL: + // If we have a constant logical shift that's only used in a comparison + // against zero turn it into an equivalent AND. This allows turning it into + // a TEST instruction later. + if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() && + isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) { + EVT VT = Op.getValueType(); + unsigned BitWidth = VT.getSizeInBits(); + unsigned ShAmt = Op->getConstantOperandVal(1); + if (ShAmt >= BitWidth) // Avoid undefined shifts. + break; + APInt Mask = ArithOp.getOpcode() == ISD::SRL + ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt) + : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt); + if (!Mask.isSignedIntN(32)) // Avoid large immediates. + break; + SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0), + DAG.getConstant(Mask, dl, VT)); + DAG.ReplaceAllUsesWith(Op, New); + Op = New; + } + break; + + case ISD::AND: + // If the primary and result isn't used, don't bother using X86ISD::AND, + // because a TEST instruction will be better. + if (!hasNonFlagsUse(Op)) + break; + // FALL THROUGH + case ISD::SUB: + case ISD::OR: + case ISD::XOR: + // Due to the ISEL shortcoming noted above, be conservative if this op is + // likely to be selected as part of a load-modify-store instruction. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() == ISD::STORE) + goto default_case; + + // Otherwise use a regular EFLAGS-setting instruction. + switch (ArithOp.getOpcode()) { + default: llvm_unreachable("unexpected operator!"); + case ISD::SUB: Opcode = X86ISD::SUB; break; + case ISD::XOR: Opcode = X86ISD::XOR; break; + case ISD::AND: Opcode = X86ISD::AND; break; + case ISD::OR: { + if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) { + SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG); + if (EFLAGS.getNode()) + return EFLAGS; + } + Opcode = X86ISD::OR; + break; + } + } + + NumOperands = 2; + break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + return SDValue(Op.getNode(), 1); + default: + default_case: + break; + } + + // If we found that truncation is beneficial, perform the truncation and + // update 'Op'. + if (NeedTruncation) { + EVT VT = Op.getValueType(); + SDValue WideVal = Op->getOperand(0); + EVT WideVT = WideVal.getValueType(); + unsigned ConvertedOp = 0; + // Use a target machine opcode to prevent further DAGCombine + // optimizations that may separate the arithmetic operations + // from the setcc node. + switch (WideVal.getOpcode()) { + default: break; + case ISD::ADD: ConvertedOp = X86ISD::ADD; break; + case ISD::SUB: ConvertedOp = X86ISD::SUB; break; + case ISD::AND: ConvertedOp = X86ISD::AND; break; + case ISD::OR: ConvertedOp = X86ISD::OR; break; + case ISD::XOR: ConvertedOp = X86ISD::XOR; break; + } + + if (ConvertedOp) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) { + SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0)); + SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1)); + Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1); + } + } + } + + if (Opcode == 0) + // Emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, dl, Op.getValueType())); + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands); + + SDValue New = DAG.getNode(Opcode, dl, VTs, Ops); + DAG.ReplaceAllUsesWith(Op, New); + return SDValue(New.getNode(), 1); +} + +/// Emit nodes that will be selected as "cmp Op0,Op1", or something +/// equivalent. +SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, + SDLoc dl, SelectionDAG &DAG) const { + if (isNullConstant(Op1)) + return EmitTest(Op0, X86CC, dl, DAG); + + assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) && + "Unexpected comparison operation for MVT::i1 operands"); + + if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 || + Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) { + // Do the comparison at i32 if it's smaller, besides the Atom case. + // This avoids subregister aliasing issues. Keep the smaller reference + // if we're optimizing for size, however, as that'll allow better folding + // of memory operations. + if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 && + !DAG.getMachineFunction().getFunction()->optForMinSize() && + !Subtarget->isAtom()) { + unsigned ExtendOp = + isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; + Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0); + Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1); + } + // Use SUB instead of CMP to enable CSE between SUB and CMP. + SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32); + SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, + Op0, Op1); + return SDValue(Sub.getNode(), 1); + } + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); +} + +/// Convert a comparison if required by the subtarget. +SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp, + SelectionDAG &DAG) const { + // If the subtarget does not support the FUCOMI instruction, floating-point + // comparisons have to be converted. + if (Subtarget->hasCMov() || + Cmp.getOpcode() != X86ISD::CMP || + !Cmp.getOperand(0).getValueType().isFloatingPoint() || + !Cmp.getOperand(1).getValueType().isFloatingPoint()) + return Cmp; + + // The instruction selector will select an FUCOM instruction instead of + // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence + // build an SDNode sequence that transfers the result from FPSW into EFLAGS: + // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8)))) + SDLoc dl(Cmp); + SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp); + SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW); + SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW, + DAG.getConstant(8, dl, MVT::i8)); + SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl); + + // Some 64-bit targets lack SAHF support, but they do support FCOMI. + assert(Subtarget->hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?"); + return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl); +} + +/// The minimum architected relative accuracy is 2^-12. We need one +/// Newton-Raphson step to have a good float result (24 bits of precision). +SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op, + DAGCombinerInfo &DCI, + unsigned &RefinementSteps, + bool &UseOneConstNR) const { + EVT VT = Op.getValueType(); + const char *RecipOp; + + // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps. + // TODO: Add support for AVX512 (v16f32). + // It is likely not profitable to do this for f64 because a double-precision + // rsqrt estimate with refinement on x86 prior to FMA requires at least 16 + // instructions: convert to single, rsqrtss, convert back to double, refine + // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA + // along with FMA, this could be a throughput win. + if (VT == MVT::f32 && Subtarget->hasSSE1()) + RecipOp = "sqrtf"; + else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || + (VT == MVT::v8f32 && Subtarget->hasAVX())) + RecipOp = "vec-sqrtf"; + else + return SDValue(); + + TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; + if (!Recips.isEnabled(RecipOp)) + return SDValue(); + + RefinementSteps = Recips.getRefinementSteps(RecipOp); + UseOneConstNR = false; + return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op); +} + +/// The minimum architected relative accuracy is 2^-12. We need one +/// Newton-Raphson step to have a good float result (24 bits of precision). +SDValue X86TargetLowering::getRecipEstimate(SDValue Op, + DAGCombinerInfo &DCI, + unsigned &RefinementSteps) const { + EVT VT = Op.getValueType(); + const char *RecipOp; + + // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps. + // TODO: Add support for AVX512 (v16f32). + // It is likely not profitable to do this for f64 because a double-precision + // reciprocal estimate with refinement on x86 prior to FMA requires + // 15 instructions: convert to single, rcpss, convert back to double, refine + // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA + // along with FMA, this could be a throughput win. + if (VT == MVT::f32 && Subtarget->hasSSE1()) + RecipOp = "divf"; + else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) || + (VT == MVT::v8f32 && Subtarget->hasAVX())) + RecipOp = "vec-divf"; + else + return SDValue(); + + TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals; + if (!Recips.isEnabled(RecipOp)) + return SDValue(); + + RefinementSteps = Recips.getRefinementSteps(RecipOp); + return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op); +} + +/// If we have at least two divisions that use the same divisor, convert to +/// multplication by a reciprocal. This may need to be adjusted for a given +/// CPU if a division's cost is not at least twice the cost of a multiplication. +/// This is because we still need one division to calculate the reciprocal and +/// then we need two multiplies by that reciprocal as replacements for the +/// original divisions. +unsigned X86TargetLowering::combineRepeatedFPDivisors() const { + return 2; +} + +/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node +/// if it's possible. +SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, + SDLoc dl, SelectionDAG &DAG) const { + SDValue Op0 = And.getOperand(0); + SDValue Op1 = And.getOperand(1); + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + if (Op1.getOpcode() == ISD::TRUNCATE) + Op1 = Op1.getOperand(0); + + SDValue LHS, RHS; + if (Op1.getOpcode() == ISD::SHL) + std::swap(Op0, Op1); + if (Op0.getOpcode() == ISD::SHL) { + if (isOneConstant(Op0.getOperand(0))) { + // If we looked past a truncate, check that it's only truncating away + // known zeros. + unsigned BitWidth = Op0.getValueSizeInBits(); + unsigned AndBitWidth = And.getValueSizeInBits(); + if (BitWidth > AndBitWidth) { + APInt Zeros, Ones; + DAG.computeKnownBits(Op0, Zeros, Ones); + if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) + return SDValue(); + } + LHS = Op1; + RHS = Op0.getOperand(1); + } + } else if (Op1.getOpcode() == ISD::Constant) { + ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); + uint64_t AndRHSVal = AndRHS->getZExtValue(); + SDValue AndLHS = Op0; + + if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) { + LHS = AndLHS.getOperand(0); + RHS = AndLHS.getOperand(1); + } + + // Use BT if the immediate can't be encoded in a TEST instruction. + if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) { + LHS = AndLHS; + RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType()); + } + } + + if (LHS.getNode()) { + // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT + // instruction. Since the shift amount is in-range-or-undefined, we know + // that doing a bittest on the i32 value is ok. We extend to i32 because + // the encoding for the i16 version is larger than the i32 version. + // Also promote i16 to i32 for performance / code size reason. + if (LHS.getValueType() == MVT::i8 || + LHS.getValueType() == MVT::i16) + LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); + + // If the operand types disagree, extend the shift amount to match. Since + // BT ignores high bits (like shifts) we can use anyextend. + if (LHS.getValueType() != RHS.getValueType()) + RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); + + SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); + X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(Cond, dl, MVT::i8), BT); + } + + return SDValue(); +} + +/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point +/// mask CMPs. +static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0, + SDValue &Op1) { + unsigned SSECC; + bool Swap = false; + + // SSE Condition code mapping: + // 0 - EQ + // 1 - LT + // 2 - LE + // 3 - UNORD + // 4 - NEQ + // 5 - NLT + // 6 - NLE + // 7 - ORD + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETOEQ: + case ISD::SETEQ: SSECC = 0; break; + case ISD::SETOGT: + case ISD::SETGT: Swap = true; // Fallthrough + case ISD::SETLT: + case ISD::SETOLT: SSECC = 1; break; + case ISD::SETOGE: + case ISD::SETGE: Swap = true; // Fallthrough + case ISD::SETLE: + case ISD::SETOLE: SSECC = 2; break; + case ISD::SETUO: SSECC = 3; break; + case ISD::SETUNE: + case ISD::SETNE: SSECC = 4; break; + case ISD::SETULE: Swap = true; // Fallthrough + case ISD::SETUGE: SSECC = 5; break; + case ISD::SETULT: Swap = true; // Fallthrough + case ISD::SETUGT: SSECC = 6; break; + case ISD::SETO: SSECC = 7; break; + case ISD::SETUEQ: + case ISD::SETONE: SSECC = 8; break; + } + if (Swap) + std::swap(Op0, Op1); + + return SSECC; +} + +// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128 +// ones, and then concatenate the result back. +static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + SDLoc dl(Op); + SDValue CC = Op.getOperand(2); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); + + // Issue the operation on the smaller types and concatenate the result back + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC)); +} + +static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 && + "Unexpected type for boolean compare operation"); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0, + DAG.getConstant(-1, dl, VT)); + SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1, + DAG.getConstant(-1, dl, VT)); + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETEQ: + // (x == y) -> ~(x ^ y) + return DAG.getNode(ISD::XOR, dl, VT, + DAG.getNode(ISD::XOR, dl, VT, Op0, Op1), + DAG.getConstant(-1, dl, VT)); + case ISD::SETNE: + // (x != y) -> (x ^ y) + return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1); + case ISD::SETUGT: + case ISD::SETGT: + // (x > y) -> (x & ~y) + return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1); + case ISD::SETULT: + case ISD::SETLT: + // (x < y) -> (~x & y) + return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1); + case ISD::SETULE: + case ISD::SETLE: + // (x <= y) -> (~x | y) + return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1); + case ISD::SETUGE: + case ISD::SETGE: + // (x >=y) -> (x | ~y) + return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1); + } +} + +static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + + assert(Op0.getSimpleValueType().getVectorElementType().getSizeInBits() >= 8 && + Op.getSimpleValueType().getVectorElementType() == MVT::i1 && + "Cannot set masked compare for this operation"); + + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + unsigned Opc = 0; + bool Unsigned = false; + bool Swap = false; + unsigned SSECC; + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETNE: SSECC = 4; break; + case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break; + case ISD::SETUGT: SSECC = 6; Unsigned = true; break; + case ISD::SETLT: Swap = true; //fall-through + case ISD::SETGT: Opc = X86ISD::PCMPGTM; break; + case ISD::SETULT: SSECC = 1; Unsigned = true; break; + case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT + case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap + case ISD::SETULE: Unsigned = true; //fall-through + case ISD::SETLE: SSECC = 2; break; + } + + if (Swap) + std::swap(Op0, Op1); + if (Opc) + return DAG.getNode(Opc, dl, VT, Op0, Op1); + Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM; + return DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(SSECC, dl, MVT::i8)); +} + +/// \brief Try to turn a VSETULT into a VSETULE by modifying its second +/// operand \p Op1. If non-trivial (for example because it's not constant) +/// return an empty value. +static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG) +{ + BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode()); + if (!BV) + return SDValue(); + + MVT VT = Op1.getSimpleValueType(); + MVT EVT = VT.getVectorElementType(); + unsigned n = VT.getVectorNumElements(); + SmallVector<SDValue, 8> ULTOp1; + + for (unsigned i = 0; i < n; ++i) { + ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i)); + if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT) + return SDValue(); + + // Avoid underflow. + APInt Val = Elt->getAPIntValue(); + if (Val == 0) + return SDValue(); + + ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT)); + } + + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1); +} + +static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + MVT VT = Op.getSimpleValueType(); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint(); + SDLoc dl(Op); + + if (isFP) { +#ifndef NDEBUG + MVT EltVT = Op0.getSimpleValueType().getVectorElementType(); + assert(EltVT == MVT::f32 || EltVT == MVT::f64); +#endif + + unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1); + unsigned Opc = X86ISD::CMPP; + if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) { + assert(VT.getVectorNumElements() <= 16); + Opc = X86ISD::CMPM; + } + // In the two special cases we can't handle, emit two comparisons. + if (SSECC == 8) { + unsigned CC0, CC1; + unsigned CombineOpc; + if (SetCCOpcode == ISD::SETUEQ) { + CC0 = 3; CC1 = 0; CombineOpc = ISD::OR; + } else { + assert(SetCCOpcode == ISD::SETONE); + CC0 = 7; CC1 = 4; CombineOpc = ISD::AND; + } + + SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CC0, dl, MVT::i8)); + SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CC1, dl, MVT::i8)); + return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1); + } + // Handle all other FP comparisons here. + return DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(SSECC, dl, MVT::i8)); + } + + MVT VTOp0 = Op0.getSimpleValueType(); + assert(VTOp0 == Op1.getSimpleValueType() && + "Expected operands with same type!"); + assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() && + "Invalid number of packed elements for source and destination!"); + + if (VT.is128BitVector() && VTOp0.is256BitVector()) { + // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type + // legalizer to a wider vector type. In the case of 'vsetcc' nodes, the + // legalizer firstly checks if the first operand in input to the setcc has + // a legal type. If so, then it promotes the return type to that same type. + // Otherwise, the return type is promoted to the 'next legal type' which, + // for a vector of MVT::i1 is always a 128-bit integer vector type. + // + // We reach this code only if the following two conditions are met: + // 1. Both return type and operand type have been promoted to wider types + // by the type legalizer. + // 2. The original operand type has been promoted to a 256-bit vector. + // + // Note that condition 2. only applies for AVX targets. + SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode); + return DAG.getZExtOrTrunc(NewOp, dl, VT); + } + + // The non-AVX512 code below works under the assumption that source and + // destination types are the same. + assert((Subtarget->hasAVX512() || (VT == VTOp0)) && + "Value types for source and destination must be the same!"); + + // Break 256-bit integer vector compare into smaller ones. + if (VT.is256BitVector() && !Subtarget->hasInt256()) + return Lower256IntVSETCC(Op, DAG); + + MVT OpVT = Op1.getSimpleValueType(); + if (OpVT.getVectorElementType() == MVT::i1) + return LowerBoolVSETCC_AVX512(Op, DAG); + + bool MaskResult = (VT.getVectorElementType() == MVT::i1); + if (Subtarget->hasAVX512()) { + if (Op1.getSimpleValueType().is512BitVector() || + (Subtarget->hasBWI() && Subtarget->hasVLX()) || + (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32)) + return LowerIntVSETCC_AVX512(Op, DAG, Subtarget); + + // In AVX-512 architecture setcc returns mask with i1 elements, + // But there is no compare instruction for i8 and i16 elements in KNL. + // We are not talking about 512-bit operands in this case, these + // types are illegal. + if (MaskResult && + (OpVT.getVectorElementType().getSizeInBits() < 32 && + OpVT.getVectorElementType().getSizeInBits() >= 8)) + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC)); + } + + // Lower using XOP integer comparisons. + if ((VT == MVT::v16i8 || VT == MVT::v8i16 || + VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget->hasXOP()) { + // Translate compare code to XOP PCOM compare mode. + unsigned CmpMode = 0; + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETULT: + case ISD::SETLT: CmpMode = 0x00; break; + case ISD::SETULE: + case ISD::SETLE: CmpMode = 0x01; break; + case ISD::SETUGT: + case ISD::SETGT: CmpMode = 0x02; break; + case ISD::SETUGE: + case ISD::SETGE: CmpMode = 0x03; break; + case ISD::SETEQ: CmpMode = 0x04; break; + case ISD::SETNE: CmpMode = 0x05; break; + } + + // Are we comparing unsigned or signed integers? + unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode) + ? X86ISD::VPCOMU : X86ISD::VPCOM; + + return DAG.getNode(Opc, dl, VT, Op0, Op1, + DAG.getConstant(CmpMode, dl, MVT::i8)); + } + + // We are handling one of the integer comparisons here. Since SSE only has + // GT and EQ comparisons for integer, swapping operands and multiple + // operations may be required for some comparisons. + unsigned Opc; + bool Swap = false, Invert = false, FlipSigns = false, MinMax = false; + bool Subus = false; + + switch (SetCCOpcode) { + default: llvm_unreachable("Unexpected SETCC condition"); + case ISD::SETNE: Invert = true; + case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break; + case ISD::SETLT: Swap = true; + case ISD::SETGT: Opc = X86ISD::PCMPGT; break; + case ISD::SETGE: Swap = true; + case ISD::SETLE: Opc = X86ISD::PCMPGT; + Invert = true; break; + case ISD::SETULT: Swap = true; + case ISD::SETUGT: Opc = X86ISD::PCMPGT; + FlipSigns = true; break; + case ISD::SETUGE: Swap = true; + case ISD::SETULE: Opc = X86ISD::PCMPGT; + FlipSigns = true; Invert = true; break; + } + + // Special case: Use min/max operations for SETULE/SETUGE + MVT VET = VT.getVectorElementType(); + bool hasMinMax = + (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32)) + || (Subtarget->hasSSE2() && (VET == MVT::i8)); + + if (hasMinMax) { + switch (SetCCOpcode) { + default: break; + case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break; + case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break; + } + + if (MinMax) { Swap = false; Invert = false; FlipSigns = false; } + } + + bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16); + if (!MinMax && hasSubus) { + // As another special case, use PSUBUS[BW] when it's profitable. E.g. for + // Op0 u<= Op1: + // t = psubus Op0, Op1 + // pcmpeq t, <0..0> + switch (SetCCOpcode) { + default: break; + case ISD::SETULT: { + // If the comparison is against a constant we can turn this into a + // setule. With psubus, setule does not require a swap. This is + // beneficial because the constant in the register is no longer + // destructed as the destination so it can be hoisted out of a loop. + // Only do this pre-AVX since vpcmp* is no longer destructive. + if (Subtarget->hasAVX()) + break; + SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG); + if (ULEOp1.getNode()) { + Op1 = ULEOp1; + Subus = true; Invert = false; Swap = false; + } + break; + } + // Psubus is better than flip-sign because it requires no inversion. + case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break; + case ISD::SETULE: Subus = true; Invert = false; Swap = false; break; + } + + if (Subus) { + Opc = X86ISD::SUBUS; + FlipSigns = false; + } + } + + if (Swap) + std::swap(Op0, Op1); + + // Check that the operation in question is available (most are plain SSE2, + // but PCMPGTQ and PCMPEQQ have different requirements). + if (VT == MVT::v2i64) { + if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) { + assert(Subtarget->hasSSE2() && "Don't know how to lower!"); + + // First cast everything to the right type. + Op0 = DAG.getBitcast(MVT::v4i32, Op0); + Op1 = DAG.getBitcast(MVT::v4i32, Op1); + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. The lower + // compare is always unsigned. + SDValue SB; + if (FlipSigns) { + SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32); + } else { + SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32); + SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32); + SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, + Sign, Zero, Sign, Zero); + } + Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB); + Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB); + + // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2)) + SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1); + SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1); + + // Create masks for only the low parts/high parts of the 64 bit integers. + static const int MaskHi[] = { 1, 1, 3, 3 }; + static const int MaskLo[] = { 0, 0, 2, 2 }; + SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi); + SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo); + SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi); + + SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo); + Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi); + + if (Invert) + Result = DAG.getNOT(dl, Result, MVT::v4i32); + + return DAG.getBitcast(VT, Result); + } + + if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) { + // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with + // pcmpeqd + pshufd + pand. + assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!"); + + // First cast everything to the right type. + Op0 = DAG.getBitcast(MVT::v4i32, Op0); + Op1 = DAG.getBitcast(MVT::v4i32, Op1); + + // Do the compare. + SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1); + + // Make sure the lower and upper halves are both all-ones. + static const int Mask[] = { 1, 0, 3, 2 }; + SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask); + Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf); + + if (Invert) + Result = DAG.getNOT(dl, Result, MVT::v4i32); + + return DAG.getBitcast(VT, Result); + } + } + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. + if (FlipSigns) { + MVT EltVT = VT.getVectorElementType(); + SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl, + VT); + Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB); + Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB); + } + + SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); + + // If the logical-not of the result is required, perform that now. + if (Invert) + Result = DAG.getNOT(dl, Result, VT); + + if (MinMax) + Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result); + + if (Subus) + Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result, + getZeroVector(VT, Subtarget, DAG, dl)); + + return Result; +} + +SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + + MVT VT = Op.getSimpleValueType(); + + if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG); + + assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1)) + && "SetCC type must be 8-bit or 1-bit integer"); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDLoc dl(Op); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + // Optimize to BT if possible. + // Lower (X & (1 << N)) == 0 to BT(X, N). + // Lower ((X >>u N) & 1) != 0 to BT(X, N). + // Lower ((X >>s N) & 1) != 0 to BT(X, N). + if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && + isNullConstant(Op1) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) { + if (VT == MVT::i1) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC); + return NewSetCC; + } + } + + // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of + // these. + if ((isOneConstant(Op1) || isNullConstant(Op1)) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + + // If the input is a setcc, then reuse the input setcc or use a new one with + // the inverted condition. + if (Op0.getOpcode() == X86ISD::SETCC) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1); + if (!Invert) + return Op0; + + CCode = X86::GetOppositeBranchCondition(CCode); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(CCode, dl, MVT::i8), + Op0.getOperand(1)); + if (VT == MVT::i1) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); + return SetCC; + } + } + if ((Op0.getValueType() == MVT::i1) && isOneConstant(Op1) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + + ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true); + return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC); + } + + bool isFP = Op1.getSimpleValueType().isFloatingPoint(); + unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG); + if (X86CC == X86::COND_INVALID) + return SDValue(); + + SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG); + EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS); + if (VT == MVT::i1) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC); + return SetCC; +} + +SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const { + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue Carry = Op.getOperand(2); + SDValue Cond = Op.getOperand(3); + SDLoc DL(Op); + + assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only."); + X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get()); + + assert(Carry.getOpcode() != ISD::CARRY_FALSE); + SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry); + return DAG.getNode(X86ISD::SETCC, DL, Op.getValueType(), + DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1)); +} + +// isX86LogicalCmp - Return true if opcode is a X86 logical comparison. +static bool isX86LogicalCmp(SDValue Op) { + unsigned Opc = Op.getNode()->getOpcode(); + if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI || + Opc == X86ISD::SAHF) + return true; + if (Op.getResNo() == 1 && + (Opc == X86ISD::ADD || + Opc == X86ISD::SUB || + Opc == X86ISD::ADC || + Opc == X86ISD::SBB || + Opc == X86ISD::SMUL || + Opc == X86ISD::UMUL || + Opc == X86ISD::INC || + Opc == X86ISD::DEC || + Opc == X86ISD::OR || + Opc == X86ISD::XOR || + Opc == X86ISD::AND)) + return true; + + if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) + return true; + + return false; +} + +static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) { + if (V.getOpcode() != ISD::TRUNCATE) + return false; + + SDValue VOp0 = V.getOperand(0); + unsigned InBits = VOp0.getValueSizeInBits(); + unsigned Bits = V.getValueSizeInBits(); + return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits)); +} + +SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Cond = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + SDLoc DL(Op); + MVT VT = Op1.getSimpleValueType(); + SDValue CC; + + // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops + // are available or VBLENDV if AVX is available. + // Otherwise FP cmovs get lowered into a less efficient branch sequence later. + if (Cond.getOpcode() == ISD::SETCC && + ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) || + (Subtarget->hasSSE1() && VT == MVT::f32)) && + VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) { + SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1); + int SSECC = translateX86FSETCC( + cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1); + + if (SSECC != 8) { + if (Subtarget->hasAVX512()) { + SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1, + DAG.getConstant(SSECC, DL, MVT::i8)); + return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2); + } + + SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1, + DAG.getConstant(SSECC, DL, MVT::i8)); + + // If we have AVX, we can use a variable vector select (VBLENDV) instead + // of 3 logic instructions for size savings and potentially speed. + // Unfortunately, there is no scalar form of VBLENDV. + + // If either operand is a constant, don't try this. We can expect to + // optimize away at least one of the logic instructions later in that + // case, so that sequence would be faster than a variable blend. + + // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly + // uses XMM0 as the selection register. That may need just as many + // instructions as the AND/ANDN/OR sequence due to register moves, so + // don't bother. + + if (Subtarget->hasAVX() && + !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) { + + // Convert to vectors, do a VSELECT, and convert back to scalar. + // All of the conversions should be optimized away. + + MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64; + SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1); + SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2); + SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp); + + MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64; + VCmp = DAG.getBitcast(VCmpVT, VCmp); + + SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2); + + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, + VSel, DAG.getIntPtrConstant(0, DL)); + } + SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2); + SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1); + return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And); + } + } + + if (VT.isVector() && VT.getVectorElementType() == MVT::i1) { + SDValue Op1Scalar; + if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode())) + Op1Scalar = ConvertI1VectorToInteger(Op1, DAG); + else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0)) + Op1Scalar = Op1.getOperand(0); + SDValue Op2Scalar; + if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode())) + Op2Scalar = ConvertI1VectorToInteger(Op2, DAG); + else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0)) + Op2Scalar = Op2.getOperand(0); + if (Op1Scalar.getNode() && Op2Scalar.getNode()) { + SDValue newSelect = DAG.getNode(ISD::SELECT, DL, + Op1Scalar.getValueType(), + Cond, Op1Scalar, Op2Scalar); + if (newSelect.getValueSizeInBits() == VT.getSizeInBits()) + return DAG.getBitcast(VT, newSelect); + SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec, + DAG.getIntPtrConstant(0, DL)); + } + } + + if (VT == MVT::v4i1 || VT == MVT::v2i1) { + SDValue zeroConst = DAG.getIntPtrConstant(0, DL); + Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, + DAG.getUNDEF(MVT::v8i1), Op1, zeroConst); + Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1, + DAG.getUNDEF(MVT::v8i1), Op2, zeroConst); + SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1, + Cond, Op1, Op2); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst); + } + + if (Cond.getOpcode() == ISD::SETCC) { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } + + // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y + // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y + // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y + // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y + if (Cond.getOpcode() == X86ISD::SETCC && + Cond.getOperand(1).getOpcode() == X86ISD::CMP && + isNullConstant(Cond.getOperand(1).getOperand(1))) { + SDValue Cmp = Cond.getOperand(1); + + unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); + + if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && + (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { + SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2; + + SDValue CmpOp0 = Cmp.getOperand(0); + // Apply further optimizations for special cases + // (select (x != 0), -1, 0) -> neg & sbb + // (select (x == 0), 0, -1) -> neg & sbb + if (isNullConstant(Y) && + (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) { + SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32); + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs, + DAG.getConstant(0, DL, + CmpOp0.getValueType()), + CmpOp0); + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), + SDValue(Neg.getNode(), 1)); + return Res; + } + + Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, + CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType())); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + + SDValue Res = // Res = 0 or -1. + DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp); + + if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E)) + Res = DAG.getNOT(DL, Res, Res.getValueType()); + + if (!isNullConstant(Op2)) + Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); + return Res; + } + } + + // Look past (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && + isOneConstant(Cond.getOperand(1))) + Cond = Cond.getOperand(0); + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + MVT VT = Op.getSimpleValueType(); + + bool IllegalFPCMov = false; + if (VT.isFloatingPoint() && !VT.isVector() && + !isScalarFPTypeInSSEReg(VT)) // FPStack? + IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); + + if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || + Opc == X86ISD::BT) { // FIXME + Cond = Cmp; + addTest = false; + } + } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, DL, MVT::i8); + addTest = false; + } + + if (addTest) { + // Look past the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DL, DAG); + } + + // a < b ? -1 : 0 -> RES = ~setcc_carry + // a < b ? 0 : -1 -> RES = setcc_carry + // a >= b ? -1 : 0 -> RES = setcc_carry + // a >= b ? 0 : -1 -> RES = ~setcc_carry + if (Cond.getOpcode() == X86ISD::SUB) { + Cond = ConvertCmpIfNecessary(Cond, DAG); + unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); + + if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && + (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) && + (isNullConstant(Op1) || isNullConstant(Op2))) { + SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), + DAG.getConstant(X86::COND_B, DL, MVT::i8), + Cond); + if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B)) + return DAG.getNOT(DL, Res, Res.getValueType()); + return Res; + } + } + + // X86 doesn't have an i8 cmov. If both operands are the result of a truncate + // widen the cmov and push the truncate through. This avoids introducing a new + // branch during isel and doesn't add any extensions. + if (Op.getValueType() == MVT::i8 && + Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) { + SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0); + if (T1.getValueType() == T2.getValueType() && + // Blacklist CopyFromReg to avoid partial register stalls. + T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){ + SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue); + SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond); + return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov); + } + } + + // X86ISD::CMOV means set the result (which is operand 1) to the RHS if + // condition is true. + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + SDValue Ops[] = { Op2, Op1, CC, Cond }; + return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops); +} + +static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + MVT VTElt = VT.getVectorElementType(); + MVT InVTElt = InVT.getVectorElementType(); + SDLoc dl(Op); + + // SKX processor + if ((InVTElt == MVT::i1) && + (((Subtarget->hasBWI() && Subtarget->hasVLX() && + VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) || + + ((Subtarget->hasBWI() && VT.is512BitVector() && + VTElt.getSizeInBits() <= 16)) || + + ((Subtarget->hasDQI() && Subtarget->hasVLX() && + VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) || + + ((Subtarget->hasDQI() && VT.is512BitVector() && + VTElt.getSizeInBits() >= 32)))) + return DAG.getNode(X86ISD::VSEXT, dl, VT, In); + + unsigned int NumElts = VT.getVectorNumElements(); + + if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI()) + return SDValue(); + + if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) { + if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT) + return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0)); + return DAG.getNode(X86ISD::VSEXT, dl, VT, In); + } + + assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type"); + MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32; + SDValue NegOne = + DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl, + ExtVT); + SDValue Zero = + DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT); + + SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero); + if (VT.is512BitVector()) + return V; + return DAG.getNode(X86ISD::VTRUNC, dl, VT, V); +} + +static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDValue In = Op->getOperand(0); + MVT VT = Op->getSimpleValueType(0); + MVT InVT = In.getSimpleValueType(); + assert(VT.getSizeInBits() == InVT.getSizeInBits()); + + MVT InSVT = InVT.getVectorElementType(); + assert(VT.getVectorElementType().getSizeInBits() > InSVT.getSizeInBits()); + + if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) + return SDValue(); + if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8) + return SDValue(); + + SDLoc dl(Op); + + // SSE41 targets can use the pmovsx* instructions directly. + if (Subtarget->hasSSE41()) + return DAG.getNode(X86ISD::VSEXT, dl, VT, In); + + // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI. + SDValue Curr = In; + MVT CurrVT = InVT; + + // As SRAI is only available on i16/i32 types, we expand only up to i32 + // and handle i64 separately. + while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) { + Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr); + MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2); + CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2); + Curr = DAG.getBitcast(CurrVT, Curr); + } + + SDValue SignExt = Curr; + if (CurrVT != InVT) { + unsigned SignExtShift = + CurrVT.getVectorElementType().getSizeInBits() - InSVT.getSizeInBits(); + SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, + DAG.getConstant(SignExtShift, dl, MVT::i8)); + } + + if (CurrVT == VT) + return SignExt; + + if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) { + SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr, + DAG.getConstant(31, dl, MVT::i8)); + SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5}); + return DAG.getBitcast(VT, Ext); + } + + return SDValue(); +} + +static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op->getSimpleValueType(0); + SDValue In = Op->getOperand(0); + MVT InVT = In.getSimpleValueType(); + SDLoc dl(Op); + + if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1) + return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG); + + if ((VT != MVT::v4i64 || InVT != MVT::v4i32) && + (VT != MVT::v8i32 || InVT != MVT::v8i16) && + (VT != MVT::v16i16 || InVT != MVT::v16i8)) + return SDValue(); + + if (Subtarget->hasInt256()) + return DAG.getNode(X86ISD::VSEXT, dl, VT, In); + + // Optimize vectors in AVX mode + // Sign extend v8i16 to v8i32 and + // v4i32 to v4i64 + // + // Divide input vector into two parts + // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1} + // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32 + // concat the vectors to original VT + + unsigned NumElems = InVT.getVectorNumElements(); + SDValue Undef = DAG.getUNDEF(InVT); + + SmallVector<int,8> ShufMask1(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask1[i] = i; + + SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]); + + SmallVector<int,8> ShufMask2(NumElems, -1); + for (unsigned i = 0; i != NumElems/2; ++i) + ShufMask2[i] = i + NumElems/2; + + SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]); + + MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), + VT.getVectorNumElements()/2); + + OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo); + OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi); +} + +// Lower vector extended loads using a shuffle. If SSSE3 is not available we +// may emit an illegal shuffle but the expansion is still better than scalar +// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise +// we'll emit a shuffle and a arithmetic shift. +// FIXME: Is the expansion actually better than scalar code? It doesn't seem so. +// TODO: It is possible to support ZExt by zeroing the undef values during +// the shuffle phase or after the shuffle. +static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT RegVT = Op.getSimpleValueType(); + assert(RegVT.isVector() && "We only custom lower vector sext loads."); + assert(RegVT.isInteger() && + "We only custom lower integer vector sext loads."); + + // Nothing useful we can do without SSE2 shuffles. + assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2."); + + LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode()); + SDLoc dl(Ld); + EVT MemVT = Ld->getMemoryVT(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned RegSz = RegVT.getSizeInBits(); + + ISD::LoadExtType Ext = Ld->getExtensionType(); + + assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD) + && "Only anyext and sext are currently implemented."); + assert(MemVT != RegVT && "Cannot extend to the same type"); + assert(MemVT.isVector() && "Must load a vector from memory"); + + unsigned NumElems = RegVT.getVectorNumElements(); + unsigned MemSz = MemVT.getSizeInBits(); + assert(RegSz > MemSz && "Register size must be greater than the mem size"); + + if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) { + // The only way in which we have a legal 256-bit vector result but not the + // integer 256-bit operations needed to directly lower a sextload is if we + // have AVX1 but not AVX2. In that case, we can always emit a sextload to + // a 128-bit vector and a normal sign_extend to 256-bits that should get + // correctly legalized. We do this late to allow the canonical form of + // sextload to persist throughout the rest of the DAG combiner -- it wants + // to fold together any extensions it can, and so will fuse a sign_extend + // of an sextload into a sextload targeting a wider value. + SDValue Load; + if (MemSz == 128) { + // Just switch this to a normal load. + assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, " + "it must be a legal 128-bit vector " + "type!"); + Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), Ld->getAlignment()); + } else { + assert(MemSz < 128 && + "Can't extend a type wider than 128 bits to a 256 bit vector!"); + // Do an sext load to a 128-bit vector type. We want to use the same + // number of elements, but elements half as wide. This will end up being + // recursively lowered by this routine, but will succeed as we definitely + // have all the necessary features if we're using AVX1. + EVT HalfEltVT = + EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2); + EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems); + Load = + DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), MemVT, Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + Ld->getAlignment()); + } + + // Replace chain users with the new chain. + assert(Load->getNumValues() == 2 && "Loads must carry a chain!"); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1)); + + // Finally, do a normal sign-extend to the desired register. + return DAG.getSExtOrTrunc(Load, dl, RegVT); + } + + // All sizes must be a power of two. + assert(isPowerOf2_32(RegSz * MemSz * NumElems) && + "Non-power-of-two elements are not custom lowered!"); + + // Attempt to load the original value using scalar loads. + // Find the largest scalar type that divides the total loaded size. + MVT SclrLoadTy = MVT::i8; + for (MVT Tp : MVT::integer_valuetypes()) { + if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) { + SclrLoadTy = Tp; + } + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 && + (64 <= MemSz)) + SclrLoadTy = MVT::f64; + + // Calculate the number of scalar loads that we need to perform + // in order to load our vector from memory. + unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits(); + + assert((Ext != ISD::SEXTLOAD || NumLoads == 1) && + "Can only lower sext loads with a single scalar load!"); + + unsigned loadRegZize = RegSz; + if (Ext == ISD::SEXTLOAD && RegSz >= 256) + loadRegZize = 128; + + // Represent our vector as a sequence of elements which are the + // largest scalar that we can load. + EVT LoadUnitVecVT = EVT::getVectorVT( + *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits()); + + // Represent the data using the same element type that is stored in + // memory. In practice, we ''widen'' MemVT. + EVT WideVecVT = + EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + loadRegZize / MemVT.getScalarSizeInBits()); + + assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() && + "Invalid vector type"); + + // We can't shuffle using an illegal type. + assert(TLI.isTypeLegal(WideVecVT) && + "We only lower types that form legal widened vector types"); + + SmallVector<SDValue, 8> Chains; + SDValue Ptr = Ld->getBasePtr(); + SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl, + TLI.getPointerTy(DAG.getDataLayout())); + SDValue Res = DAG.getUNDEF(LoadUnitVecVT); + + for (unsigned i = 0; i < NumLoads; ++i) { + // Perform a single load. + SDValue ScalarLoad = + DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(), + Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(), + Ld->getAlignment()); + Chains.push_back(ScalarLoad.getValue(1)); + // Create the first element type using SCALAR_TO_VECTOR in order to avoid + // another round of DAGCombining. + if (i == 0) + Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad); + else + Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res, + ScalarLoad, DAG.getIntPtrConstant(i, dl)); + + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + } + + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); + + // Bitcast the loaded value to a vector of the original element type, in + // the size of the target vector type. + SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res); + unsigned SizeRatio = RegSz / MemSz; + + if (Ext == ISD::SEXTLOAD) { + // If we have SSE4.1, we can directly emit a VSEXT node. + if (Subtarget->hasSSE41()) { + SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Sext; + } + + // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest + // lanes. + assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) && + "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!"); + + SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Shuff; + } + + // Redistribute the loaded elements into the different locations. + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i * SizeRatio] = i; + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec, + DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); + + // Bitcast to the requested type. + Shuff = DAG.getBitcast(RegVT, Shuff); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF); + return Shuff; +} + +// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or +// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart +// from the AND / OR. +static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { + Opc = Op.getOpcode(); + if (Opc != ISD::OR && Opc != ISD::AND) + return false; + return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse() && + Op.getOperand(1).getOpcode() == X86ISD::SETCC && + Op.getOperand(1).hasOneUse()); +} + +// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and +// 1 and that the SETCC node has a single use. +static bool isXor1OfSetCC(SDValue Op) { + if (Op.getOpcode() != ISD::XOR) + return false; + if (isOneConstant(Op.getOperand(1))) + return Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse(); + return false; +} + +SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Chain = Op.getOperand(0); + SDValue Cond = Op.getOperand(1); + SDValue Dest = Op.getOperand(2); + SDLoc dl(Op); + SDValue CC; + bool Inverted = false; + + if (Cond.getOpcode() == ISD::SETCC) { + // Check for setcc([su]{add,sub,mul}o == 0). + if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ && + isNullConstant(Cond.getOperand(1)) && + Cond.getOperand(0).getResNo() == 1 && + (Cond.getOperand(0).getOpcode() == ISD::SADDO || + Cond.getOperand(0).getOpcode() == ISD::UADDO || + Cond.getOperand(0).getOpcode() == ISD::SSUBO || + Cond.getOperand(0).getOpcode() == ISD::USUBO || + Cond.getOperand(0).getOpcode() == ISD::SMULO || + Cond.getOperand(0).getOpcode() == ISD::UMULO)) { + Inverted = true; + Cond = Cond.getOperand(0); + } else { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } + } +#if 0 + // FIXME: LowerXALUO doesn't handle these!! + else if (Cond.getOpcode() == X86ISD::ADD || + Cond.getOpcode() == X86ISD::SUB || + Cond.getOpcode() == X86ISD::SMUL || + Cond.getOpcode() == X86ISD::UMUL) + Cond = LowerXALUO(Cond, DAG); +#endif + + // Look pass (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY && + isOneConstant(Cond.getOperand(1))) + Cond = Cond.getOperand(0); + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + unsigned CondOpcode = Cond.getOpcode(); + if (CondOpcode == X86ISD::SETCC || + CondOpcode == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? + if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { + Cond = Cmp; + addTest = false; + } else { + switch (cast<ConstantSDNode>(CC)->getZExtValue()) { + default: break; + case X86::COND_O: + case X86::COND_B: + // These can only come from an arithmetic instruction with overflow, + // e.g. SADDO, UADDO. + Cond = Cond.getNode()->getOperand(1); + addTest = false; + break; + } + } + } + CondOpcode = Cond.getOpcode(); + if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO || + CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO || + ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) && + Cond.getOperand(0).getValueType() != MVT::i8)) { + SDValue LHS = Cond.getOperand(0); + SDValue RHS = Cond.getOperand(1); + unsigned X86Opcode; + unsigned X86Cond; + SDVTList VTs; + // Keep this in sync with LowerXALUO, otherwise we might create redundant + // instructions that can't be removed afterwards (i.e. X86ISD::ADD and + // X86ISD::INC). + switch (CondOpcode) { + case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break; + case ISD::SADDO: + if (isOneConstant(RHS)) { + X86Opcode = X86ISD::INC; X86Cond = X86::COND_O; + break; + } + X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break; + case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break; + case ISD::SSUBO: + if (isOneConstant(RHS)) { + X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O; + break; + } + X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break; + case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break; + case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break; + default: llvm_unreachable("unexpected overflowing operator"); + } + if (Inverted) + X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond); + if (CondOpcode == ISD::UMULO) + VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(), + MVT::i32); + else + VTs = DAG.getVTList(LHS.getValueType(), MVT::i32); + + SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS); + + if (CondOpcode == ISD::UMULO) + Cond = X86Op.getValue(2); + else + Cond = X86Op.getValue(1); + + CC = DAG.getConstant(X86Cond, dl, MVT::i8); + addTest = false; + } else { + unsigned CondOpc; + if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { + SDValue Cmp = Cond.getOperand(0).getOperand(1); + if (CondOpc == ISD::OR) { + // Also, recognize the pattern generated by an FCMP_UNE. We can emit + // two branches instead of an explicit OR instruction with a + // separate test. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp)) { + CC = Cond.getOperand(0).getOperand(0); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = Cond.getOperand(1).getOperand(0); + Cond = Cmp; + addTest = false; + } + } else { // ISD::AND + // Also, recognize the pattern generated by an FCMP_OEQ. We can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp) && + Op.getNode()->hasOneUse()) { + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } + } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { + // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. + // It should be transformed during dag combiner except when the condition + // is set by a arithmetics with overflow node. + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, dl, MVT::i8); + Cond = Cond.getOperand(0).getOperand(1); + addTest = false; + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) { + // For FCMP_OEQ, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + Dest = FalseBB; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_P, dl, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } else if (Cond.getOpcode() == ISD::SETCC && + cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) { + // For FCMP_UNE, we can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Op.getNode()->hasOneUse()) { + SDNode *User = *Op.getNode()->use_begin(); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_UNE. + if (User->getOpcode() == ISD::BR) { + SDValue FalseBB = User->getOperand(1); + SDNode *NewBR = + DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); + assert(NewBR == User); + (void)NewBR; + + SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + Cond.getOperand(0), Cond.getOperand(1)); + Cmp = ConvertCmpIfNecessary(Cmp, DAG); + CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8); + Cond = Cmp; + addTest = false; + Dest = FalseBB; + } + } + } + } + + if (addTest) { + // Look pass the truncate if the high bits are known zero. + if (isTruncWithZeroHighBitsInput(Cond, DAG)) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE; + CC = DAG.getConstant(X86Cond, dl, MVT::i8); + Cond = EmitTest(Cond, X86Cond, dl, DAG); + } + Cond = ConvertCmpIfNecessary(Cond, DAG); + return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cond); +} + +// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. +// Calls to _alloca are needed to probe the stack when allocating more than 4k +// bytes in one go. Touching the stack at 4K increments is necessary to ensure +// that the guard pages used by the OS virtual memory manager are allocated in +// correct sequence. +SDValue +X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + bool SplitStack = MF.shouldSplitStack(); + bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) || + SplitStack; + SDLoc dl(Op); + + // Get the inputs. + SDNode *Node = Op.getNode(); + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + EVT VT = Node->getValueType(0); + + // Chain the dynamic stack allocation so that it doesn't modify the stack + // pointer when other instructions are using the stack. + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); + + bool Is64Bit = Subtarget->is64Bit(); + MVT SPTy = getPointerTy(DAG.getDataLayout()); + + SDValue Result; + if (!Lower) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); + assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" + " not tell us which reg is the stack pointer!"); + EVT VT = Node->getValueType(0); + SDValue Tmp3 = Node->getOperand(2); + + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); + Chain = SP.getValue(1); + unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); + const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); + unsigned StackAlign = TFI.getStackAlignment(); + Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value + if (Align > StackAlign) + Result = DAG.getNode(ISD::AND, dl, VT, Result, + DAG.getConstant(-(uint64_t)Align, dl, VT)); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain + } else if (SplitStack) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + if (Is64Bit) { + // The 64 bit implementation of segmented stacks needs to clobber both r10 + // r11. This makes it impossible to use it along with nested parameters. + const Function *F = MF.getFunction(); + + for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); + I != E; ++I) + if (I->hasNestAttr()) + report_fatal_error("Cannot use segmented stacks with functions that " + "have nested arguments."); + } + + const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy); + unsigned Vreg = MRI.createVirtualRegister(AddrRegClass); + Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size); + Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain, + DAG.getRegister(Vreg, SPTy)); + } else { + SDValue Flag; + const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX); + + Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag); + Flag = Chain.getValue(1); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + + Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); + + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned SPReg = RegInfo->getStackRegister(); + SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy); + Chain = SP.getValue(1); + + if (Align) { + SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), + DAG.getConstant(-(uint64_t)Align, dl, VT)); + Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP); + } + + Result = SP; + } + + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), + DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); + + SDValue Ops[2] = {Result, Chain}; + return DAG.getMergeValues(Ops, dl); +} + +SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + auto PtrVT = getPointerTy(MF.getDataLayout()); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + SDLoc DL(Op); + + if (!Subtarget->is64Bit() || + Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) { + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); + } + + // __va_list_tag: + // gp_offset (0 - 6 * 8) + // fp_offset (48 - 48 + 8 * 16) + // overflow_arg_area (point to parameters coming in memory). + // reg_save_area + SmallVector<SDValue, 8> MemOps; + SDValue FIN = Op.getOperand(1); + // Store gp_offset + SDValue Store = DAG.getStore(Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsGPOffset(), + DL, MVT::i32), + FIN, MachinePointerInfo(SV), false, false, 0); + MemOps.push_back(Store); + + // Store fp_offset + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); + Store = DAG.getStore(Op.getOperand(0), DL, + DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, + MVT::i32), + FIN, MachinePointerInfo(SV, 4), false, false, 0); + MemOps.push_back(Store); + + // Store ptr to overflow_arg_area + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL)); + SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); + Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, + MachinePointerInfo(SV, 8), + false, false, 0); + MemOps.push_back(Store); + + // Store ptr to reg_save_area. + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant( + Subtarget->isTarget64BitLP64() ? 8 : 4, DL)); + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT); + Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo( + SV, Subtarget->isTarget64BitLP64() ? 16 : 12), false, false, 0); + MemOps.push_back(Store); + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); +} + +SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget->is64Bit() && + "LowerVAARG only handles 64-bit va_arg!"); + assert(Op.getNode()->getNumOperands() == 4); + + MachineFunction &MF = DAG.getMachineFunction(); + if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) + // The Win64 ABI uses char* instead of a structure. + return DAG.expandVAArg(Op.getNode()); + + SDValue Chain = Op.getOperand(0); + SDValue SrcPtr = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + unsigned Align = Op.getConstantOperandVal(3); + SDLoc dl(Op); + + EVT ArgVT = Op.getNode()->getValueType(0); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); + uint8_t ArgMode; + + // Decide which area this value should be read from. + // TODO: Implement the AMD64 ABI in its entirety. This simple + // selection mechanism works only for the basic types. + if (ArgVT == MVT::f80) { + llvm_unreachable("va_arg for f80 not yet implemented"); + } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { + ArgMode = 2; // Argument passed in XMM register. Use fp_offset. + } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { + ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. + } else { + llvm_unreachable("Unhandled argument type in LowerVAARG"); + } + + if (ArgMode == 2) { + // Sanity Check: Make sure using fp_offset makes sense. + assert(!Subtarget->useSoftFloat() && + !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) && + Subtarget->hasSSE1()); + } + + // Insert VAARG_64 node into the DAG + // VAARG_64 returns two values: Variable Argument Address, Chain + SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32), + DAG.getConstant(ArgMode, dl, MVT::i8), + DAG.getConstant(Align, dl, MVT::i32)}; + SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other); + SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, + VTs, InstOps, MVT::i64, + MachinePointerInfo(SV), + /*Align=*/0, + /*Volatile=*/false, + /*ReadMem=*/true, + /*WriteMem=*/true); + Chain = VAARG.getValue(1); + + // Load the next argument and return it + return DAG.getLoad(ArgVT, dl, + Chain, + VAARG, + MachinePointerInfo(), + false, false, false, 0); +} + +static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows, + // where a va_list is still an i8*. + assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); + if (Subtarget->isCallingConvWin64( + DAG.getMachineFunction().getFunction()->getCallingConv())) + // Probably a Win64 va_copy. + return DAG.expandVACopy(Op.getNode()); + + SDValue Chain = Op.getOperand(0); + SDValue DstPtr = Op.getOperand(1); + SDValue SrcPtr = Op.getOperand(2); + const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + SDLoc DL(Op); + + return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, + DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false, + false, false, + MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); +} + +// getTargetVShiftByConstNode - Handle vector element shifts where the shift +// amount is a constant. Takes immediate version of shift as input. +static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT, + SDValue SrcOp, uint64_t ShiftAmt, + SelectionDAG &DAG) { + MVT ElementType = VT.getVectorElementType(); + + // Fold this packed shift into its first operand if ShiftAmt is 0. + if (ShiftAmt == 0) + return SrcOp; + + // Check for ShiftAmt >= element width + if (ShiftAmt >= ElementType.getSizeInBits()) { + if (Opc == X86ISD::VSRAI) + ShiftAmt = ElementType.getSizeInBits() - 1; + else + return DAG.getConstant(0, dl, VT); + } + + assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI) + && "Unknown target vector shift-by-constant node"); + + // Fold this packed vector shift into a build vector if SrcOp is a + // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT. + if (VT == SrcOp.getSimpleValueType() && + ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) { + SmallVector<SDValue, 8> Elts; + unsigned NumElts = SrcOp->getNumOperands(); + ConstantSDNode *ND; + + switch(Opc) { + default: llvm_unreachable(nullptr); + case X86ISD::VSHLI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->getOpcode() == ISD::UNDEF) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType)); + } + break; + case X86ISD::VSRLI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->getOpcode() == ISD::UNDEF) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType)); + } + break; + case X86ISD::VSRAI: + for (unsigned i=0; i!=NumElts; ++i) { + SDValue CurrentOp = SrcOp->getOperand(i); + if (CurrentOp->getOpcode() == ISD::UNDEF) { + Elts.push_back(CurrentOp); + continue; + } + ND = cast<ConstantSDNode>(CurrentOp); + const APInt &C = ND->getAPIntValue(); + Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType)); + } + break; + } + + return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); + } + + return DAG.getNode(Opc, dl, VT, SrcOp, + DAG.getConstant(ShiftAmt, dl, MVT::i8)); +} + +// getTargetVShiftNode - Handle vector element shifts where the shift amount +// may or may not be a constant. Takes immediate version of shift as input. +static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT, + SDValue SrcOp, SDValue ShAmt, + SelectionDAG &DAG) { + MVT SVT = ShAmt.getSimpleValueType(); + assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!"); + + // Catch shift-by-constant. + if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt)) + return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp, + CShAmt->getZExtValue(), DAG); + + // Change opcode to non-immediate version + switch (Opc) { + default: llvm_unreachable("Unknown target vector shift node"); + case X86ISD::VSHLI: Opc = X86ISD::VSHL; break; + case X86ISD::VSRLI: Opc = X86ISD::VSRL; break; + case X86ISD::VSRAI: Opc = X86ISD::VSRA; break; + } + + const X86Subtarget &Subtarget = + static_cast<const X86Subtarget &>(DAG.getSubtarget()); + if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND && + ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) { + // Let the shuffle legalizer expand this shift amount node. + SDValue Op0 = ShAmt.getOperand(0); + Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0); + ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG); + } else { + // Need to build a vector containing shift amount. + // SSE/AVX packed shifts only use the lower 64-bit of the shift count. + SmallVector<SDValue, 4> ShOps; + ShOps.push_back(ShAmt); + if (SVT == MVT::i32) { + ShOps.push_back(DAG.getConstant(0, dl, SVT)); + ShOps.push_back(DAG.getUNDEF(SVT)); + } + ShOps.push_back(DAG.getUNDEF(SVT)); + + MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64; + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps); + } + + // The return type has to be a 128-bit type with the same element + // type as the input type. + MVT EltVT = VT.getVectorElementType(); + MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits()); + + ShAmt = DAG.getBitcast(ShVT, ShAmt); + return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt); +} + +/// \brief Return Mask with the necessary casting or extending +/// for \p Mask according to \p MaskVT when lowering masking intrinsics +static SDValue getMaskNode(SDValue Mask, MVT MaskVT, + const X86Subtarget *Subtarget, + SelectionDAG &DAG, SDLoc dl) { + + if (MaskVT.bitsGT(Mask.getSimpleValueType())) { + // Mask should be extended + Mask = DAG.getNode(ISD::ANY_EXTEND, dl, + MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask); + } + + if (Mask.getSimpleValueType() == MVT::i64 && Subtarget->is32Bit()) { + if (MaskVT == MVT::v64i1) { + assert(Subtarget->hasBWI() && "Expected AVX512BW target!"); + // In case 32bit mode, bitcast i64 is illegal, extend/split it. + SDValue Lo, Hi; + Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, + DAG.getConstant(0, dl, MVT::i32)); + Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask, + DAG.getConstant(1, dl, MVT::i32)); + + Lo = DAG.getBitcast(MVT::v32i1, Lo); + Hi = DAG.getBitcast(MVT::v32i1, Hi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi); + } else { + // MaskVT require < 64bit. Truncate mask (should succeed in any case), + // and bitcast. + MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits()); + return DAG.getBitcast(MaskVT, + DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask)); + } + + } else { + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } +} + +/// \brief Return (and \p Op, \p Mask) for compare instructions or +/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the +/// necessary casting or extending for \p Mask when lowering masking intrinsics +static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask, + SDValue PreservedSrc, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + unsigned OpcodeSelect = ISD::VSELECT; + SDLoc dl(Op); + + if (isAllOnesConstant(Mask)) + return Op; + + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + + switch (Op.getOpcode()) { + default: break; + case X86ISD::PCMPEQM: + case X86ISD::PCMPGTM: + case X86ISD::CMPM: + case X86ISD::CMPMU: + return DAG.getNode(ISD::AND, dl, VT, Op, VMask); + case X86ISD::VFPCLASS: + case X86ISD::VFPCLASSS: + return DAG.getNode(ISD::OR, dl, VT, Op, VMask); + case X86ISD::VTRUNC: + case X86ISD::VTRUNCS: + case X86ISD::VTRUNCUS: + // We can't use ISD::VSELECT here because it is not always "Legal" + // for the destination type. For example vpmovqb require only AVX512 + // and vselect that can operate on byte element type require BWI + OpcodeSelect = X86ISD::SELECT; + break; + } + if (PreservedSrc.getOpcode() == ISD::UNDEF) + PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc); +} + +/// \brief Creates an SDNode for a predicated scalar operation. +/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc). +/// The mask is coming as MVT::i8 and it should be truncated +/// to MVT::i1 while lowering masking intrinsics. +/// The main difference between ScalarMaskingNode and VectorMaskingNode is using +/// "X86select" instead of "vselect". We just can't create the "vselect" node +/// for a scalar instruction. +static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask, + SDValue PreservedSrc, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + if (isAllOnesConstant(Mask)) + return Op; + + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + // The mask should be of type MVT::i1 + SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask); + + if (Op.getOpcode() == X86ISD::FSETCC) + return DAG.getNode(ISD::AND, dl, VT, Op, IMask); + if (Op.getOpcode() == X86ISD::VFPCLASS || + Op.getOpcode() == X86ISD::VFPCLASSS) + return DAG.getNode(ISD::OR, dl, VT, Op, IMask); + + if (PreservedSrc.getOpcode() == ISD::UNDEF) + PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc); +} + +static int getSEHRegistrationNodeSize(const Function *Fn) { + if (!Fn->hasPersonalityFn()) + report_fatal_error( + "querying registration node size for function without personality"); + // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See + // WinEHStatePass for the full struct definition. + switch (classifyEHPersonality(Fn->getPersonalityFn())) { + case EHPersonality::MSVC_X86SEH: return 24; + case EHPersonality::MSVC_CXX: return 16; + default: break; + } + report_fatal_error( + "can only recover FP for 32-bit MSVC EH personality functions"); +} + +/// When the MSVC runtime transfers control to us, either to an outlined +/// function or when returning to a parent frame after catching an exception, we +/// recover the parent frame pointer by doing arithmetic on the incoming EBP. +/// Here's the math: +/// RegNodeBase = EntryEBP - RegNodeSize +/// ParentFP = RegNodeBase - ParentFrameOffset +/// Subtracting RegNodeSize takes us to the offset of the registration node, and +/// subtracting the offset (negative on x86) takes us back to the parent FP. +static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn, + SDValue EntryEBP) { + MachineFunction &MF = DAG.getMachineFunction(); + SDLoc dl; + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + + // It's possible that the parent function no longer has a personality function + // if the exceptional code was optimized away, in which case we just return + // the incoming EBP. + if (!Fn->hasPersonalityFn()) + return EntryEBP; + + // Get an MCSymbol that will ultimately resolve to the frame offset of the EH + // registration, or the .set_setframe offset. + MCSymbol *OffsetSym = + MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol( + GlobalValue::getRealLinkageName(Fn->getName())); + SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT); + SDValue ParentFrameOffset = + DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal); + + // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after + // prologue to RBP in the parent function. + const X86Subtarget &Subtarget = + static_cast<const X86Subtarget &>(DAG.getSubtarget()); + if (Subtarget.is64Bit()) + return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset); + + int RegNodeSize = getSEHRegistrationNodeSize(Fn); + // RegNodeBase = EntryEBP - RegNodeSize + // ParentFP = RegNodeBase - ParentFrameOffset + SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP, + DAG.getConstant(RegNodeSize, dl, PtrVT)); + return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset); +} + +static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + MVT VT = Op.getSimpleValueType(); + const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo); + if (IntrData) { + switch(IntrData->Type) { + case INTR_TYPE_1OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1)); + case INTR_TYPE_2OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2)); + case INTR_TYPE_2OP_IMM8: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2))); + case INTR_TYPE_3OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3)); + case INTR_TYPE_4OP: + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1), + Op.getOperand(2), Op.getOperand(3), Op.getOperand(4)); + case INTR_TYPE_1OP_MASK_RM: { + SDValue Src = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue RoundingMode; + // We allways add rounding mode to the Node. + // If the rounding mode is not specified, we add the + // "current direction" mode. + if (Op.getNumOperands() == 4) + RoundingMode = + DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + else + RoundingMode = Op.getOperand(4); + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) + if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() != + X86::STATIC_ROUNDING::CUR_DIRECTION) + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), Src, RoundingMode), + Mask, PassThru, Subtarget, DAG); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src, + RoundingMode), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_1OP_MASK: { + SDValue Src = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + // We add rounding mode to the Node when + // - RM Opcode is specified and + // - RM is not "current direction". + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(4); + unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); + if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_SCALAR_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue passThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2), + Mask, passThru, Subtarget, DAG); + } + case INTR_TYPE_SCALAR_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src0 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + // There are 2 kinds of intrinsics in this group: + // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands + // (2) With rounding mode and sae - 7 operands. + if (Op.getNumOperands() == 6) { + SDValue Sae = Op.getOperand(5); + unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0; + return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, + Sae), + Mask, Src0, Subtarget, DAG); + } + assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form"); + SDValue RoundingMode = Op.getOperand(5); + SDValue Sae = Op.getOperand(6); + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2, + RoundingMode, Sae), + Mask, Src0, Subtarget, DAG); + } + case INTR_TYPE_2OP_MASK: + case INTR_TYPE_2OP_IMM8_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + + if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK) + Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2); + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(5); + unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); + if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + // TODO: Intrinsics should have fast-math-flags to propagate. + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_2OP_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue PassThru = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + // We specify 2 possible modes for intrinsics, with/without rounding + // modes. + // First, we check if the intrinsic have rounding mode (6 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 6) + Rnd = Op.getOperand(5); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Rnd), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_SCALAR_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + SDValue Sae = Op.getOperand(6); + + return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, + Src2, Src3, Sae), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_MASK_RM: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Imm = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + // We specify 2 possible modes for intrinsics, with/without rounding + // modes. + // First, we check if the intrinsic have rounding mode (7 operands), + // if not, we set rounding mode to "current". + SDValue Rnd; + if (Op.getNumOperands() == 7) + Rnd = Op.getOperand(6); + else + Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Imm, Rnd), + Mask, PassThru, Subtarget, DAG); + } + case INTR_TYPE_3OP_IMM8_MASK: + case INTR_TYPE_3OP_MASK: + case INSERT_SUBVEC: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue PassThru = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + + if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK) + Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3); + else if (IntrData->Type == INSERT_SUBVEC) { + // imm should be adapted to ISD::INSERT_SUBVECTOR behavior + assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!"); + unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue(); + Imm *= Src2.getSimpleValueType().getVectorNumElements(); + Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32); + } + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(6); + unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue(); + if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) { + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3), + Mask, PassThru, Subtarget, DAG); + } + case VPERM_3OP_MASKZ: + case VPERM_3OP_MASK:{ + // Src2 is the PassThru + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == VPERM_3OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else + PassThru = DAG.getBitcast(VT, Src2); + + // Swap Src1 and Src2 in the node creation + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, + dl, Op.getValueType(), + Src2, Src1, Src3), + Mask, PassThru, Subtarget, DAG); + } + case FMA_OP_MASK3: + case FMA_OP_MASKZ: + case FMA_OP_MASK: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Mask = Op.getOperand(4); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = SDValue(); + + // set PassThru element + if (IntrData->Type == FMA_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + else if (IntrData->Type == FMA_OP_MASK3) + PassThru = Src3; + else + PassThru = Src1; + + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + unsigned IntrWithRoundingModeOpcode = IntrData->Opc1; + if (IntrWithRoundingModeOpcode != 0) { + SDValue Rnd = Op.getOperand(5); + if (cast<ConstantSDNode>(Rnd)->getZExtValue() != + X86::STATIC_ROUNDING::CUR_DIRECTION) + return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode, + dl, Op.getValueType(), + Src1, Src2, Src3, Rnd), + Mask, PassThru, Subtarget, DAG); + } + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, + dl, Op.getValueType(), + Src1, Src2, Src3), + Mask, PassThru, Subtarget, DAG); + } + case TERLOG_OP_MASK: + case TERLOG_OP_MASKZ: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue Src3 = Op.getOperand(3); + SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4)); + SDValue Mask = Op.getOperand(5); + MVT VT = Op.getSimpleValueType(); + SDValue PassThru = Src1; + // Set PassThru element. + if (IntrData->Type == TERLOG_OP_MASKZ) + PassThru = getZeroVector(VT, Subtarget, DAG, dl); + + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + Src1, Src2, Src3, Src4), + Mask, PassThru, Subtarget, DAG); + } + case FPCLASS: { + // FPclass intrinsics with mask + SDValue Src1 = Op.getOperand(1); + MVT VT = Src1.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue Imm = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm); + SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask, + DAG.getTargetConstant(0, dl, MaskVT), + Subtarget, DAG); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), FPclassMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case FPCLASSS: { + SDValue Src1 = Op.getOperand(1); + SDValue Imm = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm); + SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, + DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG); + return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i8, FPclassMask); + } + case CMP_MASK: + case CMP_MASK_CC: { + // Comparison intrinsics with masks. + // Example of transformation: + // (i8 (int_x86_avx512_mask_pcmpeq_q_128 + // (v2i64 %a), (v2i64 %b), (i8 %mask))) -> + // (i8 (bitcast + // (v8i1 (insert_subvector undef, + // (v2i1 (and (PCMPEQM %a, %b), + // (extract_subvector + // (v8i1 (bitcast %mask)), 0))), 0)))) + MVT VT = Op.getOperand(1).getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + SDValue Cmp; + if (IntrData->Type == CMP_MASK_CC) { + SDValue CC = Op.getOperand(3); + CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC); + // We specify 2 possible opcodes for intrinsics with rounding modes. + // First, we check if the intrinsic may have non-default rounding mode, + // (IntrData->Opc1 != 0), then we check the rounding mode operand. + if (IntrData->Opc1 != 0) { + SDValue Rnd = Op.getOperand(5); + if (cast<ConstantSDNode>(Rnd)->getZExtValue() != + X86::STATIC_ROUNDING::CUR_DIRECTION) + Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2), CC, Rnd); + } + //default rounding mode + if(!Cmp.getNode()) + Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2), CC); + + } else { + assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!"); + Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1), + Op.getOperand(2)); + } + SDValue CmpMask = getVectorMaskingNode(Cmp, Mask, + DAG.getTargetConstant(0, dl, + MaskVT), + Subtarget, DAG); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), CmpMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case CMP_MASK_SCALAR_CC: { + SDValue Src1 = Op.getOperand(1); + SDValue Src2 = Op.getOperand(2); + SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3)); + SDValue Mask = Op.getOperand(4); + + SDValue Cmp; + if (IntrData->Opc1 != 0) { + SDValue Rnd = Op.getOperand(5); + if (cast<ConstantSDNode>(Rnd)->getZExtValue() != + X86::STATIC_ROUNDING::CUR_DIRECTION) + Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd); + } + //default rounding mode + if(!Cmp.getNode()) + Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC); + + SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, + DAG.getTargetConstant(0, dl, + MVT::i1), + Subtarget, DAG); + + return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i8, + DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, CmpMask), + DAG.getValueType(MVT::i1)); + } + case COMI: { // Comparison intrinsics + ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1; + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG); + assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); + SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, dl, MVT::i8), Cond); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + case COMI_RM: { // Comparison intrinsics with Sae + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + SDValue CC = Op.getOperand(3); + SDValue Sae = Op.getOperand(4); + auto ComiType = TranslateX86ConstCondToX86CC(CC); + // choose between ordered and unordered (comi/ucomi) + unsigned comiOp = std::get<0>(ComiType) ? IntrData->Opc0 : IntrData->Opc1; + SDValue Cond; + if (cast<ConstantSDNode>(Sae)->getZExtValue() != + X86::STATIC_ROUNDING::CUR_DIRECTION) + Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS, Sae); + else + Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(std::get<1>(ComiType), dl, MVT::i8), Cond); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + case VSHIFT: + return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(), + Op.getOperand(1), Op.getOperand(2), DAG); + case VSHIFT_MASK: + return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl, + Op.getSimpleValueType(), + Op.getOperand(1), + Op.getOperand(2), DAG), + Op.getOperand(4), Op.getOperand(3), Subtarget, + DAG); + case COMPRESS_EXPAND_IN_REG: { + SDValue Mask = Op.getOperand(3); + SDValue DataToCompress = Op.getOperand(1); + SDValue PassThru = Op.getOperand(2); + if (isAllOnesConstant(Mask)) // return data as is + return Op.getOperand(1); + + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + DataToCompress), + Mask, PassThru, Subtarget, DAG); + } + case BROADCASTM: { + SDValue Mask = Op.getOperand(1); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + Mask = DAG.getBitcast(MaskVT, Mask); + return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask); + } + case BLEND: { + SDValue Mask = Op.getOperand(3); + MVT VT = Op.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1), + Op.getOperand(2)); + } + case KUNPCK: { + MVT VT = Op.getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2); + + SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl); + SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl); + // Arguments should be swapped. + SDValue Res = DAG.getNode(IntrData->Opc0, dl, + MVT::getVectorVT(MVT::i1, VT.getSizeInBits()), + Src2, Src1); + return DAG.getBitcast(VT, Res); + } + case CONVERT_TO_MASK: { + MVT SrcVT = Op.getOperand(1).getSimpleValueType(); + MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements()); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()); + + SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT, + Op.getOperand(1)); + SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT, + DAG.getUNDEF(BitcastVT), CvtMask, + DAG.getIntPtrConstant(0, dl)); + return DAG.getBitcast(Op.getValueType(), Res); + } + case CONVERT_MASK_TO_VEC: { + SDValue Mask = Op.getOperand(1); + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl); + return DAG.getNode(IntrData->Opc0, dl, VT, VMask); + } + case BRCST_SUBVEC_TO_VEC: { + SDValue Src = Op.getOperand(1); + SDValue Passthru = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + EVT resVT = Passthru.getValueType(); + SDValue subVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, resVT, + DAG.getUNDEF(resVT), Src, + DAG.getIntPtrConstant(0, dl)); + SDValue immVal; + if (Src.getSimpleValueType().is256BitVector() && resVT.is512BitVector()) + immVal = DAG.getConstant(0x44, dl, MVT::i8); + else + immVal = DAG.getConstant(0, dl, MVT::i8); + return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, + subVec, subVec, immVal), + Mask, Passthru, Subtarget, DAG); + } + default: + break; + } + } + + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + + case Intrinsic::x86_avx2_permd: + case Intrinsic::x86_avx2_permps: + // Operands intentionally swapped. Mask is last operand to intrinsic, + // but second operand for node/instruction. + return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(), + Op.getOperand(2), Op.getOperand(1)); + + // ptest and testp intrinsics. The intrinsic these come from are designed to + // return an integer value, not just an instruction so lower it to the ptest + // or testp pattern and a setcc for the result. + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestz_256: + case Intrinsic::x86_avx_ptestc_256: + case Intrinsic::x86_avx_ptestnzc_256: + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + case Intrinsic::x86_avx_vtestc_pd_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: { + bool IsTestPacked = false; + unsigned X86CC; + switch (IntNo) { + default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); + case Intrinsic::x86_avx_vtestz_ps: + case Intrinsic::x86_avx_vtestz_pd: + case Intrinsic::x86_avx_vtestz_ps_256: + case Intrinsic::x86_avx_vtestz_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_avx_ptestz_256: + // ZF = 1 + X86CC = X86::COND_E; + break; + case Intrinsic::x86_avx_vtestc_ps: + case Intrinsic::x86_avx_vtestc_pd: + case Intrinsic::x86_avx_vtestc_ps_256: + case Intrinsic::x86_avx_vtestc_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_avx_ptestc_256: + // CF = 1 + X86CC = X86::COND_B; + break; + case Intrinsic::x86_avx_vtestnzc_ps: + case Intrinsic::x86_avx_vtestnzc_pd: + case Intrinsic::x86_avx_vtestnzc_ps_256: + case Intrinsic::x86_avx_vtestnzc_pd_256: + IsTestPacked = true; // Fallthrough + case Intrinsic::x86_sse41_ptestnzc: + case Intrinsic::x86_avx_ptestnzc_256: + // ZF and CF = 0 + X86CC = X86::COND_A; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; + SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); + SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + case Intrinsic::x86_avx512_kortestz_w: + case Intrinsic::x86_avx512_kortestc_w: { + unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B; + SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1)); + SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2)); + SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8); + SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + case Intrinsic::x86_sse42_pcmpistria128: + case Intrinsic::x86_sse42_pcmpestria128: + case Intrinsic::x86_sse42_pcmpistric128: + case Intrinsic::x86_sse42_pcmpestric128: + case Intrinsic::x86_sse42_pcmpistrio128: + case Intrinsic::x86_sse42_pcmpestrio128: + case Intrinsic::x86_sse42_pcmpistris128: + case Intrinsic::x86_sse42_pcmpestris128: + case Intrinsic::x86_sse42_pcmpistriz128: + case Intrinsic::x86_sse42_pcmpestriz128: { + unsigned Opcode; + unsigned X86CC; + switch (IntNo) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse42_pcmpistria128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpestria128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_A; + break; + case Intrinsic::x86_sse42_pcmpistric128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpestric128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse42_pcmpistrio128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpestrio128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_O; + break; + case Intrinsic::x86_sse42_pcmpistris128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpestris128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_S; + break; + case Intrinsic::x86_sse42_pcmpistriz128: + Opcode = X86ISD::PCMPISTRI; + X86CC = X86::COND_E; + break; + case Intrinsic::x86_sse42_pcmpestriz128: + Opcode = X86ISD::PCMPESTRI; + X86CC = X86::COND_E; + break; + } + SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, dl, MVT::i8), + SDValue(PCMP.getNode(), 1)); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + case Intrinsic::x86_sse42_pcmpistri128: + case Intrinsic::x86_sse42_pcmpestri128: { + unsigned Opcode; + if (IntNo == Intrinsic::x86_sse42_pcmpistri128) + Opcode = X86ISD::PCMPISTRI; + else + Opcode = X86ISD::PCMPESTRI; + + SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end()); + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + return DAG.getNode(Opcode, dl, VTs, NewOps); + } + + case Intrinsic::x86_seh_lsda: { + // Compute the symbol for the LSDA. We know it'll get emitted later. + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Op1 = Op.getOperand(1); + auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal()); + MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol( + GlobalValue::getRealLinkageName(Fn->getName())); + + // Generate a simple absolute symbol reference. This intrinsic is only + // supported on 32-bit Windows, which isn't PIC. + SDValue Result = DAG.getMCSymbol(LSDASym, VT); + return DAG.getNode(X86ISD::Wrapper, dl, VT, Result); + } + + case Intrinsic::x86_seh_recoverfp: { + SDValue FnOp = Op.getOperand(1); + SDValue IncomingFPOp = Op.getOperand(2); + GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); + auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); + if (!Fn) + report_fatal_error( + "llvm.x86.seh.recoverfp must take a function as the first argument"); + return recoverFramePointer(DAG, Fn, IncomingFPOp); + } + + case Intrinsic::localaddress: { + // Returns one of the stack, base, or frame pointer registers, depending on + // which is used to reference local variables. + MachineFunction &MF = DAG.getMachineFunction(); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned Reg; + if (RegInfo->hasBasePointer(MF)) + Reg = RegInfo->getBaseRegister(); + else // This function handles the SP or FP case. + Reg = RegInfo->getPtrSizedFrameRegister(MF); + return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); + } + } +} + +static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Src, SDValue Mask, SDValue Base, + SDValue Index, SDValue ScaleOp, SDValue Chain, + const X86Subtarget * Subtarget) { + SDLoc dl(Op); + auto *C = cast<ConstantSDNode>(ScaleOp); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Index.getSimpleValueType().getVectorNumElements()); + SDValue MaskInReg; + ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); + if (MaskC) + MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); + else { + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } + SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + if (Src.getOpcode() == ISD::UNDEF) + Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl); + SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); + SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) }; + return DAG.getMergeValues(RetOps, dl); +} + +static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Src, SDValue Mask, SDValue Base, + SDValue Index, SDValue ScaleOp, SDValue Chain) { + SDLoc dl(Op); + auto *C = cast<ConstantSDNode>(ScaleOp); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + MVT MaskVT = MVT::getVectorVT(MVT::i1, + Index.getSimpleValueType().getVectorNumElements()); + SDValue MaskInReg; + ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); + if (MaskC) + MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); + else { + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + } + SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other); + SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops); + return SDValue(Res, 1); +} + +static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG, + SDValue Mask, SDValue Base, SDValue Index, + SDValue ScaleOp, SDValue Chain) { + SDLoc dl(Op); + auto *C = cast<ConstantSDNode>(ScaleOp); + SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8); + SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32); + SDValue Segment = DAG.getRegister(0, MVT::i32); + MVT MaskVT = + MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements()); + SDValue MaskInReg; + ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask); + if (MaskC) + MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT); + else + MaskInReg = DAG.getBitcast(MaskVT, Mask); + //SDVTList VTs = DAG.getVTList(MVT::Other); + SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain}; + SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops); + return SDValue(Res, 0); +} + +// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that +// read performance monitor counters (x86_rdpmc). +static void getReadPerformanceCounter(SDNode *N, SDLoc DL, + SelectionDAG &DAG, const X86Subtarget *Subtarget, + SmallVectorImpl<SDValue> &Results) { + assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue LO, HI; + + // The ECX register is used to select the index of the performance counter + // to read. + SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX, + N->getOperand(2)); + SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain); + + // Reads the content of a 64-bit performance counter and returns it in the + // registers EDX:EAX. + if (Subtarget->is64Bit()) { + LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, + LO.getValue(2)); + } else { + LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, + LO.getValue(2)); + } + Chain = HI.getValue(1); + + if (Subtarget->is64Bit()) { + // The EAX register is loaded with the low-order 32 bits. The EDX register + // is loaded with the supported high-order bits of the counter. + SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, + DAG.getConstant(32, DL, MVT::i8)); + Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); + Results.push_back(Chain); + return; + } + + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { LO, HI }; + SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); + Results.push_back(Pair); + Results.push_back(Chain); +} + +// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that +// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is +// also used to custom lower READCYCLECOUNTER nodes. +static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode, + SelectionDAG &DAG, const X86Subtarget *Subtarget, + SmallVectorImpl<SDValue> &Results) { + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0)); + SDValue LO, HI; + + // The processor's time-stamp counter (a 64-bit MSR) is stored into the + // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR + // and the EAX register is loaded with the low-order 32 bits. + if (Subtarget->is64Bit()) { + LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64, + LO.getValue(2)); + } else { + LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1)); + HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32, + LO.getValue(2)); + } + SDValue Chain = HI.getValue(1); + + if (Opcode == X86ISD::RDTSCP_DAG) { + assert(N->getNumOperands() == 3 && "Unexpected number of operands!"); + + // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into + // the ECX register. Add 'ecx' explicitly to the chain. + SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, + HI.getValue(2)); + // Explicitly store the content of ECX at the location passed in input + // to the 'rdtscp' intrinsic. + Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2), + MachinePointerInfo(), false, false, 0); + } + + if (Subtarget->is64Bit()) { + // The EDX register is loaded with the high-order 32 bits of the MSR, and + // the EAX register is loaded with the low-order 32 bits. + SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI, + DAG.getConstant(32, DL, MVT::i8)); + Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp)); + Results.push_back(Chain); + return; + } + + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { LO, HI }; + SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops); + Results.push_back(Pair); + Results.push_back(Chain); +} + +static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SmallVector<SDValue, 2> Results; + SDLoc DL(Op); + getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + return DAG.getMergeValues(Results, DL); +} + +static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) { + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Chain = Op.getOperand(0); + SDValue RegNode = Op.getOperand(2); + WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); + if (!EHInfo) + report_fatal_error("EH registrations only live in functions using WinEH"); + + // Cast the operand to an alloca, and remember the frame index. + auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode); + if (!FINode) + report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca"); + EHInfo->EHRegNodeFrameIndex = FINode->getIndex(); + + // Return the chain operand without making any DAG nodes. + return Chain; +} + +/// \brief Lower intrinsics for TRUNCATE_TO_MEM case +/// return truncate Store/MaskedStore Node +static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op, + SelectionDAG &DAG, + MVT ElementType) { + SDLoc dl(Op); + SDValue Mask = Op.getOperand(4); + SDValue DataToTruncate = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + + MVT VT = DataToTruncate.getSimpleValueType(); + MVT SVT = MVT::getVectorVT(ElementType, VT.getVectorNumElements()); + + if (isAllOnesConstant(Mask)) // return just a truncate store + return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, + MachinePointerInfo(), SVT, false, false, + SVT.getScalarSizeInBits()/8); + + MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements()); + MVT BitcastVT = MVT::getVectorVT(MVT::i1, + Mask.getSimpleValueType().getSizeInBits()); + // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements + // are extracted by EXTRACT_SUBVECTOR. + SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT, + DAG.getBitcast(BitcastVT, Mask), + DAG.getIntPtrConstant(0, dl)); + + MachineMemOperand *MMO = DAG.getMachineFunction(). + getMachineMemOperand(MachinePointerInfo(), + MachineMemOperand::MOStore, SVT.getStoreSize(), + SVT.getScalarSizeInBits()/8); + + return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, + VMask, SVT, MMO, true); +} + +static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + + const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo); + if (!IntrData) { + if (IntNo == llvm::Intrinsic::x86_seh_ehregnode) + return MarkEHRegistrationNode(Op, DAG); + return SDValue(); + } + + SDLoc dl(Op); + switch(IntrData->Type) { + default: llvm_unreachable("Unknown Intrinsic Type"); + case RDSEED: + case RDRAND: { + // Emit the node with the right value type. + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other); + SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); + + // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1. + // Otherwise return the value from Rand, which is always 0, casted to i32. + SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)), + DAG.getConstant(1, dl, Op->getValueType(1)), + DAG.getConstant(X86::COND_B, dl, MVT::i32), + SDValue(Result.getNode(), 1) }; + SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, + DAG.getVTList(Op->getValueType(1), MVT::Glue), + Ops); + + // Return { result, isValid, chain }. + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid, + SDValue(Result.getNode(), 2)); + } + case GATHER: { + //gather(v1, mask, index, base, scale); + SDValue Chain = Op.getOperand(0); + SDValue Src = Op.getOperand(2); + SDValue Base = Op.getOperand(3); + SDValue Index = Op.getOperand(4); + SDValue Mask = Op.getOperand(5); + SDValue Scale = Op.getOperand(6); + return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale, + Chain, Subtarget); + } + case SCATTER: { + //scatter(base, mask, index, v1, scale); + SDValue Chain = Op.getOperand(0); + SDValue Base = Op.getOperand(2); + SDValue Mask = Op.getOperand(3); + SDValue Index = Op.getOperand(4); + SDValue Src = Op.getOperand(5); + SDValue Scale = Op.getOperand(6); + return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, + Scale, Chain); + } + case PREFETCH: { + SDValue Hint = Op.getOperand(6); + unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue(); + assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1"); + unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0); + SDValue Chain = Op.getOperand(0); + SDValue Mask = Op.getOperand(2); + SDValue Index = Op.getOperand(3); + SDValue Base = Op.getOperand(4); + SDValue Scale = Op.getOperand(5); + return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain); + } + // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP). + case RDTSC: { + SmallVector<SDValue, 2> Results; + getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget, + Results); + return DAG.getMergeValues(Results, dl); + } + // Read Performance Monitoring Counters. + case RDPMC: { + SmallVector<SDValue, 2> Results; + getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results); + return DAG.getMergeValues(Results, dl); + } + // XTEST intrinsics. + case XTEST: { + SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other); + SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0)); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86::COND_NE, dl, MVT::i8), + InTrans); + SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC); + return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), + Ret, SDValue(InTrans.getNode(), 1)); + } + // ADC/ADCX/SBB + case ADX: { + SmallVector<SDValue, 2> Results; + SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other); + SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other); + SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2), + DAG.getConstant(-1, dl, MVT::i8)); + SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3), + Op.getOperand(4), GenCF.getValue(1)); + SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0), + Op.getOperand(5), MachinePointerInfo(), + false, false, 0); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86::COND_B, dl, MVT::i8), + Res.getValue(1)); + Results.push_back(SetCC); + Results.push_back(Store); + return DAG.getMergeValues(Results, dl); + } + case COMPRESS_TO_MEM: { + SDLoc dl(Op); + SDValue Mask = Op.getOperand(4); + SDValue DataToCompress = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + + MVT VT = DataToCompress.getSimpleValueType(); + if (isAllOnesConstant(Mask)) // return just a store + return DAG.getStore(Chain, dl, DataToCompress, Addr, + MachinePointerInfo(), false, false, + VT.getScalarSizeInBits()/8); + + SDValue Compressed = + getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress), + Mask, DAG.getUNDEF(VT), Subtarget, DAG); + return DAG.getStore(Chain, dl, Compressed, Addr, + MachinePointerInfo(), false, false, + VT.getScalarSizeInBits()/8); + } + case TRUNCATE_TO_MEM_VI8: + return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8); + case TRUNCATE_TO_MEM_VI16: + return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16); + case TRUNCATE_TO_MEM_VI32: + return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32); + case EXPAND_FROM_MEM: { + SDLoc dl(Op); + SDValue Mask = Op.getOperand(4); + SDValue PassThru = Op.getOperand(3); + SDValue Addr = Op.getOperand(2); + SDValue Chain = Op.getOperand(0); + MVT VT = Op.getSimpleValueType(); + + if (isAllOnesConstant(Mask)) // return just a load + return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false, + false, VT.getScalarSizeInBits()/8); + + SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), + false, false, false, + VT.getScalarSizeInBits()/8); + + SDValue Results[] = { + getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand), + Mask, PassThru, Subtarget, DAG), Chain}; + return DAG.getMergeValues(Results, dl); + } + } +} + +SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDLoc dl(Op); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + if (Depth > 0) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT); + return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, PtrVT, + FrameAddr, Offset), + MachinePointerInfo(), false, false, false, 0); + } + + // Just load the return address. + SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); + return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), + RetAddrFI, MachinePointerInfo(), false, false, false, 0); +} + +SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + EVT VT = Op.getValueType(); + + MFI->setFrameAddressIsTaken(true); + + if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { + // Depth > 0 makes no sense on targets which use Windows unwind codes. It + // is not possible to crawl up the stack without looking at the unwind codes + // simultaneously. + int FrameAddrIndex = FuncInfo->getFAIndex(); + if (!FrameAddrIndex) { + // Set up a frame object for the return address. + unsigned SlotSize = RegInfo->getSlotSize(); + FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject( + SlotSize, /*Offset=*/0, /*IsImmutable=*/false); + FuncInfo->setFAIndex(FrameAddrIndex); + } + return DAG.getFrameIndex(FrameAddrIndex, VT); + } + + unsigned FrameReg = + RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); + SDLoc dl(Op); // FIXME probably not meaningful + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + assert(((FrameReg == X86::RBP && VT == MVT::i64) || + (FrameReg == X86::EBP && VT == MVT::i32)) && + "Invalid Frame Register!"); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, + MachinePointerInfo(), + false, false, false, 0); + return FrameAddr; +} + +// FIXME? Maybe this could be a TableGen attribute on some registers and +// this table could be generated automatically from RegInfo. +unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT, + SelectionDAG &DAG) const { + const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); + const MachineFunction &MF = DAG.getMachineFunction(); + + unsigned Reg = StringSwitch<unsigned>(RegName) + .Case("esp", X86::ESP) + .Case("rsp", X86::RSP) + .Case("ebp", X86::EBP) + .Case("rbp", X86::RBP) + .Default(0); + + if (Reg == X86::EBP || Reg == X86::RBP) { + if (!TFI.hasFP(MF)) + report_fatal_error("register " + StringRef(RegName) + + " is allocatable: function has no frame pointer"); +#ifndef NDEBUG + else { + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned FrameReg = + RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction()); + assert((FrameReg == X86::EBP || FrameReg == X86::RBP) && + "Invalid Frame Register!"); + } +#endif + } + + if (Reg) + return Reg; + + report_fatal_error("Invalid register name global variable"); +} + +SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, + SelectionDAG &DAG) const { + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op)); +} + +unsigned X86TargetLowering::getExceptionPointerRegister( + const Constant *PersonalityFn) const { + if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR) + return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX; + + return Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX; +} + +unsigned X86TargetLowering::getExceptionSelectorRegister( + const Constant *PersonalityFn) const { + // Funclet personalities don't use selectors (the runtime does the selection). + assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn))); + return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX; +} + +SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + SDLoc dl (Op); + + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction()); + assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) || + (FrameReg == X86::EBP && PtrVT == MVT::i32)) && + "Invalid Frame Register!"); + SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); + unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX; + + SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame, + DAG.getIntPtrConstant(RegInfo->getSlotSize(), + dl)); + StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset); + Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), + false, false, 0); + Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); + + return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain, + DAG.getRegister(StoreAddrReg, PtrVT)); +} + +SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL, + DAG.getVTList(MVT::i32, MVT::Other), + Op.getOperand(0), Op.getOperand(1)); +} + +SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other, + Op.getOperand(0), Op.getOperand(1)); +} + +static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) { + return Op.getOperand(0); +} + +SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + SDValue Root = Op.getOperand(0); + SDValue Trmp = Op.getOperand(1); // trampoline + SDValue FPtr = Op.getOperand(2); // nested function + SDValue Nest = Op.getOperand(3); // 'nest' parameter value + SDLoc dl (Op); + + const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); + + if (Subtarget->is64Bit()) { + SDValue OutChains[6]; + + // Large code-model. + const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. + const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. + + const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7; + const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7; + + const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix + + // Load the pointer to the nested function into R11. + unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 + SDValue Addr = Trmp; + OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(2, dl, MVT::i64)); + OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, + MachinePointerInfo(TrmpAddr, 2), + false, false, 2); + + // Load the 'nest' parameter value into R10. + // R10 is specified in X86CallingConv.td + OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(10, dl, MVT::i64)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 10), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(12, dl, MVT::i64)); + OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, + MachinePointerInfo(TrmpAddr, 12), + false, false, 2); + + // Jump to the nested function. + OpCode = (JMP64r << 8) | REX_WB; // jmpq *... + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(20, dl, MVT::i64)); + OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16), + Addr, MachinePointerInfo(TrmpAddr, 20), + false, false, 0); + + unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(22, dl, MVT::i64)); + OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8), + Addr, MachinePointerInfo(TrmpAddr, 22), + false, false, 0); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + } else { + const Function *Func = + cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); + CallingConv::ID CC = Func->getCallingConv(); + unsigned NestReg; + + switch (CC) { + default: + llvm_unreachable("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::X86_StdCall: { + // Pass 'nest' parameter in ECX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::ECX; + + // Check that ECX wasn't needed by an 'inreg' parameter. + FunctionType *FTy = Func->getFunctionType(); + const AttributeSet &Attrs = Func->getAttributes(); + + if (!Attrs.isEmpty() && !Func->isVarArg()) { + unsigned InRegCount = 0; + unsigned Idx = 1; + + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I, ++Idx) + if (Attrs.hasAttribute(Idx, Attribute::InReg)) { + auto &DL = DAG.getDataLayout(); + // FIXME: should only count parameters that are lowered to integers. + InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32; + } + + if (InRegCount > 2) { + report_fatal_error("Nest register in use - reduce number of inreg" + " parameters!"); + } + } + break; + } + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::Fast: + // Pass 'nest' parameter in EAX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::EAX; + break; + } + + SDValue OutChains[4]; + SDValue Addr, Disp; + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(10, dl, MVT::i32)); + Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); + + // This is storing the opcode for MOV32ri. + const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. + const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7; + OutChains[0] = DAG.getStore(Root, dl, + DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8), + Trmp, MachinePointerInfo(TrmpAddr), + false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(1, dl, MVT::i32)); + OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, + MachinePointerInfo(TrmpAddr, 1), + false, false, 1); + + const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(5, dl, MVT::i32)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8), + Addr, MachinePointerInfo(TrmpAddr, 5), + false, false, 1); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(6, dl, MVT::i32)); + OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, + MachinePointerInfo(TrmpAddr, 6), + false, false, 1); + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); + } +} + +SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, + SelectionDAG &DAG) const { + /* + The rounding mode is in bits 11:10 of FPSR, and has the following + settings: + 00 Round to nearest + 01 Round to -inf + 10 Round to +inf + 11 Round to 0 + + FLT_ROUNDS, on the other hand, expects the following: + -1 Undefined + 0 Round to 0 + 1 Round to nearest + 2 Round to +inf + 3 Round to -inf + + To perform the conversion, we do: + (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) + */ + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetFrameLowering &TFI = *Subtarget->getFrameLowering(); + unsigned StackAlignment = TFI.getStackAlignment(); + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + + // Save FP Control Word to stack slot + int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); + SDValue StackSlot = + DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout())); + + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI), + MachineMemOperand::MOStore, 2, 2); + + SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; + SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, + DAG.getVTList(MVT::Other), + Ops, MVT::i16, MMO); + + // Load FP Control Word from stack slot + SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, + MachinePointerInfo(), false, false, false, 0); + + // Transform as necessary + SDValue CWD1 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x800, DL, MVT::i16)), + DAG.getConstant(11, DL, MVT::i8)); + SDValue CWD2 = + DAG.getNode(ISD::SRL, DL, MVT::i16, + DAG.getNode(ISD::AND, DL, MVT::i16, + CWD, DAG.getConstant(0x400, DL, MVT::i16)), + DAG.getConstant(9, DL, MVT::i8)); + + SDValue RetVal = + DAG.getNode(ISD::AND, DL, MVT::i16, + DAG.getNode(ISD::ADD, DL, MVT::i16, + DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), + DAG.getConstant(1, DL, MVT::i16)), + DAG.getConstant(3, DL, MVT::i16)); + + return DAG.getNode((VT.getSizeInBits() < 16 ? + ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); +} + +/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction. +// +// 1. i32/i64 128/256-bit vector (native support require VLX) are expended +// to 512-bit vector. +// 2. i8/i16 vector implemented using dword LZCNT vector instruction +// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal, +// split the vector, perform operation on it's Lo a Hi part and +// concatenate the results. +static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) { + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + unsigned NumElems = VT.getVectorNumElements(); + + if (EltVT == MVT::i64 || EltVT == MVT::i32) { + // Extend to 512 bit vector. + assert((VT.is256BitVector() || VT.is128BitVector()) && + "Unsupported value type for operation"); + + MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits()); + SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT, + DAG.getUNDEF(NewVT), + Op.getOperand(0), + DAG.getIntPtrConstant(0, dl)); + SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512); + + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode, + DAG.getIntPtrConstant(0, dl)); + } + + assert((EltVT == MVT::i8 || EltVT == MVT::i16) && + "Unsupported element type"); + + if (16 < NumElems) { + // Split vector, it's Lo and Hi parts will be handled in next iteration. + SDValue Lo, Hi; + std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl); + MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2); + + Lo = DAG.getNode(Op.getOpcode(), dl, OutVT, Lo); + Hi = DAG.getNode(Op.getOpcode(), dl, OutVT, Hi); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi); + } + + MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems); + + assert((NewVT.is256BitVector() || NewVT.is512BitVector()) && + "Unsupported value type for operation"); + + // Use native supported vector instruction vplzcntd. + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0)); + SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op); + SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode); + SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT); + + return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta); +} + +static SDValue LowerCTLZ(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + SDLoc dl(Op); + + if (VT.isVector() && Subtarget->hasAVX512()) + return LowerVectorCTLZ_AVX512(Op, DAG); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + // If src is zero (i.e. bsr sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits + NumBits - 1, dl, OpVT), + DAG.getConstant(X86::COND_E, dl, MVT::i8), + Op.getValue(1) + }; + Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops); + + // Finally xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, + DAG.getConstant(NumBits - 1, dl, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + EVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + SDLoc dl(Op); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse). + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + // And xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, + DAG.getConstant(NumBits - 1, dl, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + unsigned NumBits = VT.getScalarSizeInBits(); + SDLoc dl(Op); + + if (VT.isVector()) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + SDValue N0 = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, dl, VT); + + // lsb(x) = (x & -x) + SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0, + DAG.getNode(ISD::SUB, dl, VT, Zero, N0)); + + // cttz_undef(x) = (width - 1) - ctlz(lsb) + if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF && + TLI.isOperationLegal(ISD::CTLZ, VT)) { + SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT); + return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne, + DAG.getNode(ISD::CTLZ, dl, VT, LSB)); + } + + // cttz(x) = ctpop(lsb - 1) + SDValue One = DAG.getConstant(1, dl, VT); + return DAG.getNode(ISD::CTPOP, dl, VT, + DAG.getNode(ISD::SUB, dl, VT, LSB, One)); + } + + assert(Op.getOpcode() == ISD::CTTZ && + "Only scalar CTTZ requires custom lowering"); + + // Issue a bsf (scan bits forward) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0)); + + // If src is zero (i.e. bsf sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits, dl, VT), + DAG.getConstant(X86::COND_E, dl, MVT::i8), + Op.getValue(1) + }; + return DAG.getNode(X86ISD::CMOV, dl, VT, Ops); +} + +// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit +// ones, and then concatenate the result back. +static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + + assert(VT.is256BitVector() && VT.isInteger() && + "Unsupported value type for operation"); + + unsigned NumElems = VT.getVectorNumElements(); + SDLoc dl(Op); + + // Extract the LHS vectors + SDValue LHS = Op.getOperand(0); + SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl); + SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl); + + // Extract the RHS vectors + SDValue RHS = Op.getOperand(1); + SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl); + SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl); + + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1), + DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2)); +} + +static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) { + if (Op.getValueType() == MVT::i1) + return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), + Op.getOperand(0), Op.getOperand(1)); + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) { + if (Op.getValueType() == MVT::i1) + return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(), + Op.getOperand(0), Op.getOperand(1)); + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) { + assert(Op.getSimpleValueType().is256BitVector() && + Op.getSimpleValueType().isInteger() && + "Only handle AVX 256-bit vector integer operation"); + return Lower256IntArith(Op, DAG); +} + +static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + + if (VT == MVT::i1) + return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1)); + + // Decompose 256-bit ops into smaller 128-bit ops. + if (VT.is256BitVector() && !Subtarget->hasInt256()) + return Lower256IntArith(Op, DAG); + + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector + // pairs, multiply and truncate. + if (VT == MVT::v16i8 || VT == MVT::v32i8) { + if (Subtarget->hasInt256()) { + if (VT == MVT::v32i8) { + MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2); + SDValue Lo = DAG.getIntPtrConstant(0, dl); + SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl); + SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo); + SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo); + SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi); + SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi); + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, + DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo), + DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi)); + } + + MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements()); + return DAG.getNode( + ISD::TRUNCATE, dl, VT, + DAG.getNode(ISD::MUL, dl, ExVT, + DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A), + DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B))); + } + + assert(VT == MVT::v16i8 && + "Pre-AVX2 support only supports v16i8 multiplication"); + MVT ExVT = MVT::v8i16; + + // Extract the lo parts and sign extend to i16 + SDValue ALo, BLo; + if (Subtarget->hasSSE41()) { + ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A); + BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B); + } else { + const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3, + -1, 4, -1, 5, -1, 6, -1, 7}; + ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + ALo = DAG.getBitcast(ExVT, ALo); + BLo = DAG.getBitcast(ExVT, BLo); + ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT)); + BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT)); + } + + // Extract the hi parts and sign extend to i16 + SDValue AHi, BHi; + if (Subtarget->hasSSE41()) { + const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi); + BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi); + } else { + const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11, + -1, 12, -1, 13, -1, 14, -1, 15}; + AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask); + BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask); + AHi = DAG.getBitcast(ExVT, AHi); + BHi = DAG.getBitcast(ExVT, BHi); + AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT)); + BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT)); + } + + // Multiply, mask the lower 8bits of the lo/hi results and pack + SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo); + SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi); + RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT)); + RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); + } + + // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle. + if (VT == MVT::v4i32) { + assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() && + "Should not custom lower when pmuldq is available!"); + + // Extract the odd parts. + static const int UnpackMask[] = { 1, -1, 3, -1 }; + SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask); + SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask); + + // Multiply the even parts. + SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B); + // Now multiply odd parts. + SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds); + + Evens = DAG.getBitcast(VT, Evens); + Odds = DAG.getBitcast(VT, Odds); + + // Merge the two vectors back together with a shuffle. This expands into 2 + // shuffles. + static const int ShufMask[] = { 0, 4, 2, 6 }; + return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask); + } + + assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) && + "Only know how to lower V2I64/V4I64/V8I64 multiply"); + + // Ahi = psrlqi(a, 32); + // Bhi = psrlqi(b, 32); + // + // AloBlo = pmuludq(a, b); + // AloBhi = pmuludq(a, Bhi); + // AhiBlo = pmuludq(Ahi, b); + + // AloBhi = psllqi(AloBhi, 32); + // AhiBlo = psllqi(AhiBlo, 32); + // return AloBlo + AloBhi + AhiBlo; + + SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG); + SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG); + + SDValue AhiBlo = Ahi; + SDValue AloBhi = Bhi; + // Bit cast to 32-bit vectors for MULUDQ + MVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : + (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32; + A = DAG.getBitcast(MulVT, A); + B = DAG.getBitcast(MulVT, B); + Ahi = DAG.getBitcast(MulVT, Ahi); + Bhi = DAG.getBitcast(MulVT, Bhi); + + SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B); + // After shifting right const values the result may be all-zero. + if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) { + AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B); + AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG); + } + if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) { + AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi); + AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG); + } + + SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); + return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); +} + +SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const { + assert(Subtarget->isTargetWin64() && "Unexpected target"); + EVT VT = Op.getValueType(); + assert(VT.isInteger() && VT.getSizeInBits() == 128 && + "Unexpected return type for lowering"); + + RTLIB::Libcall LC; + bool isSigned; + switch (Op->getOpcode()) { + default: llvm_unreachable("Unexpected request for libcall!"); + case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break; + case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break; + case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break; + case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break; + case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break; + case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break; + } + + SDLoc dl(Op); + SDValue InChain = DAG.getEntryNode(); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { + EVT ArgVT = Op->getOperand(i).getValueType(); + assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 && + "Unexpected argument type for lowering"); + SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16); + Entry.Node = StackPtr; + InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(), + false, false, 16); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + Entry.Ty = PointerType::get(ArgTy,0); + Entry.isSExt = false; + Entry.isZExt = false; + Args.push_back(Entry); + } + + SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), + getPointerTy(DAG.getDataLayout())); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(InChain) + .setCallee(getLibcallCallingConv(LC), + static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), + Callee, std::move(Args), 0) + .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); + + std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); + return DAG.getBitcast(VT, CallInfo.first); +} + +static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); + MVT VT = Op0.getSimpleValueType(); + SDLoc dl(Op); + + assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) || + (VT == MVT::v8i32 && Subtarget->hasInt256())); + + // PMULxD operations multiply each even value (starting at 0) of LHS with + // the related value of RHS and produce a widen result. + // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> + // => <2 x i64> <ae|cg> + // + // In other word, to have all the results, we need to perform two PMULxD: + // 1. one with the even values. + // 2. one with the odd values. + // To achieve #2, with need to place the odd values at an even position. + // + // Place the odd value at an even position (basically, shift all values 1 + // step to the left): + const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1}; + // <a|b|c|d> => <b|undef|d|undef> + SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask); + // <e|f|g|h> => <f|undef|h|undef> + SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask); + + // Emit two multiplies, one for the lower 2 ints and one for the higher 2 + // ints. + MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64; + bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI; + unsigned Opcode = + (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ; + // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h> + // => <2 x i64> <ae|cg> + SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1)); + // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef> + // => <2 x i64> <bf|dh> + SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1)); + + // Shuffle it back into the right order. + SDValue Highs, Lows; + if (VT == MVT::v8i32) { + const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15}; + Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); + const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14}; + Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); + } else { + const int HighMask[] = {1, 5, 3, 7}; + Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask); + const int LowMask[] = {0, 4, 2, 6}; + Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask); + } + + // If we have a signed multiply but no PMULDQ fix up the high parts of a + // unsigned multiply. + if (IsSigned && !Subtarget->hasSSE41()) { + SDValue ShAmt = DAG.getConstant( + 31, dl, + DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout())); + SDValue T1 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1); + SDValue T2 = DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0); + + SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2); + Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup); + } + + // The first result of MUL_LOHI is actually the low value, followed by the + // high value. + SDValue Ops[] = {Lows, Highs}; + return DAG.getMergeValues(Ops, dl); +} + +// Return true if the required (according to Opcode) shift-imm form is natively +// supported by the Subtarget +static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget, + unsigned Opcode) { + if (VT.getScalarSizeInBits() < 16) + return false; + + if (VT.is512BitVector() && + (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI())) + return true; + + bool LShift = VT.is128BitVector() || + (VT.is256BitVector() && Subtarget->hasInt256()); + + bool AShift = LShift && (Subtarget->hasVLX() || + (VT != MVT::v2i64 && VT != MVT::v4i64)); + return (Opcode == ISD::SRA) ? AShift : LShift; +} + +// The shift amount is a variable, but it is the same for all vector lanes. +// These instructions are defined together with shift-immediate. +static +bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget, + unsigned Opcode) { + return SupportedVectorShiftWithImm(VT, Subtarget, Opcode); +} + +// Return true if the required (according to Opcode) variable-shift form is +// natively supported by the Subtarget +static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget, + unsigned Opcode) { + + if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16) + return false; + + // vXi16 supported only on AVX-512, BWI + if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI()) + return false; + + if (VT.is512BitVector() || Subtarget->hasVLX()) + return true; + + bool LShift = VT.is128BitVector() || VT.is256BitVector(); + bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64; + return (Opcode == ISD::SRA) ? AShift : LShift; +} + +static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; + + auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) { + assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type"); + MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2); + SDValue Ex = DAG.getBitcast(ExVT, R); + + if (ShiftAmt >= 32) { + // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32. + SDValue Upper = + getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG); + SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, + ShiftAmt - 32, DAG); + if (VT == MVT::v2i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3}); + if (VT == MVT::v4i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, + {9, 1, 11, 3, 13, 5, 15, 7}); + } else { + // SRA upper i32, SHL whole i64 and select lower i32. + SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, + ShiftAmt, DAG); + SDValue Lower = + getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG); + Lower = DAG.getBitcast(ExVT, Lower); + if (VT == MVT::v2i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3}); + if (VT == MVT::v4i64) + Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, + {8, 1, 10, 3, 12, 5, 14, 7}); + } + return DAG.getBitcast(VT, Ex); + }; + + // Optimize shl/srl/sra with constant shift amount. + if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { + if (auto *ShiftConst = BVAmt->getConstantSplatNode()) { + uint64_t ShiftAmt = ShiftConst->getZExtValue(); + + if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) + return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); + + // i64 SRA needs to be performed as partial shifts. + if ((VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) && + Op.getOpcode() == ISD::SRA && !Subtarget->hasXOP()) + return ArithmeticShiftRight64(ShiftAmt); + + if (VT == MVT::v16i8 || + (Subtarget->hasInt256() && VT == MVT::v32i8) || + VT == MVT::v64i8) { + unsigned NumElts = VT.getVectorNumElements(); + MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2); + + // Simple i8 add case + if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1) + return DAG.getNode(ISD::ADD, dl, VT, R, R); + + // ashr(R, 7) === cmp_slt(R, 0) + if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) { + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R); + } + + // XOP can shift v16i8 directly instead of as shift v8i16 + mask. + if (VT == MVT::v16i8 && Subtarget->hasXOP()) + return SDValue(); + + if (Op.getOpcode() == ISD::SHL) { + // Make a large shift. + SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, + R, ShiftAmt, DAG); + SHL = DAG.getBitcast(VT, SHL); + // Zero out the rightmost bits. + return DAG.getNode(ISD::AND, dl, VT, SHL, + DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT)); + } + if (Op.getOpcode() == ISD::SRL) { + // Make a large shift. + SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, + R, ShiftAmt, DAG); + SRL = DAG.getBitcast(VT, SRL); + // Zero out the leftmost bits. + return DAG.getNode(ISD::AND, dl, VT, SRL, + DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT)); + } + if (Op.getOpcode() == ISD::SRA) { + // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask) + SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + + SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT); + Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask); + Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask); + return Res; + } + llvm_unreachable("Unknown shift opcode."); + } + } + } + + // Special case in 32-bit mode, where i64 is expanded into high and low parts. + if (!Subtarget->is64Bit() && !Subtarget->hasXOP() && + (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) { + + // Peek through any splat that was introduced for i64 shift vectorization. + int SplatIndex = -1; + if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode())) + if (SVN->isSplat()) { + SplatIndex = SVN->getSplatIndex(); + Amt = Amt.getOperand(0); + assert(SplatIndex < (int)VT.getVectorNumElements() && + "Splat shuffle referencing second operand"); + } + + if (Amt.getOpcode() != ISD::BITCAST || + Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR) + return SDValue(); + + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / + VT.getVectorNumElements(); + unsigned RatioInLog2 = Log2_32_Ceil(Ratio); + uint64_t ShiftAmt = 0; + unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio); + for (unsigned i = 0; i != Ratio; ++i) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp)); + if (!C) + return SDValue(); + // 6 == Log2(64) + ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2))); + } + + // Check remaining shift amounts (if not a splat). + if (SplatIndex < 0) { + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + uint64_t ShAmt = 0; + for (unsigned j = 0; j != Ratio; ++j) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j)); + if (!C) + return SDValue(); + // 6 == Log2(64) + ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2))); + } + if (ShAmt != ShiftAmt) + return SDValue(); + } + } + + if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode())) + return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG); + + if (Op.getOpcode() == ISD::SRA) + return ArithmeticShiftRight64(ShiftAmt); + } + + return SDValue(); +} + +static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG, + const X86Subtarget* Subtarget) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI; + + unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL : + (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA; + + if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) { + SDValue BaseShAmt; + MVT EltVT = VT.getVectorElementType(); + + if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) { + // Check if this build_vector node is doing a splat. + // If so, then set BaseShAmt equal to the splat value. + BaseShAmt = BV->getSplatValue(); + if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF) + BaseShAmt = SDValue(); + } else { + if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR) + Amt = Amt.getOperand(0); + + ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt); + if (SVN && SVN->isSplat()) { + unsigned SplatIdx = (unsigned)SVN->getSplatIndex(); + SDValue InVec = Amt.getOperand(0); + if (InVec.getOpcode() == ISD::BUILD_VECTOR) { + assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) && + "Unexpected shuffle index found!"); + BaseShAmt = InVec.getOperand(SplatIdx); + } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { + if (C->getZExtValue() == SplatIdx) + BaseShAmt = InVec.getOperand(1); + } + } + + if (!BaseShAmt) + // Avoid introducing an extract element from a shuffle. + BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec, + DAG.getIntPtrConstant(SplatIdx, dl)); + } + } + + if (BaseShAmt.getNode()) { + assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!"); + if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt); + else if (EltVT.bitsLT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt); + + return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG); + } + } + + // Special case in 32-bit mode, where i64 is expanded into high and low parts. + if (!Subtarget->is64Bit() && VT == MVT::v2i64 && + Amt.getOpcode() == ISD::BITCAST && + Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { + Amt = Amt.getOperand(0); + unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() / + VT.getVectorNumElements(); + std::vector<SDValue> Vals(Ratio); + for (unsigned i = 0; i != Ratio; ++i) + Vals[i] = Amt.getOperand(i); + for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) { + for (unsigned j = 0; j != Ratio; ++j) + if (Vals[j] != Amt.getOperand(i + j)) + return SDValue(); + } + + if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) + return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1)); + } + return SDValue(); +} + +static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc dl(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + assert(VT.isVector() && "Custom lowering only for vector shifts!"); + assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!"); + + if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget)) + return V; + + if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget)) + return V; + + if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode())) + return Op; + + // XOP has 128-bit variable logical/arithmetic shifts. + // +ve/-ve Amt = shift left/right. + if (Subtarget->hasXOP() && + (VT == MVT::v2i64 || VT == MVT::v4i32 || + VT == MVT::v8i16 || VT == MVT::v16i8)) { + if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) { + SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl); + Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt); + } + if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL) + return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt); + if (Op.getOpcode() == ISD::SRA) + return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt); + } + + // 2i64 vector logical shifts can efficiently avoid scalarization - do the + // shifts per-lane and then shuffle the partial results back together. + if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) { + // Splat the shift amounts so the scalar shifts above will catch it. + SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0}); + SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1}); + SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0); + SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1); + return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3}); + } + + // i64 vector arithmetic shift can be emulated with the transform: + // M = lshr(SIGN_BIT, Amt) + // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M) + if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) && + Op.getOpcode() == ISD::SRA) { + SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT); + SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt); + R = DAG.getNode(ISD::SRL, dl, VT, R, Amt); + R = DAG.getNode(ISD::XOR, dl, VT, R, M); + R = DAG.getNode(ISD::SUB, dl, VT, R, M); + return R; + } + + // If possible, lower this packed shift into a vector multiply instead of + // expanding it into a sequence of scalar shifts. + // Do this only if the vector shift count is a constant build_vector. + if (Op.getOpcode() == ISD::SHL && + (VT == MVT::v8i16 || VT == MVT::v4i32 || + (Subtarget->hasInt256() && VT == MVT::v16i16)) && + ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { + SmallVector<SDValue, 8> Elts; + MVT SVT = VT.getVectorElementType(); + unsigned SVTBits = SVT.getSizeInBits(); + APInt One(SVTBits, 1); + unsigned NumElems = VT.getVectorNumElements(); + + for (unsigned i=0; i !=NumElems; ++i) { + SDValue Op = Amt->getOperand(i); + if (Op->getOpcode() == ISD::UNDEF) { + Elts.push_back(Op); + continue; + } + + ConstantSDNode *ND = cast<ConstantSDNode>(Op); + APInt C(SVTBits, ND->getAPIntValue().getZExtValue()); + uint64_t ShAmt = C.getZExtValue(); + if (ShAmt >= SVTBits) { + Elts.push_back(DAG.getUNDEF(SVT)); + continue; + } + Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT)); + } + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts); + return DAG.getNode(ISD::MUL, dl, VT, R, BV); + } + + // Lower SHL with variable shift amount. + if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) { + Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT)); + + Op = DAG.getNode(ISD::ADD, dl, VT, Op, + DAG.getConstant(0x3f800000U, dl, VT)); + Op = DAG.getBitcast(MVT::v4f32, Op); + Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); + return DAG.getNode(ISD::MUL, dl, VT, Op, R); + } + + // If possible, lower this shift as a sequence of two shifts by + // constant plus a MOVSS/MOVSD instead of scalarizing it. + // Example: + // (v4i32 (srl A, (build_vector < X, Y, Y, Y>))) + // + // Could be rewritten as: + // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>))) + // + // The advantage is that the two shifts from the example would be + // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing + // the vector shift into four scalar shifts plus four pairs of vector + // insert/extract. + if ((VT == MVT::v8i16 || VT == MVT::v4i32) && + ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { + unsigned TargetOpcode = X86ISD::MOVSS; + bool CanBeSimplified; + // The splat value for the first packed shift (the 'X' from the example). + SDValue Amt1 = Amt->getOperand(0); + // The splat value for the second packed shift (the 'Y' from the example). + SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : + Amt->getOperand(2); + + // See if it is possible to replace this node with a sequence of + // two shifts followed by a MOVSS/MOVSD + if (VT == MVT::v4i32) { + // Check if it is legal to use a MOVSS. + CanBeSimplified = Amt2 == Amt->getOperand(2) && + Amt2 == Amt->getOperand(3); + if (!CanBeSimplified) { + // Otherwise, check if we can still simplify this node using a MOVSD. + CanBeSimplified = Amt1 == Amt->getOperand(1) && + Amt->getOperand(2) == Amt->getOperand(3); + TargetOpcode = X86ISD::MOVSD; + Amt2 = Amt->getOperand(2); + } + } else { + // Do similar checks for the case where the machine value type + // is MVT::v8i16. + CanBeSimplified = Amt1 == Amt->getOperand(1); + for (unsigned i=3; i != 8 && CanBeSimplified; ++i) + CanBeSimplified = Amt2 == Amt->getOperand(i); + + if (!CanBeSimplified) { + TargetOpcode = X86ISD::MOVSD; + CanBeSimplified = true; + Amt2 = Amt->getOperand(4); + for (unsigned i=0; i != 4 && CanBeSimplified; ++i) + CanBeSimplified = Amt1 == Amt->getOperand(i); + for (unsigned j=4; j != 8 && CanBeSimplified; ++j) + CanBeSimplified = Amt2 == Amt->getOperand(j); + } + } + + if (CanBeSimplified && isa<ConstantSDNode>(Amt1) && + isa<ConstantSDNode>(Amt2)) { + // Replace this node with two shifts followed by a MOVSS/MOVSD. + MVT CastVT = MVT::v4i32; + SDValue Splat1 = + DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT); + SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1); + SDValue Splat2 = + DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT); + SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2); + if (TargetOpcode == X86ISD::MOVSD) + CastVT = MVT::v2i64; + SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1); + SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2); + SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2, + BitCast1, DAG); + return DAG.getBitcast(VT, Result); + } + } + + // v4i32 Non Uniform Shifts. + // If the shift amount is constant we can shift each lane using the SSE2 + // immediate shifts, else we need to zero-extend each lane to the lower i64 + // and shift using the SSE2 variable shifts. + // The separate results can then be blended together. + if (VT == MVT::v4i32) { + unsigned Opc = Op.getOpcode(); + SDValue Amt0, Amt1, Amt2, Amt3; + if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) { + Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0}); + Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1}); + Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2}); + Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3}); + } else { + // ISD::SHL is handled above but we include it here for completeness. + switch (Opc) { + default: + llvm_unreachable("Unknown target vector shift node"); + case ISD::SHL: + Opc = X86ISD::VSHL; + break; + case ISD::SRL: + Opc = X86ISD::VSRL; + break; + case ISD::SRA: + Opc = X86ISD::VSRA; + break; + } + // The SSE2 shifts use the lower i64 as the same shift amount for + // all lanes and the upper i64 is ignored. These shuffle masks + // optimally zero-extend each lanes on SSE2/SSE41/AVX targets. + SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); + Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1}); + Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1}); + Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1}); + Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1}); + } + + SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0); + SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1); + SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2); + SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3); + SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1}); + SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7}); + return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7}); + } + + if (VT == MVT::v16i8 || + (VT == MVT::v32i8 && Subtarget->hasInt256() && !Subtarget->hasXOP())) { + MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2); + unsigned ShiftOpcode = Op->getOpcode(); + + auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) { + // On SSE41 targets we make use of the fact that VSELECT lowers + // to PBLENDVB which selects bytes based just on the sign bit. + if (Subtarget->hasSSE41()) { + V0 = DAG.getBitcast(VT, V0); + V1 = DAG.getBitcast(VT, V1); + Sel = DAG.getBitcast(VT, Sel); + return DAG.getBitcast(SelVT, + DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1)); + } + // On pre-SSE41 targets we test for the sign bit by comparing to + // zero - a negative value will set all bits of the lanes to true + // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering. + SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl); + SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel); + return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1); + }; + + // Turn 'a' into a mask suitable for VSELECT: a = a << 5; + // We can safely do this using i16 shifts as we're only interested in + // the 3 lower bits of each byte. + Amt = DAG.getBitcast(ExtVT, Amt); + Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT)); + Amt = DAG.getBitcast(VT, Amt); + + if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) { + // r = VSELECT(r, shift(r, 4), a); + SDValue M = + DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 2), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // return VSELECT(r, shift(r, 1), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); + R = SignBitSelect(VT, Amt, M, R); + return R; + } + + if (Op->getOpcode() == ISD::SRA) { + // For SRA we need to unpack each byte to the higher byte of a i16 vector + // so we can correctly sign extend. We don't care what happens to the + // lower byte. + SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt); + SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt); + SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R); + SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R); + ALo = DAG.getBitcast(ExtVT, ALo); + AHi = DAG.getBitcast(ExtVT, AHi); + RLo = DAG.getBitcast(ExtVT, RLo); + RHi = DAG.getBitcast(ExtVT, RHi); + + // r = VSELECT(r, shift(r, 4), a); + SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(4, dl, ExtVT)); + SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(4, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // a += a + ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); + AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); + + // r = VSELECT(r, shift(r, 2), a); + MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(2, dl, ExtVT)); + MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(2, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // a += a + ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo); + AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi); + + // r = VSELECT(r, shift(r, 1), a); + MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo, + DAG.getConstant(1, dl, ExtVT)); + MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi, + DAG.getConstant(1, dl, ExtVT)); + RLo = SignBitSelect(ExtVT, ALo, MLo, RLo); + RHi = SignBitSelect(ExtVT, AHi, MHi, RHi); + + // Logical shift the result back to the lower byte, leaving a zero upper + // byte + // meaning that we can safely pack with PACKUSWB. + RLo = + DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT)); + RHi = + DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi); + } + } + + // It's worth extending once and using the v8i32 shifts for 16-bit types, but + // the extra overheads to get from v16i8 to v8i32 make the existing SSE + // solution better. + if (Subtarget->hasInt256() && VT == MVT::v8i16) { + MVT ExtVT = MVT::v8i32; + unsigned ExtOpc = + Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + R = DAG.getNode(ExtOpc, dl, ExtVT, R); + Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt); + return DAG.getNode(ISD::TRUNCATE, dl, VT, + DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt)); + } + + if (Subtarget->hasInt256() && !Subtarget->hasXOP() && VT == MVT::v16i16) { + MVT ExtVT = MVT::v8i32; + SDValue Z = getZeroVector(VT, Subtarget, DAG, dl); + SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z); + SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z); + SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R); + SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R); + ALo = DAG.getBitcast(ExtVT, ALo); + AHi = DAG.getBitcast(ExtVT, AHi); + RLo = DAG.getBitcast(ExtVT, RLo); + RHi = DAG.getBitcast(ExtVT, RHi); + SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo); + SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi); + Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT)); + Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT)); + return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi); + } + + if (VT == MVT::v8i16) { + unsigned ShiftOpcode = Op->getOpcode(); + + auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) { + // On SSE41 targets we make use of the fact that VSELECT lowers + // to PBLENDVB which selects bytes based just on the sign bit. + if (Subtarget->hasSSE41()) { + MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2); + V0 = DAG.getBitcast(ExtVT, V0); + V1 = DAG.getBitcast(ExtVT, V1); + Sel = DAG.getBitcast(ExtVT, Sel); + return DAG.getBitcast( + VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1)); + } + // On pre-SSE41 targets we splat the sign bit - a negative value will + // set all bits of the lanes to true and VSELECT uses that in + // its OR(AND(V0,C),AND(V1,~C)) lowering. + SDValue C = + DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT)); + return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1); + }; + + // Turn 'a' into a mask suitable for VSELECT: a = a << 12; + if (Subtarget->hasSSE41()) { + // On SSE41 targets we need to replicate the shift mask in both + // bytes for PBLENDVB. + Amt = DAG.getNode( + ISD::OR, dl, VT, + DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)), + DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT))); + } else { + Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)); + } + + // r = VSELECT(r, shift(r, 8), a); + SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 4), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // r = VSELECT(r, shift(r, 2), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT)); + R = SignBitSelect(Amt, M, R); + + // a += a + Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt); + + // return VSELECT(r, shift(r, 1), a); + M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT)); + R = SignBitSelect(Amt, M, R); + return R; + } + + // Decompose 256-bit shifts into smaller 128-bit shifts. + if (VT.is256BitVector()) { + unsigned NumElems = VT.getVectorNumElements(); + MVT EltVT = VT.getVectorElementType(); + MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2); + + // Extract the two vectors + SDValue V1 = Extract128BitVector(R, 0, DAG, dl); + SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl); + + // Recreate the shift amount vectors + SDValue Amt1, Amt2; + if (Amt.getOpcode() == ISD::BUILD_VECTOR) { + // Constant shift amount + SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems); + ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2); + ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2); + + Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts); + Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts); + } else { + // Variable shift amount + Amt1 = Extract128BitVector(Amt, 0, DAG, dl); + Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl); + } + + // Issue new vector shifts for the smaller types + V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1); + V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2); + + // Concatenate the result back + return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2); + } + + return SDValue(); +} + +static SDValue LowerRotate(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + SDLoc DL(Op); + SDValue R = Op.getOperand(0); + SDValue Amt = Op.getOperand(1); + + assert(VT.isVector() && "Custom lowering only for vector rotates!"); + assert(Subtarget->hasXOP() && "XOP support required for vector rotates!"); + assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported"); + + // XOP has 128-bit vector variable + immediate rotates. + // +ve/-ve Amt = rotate left/right. + + // Split 256-bit integers. + if (VT.is256BitVector()) + return Lower256IntArith(Op, DAG); + + assert(VT.is128BitVector() && "Only rotate 128-bit vectors!"); + + // Attempt to rotate by immediate. + if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) { + if (auto *RotateConst = BVAmt->getConstantSplatNode()) { + uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue(); + assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range"); + return DAG.getNode(X86ISD::VPROTI, DL, VT, R, + DAG.getConstant(RotateAmt, DL, MVT::i8)); + } + } + + // Use general rotate by variable (per-element). + return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt); +} + +static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { + // Lower the "add/sub/mul with overflow" instruction into a regular ins plus + // a "setcc" instruction that checks the overflow flag. The "brcond" lowering + // looks for this combo and may remove the "setcc" instruction if the "setcc" + // has only one use. + SDNode *N = Op.getNode(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + unsigned BaseOp = 0; + unsigned Cond = 0; + SDLoc DL(Op); + switch (Op.getOpcode()) { + default: llvm_unreachable("Unknown ovf instruction!"); + case ISD::SADDO: + // A subtract of one will be selected as a INC. Note that INC doesn't + // set CF, so we can't do this for UADDO. + if (isOneConstant(RHS)) { + BaseOp = X86ISD::INC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::ADD; + Cond = X86::COND_O; + break; + case ISD::UADDO: + BaseOp = X86ISD::ADD; + Cond = X86::COND_B; + break; + case ISD::SSUBO: + // A subtract of one will be selected as a DEC. Note that DEC doesn't + // set CF, so we can't do this for USUBO. + if (isOneConstant(RHS)) { + BaseOp = X86ISD::DEC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::SUB; + Cond = X86::COND_O; + break; + case ISD::USUBO: + BaseOp = X86ISD::SUB; + Cond = X86::COND_B; + break; + case ISD::SMULO: + BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL; + Cond = X86::COND_O; + break; + case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs + if (N->getValueType(0) == MVT::i8) { + BaseOp = X86ISD::UMUL8; + Cond = X86::COND_O; + break; + } + SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), + MVT::i32); + SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); + + SDValue SetCC = + DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(X86::COND_O, DL, MVT::i32), + SDValue(Sum.getNode(), 2)); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); + } + } + + // Also sets EFLAGS. + SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); + SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); + + SDValue SetCC = + DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), + DAG.getConstant(Cond, DL, MVT::i32), + SDValue(Sum.getNode(), 1)); + + return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC); +} + +/// Returns true if the operand type is exactly twice the native width, and +/// the corresponding cmpxchg8b or cmpxchg16b instruction is available. +/// Used to know whether to use cmpxchg8/16b when expanding atomic operations +/// (otherwise we leave them alone to become __sync_fetch_and_... calls). +bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const { + unsigned OpWidth = MemType->getPrimitiveSizeInBits(); + + if (OpWidth == 64) + return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b + else if (OpWidth == 128) + return Subtarget->hasCmpxchg16b(); + else + return false; +} + +bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { + return needsCmpXchgNb(SI->getValueOperand()->getType()); +} + +// Note: this turns large loads into lock cmpxchg8b/16b. +// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b. +TargetLowering::AtomicExpansionKind +X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { + auto PTy = cast<PointerType>(LI->getPointerOperand()->getType()); + return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; +} + +TargetLowering::AtomicExpansionKind +X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { + unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; + Type *MemType = AI->getType(); + + // If the operand is too big, we must see if cmpxchg8/16b is available + // and default to library calls otherwise. + if (MemType->getPrimitiveSizeInBits() > NativeWidth) { + return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; + } + + AtomicRMWInst::BinOp Op = AI->getOperation(); + switch (Op) { + default: + llvm_unreachable("Unknown atomic operation"); + case AtomicRMWInst::Xchg: + case AtomicRMWInst::Add: + case AtomicRMWInst::Sub: + // It's better to use xadd, xsub or xchg for these in all cases. + return AtomicExpansionKind::None; + case AtomicRMWInst::Or: + case AtomicRMWInst::And: + case AtomicRMWInst::Xor: + // If the atomicrmw's result isn't actually used, we can just add a "lock" + // prefix to a normal instruction for these operations. + return !AI->use_empty() ? AtomicExpansionKind::CmpXChg + : AtomicExpansionKind::None; + case AtomicRMWInst::Nand: + case AtomicRMWInst::Max: + case AtomicRMWInst::Min: + case AtomicRMWInst::UMax: + case AtomicRMWInst::UMin: + // These always require a non-trivial set of data operations on x86. We must + // use a cmpxchg loop. + return AtomicExpansionKind::CmpXChg; + } +} + +static bool hasMFENCE(const X86Subtarget& Subtarget) { + // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for + // no-sse2). There isn't any reason to disable it if the target processor + // supports it. + return Subtarget.hasSSE2() || Subtarget.is64Bit(); +} + +LoadInst * +X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const { + unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32; + Type *MemType = AI->getType(); + // Accesses larger than the native width are turned into cmpxchg/libcalls, so + // there is no benefit in turning such RMWs into loads, and it is actually + // harmful as it introduces a mfence. + if (MemType->getPrimitiveSizeInBits() > NativeWidth) + return nullptr; + + auto Builder = IRBuilder<>(AI); + Module *M = Builder.GetInsertBlock()->getParent()->getParent(); + auto SynchScope = AI->getSynchScope(); + // We must restrict the ordering to avoid generating loads with Release or + // ReleaseAcquire orderings. + auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering()); + auto Ptr = AI->getPointerOperand(); + + // Before the load we need a fence. Here is an example lifted from + // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence + // is required: + // Thread 0: + // x.store(1, relaxed); + // r1 = y.fetch_add(0, release); + // Thread 1: + // y.fetch_add(42, acquire); + // r2 = x.load(relaxed); + // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is + // lowered to just a load without a fence. A mfence flushes the store buffer, + // making the optimization clearly correct. + // FIXME: it is required if isAtLeastRelease(Order) but it is not clear + // otherwise, we might be able to be more aggressive on relaxed idempotent + // rmw. In practice, they do not look useful, so we don't try to be + // especially clever. + if (SynchScope == SingleThread) + // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at + // the IR level, so we must wrap it in an intrinsic. + return nullptr; + + if (!hasMFENCE(*Subtarget)) + // FIXME: it might make sense to use a locked operation here but on a + // different cache-line to prevent cache-line bouncing. In practice it + // is probably a small win, and x86 processors without mfence are rare + // enough that we do not bother. + return nullptr; + + Function *MFence = + llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence); + Builder.CreateCall(MFence, {}); + + // Finally we can emit the atomic load. + LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr, + AI->getType()->getPrimitiveSizeInBits()); + Loaded->setAtomic(Order, SynchScope); + AI->replaceAllUsesWith(Loaded); + AI->eraseFromParent(); + return Loaded; +} + +static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc dl(Op); + AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( + cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); + SynchronizationScope FenceScope = static_cast<SynchronizationScope>( + cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); + + // The only fence that needs an instruction is a sequentially-consistent + // cross-thread fence. + if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) { + if (hasMFENCE(*Subtarget)) + return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); + + SDValue Chain = Op.getOperand(0); + SDValue Zero = DAG.getConstant(0, dl, MVT::i32); + SDValue Ops[] = { + DAG.getRegister(X86::ESP, MVT::i32), // Base + DAG.getTargetConstant(1, dl, MVT::i8), // Scale + DAG.getRegister(0, MVT::i32), // Index + DAG.getTargetConstant(0, dl, MVT::i32), // Disp + DAG.getRegister(0, MVT::i32), // Segment. + Zero, + Chain + }; + SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops); + return SDValue(Res, 0); + } + + // MEMBARRIER is a compiler barrier; it codegens to a no-op. + return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); +} + +static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT T = Op.getSimpleValueType(); + SDLoc DL(Op); + unsigned Reg = 0; + unsigned size = 0; + switch(T.SimpleTy) { + default: llvm_unreachable("Invalid value type!"); + case MVT::i8: Reg = X86::AL; size = 1; break; + case MVT::i16: Reg = X86::AX; size = 2; break; + case MVT::i32: Reg = X86::EAX; size = 4; break; + case MVT::i64: + assert(Subtarget->is64Bit() && "Node not type legal!"); + Reg = X86::RAX; size = 8; + break; + } + SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, + Op.getOperand(2), SDValue()); + SDValue Ops[] = { cpIn.getValue(0), + Op.getOperand(1), + Op.getOperand(3), + DAG.getTargetConstant(size, DL, MVT::i8), + cpIn.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); + SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, + Ops, T, MMO); + + SDValue cpOut = + DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); + SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS, + MVT::i32, cpOut.getValue(2)); + SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1), + DAG.getConstant(X86::COND_E, DL, MVT::i8), + EFLAGS); + + DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut); + DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); + DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1)); + return SDValue(); +} + +static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT SrcVT = Op.getOperand(0).getSimpleValueType(); + MVT DstVT = Op.getSimpleValueType(); + + if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) { + assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); + if (DstVT != MVT::f64) + // This conversion needs to be expanded. + return SDValue(); + + SDValue InVec = Op->getOperand(0); + SDLoc dl(Op); + unsigned NumElts = SrcVT.getVectorNumElements(); + MVT SVT = SrcVT.getVectorElementType(); + + // Widen the vector in input in the case of MVT::v2i32. + // Example: from MVT::v2i32 to MVT::v4i32. + SmallVector<SDValue, 16> Elts; + for (unsigned i = 0, e = NumElts; i != e; ++i) + Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec, + DAG.getIntPtrConstant(i, dl))); + + // Explicitly mark the extra elements as Undef. + Elts.append(NumElts, DAG.getUNDEF(SVT)); + + EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); + SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts); + SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64, + DAG.getIntPtrConstant(0, dl)); + } + + assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && + Subtarget->hasMMX() && "Unexpected custom BITCAST"); + assert((DstVT == MVT::i64 || + (DstVT.isVector() && DstVT.getSizeInBits()==64)) && + "Unexpected custom BITCAST"); + // i64 <=> MMX conversions are Legal. + if (SrcVT==MVT::i64 && DstVT.isVector()) + return Op; + if (DstVT==MVT::i64 && SrcVT.isVector()) + return Op; + // MMX <=> MMX conversions are Legal. + if (SrcVT.isVector() && DstVT.isVector()) + return Op; + // All other conversions need to be expanded. + return SDValue(); +} + +/// Compute the horizontal sum of bytes in V for the elements of VT. +/// +/// Requires V to be a byte vector and VT to be an integer vector type with +/// wider elements than V's type. The width of the elements of VT determines +/// how many bytes of V are summed horizontally to produce each element of the +/// result. +static SDValue LowerHorizontalByteSum(SDValue V, MVT VT, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + SDLoc DL(V); + MVT ByteVecVT = V.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + int NumElts = VT.getVectorNumElements(); + assert(ByteVecVT.getVectorElementType() == MVT::i8 && + "Expected value to have byte element type."); + assert(EltVT != MVT::i8 && + "Horizontal byte sum only makes sense for wider elements!"); + unsigned VecSize = VT.getSizeInBits(); + assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!"); + + // PSADBW instruction horizontally add all bytes and leave the result in i64 + // chunks, thus directly computes the pop count for v2i64 and v4i64. + if (EltVT == MVT::i64) { + SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); + MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); + V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros); + return DAG.getBitcast(VT, V); + } + + if (EltVT == MVT::i32) { + // We unpack the low half and high half into i32s interleaved with zeros so + // that we can use PSADBW to horizontally sum them. The most useful part of + // this is that it lines up the results of two PSADBW instructions to be + // two v2i64 vectors which concatenated are the 4 population counts. We can + // then use PACKUSWB to shrink and concatenate them into a v4i32 again. + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL); + SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros); + SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros); + + // Do the horizontal sums into two v2i64s. + Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL); + MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64); + Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, + DAG.getBitcast(ByteVecVT, Low), Zeros); + High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, + DAG.getBitcast(ByteVecVT, High), Zeros); + + // Merge them together. + MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16); + V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT, + DAG.getBitcast(ShortVecVT, Low), + DAG.getBitcast(ShortVecVT, High)); + + return DAG.getBitcast(VT, V); + } + + // The only element type left is i16. + assert(EltVT == MVT::i16 && "Unknown how to handle type"); + + // To obtain pop count for each i16 element starting from the pop count for + // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s + // right by 8. It is important to shift as i16s as i8 vector shift isn't + // directly supported. + SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT)); + SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters); + SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter); + V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl), + DAG.getBitcast(ByteVecVT, V)); + return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter); +} + +static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + MVT EltVT = VT.getVectorElementType(); + unsigned VecSize = VT.getSizeInBits(); + + // Implement a lookup table in register by using an algorithm based on: + // http://wm.ite.pl/articles/sse-popcount.html + // + // The general idea is that every lower byte nibble in the input vector is an + // index into a in-register pre-computed pop count table. We then split up the + // input vector in two new ones: (1) a vector with only the shifted-right + // higher nibbles for each byte and (2) a vector with the lower nibbles (and + // masked out higher ones) for each byte. PSHUB is used separately with both + // to index the in-register table. Next, both are added and the result is a + // i8 vector where each element contains the pop count for input byte. + // + // To obtain the pop count for elements != i8, we follow up with the same + // approach and use additional tricks as described below. + // + const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2, + /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3, + /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3, + /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4}; + + int NumByteElts = VecSize / 8; + MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts); + SDValue In = DAG.getBitcast(ByteVecVT, Op); + SmallVector<SDValue, 16> LUTVec; + for (int i = 0; i < NumByteElts; ++i) + LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8)); + SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec); + SmallVector<SDValue, 16> Mask0F(NumByteElts, + DAG.getConstant(0x0F, DL, MVT::i8)); + SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F); + + // High nibbles + SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8)); + SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four); + SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV); + + // Low nibbles + SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F); + + // The input vector is used as the shuffle mask that index elements into the + // LUT. After counting low and high nibbles, add the vector to obtain the + // final pop count per i8 element. + SDValue HighPopCnt = + DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles); + SDValue LowPopCnt = + DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles); + SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt); + + if (EltVT == MVT::i8) + return PopCnt; + + return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG); +} + +static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL, + const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + assert(VT.is128BitVector() && + "Only 128-bit vector bitmath lowering supported."); + + int VecSize = VT.getSizeInBits(); + MVT EltVT = VT.getVectorElementType(); + int Len = EltVT.getSizeInBits(); + + // This is the vectorized version of the "best" algorithm from + // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel + // with a minor tweak to use a series of adds + shifts instead of vector + // multiplications. Implemented for all integer vector types. We only use + // this when we don't have SSSE3 which allows a LUT-based lowering that is + // much faster, even faster than using native popcnt instructions. + + auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) { + MVT VT = V.getSimpleValueType(); + SmallVector<SDValue, 32> Shifters( + VT.getVectorNumElements(), + DAG.getConstant(Shifter, DL, VT.getVectorElementType())); + return DAG.getNode(OpCode, DL, VT, V, + DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters)); + }; + auto GetMask = [&](SDValue V, APInt Mask) { + MVT VT = V.getSimpleValueType(); + SmallVector<SDValue, 32> Masks( + VT.getVectorNumElements(), + DAG.getConstant(Mask, DL, VT.getVectorElementType())); + return DAG.getNode(ISD::AND, DL, VT, V, + DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks)); + }; + + // We don't want to incur the implicit masks required to SRL vNi8 vectors on + // x86, so set the SRL type to have elements at least i16 wide. This is + // correct because all of our SRLs are followed immediately by a mask anyways + // that handles any bits that sneak into the high bits of the byte elements. + MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16); + + SDValue V = Op; + + // v = v - ((v >> 1) & 0x55555555...) + SDValue Srl = + DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1)); + SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55))); + V = DAG.getNode(ISD::SUB, DL, VT, V, And); + + // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) + SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33))); + Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2)); + SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33))); + V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS); + + // v = (v + (v >> 4)) & 0x0F0F0F0F... + Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4)); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl); + V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F))); + + // At this point, V contains the byte-wise population count, and we are + // merely doing a horizontal sum if necessary to get the wider element + // counts. + if (EltVT == MVT::i8) + return V; + + return LowerHorizontalByteSum( + DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget, + DAG); +} + +static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MVT VT = Op.getSimpleValueType(); + // FIXME: Need to add AVX-512 support here! + assert((VT.is256BitVector() || VT.is128BitVector()) && + "Unknown CTPOP type to handle"); + SDLoc DL(Op.getNode()); + SDValue Op0 = Op.getOperand(0); + + if (!Subtarget->hasSSSE3()) { + // We can't use the fast LUT approach, so fall back on vectorized bitmath. + assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!"); + return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG); + } + + if (VT.is256BitVector() && !Subtarget->hasInt256()) { + unsigned NumElems = VT.getVectorNumElements(); + + // Extract each 128-bit vector, compute pop count and concat the result. + SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL); + SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL); + + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, + LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG), + LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG)); + } + + return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG); +} + +static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Op.getSimpleValueType().isVector() && + "We only do custom lowering for vector population count."); + return LowerVectorCTPOP(Op, Subtarget, DAG); +} + +static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) { + SDNode *Node = Op.getNode(); + SDLoc dl(Node); + EVT T = Node->getValueType(0); + SDValue negOp = DAG.getNode(ISD::SUB, dl, T, + DAG.getConstant(0, dl, T), Node->getOperand(2)); + return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), negOp, + cast<AtomicSDNode>(Node)->getMemOperand(), + cast<AtomicSDNode>(Node)->getOrdering(), + cast<AtomicSDNode>(Node)->getSynchScope()); +} + +static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) { + SDNode *Node = Op.getNode(); + SDLoc dl(Node); + EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT(); + + // Convert seq_cst store -> xchg + // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b) + // FIXME: On 32-bit, store -> fist or movq would be more efficient + // (The only way to get a 16-byte store is cmpxchg16b) + // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment. + if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent || + !DAG.getTargetLoweringInfo().isTypeLegal(VT)) { + SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), Node->getOperand(2), + cast<AtomicSDNode>(Node)->getMemOperand(), + cast<AtomicSDNode>(Node)->getOrdering(), + cast<AtomicSDNode>(Node)->getSynchScope()); + return Swap.getValue(1); + } + // Other atomic stores have a simple pattern. + return Op; +} + +static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { + MVT VT = Op.getNode()->getSimpleValueType(0); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + SDVTList VTs = DAG.getVTList(VT, MVT::i32); + + unsigned Opc; + bool ExtraOp = false; + switch (Op.getOpcode()) { + default: llvm_unreachable("Invalid code"); + case ISD::ADDC: Opc = X86ISD::ADD; break; + case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; + case ISD::SUBC: Opc = X86ISD::SUB; break; + case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; + } + + if (!ExtraOp) + return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), + Op.getOperand(1)); + return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), + Op.getOperand(1), Op.getOperand(2)); +} + +static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit()); + + // For MacOSX, we want to call an alternative entry point: __sincos_stret, + // which returns the values as { float, float } (in XMM0) or + // { double, double } (which is returned in XMM0, XMM1). + SDLoc dl(Op); + SDValue Arg = Op.getOperand(0); + EVT ArgVT = Arg.getValueType(); + Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); + + TargetLowering::ArgListTy Args; + TargetLowering::ArgListEntry Entry; + + Entry.Node = Arg; + Entry.Ty = ArgTy; + Entry.isSExt = false; + Entry.isZExt = false; + Args.push_back(Entry); + + bool isF64 = ArgVT == MVT::f64; + // Only optimize x86_64 for now. i386 is a bit messy. For f32, + // the small struct {f32, f32} is returned in (eax, edx). For f64, + // the results are returned via SRet in memory. + const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret"; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Callee = + DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout())); + + Type *RetTy = isF64 + ? (Type*)StructType::get(ArgTy, ArgTy, nullptr) + : (Type*)VectorType::get(ArgTy, 4); + + TargetLowering::CallLoweringInfo CLI(DAG); + CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) + .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0); + + std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); + + if (isF64) + // Returned in xmm0 and xmm1. + return CallResult.first; + + // Returned in bits 0:31 and 32:64 xmm0. + SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, + CallResult.first, DAG.getIntPtrConstant(0, dl)); + SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT, + CallResult.first, DAG.getIntPtrConstant(1, dl)); + SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); + return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal); +} + +/// Widen a vector input to a vector of NVT. The +/// input vector must have the same element type as NVT. +static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG, + bool FillWithZeroes = false) { + // Check if InOp already has the right width. + MVT InVT = InOp.getSimpleValueType(); + if (InVT == NVT) + return InOp; + + if (InOp.isUndef()) + return DAG.getUNDEF(NVT); + + assert(InVT.getVectorElementType() == NVT.getVectorElementType() && + "input and widen element type must match"); + + unsigned InNumElts = InVT.getVectorNumElements(); + unsigned WidenNumElts = NVT.getVectorNumElements(); + assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 && + "Unexpected request for vector widening"); + + EVT EltVT = NVT.getVectorElementType(); + + SDLoc dl(InOp); + if (InOp.getOpcode() == ISD::CONCAT_VECTORS && + InOp.getNumOperands() == 2) { + SDValue N1 = InOp.getOperand(1); + if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) || + N1.isUndef()) { + InOp = InOp.getOperand(0); + InVT = InOp.getSimpleValueType(); + InNumElts = InVT.getVectorNumElements(); + } + } + if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) || + ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) { + SmallVector<SDValue, 16> Ops; + for (unsigned i = 0; i < InNumElts; ++i) + Ops.push_back(InOp.getOperand(i)); + + SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) : + DAG.getUNDEF(EltVT); + for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i) + Ops.push_back(FillVal); + return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops); + } + SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) : + DAG.getUNDEF(NVT); + return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal, + InOp, DAG.getIntPtrConstant(0, dl)); +} + +static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Subtarget->hasAVX512() && + "MGATHER/MSCATTER are supported on AVX-512 arch only"); + + // X86 scatter kills mask register, so its type should be added to + // the list of return values. + // If the "scatter" has 2 return values, it is already handled. + if (Op.getNode()->getNumValues() == 2) + return Op; + + MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode()); + SDValue Src = N->getValue(); + MVT VT = Src.getSimpleValueType(); + assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op"); + SDLoc dl(Op); + + SDValue NewScatter; + SDValue Index = N->getIndex(); + SDValue Mask = N->getMask(); + SDValue Chain = N->getChain(); + SDValue BasePtr = N->getBasePtr(); + MVT MemVT = N->getMemoryVT().getSimpleVT(); + MVT IndexVT = Index.getSimpleValueType(); + MVT MaskVT = Mask.getSimpleValueType(); + + if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) { + // The v2i32 value was promoted to v2i64. + // Now we "redo" the type legalizer's work and widen the original + // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64 + // with a shuffle. + assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) && + "Unexpected memory type"); + int ShuffleMask[] = {0, 2, -1, -1}; + Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src), + DAG.getUNDEF(MVT::v4i32), ShuffleMask); + // Now we have 4 elements instead of 2. + // Expand the index. + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4); + Index = ExtendToType(Index, NewIndexVT, DAG); + + // Expand the mask with zeroes + // Mask may be <2 x i64> or <2 x i1> at this moment + assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) && + "Unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4); + Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); + VT = MVT::v4i32; + } + + unsigned NumElts = VT.getVectorNumElements(); + if (!Subtarget->hasVLX() && !VT.is512BitVector() && + !Index.getSimpleValueType().is512BitVector()) { + // AVX512F supports only 512-bit vectors. Or data or index should + // be 512 bit wide. If now the both index and data are 256-bit, but + // the vector contains 8 elements, we just sign-extend the index + if (IndexVT == MVT::v8i32) + // Just extend index + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + else { + // The minimal number of elts in scatter is 8 + NumElts = 8; + // Index + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); + // Use original index here, do not modify the index twice + Index = ExtendToType(N->getIndex(), NewIndexVT, DAG); + if (IndexVT.getScalarType() == MVT::i32) + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + + // Mask + // At this point we have promoted mask operand + assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); + // Use the original mask here, do not modify the mask twice + Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true); + + // The value that should be stored + MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); + Src = ExtendToType(Src, NewVT, DAG); + } + } + // If the mask is "wide" at this point - truncate it to i1 vector + MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts); + Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask); + + // The mask is killed by scatter, add it to the values + SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other); + SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index}; + NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops, + N->getMemOperand()); + DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1)); + return SDValue(NewScatter.getNode(), 0); +} + +static SDValue LowerMLOAD(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + + MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode()); + MVT VT = Op.getSimpleValueType(); + SDValue Mask = N->getMask(); + SDLoc dl(Op); + + if (Subtarget->hasAVX512() && !Subtarget->hasVLX() && + !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) { + // This operation is legal for targets with VLX, but without + // VLX the vector should be widened to 512 bit + unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); + MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec); + MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); + SDValue Src0 = N->getSrc0(); + Src0 = ExtendToType(Src0, WideDataVT, DAG); + Mask = ExtendToType(Mask, WideMaskVT, DAG, true); + SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(), + N->getBasePtr(), Mask, Src0, + N->getMemoryVT(), N->getMemOperand(), + N->getExtensionType()); + + SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, + NewLoad.getValue(0), + DAG.getIntPtrConstant(0, dl)); + SDValue RetOps[] = {Exract, NewLoad.getValue(1)}; + return DAG.getMergeValues(RetOps, dl); + } + return Op; +} + +static SDValue LowerMSTORE(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode()); + SDValue DataToStore = N->getValue(); + MVT VT = DataToStore.getSimpleValueType(); + SDValue Mask = N->getMask(); + SDLoc dl(Op); + + if (Subtarget->hasAVX512() && !Subtarget->hasVLX() && + !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) { + // This operation is legal for targets with VLX, but without + // VLX the vector should be widened to 512 bit + unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits(); + MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec); + MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec); + DataToStore = ExtendToType(DataToStore, WideDataVT, DAG); + Mask = ExtendToType(Mask, WideMaskVT, DAG, true); + return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(), + Mask, N->getMemoryVT(), N->getMemOperand(), + N->isTruncatingStore()); + } + return Op; +} + +static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget, + SelectionDAG &DAG) { + assert(Subtarget->hasAVX512() && + "MGATHER/MSCATTER are supported on AVX-512 arch only"); + + MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode()); + SDLoc dl(Op); + MVT VT = Op.getSimpleValueType(); + SDValue Index = N->getIndex(); + SDValue Mask = N->getMask(); + SDValue Src0 = N->getValue(); + MVT IndexVT = Index.getSimpleValueType(); + MVT MaskVT = Mask.getSimpleValueType(); + + unsigned NumElts = VT.getVectorNumElements(); + assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op"); + + if (!Subtarget->hasVLX() && !VT.is512BitVector() && + !Index.getSimpleValueType().is512BitVector()) { + // AVX512F supports only 512-bit vectors. Or data or index should + // be 512 bit wide. If now the both index and data are 256-bit, but + // the vector contains 8 elements, we just sign-extend the index + if (NumElts == 8) { + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), + N->getOperand(3), Index }; + DAG.UpdateNodeOperands(N, Ops); + return Op; + } + + // Minimal number of elements in Gather + NumElts = 8; + // Index + MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts); + Index = ExtendToType(Index, NewIndexVT, DAG); + if (IndexVT.getScalarType() == MVT::i32) + Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index); + + // Mask + MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts); + // At this point we have promoted mask operand + assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type"); + MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts); + Mask = ExtendToType(Mask, ExtMaskVT, DAG, true); + Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask); + + // The pass-thru value + MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts); + Src0 = ExtendToType(Src0, NewVT, DAG); + + SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index }; + SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other), + N->getMemoryVT(), dl, Ops, + N->getMemOperand()); + SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, + NewGather.getValue(0), + DAG.getIntPtrConstant(0, dl)); + SDValue RetOps[] = {Exract, NewGather.getValue(1)}; + return DAG.getMergeValues(RetOps, dl); + } + return Op; +} + +SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op, + SelectionDAG &DAG) const { + // TODO: Eventually, the lowering of these nodes should be informed by or + // deferred to the GC strategy for the function in which they appear. For + // now, however, they must be lowered to something. Since they are logically + // no-ops in the case of a null GC strategy (or a GC strategy which does not + // require special handling for these nodes), lower them as literal NOOPs for + // the time being. + SmallVector<SDValue, 2> Ops; + + Ops.push_back(Op.getOperand(0)); + if (Op->getGluedNode()) + Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); + + SDLoc OpDL(Op); + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); + + return NOOP; +} + +SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op, + SelectionDAG &DAG) const { + // TODO: Eventually, the lowering of these nodes should be informed by or + // deferred to the GC strategy for the function in which they appear. For + // now, however, they must be lowered to something. Since they are logically + // no-ops in the case of a null GC strategy (or a GC strategy which does not + // require special handling for these nodes), lower them as literal NOOPs for + // the time being. + SmallVector<SDValue, 2> Ops; + + Ops.push_back(Op.getOperand(0)); + if (Op->getGluedNode()) + Ops.push_back(Op->getOperand(Op->getNumOperands() - 1)); + + SDLoc OpDL(Op); + SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0); + + return NOOP; +} + +/// LowerOperation - Provide custom lowering hooks for some operations. +/// +SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Should not custom lower this!"); + case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG); + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + return LowerCMP_SWAP(Op, Subtarget, DAG); + case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG); + case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); + case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG); + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG); + case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG); + case ISD::VSELECT: return LowerVSELECT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG); + case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG); + case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::SHL_PARTS: + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); + case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG); + case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG); + case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG); + case ISD::SIGN_EXTEND_VECTOR_INREG: + return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); + case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); + case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG); + case ISD::FABS: + case ISD::FNEG: return LowerFABSorFNEG(Op, DAG); + case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); + case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::SETCCE: return LowerSETCCE(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + case ISD::VAARG: return LowerVAARG(Op, DAG); + case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG); + case ISD::INTRINSIC_VOID: + case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG); + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::FRAME_TO_ARGS_OFFSET: + return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); + case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); + case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); + case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); + case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); + case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); + case ISD::CTLZ: return LowerCTLZ(Op, Subtarget, DAG); + case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, Subtarget, DAG); + case ISD::CTTZ: + case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG); + case ISD::MUL: return LowerMUL(Op, Subtarget, DAG); + case ISD::UMUL_LOHI: + case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG); + case ISD::ROTL: return LowerRotate(Op, Subtarget, DAG); + case ISD::SRA: + case ISD::SRL: + case ISD::SHL: return LowerShift(Op, Subtarget, DAG); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: return LowerXALUO(Op, DAG); + case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG); + case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG); + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); + case ISD::ADD: return LowerADD(Op, DAG); + case ISD::SUB: return LowerSUB(Op, DAG); + case ISD::SMAX: + case ISD::SMIN: + case ISD::UMAX: + case ISD::UMIN: return LowerMINMAX(Op, DAG); + case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG); + case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG); + case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG); + case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG); + case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG); + case ISD::GC_TRANSITION_START: + return LowerGC_TRANSITION_START(Op, DAG); + case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG); + } +} + +/// ReplaceNodeResults - Replace a node with an illegal result type +/// with a new node built out of custom code. +void X86TargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG) const { + SDLoc dl(N); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + switch (N->getOpcode()) { + default: + llvm_unreachable("Do not know how to custom type legalize this operation!"); + case X86ISD::AVG: { + // Legalize types for X86ISD::AVG by expanding vectors. + assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); + + auto InVT = N->getValueType(0); + auto InVTSize = InVT.getSizeInBits(); + const unsigned RegSize = + (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128; + assert((!Subtarget->hasAVX512() || RegSize < 512) && + "512-bit vector requires AVX512"); + assert((!Subtarget->hasAVX2() || RegSize < 256) && + "256-bit vector requires AVX2"); + + auto ElemVT = InVT.getVectorElementType(); + auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT, + RegSize / ElemVT.getSizeInBits()); + assert(RegSize % InVT.getSizeInBits() == 0); + unsigned NumConcat = RegSize / InVT.getSizeInBits(); + + SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT)); + Ops[0] = N->getOperand(0); + SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); + Ops[0] = N->getOperand(1); + SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops); + + SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1); + Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res, + DAG.getIntPtrConstant(0, dl))); + return; + } + // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32. + case X86ISD::FMINC: + case X86ISD::FMIN: + case X86ISD::FMAXC: + case X86ISD::FMAX: { + EVT VT = N->getValueType(0); + assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX."); + SDValue UNDEF = DAG.getUNDEF(VT); + SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, + N->getOperand(0), UNDEF); + SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, + N->getOperand(1), UNDEF); + Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS)); + return; + } + case ISD::SIGN_EXTEND_INREG: + case ISD::ADDC: + case ISD::ADDE: + case ISD::SUBC: + case ISD::SUBE: + // We don't want to expand or promote these. + return; + case ISD::SDIV: + case ISD::UDIV: + case ISD::SREM: + case ISD::UREM: + case ISD::SDIVREM: + case ISD::UDIVREM: { + SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG); + Results.push_back(V); + return; + } + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: { + bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT; + + std::pair<SDValue,SDValue> Vals = + FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true); + SDValue FIST = Vals.first, StackSlot = Vals.second; + if (FIST.getNode()) { + EVT VT = N->getValueType(0); + // Return a load from the stack slot. + if (StackSlot.getNode()) + Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, + MachinePointerInfo(), + false, false, false, 0)); + else + Results.push_back(FIST); + } + return; + } + case ISD::UINT_TO_FP: { + assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); + if (N->getOperand(0).getValueType() != MVT::v2i32 || + N->getValueType(0) != MVT::v2f32) + return; + SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, + N->getOperand(0)); + SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, + MVT::f64); + SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias); + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn, + DAG.getBitcast(MVT::v2i64, VBias)); + Or = DAG.getBitcast(MVT::v2f64, Or); + // TODO: Are there any fast-math-flags to propagate here? + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias); + Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub)); + return; + } + case ISD::FP_ROUND: { + if (!TLI.isTypeLegal(N->getOperand(0).getValueType())) + return; + SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0)); + Results.push_back(V); + return; + } + case ISD::FP_EXTEND: { + // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND. + // No other ValueType for FP_EXTEND should reach this point. + assert(N->getValueType(0) == MVT::v2f32 && + "Do not know how to legalize this Node"); + return; + } + case ISD::INTRINSIC_W_CHAIN: { + unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + switch (IntNo) { + default : llvm_unreachable("Do not know how to custom type " + "legalize this intrinsic operation!"); + case Intrinsic::x86_rdtsc: + return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + case Intrinsic::x86_rdtscp: + return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget, + Results); + case Intrinsic::x86_rdpmc: + return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results); + } + } + case ISD::INTRINSIC_WO_CHAIN: { + if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG)) + Results.push_back(V); + return; + } + case ISD::READCYCLECOUNTER: { + return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget, + Results); + } + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { + EVT T = N->getValueType(0); + assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair"); + bool Regs64bit = T == MVT::i128; + MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32; + SDValue cpInL, cpInH; + cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(0, dl, HalfT)); + cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2), + DAG.getConstant(1, dl, HalfT)); + cpInL = DAG.getCopyToReg(N->getOperand(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + cpInL, SDValue()); + cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, + Regs64bit ? X86::RDX : X86::EDX, + cpInH, cpInL.getValue(1)); + SDValue swapInL, swapInH; + swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(0, dl, HalfT)); + swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3), + DAG.getConstant(1, dl, HalfT)); + swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, + Regs64bit ? X86::RBX : X86::EBX, + swapInL, cpInH.getValue(1)); + swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, + Regs64bit ? X86::RCX : X86::ECX, + swapInH, swapInL.getValue(1)); + SDValue Ops[] = { swapInH.getValue(0), + N->getOperand(1), + swapInH.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); + MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); + unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG : + X86ISD::LCMPXCHG8_DAG; + SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO); + SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, + Regs64bit ? X86::RAX : X86::EAX, + HalfT, Result.getValue(1)); + SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, + Regs64bit ? X86::RDX : X86::EDX, + HalfT, cpOutL.getValue(2)); + SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; + + SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS, + MVT::i32, cpOutH.getValue(2)); + SDValue Success = + DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS); + Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1)); + + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF)); + Results.push_back(Success); + Results.push_back(EFLAGS.getValue(1)); + return; + } + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + case ISD::ATOMIC_LOAD: { + // Delegate to generic TypeLegalization. Situations we can really handle + // should have already been dealt with by AtomicExpandPass.cpp. + break; + } + case ISD::BITCAST: { + assert(Subtarget->hasSSE2() && "Requires at least SSE2!"); + EVT DstVT = N->getValueType(0); + EVT SrcVT = N->getOperand(0)->getValueType(0); + + if (SrcVT != MVT::f64 || + (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8)) + return; + + unsigned NumElts = DstVT.getVectorNumElements(); + EVT SVT = DstVT.getVectorElementType(); + EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2); + SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, N->getOperand(0)); + SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded); + + if (ExperimentalVectorWideningLegalization) { + // If we are legalizing vectors by widening, we already have the desired + // legal vector type, just return it. + Results.push_back(ToVecInt); + return; + } + + SmallVector<SDValue, 8> Elts; + for (unsigned i = 0, e = NumElts; i != e; ++i) + Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, + ToVecInt, DAG.getIntPtrConstant(i, dl))); + + Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts)); + } + } +} + +const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((X86ISD::NodeType)Opcode) { + case X86ISD::FIRST_NUMBER: break; + case X86ISD::BSF: return "X86ISD::BSF"; + case X86ISD::BSR: return "X86ISD::BSR"; + case X86ISD::SHLD: return "X86ISD::SHLD"; + case X86ISD::SHRD: return "X86ISD::SHRD"; + case X86ISD::FAND: return "X86ISD::FAND"; + case X86ISD::FANDN: return "X86ISD::FANDN"; + case X86ISD::FOR: return "X86ISD::FOR"; + case X86ISD::FXOR: return "X86ISD::FXOR"; + case X86ISD::FILD: return "X86ISD::FILD"; + case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; + case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; + case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; + case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; + case X86ISD::FLD: return "X86ISD::FLD"; + case X86ISD::FST: return "X86ISD::FST"; + case X86ISD::CALL: return "X86ISD::CALL"; + case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; + case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG"; + case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG"; + case X86ISD::BT: return "X86ISD::BT"; + case X86ISD::CMP: return "X86ISD::CMP"; + case X86ISD::COMI: return "X86ISD::COMI"; + case X86ISD::UCOMI: return "X86ISD::UCOMI"; + case X86ISD::CMPM: return "X86ISD::CMPM"; + case X86ISD::CMPMU: return "X86ISD::CMPMU"; + case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND"; + case X86ISD::SETCC: return "X86ISD::SETCC"; + case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; + case X86ISD::FSETCC: return "X86ISD::FSETCC"; + case X86ISD::FGETSIGNx86: return "X86ISD::FGETSIGNx86"; + case X86ISD::CMOV: return "X86ISD::CMOV"; + case X86ISD::BRCOND: return "X86ISD::BRCOND"; + case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; + case X86ISD::IRET: return "X86ISD::IRET"; + case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; + case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; + case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; + case X86ISD::Wrapper: return "X86ISD::Wrapper"; + case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; + case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q"; + case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W"; + case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D"; + case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; + case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; + case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; + case X86ISD::PINSRB: return "X86ISD::PINSRB"; + case X86ISD::PINSRW: return "X86ISD::PINSRW"; + case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW"; + case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; + case X86ISD::ANDNP: return "X86ISD::ANDNP"; + case X86ISD::PSIGN: return "X86ISD::PSIGN"; + case X86ISD::BLENDI: return "X86ISD::BLENDI"; + case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND"; + case X86ISD::ADDUS: return "X86ISD::ADDUS"; + case X86ISD::SUBUS: return "X86ISD::SUBUS"; + case X86ISD::HADD: return "X86ISD::HADD"; + case X86ISD::HSUB: return "X86ISD::HSUB"; + case X86ISD::FHADD: return "X86ISD::FHADD"; + case X86ISD::FHSUB: return "X86ISD::FHSUB"; + case X86ISD::ABS: return "X86ISD::ABS"; + case X86ISD::CONFLICT: return "X86ISD::CONFLICT"; + case X86ISD::FMAX: return "X86ISD::FMAX"; + case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND"; + case X86ISD::FMIN: return "X86ISD::FMIN"; + case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND"; + case X86ISD::FMAXC: return "X86ISD::FMAXC"; + case X86ISD::FMINC: return "X86ISD::FMINC"; + case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; + case X86ISD::FRCP: return "X86ISD::FRCP"; + case X86ISD::EXTRQI: return "X86ISD::EXTRQI"; + case X86ISD::INSERTQI: return "X86ISD::INSERTQI"; + case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; + case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR"; + case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; + case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP"; + case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP"; + case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; + case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; + case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; + case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r"; + case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; + case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; + case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG"; + case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; + case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; + case X86ISD::VZEXT: return "X86ISD::VZEXT"; + case X86ISD::VSEXT: return "X86ISD::VSEXT"; + case X86ISD::VTRUNC: return "X86ISD::VTRUNC"; + case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS"; + case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS"; + case X86ISD::VINSERT: return "X86ISD::VINSERT"; + case X86ISD::VFPEXT: return "X86ISD::VFPEXT"; + case X86ISD::VFPROUND: return "X86ISD::VFPROUND"; + case X86ISD::CVTDQ2PD: return "X86ISD::CVTDQ2PD"; + case X86ISD::CVTUDQ2PD: return "X86ISD::CVTUDQ2PD"; + case X86ISD::CVT2MASK: return "X86ISD::CVT2MASK"; + case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ"; + case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ"; + case X86ISD::VSHL: return "X86ISD::VSHL"; + case X86ISD::VSRL: return "X86ISD::VSRL"; + case X86ISD::VSRA: return "X86ISD::VSRA"; + case X86ISD::VSHLI: return "X86ISD::VSHLI"; + case X86ISD::VSRLI: return "X86ISD::VSRLI"; + case X86ISD::VSRAI: return "X86ISD::VSRAI"; + case X86ISD::CMPP: return "X86ISD::CMPP"; + case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ"; + case X86ISD::PCMPGT: return "X86ISD::PCMPGT"; + case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM"; + case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM"; + case X86ISD::ADD: return "X86ISD::ADD"; + case X86ISD::SUB: return "X86ISD::SUB"; + case X86ISD::ADC: return "X86ISD::ADC"; + case X86ISD::SBB: return "X86ISD::SBB"; + case X86ISD::SMUL: return "X86ISD::SMUL"; + case X86ISD::UMUL: return "X86ISD::UMUL"; + case X86ISD::SMUL8: return "X86ISD::SMUL8"; + case X86ISD::UMUL8: return "X86ISD::UMUL8"; + case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG"; + case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG"; + case X86ISD::INC: return "X86ISD::INC"; + case X86ISD::DEC: return "X86ISD::DEC"; + case X86ISD::OR: return "X86ISD::OR"; + case X86ISD::XOR: return "X86ISD::XOR"; + case X86ISD::AND: return "X86ISD::AND"; + case X86ISD::BEXTR: return "X86ISD::BEXTR"; + case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; + case X86ISD::PTEST: return "X86ISD::PTEST"; + case X86ISD::TESTP: return "X86ISD::TESTP"; + case X86ISD::TESTM: return "X86ISD::TESTM"; + case X86ISD::TESTNM: return "X86ISD::TESTNM"; + case X86ISD::KORTEST: return "X86ISD::KORTEST"; + case X86ISD::KTEST: return "X86ISD::KTEST"; + case X86ISD::PACKSS: return "X86ISD::PACKSS"; + case X86ISD::PACKUS: return "X86ISD::PACKUS"; + case X86ISD::PALIGNR: return "X86ISD::PALIGNR"; + case X86ISD::VALIGN: return "X86ISD::VALIGN"; + case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; + case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; + case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; + case X86ISD::SHUFP: return "X86ISD::SHUFP"; + case X86ISD::SHUF128: return "X86ISD::SHUF128"; + case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; + case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; + case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; + case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; + case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; + case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; + case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; + case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; + case X86ISD::MOVSD: return "X86ISD::MOVSD"; + case X86ISD::MOVSS: return "X86ISD::MOVSS"; + case X86ISD::UNPCKL: return "X86ISD::UNPCKL"; + case X86ISD::UNPCKH: return "X86ISD::UNPCKH"; + case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST"; + case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM"; + case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST"; + case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT"; + case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV"; + case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI"; + case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128"; + case X86ISD::VPERMV: return "X86ISD::VPERMV"; + case X86ISD::VPERMV3: return "X86ISD::VPERMV3"; + case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3"; + case X86ISD::VPERMI: return "X86ISD::VPERMI"; + case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG"; + case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM"; + case X86ISD::VRANGE: return "X86ISD::VRANGE"; + case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ"; + case X86ISD::PMULDQ: return "X86ISD::PMULDQ"; + case X86ISD::PSADBW: return "X86ISD::PSADBW"; + case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW"; + case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; + case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; + case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; + case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER"; + case X86ISD::MFENCE: return "X86ISD::MFENCE"; + case X86ISD::SFENCE: return "X86ISD::SFENCE"; + case X86ISD::LFENCE: return "X86ISD::LFENCE"; + case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA"; + case X86ISD::SAHF: return "X86ISD::SAHF"; + case X86ISD::RDRAND: return "X86ISD::RDRAND"; + case X86ISD::RDSEED: return "X86ISD::RDSEED"; + case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW"; + case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD"; + case X86ISD::VPROT: return "X86ISD::VPROT"; + case X86ISD::VPROTI: return "X86ISD::VPROTI"; + case X86ISD::VPSHA: return "X86ISD::VPSHA"; + case X86ISD::VPSHL: return "X86ISD::VPSHL"; + case X86ISD::VPCOM: return "X86ISD::VPCOM"; + case X86ISD::VPCOMU: return "X86ISD::VPCOMU"; + case X86ISD::FMADD: return "X86ISD::FMADD"; + case X86ISD::FMSUB: return "X86ISD::FMSUB"; + case X86ISD::FNMADD: return "X86ISD::FNMADD"; + case X86ISD::FNMSUB: return "X86ISD::FNMSUB"; + case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB"; + case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD"; + case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND"; + case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND"; + case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND"; + case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND"; + case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND"; + case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND"; + case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE"; + case X86ISD::VREDUCE: return "X86ISD::VREDUCE"; + case X86ISD::VGETMANT: return "X86ISD::VGETMANT"; + case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI"; + case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI"; + case X86ISD::XTEST: return "X86ISD::XTEST"; + case X86ISD::COMPRESS: return "X86ISD::COMPRESS"; + case X86ISD::EXPAND: return "X86ISD::EXPAND"; + case X86ISD::SELECT: return "X86ISD::SELECT"; + case X86ISD::ADDSUB: return "X86ISD::ADDSUB"; + case X86ISD::RCP28: return "X86ISD::RCP28"; + case X86ISD::EXP2: return "X86ISD::EXP2"; + case X86ISD::RSQRT28: return "X86ISD::RSQRT28"; + case X86ISD::FADD_RND: return "X86ISD::FADD_RND"; + case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND"; + case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND"; + case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND"; + case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND"; + case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND"; + case X86ISD::SCALEF: return "X86ISD::SCALEF"; + case X86ISD::ADDS: return "X86ISD::ADDS"; + case X86ISD::SUBS: return "X86ISD::SUBS"; + case X86ISD::AVG: return "X86ISD::AVG"; + case X86ISD::MULHRS: return "X86ISD::MULHRS"; + case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND"; + case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND"; + case X86ISD::FP_TO_SINT_RND: return "X86ISD::FP_TO_SINT_RND"; + case X86ISD::FP_TO_UINT_RND: return "X86ISD::FP_TO_UINT_RND"; + case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS"; + case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS"; + } + return nullptr; +} + +// isLegalAddressingMode - Return true if the addressing mode represented +// by AM is legal for this target, for a load/store of the specified type. +bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // X86 supports extremely general addressing modes. + CodeModel::Model M = getTargetMachine().getCodeModel(); + Reloc::Model R = getTargetMachine().getRelocationModel(); + + // X86 allows a sign-extended 32-bit immediate field as a displacement. + if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr)) + return false; + + if (AM.BaseGV) { + unsigned GVFlags = + Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); + + // If a reference to this global requires an extra load, we can't fold it. + if (isGlobalStubReference(GVFlags)) + return false; + + // If BaseGV requires a register for the PIC base, we cannot also have a + // BaseReg specified. + if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) + return false; + + // If lower 4G is not available, then we must use rip-relative addressing. + if ((M != CodeModel::Small || R != Reloc::Static) && + Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) + return false; + } + + switch (AM.Scale) { + case 0: + case 1: + case 2: + case 4: + case 8: + // These scales always work. + break; + case 3: + case 5: + case 9: + // These scales are formed with basereg+scalereg. Only accept if there is + // no basereg yet. + if (AM.HasBaseReg) + return false; + break; + default: // Other stuff never works. + return false; + } + + return true; +} + +bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const { + unsigned Bits = Ty->getScalarSizeInBits(); + + // 8-bit shifts are always expensive, but versions with a scalar amount aren't + // particularly cheaper than those without. + if (Bits == 8) + return false; + + // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make + // variable shifts just as cheap as scalar ones. + if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64)) + return false; + + // Otherwise, it's significantly cheaper to shift by a scalar amount than by a + // fully general vector. + return true; +} + +bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + return NumBits1 > NumBits2; +} + +bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + + if (!isTypeLegal(EVT::getEVT(Ty1))) + return false; + + assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); + + // Assuming the caller doesn't have a zeroext or signext return parameter, + // truncation all the way down to i1 is valid. + return true; +} + +bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const { + return isInt<32>(Imm); +} + +bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const { + // Can also use sub to handle negated immediates. + return isInt<32>(Imm); +} + +bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (!VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + return NumBits1 > NumBits2; +} + +bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { + EVT VT1 = Val.getValueType(); + if (isZExtFree(VT1, VT2)) + return true; + + if (Val.getOpcode() != ISD::LOAD) + return false; + + if (!VT1.isSimple() || !VT1.isInteger() || + !VT2.isSimple() || !VT2.isInteger()) + return false; + + switch (VT1.getSimpleVT().SimpleTy) { + default: break; + case MVT::i8: + case MVT::i16: + case MVT::i32: + // X86 has 8, 16, and 32-bit zero-extending loads. + return true; + } + + return false; +} + +bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; } + +bool +X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + if (!Subtarget->hasAnyFMA()) + return false; + + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + default: + break; + } + + return false; +} + +bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { + // i16 instructions are longer (0x66 prefix) and potentially slower. + return !(VT1 == MVT::i32 && VT2 == MVT::i16); +} + +/// isShuffleMaskLegal - Targets can use this to indicate that they only +/// support *some* VECTOR_SHUFFLE operations, those with specific masks. +/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values +/// are assumed to be legal. +bool +X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, + EVT VT) const { + if (!VT.isSimple()) + return false; + + // Not for i1 vectors + if (VT.getSimpleVT().getScalarType() == MVT::i1) + return false; + + // Very little shuffling can be done for 64-bit vectors right now. + if (VT.getSimpleVT().getSizeInBits() == 64) + return false; + + // We only care that the types being shuffled are legal. The lowering can + // handle any possible shuffle mask that results. + return isTypeLegal(VT.getSimpleVT()); +} + +bool +X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, + EVT VT) const { + // Just delegate to the generic legality, clear masks aren't special. + return isShuffleMaskLegal(Mask, VT); +} + +//===----------------------------------------------------------------------===// +// X86 Scheduler Hooks +//===----------------------------------------------------------------------===// + +/// Utility function to emit xbegin specifying the start of an RTM region. +static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB, + const TargetInstrInfo *TII) { + DebugLoc DL = MI->getDebugLoc(); + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator I = ++MBB->getIterator(); + + // For the v = xbegin(), we generate + // + // thisMBB: + // xbegin sinkMBB + // + // mainMBB: + // eax = -1 + // + // sinkMBB: + // v = eax + + MachineBasicBlock *thisMBB = MBB; + MachineFunction *MF = MBB->getParent(); + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(I, mainMBB); + MF->insert(I, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // thisMBB: + // xbegin sinkMBB + // # fallthrough to mainMBB + // # abortion to sinkMBB + BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB); + thisMBB->addSuccessor(mainMBB); + thisMBB->addSuccessor(sinkMBB); + + // mainMBB: + // EAX = -1 + BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1); + mainMBB->addSuccessor(sinkMBB); + + // sinkMBB: + // EAX is live into the sinkMBB + sinkMBB->addLiveIn(X86::EAX); + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) + .addReg(X86::EAX); + + MI->eraseFromParent(); + return sinkMBB; +} + +// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 +// or XMM0_V32I8 in AVX all of this code can be replaced with that +// in the .td file. +static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB, + const TargetInstrInfo *TII) { + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break; + case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break; + case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break; + case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break; + case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break; + case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break; + case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break; + case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break; + } + + DebugLoc dl = MI->getDebugLoc(); + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); + + unsigned NumArgs = MI->getNumOperands(); + for (unsigned i = 1; i < NumArgs; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (!(Op.isReg() && Op.isImplicit())) + MIB.addOperand(Op); + } + if (MI->hasOneMemOperand()) + MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); + + BuildMI(*BB, MI, dl, + TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) + .addReg(X86::XMM0); + + MI->eraseFromParent(); + return BB; +} + +// FIXME: Custom handling because TableGen doesn't support multiple implicit +// defs in an instruction pattern +static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB, + const TargetInstrInfo *TII) { + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break; + case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break; + case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break; + case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break; + case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break; + case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break; + case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break; + case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break; + } + + DebugLoc dl = MI->getDebugLoc(); + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); + + unsigned NumArgs = MI->getNumOperands(); // remove the results + for (unsigned i = 1; i < NumArgs; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (!(Op.isReg() && Op.isImplicit())) + MIB.addOperand(Op); + } + if (MI->hasOneMemOperand()) + MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); + + BuildMI(*BB, MI, dl, + TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) + .addReg(X86::ECX); + + MI->eraseFromParent(); + return BB; +} + +static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB, + const X86Subtarget *Subtarget) { + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + // Address into RAX/EAX, other two args into ECX, EDX. + unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; + unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; + MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); + for (int i = 0; i < X86::AddrNumOperands; ++i) + MIB.addOperand(MI->getOperand(i)); + + unsigned ValOps = X86::AddrNumOperands; + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) + .addReg(MI->getOperand(ValOps).getReg()); + BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) + .addReg(MI->getOperand(ValOps+1).getReg()); + + // The instruction doesn't actually take any operands though. + BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); + + MI->eraseFromParent(); // The pseudo is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI, + MachineBasicBlock *MBB) const { + // Emit va_arg instruction on X86-64. + + // Operands to this pseudo-instruction: + // 0 ) Output : destination address (reg) + // 1-5) Input : va_list address (addr, i64mem) + // 6 ) ArgSize : Size (in bytes) of vararg type + // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset + // 8 ) Align : Alignment of type + // 9 ) EFLAGS (implicit-def) + + assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); + static_assert(X86::AddrNumOperands == 5, + "VAARG_64 assumes 5 address operands"); + + unsigned DestReg = MI->getOperand(0).getReg(); + MachineOperand &Base = MI->getOperand(1); + MachineOperand &Scale = MI->getOperand(2); + MachineOperand &Index = MI->getOperand(3); + MachineOperand &Disp = MI->getOperand(4); + MachineOperand &Segment = MI->getOperand(5); + unsigned ArgSize = MI->getOperand(6).getImm(); + unsigned ArgMode = MI->getOperand(7).getImm(); + unsigned Align = MI->getOperand(8).getImm(); + + // Memory Reference + assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + // Machine Information + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); + const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); + DebugLoc DL = MI->getDebugLoc(); + + // struct va_list { + // i32 gp_offset + // i32 fp_offset + // i64 overflow_area (address) + // i64 reg_save_area (address) + // } + // sizeof(va_list) = 24 + // alignment(va_list) = 8 + + unsigned TotalNumIntRegs = 6; + unsigned TotalNumXMMRegs = 8; + bool UseGPOffset = (ArgMode == 1); + bool UseFPOffset = (ArgMode == 2); + unsigned MaxOffset = TotalNumIntRegs * 8 + + (UseFPOffset ? TotalNumXMMRegs * 16 : 0); + + /* Align ArgSize to a multiple of 8 */ + unsigned ArgSizeA8 = (ArgSize + 7) & ~7; + bool NeedsAlign = (Align > 8); + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *overflowMBB; + MachineBasicBlock *offsetMBB; + MachineBasicBlock *endMBB; + + unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB + unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB + unsigned OffsetReg = 0; + + if (!UseGPOffset && !UseFPOffset) { + // If we only pull from the overflow region, we don't create a branch. + // We don't need to alter control flow. + OffsetDestReg = 0; // unused + OverflowDestReg = DestReg; + + offsetMBB = nullptr; + overflowMBB = thisMBB; + endMBB = thisMBB; + } else { + // First emit code to check if gp_offset (or fp_offset) is below the bound. + // If so, pull the argument from reg_save_area. (branch to offsetMBB) + // If not, pull from overflow_area. (branch to overflowMBB) + // + // thisMBB + // | . + // | . + // offsetMBB overflowMBB + // | . + // | . + // endMBB + + // Registers for the PHI in endMBB + OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); + OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); + + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *MF = MBB->getParent(); + overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); + offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); + endMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineFunction::iterator MBBIter = ++MBB->getIterator(); + + // Insert the new basic blocks + MF->insert(MBBIter, offsetMBB); + MF->insert(MBBIter, overflowMBB); + MF->insert(MBBIter, endMBB); + + // Transfer the remainder of MBB and its successor edges to endMBB. + endMBB->splice(endMBB->begin(), thisMBB, + std::next(MachineBasicBlock::iterator(MI)), thisMBB->end()); + endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); + + // Make offsetMBB and overflowMBB successors of thisMBB + thisMBB->addSuccessor(offsetMBB); + thisMBB->addSuccessor(overflowMBB); + + // endMBB is a successor of both offsetMBB and overflowMBB + offsetMBB->addSuccessor(endMBB); + overflowMBB->addSuccessor(endMBB); + + // Load the offset value into a register + OffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Check if there is enough room left to pull this argument. + BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) + .addReg(OffsetReg) + .addImm(MaxOffset + 8 - ArgSizeA8); + + // Branch to "overflowMBB" if offset >= max + // Fall through to "offsetMBB" otherwise + BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) + .addMBB(overflowMBB); + } + + // In offsetMBB, emit code to use the reg_save_area. + if (offsetMBB) { + assert(OffsetReg != 0); + + // Read the reg_save_area address. + unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 16) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // Zero-extend the offset + unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) + .addImm(0) + .addReg(OffsetReg) + .addImm(X86::sub_32bit); + + // Add the offset to the reg_save_area to get the final address. + BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) + .addReg(OffsetReg64) + .addReg(RegSaveReg); + + // Compute the offset for the next argument + unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); + BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) + .addReg(OffsetReg) + .addImm(UseFPOffset ? 16 : 8); + + // Store it back into the va_list. + BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, UseFPOffset ? 4 : 0) + .addOperand(Segment) + .addReg(NextOffsetReg) + .setMemRefs(MMOBegin, MMOEnd); + + // Jump to endMBB + BuildMI(offsetMBB, DL, TII->get(X86::JMP_1)) + .addMBB(endMBB); + } + + // + // Emit code to use overflow area + // + + // Load the overflow_area address into a register. + unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 8) + .addOperand(Segment) + .setMemRefs(MMOBegin, MMOEnd); + + // If we need to align it, do so. Otherwise, just copy the address + // to OverflowDestReg. + if (NeedsAlign) { + // Align the overflow address + assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); + unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); + + // aligned_addr = (addr + (align-1)) & ~(align-1) + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) + .addReg(OverflowAddrReg) + .addImm(Align-1); + + BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) + .addReg(TmpReg) + .addImm(~(uint64_t)(Align-1)); + } else { + BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) + .addReg(OverflowAddrReg); + } + + // Compute the next overflow address after this argument. + // (the overflow address should be kept 8-byte aligned) + unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); + BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) + .addReg(OverflowDestReg) + .addImm(ArgSizeA8); + + // Store the new overflow address. + BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) + .addOperand(Base) + .addOperand(Scale) + .addOperand(Index) + .addDisp(Disp, 8) + .addOperand(Segment) + .addReg(NextAddrReg) + .setMemRefs(MMOBegin, MMOEnd); + + // If we branched, emit the PHI to the front of endMBB. + if (offsetMBB) { + BuildMI(*endMBB, endMBB->begin(), DL, + TII->get(X86::PHI), DestReg) + .addReg(OffsetDestReg).addMBB(offsetMBB) + .addReg(OverflowDestReg).addMBB(overflowMBB); + } + + // Erase the pseudo instruction + MI->eraseFromParent(); + + return endMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( + MachineInstr *MI, + MachineBasicBlock *MBB) const { + // Emit code to save XMM registers to the stack. The ABI says that the + // number of registers to save is given in %al, so it's theoretically + // possible to do an indirect jump trick to avoid saving all of them, + // however this code takes a simpler approach and just executes all + // of the stores if %al is non-zero. It's less code, and it's probably + // easier on the hardware branch predictor, and stores aren't all that + // expensive anyway. + + // Create the new basic blocks. One block contains all the XMM stores, + // and one block is the final destination regardless of whether any + // stores were performed. + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *F = MBB->getParent(); + MachineFunction::iterator MBBIter = ++MBB->getIterator(); + MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, XMMSaveMBB); + F->insert(MBBIter, EndMBB); + + // Transfer the remainder of MBB and its successor edges to EndMBB. + EndMBB->splice(EndMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + EndMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // The original block will now fall through to the XMM save block. + MBB->addSuccessor(XMMSaveMBB); + // The XMMSaveMBB will fall through to the end block. + XMMSaveMBB->addSuccessor(EndMBB); + + // Now add the instructions. + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned CountReg = MI->getOperand(0).getReg(); + int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); + int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); + + if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) { + // If %al is 0, branch around the XMM save block. + BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); + BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + } + + // Make sure the last operand is EFLAGS, which gets clobbered by the branch + // that was just emitted, but clearly shouldn't be "saved". + assert((MI->getNumOperands() <= 3 || + !MI->getOperand(MI->getNumOperands() - 1).isReg() || + MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS) + && "Expected last argument to be EFLAGS"); + unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr; + // In the XMM save block, save all the XMM argument registers. + for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) { + int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; + MachineMemOperand *MMO = F->getMachineMemOperand( + MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset), + MachineMemOperand::MOStore, + /*Size=*/16, /*Align=*/16); + BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc)) + .addFrameIndex(RegSaveFrameIndex) + .addImm(/*Scale=*/1) + .addReg(/*IndexReg=*/0) + .addImm(/*Disp=*/Offset) + .addReg(/*Segment=*/0) + .addReg(MI->getOperand(i).getReg()) + .addMemOperand(MMO); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + + return EndMBB; +} + +// The EFLAGS operand of SelectItr might be missing a kill marker +// because there were multiple uses of EFLAGS, and ISel didn't know +// which to mark. Figure out whether SelectItr should have had a +// kill marker, and set it if it should. Returns the correct kill +// marker value. +static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr, + MachineBasicBlock* BB, + const TargetRegisterInfo* TRI) { + // Scan forward through BB for a use/def of EFLAGS. + MachineBasicBlock::iterator miI(std::next(SelectItr)); + for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) { + const MachineInstr& mi = *miI; + if (mi.readsRegister(X86::EFLAGS)) + return false; + if (mi.definesRegister(X86::EFLAGS)) + break; // Should have kill-flag - update below. + } + + // If we hit the end of the block, check whether EFLAGS is live into a + // successor. + if (miI == BB->end()) { + for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(), + sEnd = BB->succ_end(); + sItr != sEnd; ++sItr) { + MachineBasicBlock* succ = *sItr; + if (succ->isLiveIn(X86::EFLAGS)) + return false; + } + } + + // We found a def, or hit the end of the basic block and EFLAGS wasn't live + // out. SelectMI should have a kill flag on EFLAGS. + SelectItr->addRegisterKilled(X86::EFLAGS, TRI); + return true; +} + +// Return true if it is OK for this CMOV pseudo-opcode to be cascaded +// together with other CMOV pseudo-opcodes into a single basic-block with +// conditional jump around it. +static bool isCMOVPseudo(MachineInstr *MI) { + switch (MI->getOpcode()) { + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_GR8: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_V4F32: + case X86::CMOV_V4F64: + case X86::CMOV_V4I64: + case X86::CMOV_V16F32: + case X86::CMOV_V8F32: + case X86::CMOV_V8F64: + case X86::CMOV_V8I64: + case X86::CMOV_V8I1: + case X86::CMOV_V16I1: + case X86::CMOV_V32I1: + case X86::CMOV_V64I1: + return true; + + default: + return false; + } +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = ++BB->getIterator(); + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + + // This code lowers all pseudo-CMOV instructions. Generally it lowers these + // as described above, by inserting a BB, and then making a PHI at the join + // point to select the true and false operands of the CMOV in the PHI. + // + // The code also handles two different cases of multiple CMOV opcodes + // in a row. + // + // Case 1: + // In this case, there are multiple CMOVs in a row, all which are based on + // the same condition setting (or the exact opposite condition setting). + // In this case we can lower all the CMOVs using a single inserted BB, and + // then make a number of PHIs at the join point to model the CMOVs. The only + // trickiness here, is that in a case like: + // + // t2 = CMOV cond1 t1, f1 + // t3 = CMOV cond1 t2, f2 + // + // when rewriting this into PHIs, we have to perform some renaming on the + // temps since you cannot have a PHI operand refer to a PHI result earlier + // in the same block. The "simple" but wrong lowering would be: + // + // t2 = PHI t1(BB1), f1(BB2) + // t3 = PHI t2(BB1), f2(BB2) + // + // but clearly t2 is not defined in BB1, so that is incorrect. The proper + // renaming is to note that on the path through BB1, t2 is really just a + // copy of t1, and do that renaming, properly generating: + // + // t2 = PHI t1(BB1), f1(BB2) + // t3 = PHI t1(BB1), f2(BB2) + // + // Case 2, we lower cascaded CMOVs such as + // + // (CMOV (CMOV F, T, cc1), T, cc2) + // + // to two successives branches. For that, we look for another CMOV as the + // following instruction. + // + // Without this, we would add a PHI between the two jumps, which ends up + // creating a few copies all around. For instance, for + // + // (sitofp (zext (fcmp une))) + // + // we would generate: + // + // ucomiss %xmm1, %xmm0 + // movss <1.0f>, %xmm0 + // movaps %xmm0, %xmm1 + // jne .LBB5_2 + // xorps %xmm1, %xmm1 + // .LBB5_2: + // jp .LBB5_4 + // movaps %xmm1, %xmm0 + // .LBB5_4: + // retq + // + // because this custom-inserter would have generated: + // + // A + // | \ + // | B + // | / + // C + // | \ + // | D + // | / + // E + // + // A: X = ...; Y = ... + // B: empty + // C: Z = PHI [X, A], [Y, B] + // D: empty + // E: PHI [X, C], [Z, D] + // + // If we lower both CMOVs in a single step, we can instead generate: + // + // A + // | \ + // | C + // | /| + // |/ | + // | | + // | D + // | / + // E + // + // A: X = ...; Y = ... + // D: empty + // E: PHI [X, A], [X, C], [Y, D] + // + // Which, in our sitofp/fcmp example, gives us something like: + // + // ucomiss %xmm1, %xmm0 + // movss <1.0f>, %xmm0 + // jne .LBB5_4 + // jp .LBB5_4 + // xorps %xmm0, %xmm0 + // .LBB5_4: + // retq + // + MachineInstr *CascadedCMOV = nullptr; + MachineInstr *LastCMOV = MI; + X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm()); + X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC); + MachineBasicBlock::iterator NextMIIt = + std::next(MachineBasicBlock::iterator(MI)); + + // Check for case 1, where there are multiple CMOVs with the same condition + // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the + // number of jumps the most. + + if (isCMOVPseudo(MI)) { + // See if we have a string of CMOVS with the same condition. + while (NextMIIt != BB->end() && + isCMOVPseudo(NextMIIt) && + (NextMIIt->getOperand(3).getImm() == CC || + NextMIIt->getOperand(3).getImm() == OppCC)) { + LastCMOV = &*NextMIIt; + ++NextMIIt; + } + } + + // This checks for case 2, but only do this if we didn't already find + // case 1, as indicated by LastCMOV == MI. + if (LastCMOV == MI && + NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() && + NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() && + NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) { + CascadedCMOV = &*NextMIIt; + } + + MachineBasicBlock *jcc1MBB = nullptr; + + // If we have a cascaded CMOV, we lower it to two successive branches to + // the same block. EFLAGS is used by both, so mark it as live in the second. + if (CascadedCMOV) { + jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, jcc1MBB); + jcc1MBB->addLiveIn(X86::EFLAGS); + } + + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // If the EFLAGS register isn't dead in the terminator, then claim that it's + // live into the sink and copy blocks. + const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo(); + + MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV; + if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) && + !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) { + copy0MBB->addLiveIn(X86::EFLAGS); + sinkMBB->addLiveIn(X86::EFLAGS); + } + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add the true and fallthrough blocks as its successors. + if (CascadedCMOV) { + // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV. + BB->addSuccessor(jcc1MBB); + + // In that case, jcc1MBB will itself fallthrough the copy0MBB, and + // jump to the sinkMBB. + jcc1MBB->addSuccessor(copy0MBB); + jcc1MBB->addSuccessor(sinkMBB); + } else { + BB->addSuccessor(copy0MBB); + } + + // The true block target of the first (or only) branch is always sinkMBB. + BB->addSuccessor(sinkMBB); + + // Create the conditional branch instruction. + unsigned Opc = X86::GetCondBranchFromCond(CC); + BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); + + if (CascadedCMOV) { + unsigned Opc2 = X86::GetCondBranchFromCond( + (X86::CondCode)CascadedCMOV->getOperand(3).getImm()); + BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB); + } + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + copy0MBB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); + MachineBasicBlock::iterator MIItEnd = + std::next(MachineBasicBlock::iterator(LastCMOV)); + MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin(); + DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; + MachineInstrBuilder MIB; + + // As we are creating the PHIs, we have to be careful if there is more than + // one. Later CMOVs may reference the results of earlier CMOVs, but later + // PHIs have to reference the individual true/false inputs from earlier PHIs. + // That also means that PHI construction must work forward from earlier to + // later, and that the code must maintain a mapping from earlier PHI's + // destination registers, and the registers that went into the PHI. + + for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { + unsigned DestReg = MIIt->getOperand(0).getReg(); + unsigned Op1Reg = MIIt->getOperand(1).getReg(); + unsigned Op2Reg = MIIt->getOperand(2).getReg(); + + // If this CMOV we are generating is the opposite condition from + // the jump we generated, then we have to swap the operands for the + // PHI that is going to be generated. + if (MIIt->getOperand(3).getImm() == OppCC) + std::swap(Op1Reg, Op2Reg); + + if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end()) + Op1Reg = RegRewriteTable[Op1Reg].first; + + if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end()) + Op2Reg = RegRewriteTable[Op2Reg].second; + + MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL, + TII->get(X86::PHI), DestReg) + .addReg(Op1Reg).addMBB(copy0MBB) + .addReg(Op2Reg).addMBB(thisMBB); + + // Add this PHI to the rewrite table. + RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg); + } + + // If we have a cascaded CMOV, the second Jcc provides the same incoming + // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes). + if (CascadedCMOV) { + MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB); + // Copy the PHI result to the register defined by the second CMOV. + BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), + DL, TII->get(TargetOpcode::COPY), + CascadedCMOV->getOperand(0).getReg()) + .addReg(MI->getOperand(0).getReg()); + CascadedCMOV->eraseFromParent(); + } + + // Now remove the CMOV(s). + for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ) + (MIIt++)->eraseFromParent(); + + return sinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI, + MachineBasicBlock *BB) const { + // Combine the following atomic floating-point modification pattern: + // a.store(reg OP a.load(acquire), release) + // Transform them into: + // OPss (%gpr), %xmm + // movss %xmm, (%gpr) + // Or sd equivalent for 64-bit operations. + unsigned MOp, FOp; + switch (MI->getOpcode()) { + default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP"); + case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break; + case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break; + } + const X86InstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); + MachineOperand MSrc = MI->getOperand(0); + unsigned VSrc = MI->getOperand(5).getReg(); + const MachineOperand &Disp = MI->getOperand(3); + MachineOperand ZeroDisp = MachineOperand::CreateImm(0); + bool hasDisp = Disp.isGlobal() || Disp.isImm(); + if (hasDisp && MSrc.isReg()) + MSrc.setIsKill(false); + MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp)) + .addOperand(/*Base=*/MSrc) + .addImm(/*Scale=*/1) + .addReg(/*Index=*/0) + .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0) + .addReg(0); + MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp), + MRI.createVirtualRegister(MRI.getRegClass(VSrc))) + .addReg(VSrc) + .addOperand(/*Base=*/MSrc) + .addImm(/*Scale=*/1) + .addReg(/*Index=*/0) + .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0) + .addReg(/*Segment=*/0); + MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill); + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + + assert(MF->shouldSplitStack()); + + const bool Is64Bit = Subtarget->is64Bit(); + const bool IsLP64 = Subtarget->isTarget64BitLP64(); + + const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS; + const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30; + + // BB: + // ... [Till the alloca] + // If stacklet is not large enough, jump to mallocMBB + // + // bumpMBB: + // Allocate by subtracting from RSP + // Jump to continueMBB + // + // mallocMBB: + // Allocate by call to runtime + // + // continueMBB: + // ... + // [rest of original BB] + // + + MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB); + + MachineRegisterInfo &MRI = MF->getRegInfo(); + const TargetRegisterClass *AddrRegClass = + getRegClassFor(getPointerTy(MF->getDataLayout())); + + unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass), + bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass), + tmpSPVReg = MRI.createVirtualRegister(AddrRegClass), + SPLimitVReg = MRI.createVirtualRegister(AddrRegClass), + sizeVReg = MI->getOperand(1).getReg(), + physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP; + + MachineFunction::iterator MBBIter = ++BB->getIterator(); + + MF->insert(MBBIter, bumpMBB); + MF->insert(MBBIter, mallocMBB); + MF->insert(MBBIter, continueMBB); + + continueMBB->splice(continueMBB->begin(), BB, + std::next(MachineBasicBlock::iterator(MI)), BB->end()); + continueMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Add code to the main basic block to check if the stack limit has been hit, + // and if so, jump to mallocMBB otherwise to bumpMBB. + BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg); + BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg) + .addReg(tmpSPVReg).addReg(sizeVReg); + BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr)) + .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg) + .addReg(SPLimitVReg); + BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB); + + // bumpMBB simply decreases the stack pointer, since we know the current + // stacklet has enough space. + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg) + .addReg(SPLimitVReg); + BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); + + // Calls into a routine in libgcc to allocate more space from the heap. + const uint32_t *RegMask = + Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C); + if (IsLP64) { + BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI) + .addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::RDI, RegState::Implicit) + .addReg(X86::RAX, RegState::ImplicitDefine); + } else if (Is64Bit) { + BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI) + .addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::EDI, RegState::Implicit) + .addReg(X86::EAX, RegState::ImplicitDefine); + } else { + BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg) + .addImm(12); + BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg); + BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol("__morestack_allocate_stack_space") + .addRegMask(RegMask) + .addReg(X86::EAX, RegState::ImplicitDefine); + } + + if (!Is64Bit) + BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg) + .addImm(16); + + BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg) + .addReg(IsLP64 ? X86::RAX : X86::EAX); + BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB); + + // Set up the CFG correctly. + BB->addSuccessor(bumpMBB); + BB->addSuccessor(mallocMBB); + mallocMBB->addSuccessor(continueMBB); + bumpMBB->addSuccessor(continueMBB); + + // Take care of the PHI nodes. + BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI), + MI->getOperand(0).getReg()) + .addReg(mallocPtrVReg).addMBB(mallocMBB) + .addReg(bumpSPPtrVReg).addMBB(bumpMBB); + + // Delete the original pseudo instruction. + MI->eraseFromParent(); + + // And we're done. + return continueMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, + MachineBasicBlock *BB) const { + assert(!Subtarget->isTargetMachO()); + DebugLoc DL = MI->getDebugLoc(); + MachineInstr *ResumeMI = Subtarget->getFrameLowering()->emitStackProbe( + *BB->getParent(), *BB, MI, DL, false); + MachineBasicBlock *ResumeBB = ResumeMI->getParent(); + MI->eraseFromParent(); // The pseudo instruction is gone now. + return ResumeBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredCatchRet(MachineInstr *MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + MachineBasicBlock *TargetMBB = MI->getOperand(0).getMBB(); + DebugLoc DL = MI->getDebugLoc(); + + assert(!isAsynchronousEHPersonality( + classifyEHPersonality(MF->getFunction()->getPersonalityFn())) && + "SEH does not use catchret!"); + + // Only 32-bit EH needs to worry about manually restoring stack pointers. + if (!Subtarget->is32Bit()) + return BB; + + // C++ EH creates a new target block to hold the restore code, and wires up + // the new block to the return destination with a normal JMP_4. + MachineBasicBlock *RestoreMBB = + MF->CreateMachineBasicBlock(BB->getBasicBlock()); + assert(BB->succ_size() == 1); + MF->insert(std::next(BB->getIterator()), RestoreMBB); + RestoreMBB->transferSuccessorsAndUpdatePHIs(BB); + BB->addSuccessor(RestoreMBB); + MI->getOperand(0).setMBB(RestoreMBB); + + auto RestoreMBBI = RestoreMBB->begin(); + BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE)); + BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredCatchPad(MachineInstr *MI, + MachineBasicBlock *BB) const { + MachineFunction *MF = BB->getParent(); + const Constant *PerFn = MF->getFunction()->getPersonalityFn(); + bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn)); + // Only 32-bit SEH requires special handling for catchpad. + if (IsSEH && Subtarget->is32Bit()) { + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE)); + } + MI->eraseFromParent(); + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, + MachineBasicBlock *BB) const { + // This is pretty easy. We're taking the value that we received from + // our load from the relocation, sticking it in either RDI (x86-64) + // or EAX and doing an indirect call. The return value will then + // be in the normal return register. + MachineFunction *F = BB->getParent(); + const X86InstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); + assert(MI->getOperand(3).isGlobal() && "This should be a global"); + + // Get a register mask for the lowered call. + // FIXME: The 32-bit calls have non-standard calling conventions. Use a + // proper register mask. + const uint32_t *RegMask = + Subtarget->is64Bit() ? + Subtarget->getRegisterInfo()->getDarwinTLSCallPreservedMask() : + Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C); + if (Subtarget->is64Bit()) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV64rm), X86::RDI) + .addReg(X86::RIP) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); + addDirectMem(MIB, X86::RDI); + MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(0) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } else { + MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, + TII->get(X86::MOV32rm), X86::EAX) + .addReg(TII->getGlobalBaseReg(F)) + .addImm(0).addReg(0) + .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, + MI->getOperand(3).getTargetFlags()) + .addReg(0); + MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); + addDirectMem(MIB, X86::EAX); + MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask); + } + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *MF = MBB->getParent(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + const BasicBlock *BB = MBB->getBasicBlock(); + MachineFunction::iterator I = ++MBB->getIterator(); + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + unsigned DstReg; + unsigned MemOpndSlot = 0; + + unsigned CurOp = 0; + + DstReg = MI->getOperand(CurOp++).getReg(); + const TargetRegisterClass *RC = MRI.getRegClass(DstReg); + assert(RC->hasType(MVT::i32) && "Invalid destination!"); + unsigned mainDstReg = MRI.createVirtualRegister(RC); + unsigned restoreDstReg = MRI.createVirtualRegister(RC); + + MemOpndSlot = CurOp; + + MVT PVT = getPointerTy(MF->getDataLayout()); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + + // For v = setjmp(buf), we generate + // + // thisMBB: + // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB + // SjLjSetup restoreMBB + // + // mainMBB: + // v_main = 0 + // + // sinkMBB: + // v = phi(main, restore) + // + // restoreMBB: + // if base pointer being used, load it from frame + // v_restore = 1 + + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); + MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB); + MF->insert(I, mainMBB); + MF->insert(I, sinkMBB); + MF->push_back(restoreMBB); + restoreMBB->setHasAddressTaken(); + + MachineInstrBuilder MIB; + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); + + // thisMBB: + unsigned PtrStoreOpc = 0; + unsigned LabelReg = 0; + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + Reloc::Model RM = MF->getTarget().getRelocationModel(); + bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) && + (RM == Reloc::Static || RM == Reloc::DynamicNoPIC); + + // Prepare IP either in reg or imm. + if (!UseImmLabel) { + PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr; + const TargetRegisterClass *PtrRC = getRegClassFor(PVT); + LabelReg = MRI.createVirtualRegister(PtrRC); + if (Subtarget->is64Bit()) { + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg) + .addReg(X86::RIP) + .addImm(0) + .addReg(0) + .addMBB(restoreMBB) + .addReg(0); + } else { + const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII); + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg) + .addReg(XII->getGlobalBaseReg(MF)) + .addImm(0) + .addReg(0) + .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference()) + .addReg(0); + } + } else + PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi; + // Store IP + MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc)); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset); + else + MIB.addOperand(MI->getOperand(MemOpndSlot + i)); + } + if (!UseImmLabel) + MIB.addReg(LabelReg); + else + MIB.addMBB(restoreMBB); + MIB.setMemRefs(MMOBegin, MMOEnd); + // Setup + MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup)) + .addMBB(restoreMBB); + + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + MIB.addRegMask(RegInfo->getNoPreservedMask()); + thisMBB->addSuccessor(mainMBB); + thisMBB->addSuccessor(restoreMBB); + + // mainMBB: + // EAX = 0 + BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg); + mainMBB->addSuccessor(sinkMBB); + + // sinkMBB: + BuildMI(*sinkMBB, sinkMBB->begin(), DL, + TII->get(X86::PHI), DstReg) + .addReg(mainDstReg).addMBB(mainMBB) + .addReg(restoreDstReg).addMBB(restoreMBB); + + // restoreMBB: + if (RegInfo->hasBasePointer(*MF)) { + const bool Uses64BitFramePtr = + Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64(); + X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); + X86FI->setRestoreBasePointer(MF); + unsigned FramePtr = RegInfo->getFrameRegister(*MF); + unsigned BasePtr = RegInfo->getBaseRegister(); + unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm; + addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr), + FramePtr, true, X86FI->getRestoreBasePointerOffset()) + .setMIFlag(MachineInstr::FrameSetup); + } + BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1); + BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB); + restoreMBB->addSuccessor(sinkMBB); + + MI->eraseFromParent(); + return sinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI, + MachineBasicBlock *MBB) const { + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *MF = MBB->getParent(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + MachineRegisterInfo &MRI = MF->getRegInfo(); + + // Memory Reference + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + + MVT PVT = getPointerTy(MF->getDataLayout()); + assert((PVT == MVT::i64 || PVT == MVT::i32) && + "Invalid Pointer Size!"); + + const TargetRegisterClass *RC = + (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass; + unsigned Tmp = MRI.createVirtualRegister(RC); + // Since FP is only updated here but NOT referenced, it's treated as GPR. + const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo(); + unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP; + unsigned SP = RegInfo->getStackRegister(); + + MachineInstrBuilder MIB; + + const int64_t LabelOffset = 1 * PVT.getStoreSize(); + const int64_t SPOffset = 2 * PVT.getStoreSize(); + + unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm; + unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r; + + // Reload FP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) + MIB.addOperand(MI->getOperand(i)); + MIB.setMemRefs(MMOBegin, MMOEnd); + // Reload IP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI->getOperand(i), LabelOffset); + else + MIB.addOperand(MI->getOperand(i)); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + // Reload SP + MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP); + for (unsigned i = 0; i < X86::AddrNumOperands; ++i) { + if (i == X86::AddrDisp) + MIB.addDisp(MI->getOperand(i), SPOffset); + else + MIB.addOperand(MI->getOperand(i)); + } + MIB.setMemRefs(MMOBegin, MMOEnd); + // Jump + BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp); + + MI->eraseFromParent(); + return MBB; +} + +// Replace 213-type (isel default) FMA3 instructions with 231-type for +// accumulator loops. Writing back to the accumulator allows the coalescer +// to remove extra copies in the loop. +// FIXME: Do this on AVX512. We don't support 231 variants yet (PR23937). +MachineBasicBlock * +X86TargetLowering::emitFMA3Instr(MachineInstr *MI, + MachineBasicBlock *MBB) const { + MachineOperand &AddendOp = MI->getOperand(3); + + // Bail out early if the addend isn't a register - we can't switch these. + if (!AddendOp.isReg()) + return MBB; + + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Check whether the addend is defined by a PHI: + assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?"); + MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg()); + if (!AddendDef.isPHI()) + return MBB; + + // Look for the following pattern: + // loop: + // %addend = phi [%entry, 0], [%loop, %result] + // ... + // %result<tied1> = FMA213 %m2<tied0>, %m1, %addend + + // Replace with: + // loop: + // %addend = phi [%entry, 0], [%loop, %result] + // ... + // %result<tied1> = FMA231 %addend<tied0>, %m1, %m2 + + for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) { + assert(AddendDef.getOperand(i).isReg()); + MachineOperand PHISrcOp = AddendDef.getOperand(i); + MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg()); + if (&PHISrcInst == MI) { + // Found a matching instruction. + unsigned NewFMAOpc = 0; + switch (MI->getOpcode()) { + case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break; + case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break; + case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break; + case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break; + case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break; + case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break; + case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break; + case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break; + case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break; + case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break; + case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break; + case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break; + case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break; + case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break; + case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break; + case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break; + case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break; + case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break; + case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break; + case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break; + + case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break; + case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break; + case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break; + case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break; + case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break; + case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break; + case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break; + case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break; + case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break; + case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break; + case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break; + case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break; + default: llvm_unreachable("Unrecognized FMA variant."); + } + + const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); + MachineInstrBuilder MIB = + BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc)) + .addOperand(MI->getOperand(0)) + .addOperand(MI->getOperand(3)) + .addOperand(MI->getOperand(2)) + .addOperand(MI->getOperand(1)); + MBB->insert(MachineBasicBlock::iterator(MI), MIB); + MI->eraseFromParent(); + } + } + + return MBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: llvm_unreachable("Unexpected instr type to insert"); + case X86::TAILJMPd64: + case X86::TAILJMPr64: + case X86::TAILJMPm64: + case X86::TAILJMPd64_REX: + case X86::TAILJMPr64_REX: + case X86::TAILJMPm64_REX: + llvm_unreachable("TAILJMP64 would not be touched here."); + case X86::TCRETURNdi64: + case X86::TCRETURNri64: + case X86::TCRETURNmi64: + return BB; + case X86::WIN_ALLOCA: + return EmitLoweredWinAlloca(MI, BB); + case X86::CATCHRET: + return EmitLoweredCatchRet(MI, BB); + case X86::CATCHPAD: + return EmitLoweredCatchPad(MI, BB); + case X86::SEG_ALLOCA_32: + case X86::SEG_ALLOCA_64: + return EmitLoweredSegAlloca(MI, BB); + case X86::TLSCall_32: + case X86::TLSCall_64: + return EmitLoweredTLSCall(MI, BB); + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_FR128: + case X86::CMOV_GR8: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_V4F32: + case X86::CMOV_V4F64: + case X86::CMOV_V4I64: + case X86::CMOV_V16F32: + case X86::CMOV_V8F32: + case X86::CMOV_V8F64: + case X86::CMOV_V8I64: + case X86::CMOV_V8I1: + case X86::CMOV_V16I1: + case X86::CMOV_V32I1: + case X86::CMOV_V64I1: + return EmitLoweredSelect(MI, BB); + + case X86::RELEASE_FADD32mr: + case X86::RELEASE_FADD64mr: + return EmitLoweredAtomicFP(MI, BB); + + case X86::FP32_TO_INT16_IN_MEM: + case X86::FP32_TO_INT32_IN_MEM: + case X86::FP32_TO_INT64_IN_MEM: + case X86::FP64_TO_INT16_IN_MEM: + case X86::FP64_TO_INT32_IN_MEM: + case X86::FP64_TO_INT64_IN_MEM: + case X86::FP80_TO_INT16_IN_MEM: + case X86::FP80_TO_INT32_IN_MEM: + case X86::FP80_TO_INT64_IN_MEM: { + MachineFunction *F = BB->getParent(); + const TargetInstrInfo *TII = Subtarget->getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FNSTCW16m)), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned OldCW = + F->getRegInfo().createVirtualRegister(&X86::GR16RegClass); + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), + CWFrameIdx); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) + .addImm(0xC7F); + + // Reload the modified control word now... + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) + .addReg(OldCW); + + // Get the X86 opcode to use. + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; + case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; + case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; + case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; + case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; + case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; + case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; + case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; + case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; + } + + X86AddressMode AM; + MachineOperand &Op = MI->getOperand(0); + if (Op.isReg()) { + AM.BaseType = X86AddressMode::RegBase; + AM.Base.Reg = Op.getReg(); + } else { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = Op.getIndex(); + } + Op = MI->getOperand(1); + if (Op.isImm()) + AM.Scale = Op.getImm(); + Op = MI->getOperand(2); + if (Op.isImm()) + AM.IndexReg = Op.getImm(); + Op = MI->getOperand(3); + if (Op.isGlobal()) { + AM.GV = Op.getGlobal(); + } else { + AM.Disp = Op.getImm(); + } + addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) + .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); + + // Reload the original control word now. + addFrameReference(BuildMI(*BB, MI, DL, + TII->get(X86::FLDCW16m)), CWFrameIdx); + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; + } + // String/text processing lowering. + case X86::PCMPISTRM128REG: + case X86::VPCMPISTRM128REG: + case X86::PCMPISTRM128MEM: + case X86::VPCMPISTRM128MEM: + case X86::PCMPESTRM128REG: + case X86::VPCMPESTRM128REG: + case X86::PCMPESTRM128MEM: + case X86::VPCMPESTRM128MEM: + assert(Subtarget->hasSSE42() && + "Target must have SSE4.2 or AVX features enabled"); + return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo()); + + // String/text processing lowering. + case X86::PCMPISTRIREG: + case X86::VPCMPISTRIREG: + case X86::PCMPISTRIMEM: + case X86::VPCMPISTRIMEM: + case X86::PCMPESTRIREG: + case X86::VPCMPESTRIREG: + case X86::PCMPESTRIMEM: + case X86::VPCMPESTRIMEM: + assert(Subtarget->hasSSE42() && + "Target must have SSE4.2 or AVX features enabled"); + return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo()); + + // Thread synchronization. + case X86::MONITOR: + return EmitMonitor(MI, BB, Subtarget); + + // xbegin + case X86::XBEGIN: + return EmitXBegin(MI, BB, Subtarget->getInstrInfo()); + + case X86::VASTART_SAVE_XMM_REGS: + return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); + + case X86::VAARG_64: + return EmitVAARG64WithCustomInserter(MI, BB); + + case X86::EH_SjLj_SetJmp32: + case X86::EH_SjLj_SetJmp64: + return emitEHSjLjSetJmp(MI, BB); + + case X86::EH_SjLj_LongJmp32: + case X86::EH_SjLj_LongJmp64: + return emitEHSjLjLongJmp(MI, BB); + + case TargetOpcode::STATEPOINT: + // As an implementation detail, STATEPOINT shares the STACKMAP format at + // this point in the process. We diverge later. + return emitPatchPoint(MI, BB); + + case TargetOpcode::STACKMAP: + case TargetOpcode::PATCHPOINT: + return emitPatchPoint(MI, BB); + + case X86::VFMADDPDr213r: + case X86::VFMADDPSr213r: + case X86::VFMADDSDr213r: + case X86::VFMADDSSr213r: + case X86::VFMSUBPDr213r: + case X86::VFMSUBPSr213r: + case X86::VFMSUBSDr213r: + case X86::VFMSUBSSr213r: + case X86::VFNMADDPDr213r: + case X86::VFNMADDPSr213r: + case X86::VFNMADDSDr213r: + case X86::VFNMADDSSr213r: + case X86::VFNMSUBPDr213r: + case X86::VFNMSUBPSr213r: + case X86::VFNMSUBSDr213r: + case X86::VFNMSUBSSr213r: + case X86::VFMADDSUBPDr213r: + case X86::VFMADDSUBPSr213r: + case X86::VFMSUBADDPDr213r: + case X86::VFMSUBADDPSr213r: + case X86::VFMADDPDr213rY: + case X86::VFMADDPSr213rY: + case X86::VFMSUBPDr213rY: + case X86::VFMSUBPSr213rY: + case X86::VFNMADDPDr213rY: + case X86::VFNMADDPSr213rY: + case X86::VFNMSUBPDr213rY: + case X86::VFNMSUBPSr213rY: + case X86::VFMADDSUBPDr213rY: + case X86::VFMADDSUBPSr213rY: + case X86::VFMSUBADDPDr213rY: + case X86::VFMSUBADDPSr213rY: + return emitFMA3Instr(MI, BB); + } +} + +//===----------------------------------------------------------------------===// +// X86 Optimization Hooks +//===----------------------------------------------------------------------===// + +void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + unsigned BitWidth = KnownZero.getBitWidth(); + unsigned Opc = Op.getOpcode(); + assert((Opc >= ISD::BUILTIN_OP_END || + Opc == ISD::INTRINSIC_WO_CHAIN || + Opc == ISD::INTRINSIC_W_CHAIN || + Opc == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + + KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything. + switch (Opc) { + default: break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::ADC: + case X86ISD::SBB: + case X86ISD::SMUL: + case X86ISD::UMUL: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + // These nodes' second result is a boolean. + if (Op.getResNo() == 0) + break; + // Fallthrough + case X86ISD::SETCC: + KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); + break; + case ISD::INTRINSIC_WO_CHAIN: { + unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + unsigned NumLoBits = 0; + switch (IntId) { + default: break; + case Intrinsic::x86_sse_movmsk_ps: + case Intrinsic::x86_avx_movmsk_ps_256: + case Intrinsic::x86_sse2_movmsk_pd: + case Intrinsic::x86_avx_movmsk_pd_256: + case Intrinsic::x86_mmx_pmovmskb: + case Intrinsic::x86_sse2_pmovmskb_128: + case Intrinsic::x86_avx2_pmovmskb: { + // High bits of movmskp{s|d}, pmovmskb are known zero. + switch (IntId) { + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break; + case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break; + case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break; + case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break; + case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break; + case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break; + case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break; + } + KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits); + break; + } + } + break; + } + } +} + +unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode( + SDValue Op, + const SelectionDAG &, + unsigned Depth) const { + // SETCC_CARRY sets the dest to ~0 for true or 0 for false. + if (Op.getOpcode() == X86ISD::SETCC_CARRY) + return Op.getValueType().getScalarSizeInBits(); + + // Fallback case. + return 1; +} + +/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the +/// node is a GlobalAddress + offset. +bool X86TargetLowering::isGAPlusOffset(SDNode *N, + const GlobalValue* &GA, + int64_t &Offset) const { + if (N->getOpcode() == X86ISD::Wrapper) { + if (isa<GlobalAddressSDNode>(N->getOperand(0))) { + GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); + Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); + return true; + } + } + return TargetLowering::isGAPlusOffset(N, GA, Offset); +} + +/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors. +/// FIXME: This could be expanded to support 512 bit vectors as well. +static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget* Subtarget) { + SDLoc dl(N); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + MVT VT = SVOp->getSimpleValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + + if (V1.getOpcode() == ISD::CONCAT_VECTORS && + V2.getOpcode() == ISD::CONCAT_VECTORS) { + // + // 0,0,0,... + // | + // V UNDEF BUILD_VECTOR UNDEF + // \ / \ / + // CONCAT_VECTOR CONCAT_VECTOR + // \ / + // \ / + // RESULT: V + zero extended + // + if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR || + V2.getOperand(1).getOpcode() != ISD::UNDEF || + V1.getOperand(1).getOpcode() != ISD::UNDEF) + return SDValue(); + + if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode())) + return SDValue(); + + // To match the shuffle mask, the first half of the mask should + // be exactly the first vector, and all the rest a splat with the + // first element of the second one. + for (unsigned i = 0; i != NumElems/2; ++i) + if (!isUndefOrEqual(SVOp->getMaskElt(i), i) || + !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems)) + return SDValue(); + + // If V1 is coming from a vector load then just fold to a VZEXT_LOAD. + if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) { + if (Ld->hasNUsesOfValue(1, 0)) { + SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other); + SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() }; + SDValue ResNode = + DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, + Ld->getMemoryVT(), + Ld->getPointerInfo(), + Ld->getAlignment(), + false/*isVolatile*/, true/*ReadMem*/, + false/*WriteMem*/); + + // Make sure the newly-created LOAD is in the same position as Ld in + // terms of dependency. We create a TokenFactor for Ld and ResNode, + // and update uses of Ld's output chain to use the TokenFactor. + if (Ld->hasAnyUseOfValue(1)) { + SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + SDValue(Ld, 1), SDValue(ResNode.getNode(), 1)); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain); + DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1), + SDValue(ResNode.getNode(), 1)); + } + + return DAG.getBitcast(VT, ResNode); + } + } + + // Emit a zeroed vector and insert the desired subvector on its + // first half. + SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl); + SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl); + return DCI.CombineTo(N, InsV); + } + + return SDValue(); +} + +/// \brief Combine an arbitrary chain of shuffles into a single instruction if +/// possible. +/// +/// This is the leaf of the recursive combinine below. When we have found some +/// chain of single-use x86 shuffle instructions and accumulated the combined +/// shuffle mask represented by them, this will try to pattern match that mask +/// into either a single instruction if there is a special purpose instruction +/// for this operation, or into a PSHUFB instruction which is a fully general +/// instruction but should only be used to replace chains over a certain depth. +static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask, + int Depth, bool HasPSHUFB, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + assert(!Mask.empty() && "Cannot combine an empty shuffle mask!"); + + // Find the operand that enters the chain. Note that multiple uses are OK + // here, we're not going to remove the operand we find. + SDValue Input = Op.getOperand(0); + while (Input.getOpcode() == ISD::BITCAST) + Input = Input.getOperand(0); + + MVT VT = Input.getSimpleValueType(); + MVT RootVT = Root.getSimpleValueType(); + SDLoc DL(Root); + + if (Mask.size() == 1) { + int Index = Mask[0]; + assert((Index >= 0 || Index == SM_SentinelUndef || + Index == SM_SentinelZero) && + "Invalid shuffle index found!"); + + // We may end up with an accumulated mask of size 1 as a result of + // widening of shuffle operands (see function canWidenShuffleElements). + // If the only shuffle index is equal to SM_SentinelZero then propagate + // a zero vector. Otherwise, the combine shuffle mask is a no-op shuffle + // mask, and therefore the entire chain of shuffles can be folded away. + if (Index == SM_SentinelZero) + DCI.CombineTo(Root.getNode(), getZeroVector(RootVT, Subtarget, DAG, DL)); + else + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input), + /*AddTo*/ true); + return true; + } + + // Use the float domain if the operand type is a floating point type. + bool FloatDomain = VT.isFloatingPoint(); + + // For floating point shuffles, we don't have free copies in the shuffle + // instructions or the ability to load as part of the instruction, so + // canonicalize their shuffles to UNPCK or MOV variants. + // + // Note that even with AVX we prefer the PSHUFD form of shuffle for integer + // vectors because it can have a load folded into it that UNPCK cannot. This + // doesn't preclude something switching to the shorter encoding post-RA. + // + // FIXME: Should teach these routines about AVX vector widths. + if (FloatDomain && VT.is128BitVector()) { + if (Mask.equals({0, 0}) || Mask.equals({1, 1})) { + bool Lo = Mask.equals({0, 0}); + unsigned Shuffle; + MVT ShuffleVT; + // Check if we have SSE3 which will let us use MOVDDUP. That instruction + // is no slower than UNPCKLPD but has the option to fold the input operand + // into even an unaligned memory load. + if (Lo && Subtarget->hasSSE3()) { + Shuffle = X86ISD::MOVDDUP; + ShuffleVT = MVT::v2f64; + } else { + // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller + // than the UNPCK variants. + Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS; + ShuffleVT = MVT::v4f32; + } + if (Depth == 1 && Root->getOpcode() == Shuffle) + return false; // Nothing to do! + Op = DAG.getBitcast(ShuffleVT, Input); + DCI.AddToWorklist(Op.getNode()); + if (Shuffle == X86ISD::MOVDDUP) + Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); + else + Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); + DCI.AddToWorklist(Op.getNode()); + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), + /*AddTo*/ true); + return true; + } + if (Subtarget->hasSSE3() && + (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) { + bool Lo = Mask.equals({0, 0, 2, 2}); + unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP; + MVT ShuffleVT = MVT::v4f32; + if (Depth == 1 && Root->getOpcode() == Shuffle) + return false; // Nothing to do! + Op = DAG.getBitcast(ShuffleVT, Input); + DCI.AddToWorklist(Op.getNode()); + Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op); + DCI.AddToWorklist(Op.getNode()); + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), + /*AddTo*/ true); + return true; + } + if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) { + bool Lo = Mask.equals({0, 0, 1, 1}); + unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; + MVT ShuffleVT = MVT::v4f32; + if (Depth == 1 && Root->getOpcode() == Shuffle) + return false; // Nothing to do! + Op = DAG.getBitcast(ShuffleVT, Input); + DCI.AddToWorklist(Op.getNode()); + Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); + DCI.AddToWorklist(Op.getNode()); + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), + /*AddTo*/ true); + return true; + } + } + + // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK + // variants as none of these have single-instruction variants that are + // superior to the UNPCK formulation. + if (!FloatDomain && VT.is128BitVector() && + (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) || + Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) || + Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) || + Mask.equals( + {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) { + bool Lo = Mask[0] == 0; + unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH; + if (Depth == 1 && Root->getOpcode() == Shuffle) + return false; // Nothing to do! + MVT ShuffleVT; + switch (Mask.size()) { + case 8: + ShuffleVT = MVT::v8i16; + break; + case 16: + ShuffleVT = MVT::v16i8; + break; + default: + llvm_unreachable("Impossible mask size!"); + }; + Op = DAG.getBitcast(ShuffleVT, Input); + DCI.AddToWorklist(Op.getNode()); + Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op); + DCI.AddToWorklist(Op.getNode()); + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), + /*AddTo*/ true); + return true; + } + + // Don't try to re-form single instruction chains under any circumstances now + // that we've done encoding canonicalization for them. + if (Depth < 2) + return false; + + // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we + // can replace them with a single PSHUFB instruction profitably. Intel's + // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but + // in practice PSHUFB tends to be *very* fast so we're more aggressive. + if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) { + SmallVector<SDValue, 16> PSHUFBMask; + int NumBytes = VT.getSizeInBits() / 8; + int Ratio = NumBytes / Mask.size(); + for (int i = 0; i < NumBytes; ++i) { + if (Mask[i / Ratio] == SM_SentinelUndef) { + PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8)); + continue; + } + int M = Mask[i / Ratio] != SM_SentinelZero + ? Ratio * Mask[i / Ratio] + i % Ratio + : 255; + PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8)); + } + MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes); + Op = DAG.getBitcast(ByteVT, Input); + DCI.AddToWorklist(Op.getNode()); + SDValue PSHUFBMaskOp = + DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask); + DCI.AddToWorklist(PSHUFBMaskOp.getNode()); + Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp); + DCI.AddToWorklist(Op.getNode()); + DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op), + /*AddTo*/ true); + return true; + } + + // Failed to find any combines. + return false; +} + +/// \brief Fully generic combining of x86 shuffle instructions. +/// +/// This should be the last combine run over the x86 shuffle instructions. Once +/// they have been fully optimized, this will recursively consider all chains +/// of single-use shuffle instructions, build a generic model of the cumulative +/// shuffle operation, and check for simpler instructions which implement this +/// operation. We use this primarily for two purposes: +/// +/// 1) Collapse generic shuffles to specialized single instructions when +/// equivalent. In most cases, this is just an encoding size win, but +/// sometimes we will collapse multiple generic shuffles into a single +/// special-purpose shuffle. +/// 2) Look for sequences of shuffle instructions with 3 or more total +/// instructions, and replace them with the slightly more expensive SSSE3 +/// PSHUFB instruction if available. We do this as the last combining step +/// to ensure we avoid using PSHUFB if we can implement the shuffle with +/// a suitable short sequence of other instructions. The PHUFB will either +/// use a register or have to read from memory and so is slightly (but only +/// slightly) more expensive than the other shuffle instructions. +/// +/// Because this is inherently a quadratic operation (for each shuffle in +/// a chain, we recurse up the chain), the depth is limited to 8 instructions. +/// This should never be an issue in practice as the shuffle lowering doesn't +/// produce sequences of more than 8 instructions. +/// +/// FIXME: We will currently miss some cases where the redundant shuffling +/// would simplify under the threshold for PSHUFB formation because of +/// combine-ordering. To fix this, we should do the redundant instruction +/// combining in this recursive walk. +static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root, + ArrayRef<int> RootMask, + int Depth, bool HasPSHUFB, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + // Bound the depth of our recursive combine because this is ultimately + // quadratic in nature. + if (Depth > 8) + return false; + + // Directly rip through bitcasts to find the underlying operand. + while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse()) + Op = Op.getOperand(0); + + MVT VT = Op.getSimpleValueType(); + if (!VT.isVector()) + return false; // Bail if we hit a non-vector. + + assert(Root.getSimpleValueType().isVector() && + "Shuffles operate on vector types!"); + assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() && + "Can only combine shuffles of the same vector register size."); + + if (!isTargetShuffle(Op.getOpcode())) + return false; + SmallVector<int, 16> OpMask; + bool IsUnary; + bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary); + // We only can combine unary shuffles which we can decode the mask for. + if (!HaveMask || !IsUnary) + return false; + + assert(VT.getVectorNumElements() == OpMask.size() && + "Different mask size from vector size!"); + assert(((RootMask.size() > OpMask.size() && + RootMask.size() % OpMask.size() == 0) || + (OpMask.size() > RootMask.size() && + OpMask.size() % RootMask.size() == 0) || + OpMask.size() == RootMask.size()) && + "The smaller number of elements must divide the larger."); + int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size()); + int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size()); + assert(((RootRatio == 1 && OpRatio == 1) || + (RootRatio == 1) != (OpRatio == 1)) && + "Must not have a ratio for both incoming and op masks!"); + + SmallVector<int, 16> Mask; + Mask.reserve(std::max(OpMask.size(), RootMask.size())); + + // Merge this shuffle operation's mask into our accumulated mask. Note that + // this shuffle's mask will be the first applied to the input, followed by the + // root mask to get us all the way to the root value arrangement. The reason + // for this order is that we are recursing up the operation chain. + for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) { + int RootIdx = i / RootRatio; + if (RootMask[RootIdx] < 0) { + // This is a zero or undef lane, we're done. + Mask.push_back(RootMask[RootIdx]); + continue; + } + + int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio; + int OpIdx = RootMaskedIdx / OpRatio; + if (OpMask[OpIdx] < 0) { + // The incoming lanes are zero or undef, it doesn't matter which ones we + // are using. + Mask.push_back(OpMask[OpIdx]); + continue; + } + + // Ok, we have non-zero lanes, map them through. + Mask.push_back(OpMask[OpIdx] * OpRatio + + RootMaskedIdx % OpRatio); + } + + // See if we can recurse into the operand to combine more things. + switch (Op.getOpcode()) { + case X86ISD::PSHUFB: + HasPSHUFB = true; + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + if (Op.getOperand(0).hasOneUse() && + combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, + HasPSHUFB, DAG, DCI, Subtarget)) + return true; + break; + + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + assert(Op.getOperand(0) == Op.getOperand(1) && + "We only combine unary shuffles!"); + // We can't check for single use, we have to check that this shuffle is the + // only user. + if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) && + combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1, + HasPSHUFB, DAG, DCI, Subtarget)) + return true; + break; + } + + // Minor canonicalization of the accumulated shuffle mask to make it easier + // to match below. All this does is detect masks with squential pairs of + // elements, and shrink them to the half-width mask. It does this in a loop + // so it will reduce the size of the mask to the minimal width mask which + // performs an equivalent shuffle. + SmallVector<int, 16> WidenedMask; + while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) { + Mask = std::move(WidenedMask); + WidenedMask.clear(); + } + + return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI, + Subtarget); +} + +/// \brief Get the PSHUF-style mask from PSHUF node. +/// +/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4 +/// PSHUF-style masks that can be reused with such instructions. +static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) { + MVT VT = N.getSimpleValueType(); + SmallVector<int, 4> Mask; + bool IsUnary; + bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary); + (void)HaveMask; + assert(HaveMask); + + // If we have more than 128-bits, only the low 128-bits of shuffle mask + // matter. Check that the upper masks are repeats and remove them. + if (VT.getSizeInBits() > 128) { + int LaneElts = 128 / VT.getScalarSizeInBits(); +#ifndef NDEBUG + for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i) + for (int j = 0; j < LaneElts; ++j) + assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) && + "Mask doesn't repeat in high 128-bit lanes!"); +#endif + Mask.resize(LaneElts); + } + + switch (N.getOpcode()) { + case X86ISD::PSHUFD: + return Mask; + case X86ISD::PSHUFLW: + Mask.resize(4); + return Mask; + case X86ISD::PSHUFHW: + Mask.erase(Mask.begin(), Mask.begin() + 4); + for (int &M : Mask) + M -= 4; + return Mask; + default: + llvm_unreachable("No valid shuffle instruction found!"); + } +} + +/// \brief Search for a combinable shuffle across a chain ending in pshufd. +/// +/// We walk up the chain and look for a combinable shuffle, skipping over +/// shuffles that we could hoist this shuffle's transformation past without +/// altering anything. +static SDValue +combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + assert(N.getOpcode() == X86ISD::PSHUFD && + "Called with something other than an x86 128-bit half shuffle!"); + SDLoc DL(N); + + // Walk up a single-use chain looking for a combinable shuffle. Keep a stack + // of the shuffles in the chain so that we can form a fresh chain to replace + // this one. + SmallVector<SDValue, 8> Chain; + SDValue V = N.getOperand(0); + for (; V.hasOneUse(); V = V.getOperand(0)) { + switch (V.getOpcode()) { + default: + return SDValue(); // Nothing combined! + + case ISD::BITCAST: + // Skip bitcasts as we always know the type for the target specific + // instructions. + continue; + + case X86ISD::PSHUFD: + // Found another dword shuffle. + break; + + case X86ISD::PSHUFLW: + // Check that the low words (being shuffled) are the identity in the + // dword shuffle, and the high words are self-contained. + if (Mask[0] != 0 || Mask[1] != 1 || + !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4)) + return SDValue(); + + Chain.push_back(V); + continue; + + case X86ISD::PSHUFHW: + // Check that the high words (being shuffled) are the identity in the + // dword shuffle, and the low words are self-contained. + if (Mask[2] != 2 || Mask[3] != 3 || + !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2)) + return SDValue(); + + Chain.push_back(V); + continue; + + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword + // shuffle into a preceding word shuffle. + if (V.getSimpleValueType().getVectorElementType() != MVT::i8 && + V.getSimpleValueType().getVectorElementType() != MVT::i16) + return SDValue(); + + // Search for a half-shuffle which we can combine with. + unsigned CombineOp = + V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW; + if (V.getOperand(0) != V.getOperand(1) || + !V->isOnlyUserOf(V.getOperand(0).getNode())) + return SDValue(); + Chain.push_back(V); + V = V.getOperand(0); + do { + switch (V.getOpcode()) { + default: + return SDValue(); // Nothing to combine. + + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + if (V.getOpcode() == CombineOp) + break; + + Chain.push_back(V); + + // Fallthrough! + case ISD::BITCAST: + V = V.getOperand(0); + continue; + } + break; + } while (V.hasOneUse()); + break; + } + // Break out of the loop if we break out of the switch. + break; + } + + if (!V.hasOneUse()) + // We fell out of the loop without finding a viable combining instruction. + return SDValue(); + + // Merge this node's mask and our incoming mask. + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + for (int &M : Mask) + M = VMask[M]; + V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0), + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Rebuild the chain around this new shuffle. + while (!Chain.empty()) { + SDValue W = Chain.pop_back_val(); + + if (V.getValueType() != W.getOperand(0).getValueType()) + V = DAG.getBitcast(W.getOperand(0).getValueType(), V); + + switch (W.getOpcode()) { + default: + llvm_unreachable("Only PSHUF and UNPCK instructions get here!"); + + case X86ISD::UNPCKL: + case X86ISD::UNPCKH: + V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V); + break; + + case X86ISD::PSHUFD: + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1)); + break; + } + } + if (V.getValueType() != N.getValueType()) + V = DAG.getBitcast(N.getValueType(), V); + + // Return the new chain to replace N. + return V; +} + +/// \brief Search for a combinable shuffle across a chain ending in pshuflw or +/// pshufhw. +/// +/// We walk up the chain, skipping shuffles of the other half and looking +/// through shuffles which switch halves trying to find a shuffle of the same +/// pair of dwords. +static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + assert( + (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) && + "Called with something other than an x86 128-bit half shuffle!"); + SDLoc DL(N); + unsigned CombineOpcode = N.getOpcode(); + + // Walk up a single-use chain looking for a combinable shuffle. + SDValue V = N.getOperand(0); + for (; V.hasOneUse(); V = V.getOperand(0)) { + switch (V.getOpcode()) { + default: + return false; // Nothing combined! + + case ISD::BITCAST: + // Skip bitcasts as we always know the type for the target specific + // instructions. + continue; + + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + if (V.getOpcode() == CombineOpcode) + break; + + // Other-half shuffles are no-ops. + continue; + } + // Break out of the loop if we break out of the switch. + break; + } + + if (!V.hasOneUse()) + // We fell out of the loop without finding a viable combining instruction. + return false; + + // Combine away the bottom node as its shuffle will be accumulated into + // a preceding shuffle. + DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); + + // Record the old value. + SDValue Old = V; + + // Merge this node's mask and our incoming mask (adjusted to account for all + // the pshufd instructions encountered). + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + for (int &M : Mask) + M = VMask[M]; + V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0), + getV4X86ShuffleImm8ForMask(Mask, DL, DAG)); + + // Check that the shuffles didn't cancel each other out. If not, we need to + // combine to the new one. + if (Old != V) + // Replace the combinable shuffle with the combined one, updating all users + // so that we re-evaluate the chain here. + DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true); + + return true; +} + +/// \brief Try to combine x86 target specific shuffles. +static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + MVT VT = N.getSimpleValueType(); + SmallVector<int, 4> Mask; + + switch (N.getOpcode()) { + case X86ISD::PSHUFD: + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + Mask = getPSHUFShuffleMask(N); + assert(Mask.size() == 4); + break; + case X86ISD::UNPCKL: { + // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in + // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE + // moves upper half elements into the lower half part. For example: + // + // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1, + // undef:v16i8 + // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2 + // + // will be combined to: + // + // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1 + + // This is only for 128-bit vectors. From SSE4.1 onward this combine may not + // happen due to advanced instructions. + if (!VT.is128BitVector()) + return SDValue(); + + auto Op0 = N.getOperand(0); + auto Op1 = N.getOperand(1); + if (Op0.getOpcode() == ISD::UNDEF && + Op1.getNode()->getOpcode() == ISD::VECTOR_SHUFFLE) { + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask(); + + unsigned NumElts = VT.getVectorNumElements(); + SmallVector<int, 8> ExpectedMask(NumElts, -1); + std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2, + NumElts / 2); + + auto ShufOp = Op1.getOperand(0); + if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask)) + return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp); + } + return SDValue(); + } + default: + return SDValue(); + } + + // Nuke no-op shuffles that show up after combining. + if (isNoopShuffleMask(Mask)) + return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true); + + // Look for simplifications involving one or two shuffle instructions. + SDValue V = N.getOperand(0); + switch (N.getOpcode()) { + default: + break; + case X86ISD::PSHUFLW: + case X86ISD::PSHUFHW: + assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!"); + + if (combineRedundantHalfShuffle(N, Mask, DAG, DCI)) + return SDValue(); // We combined away this shuffle, so we're done. + + // See if this reduces to a PSHUFD which is no more expensive and can + // combine with more operations. Note that it has to at least flip the + // dwords as otherwise it would have been removed as a no-op. + if (makeArrayRef(Mask).equals({2, 3, 0, 1})) { + int DMask[] = {0, 1, 2, 3}; + int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2; + DMask[DOffset + 0] = DOffset + 1; + DMask[DOffset + 1] = DOffset + 0; + MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2); + V = DAG.getBitcast(DVT, V); + DCI.AddToWorklist(V.getNode()); + V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V, + getV4X86ShuffleImm8ForMask(DMask, DL, DAG)); + DCI.AddToWorklist(V.getNode()); + return DAG.getBitcast(VT, V); + } + + // Look for shuffle patterns which can be implemented as a single unpack. + // FIXME: This doesn't handle the location of the PSHUFD generically, and + // only works when we have a PSHUFD followed by two half-shuffles. + if (Mask[0] == Mask[1] && Mask[2] == Mask[3] && + (V.getOpcode() == X86ISD::PSHUFLW || + V.getOpcode() == X86ISD::PSHUFHW) && + V.getOpcode() != N.getOpcode() && + V.hasOneUse()) { + SDValue D = V.getOperand(0); + while (D.getOpcode() == ISD::BITCAST && D.hasOneUse()) + D = D.getOperand(0); + if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) { + SmallVector<int, 4> VMask = getPSHUFShuffleMask(V); + SmallVector<int, 4> DMask = getPSHUFShuffleMask(D); + int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; + int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4; + int WordMask[8]; + for (int i = 0; i < 4; ++i) { + WordMask[i + NOffset] = Mask[i] + NOffset; + WordMask[i + VOffset] = VMask[i] + VOffset; + } + // Map the word mask through the DWord mask. + int MappedMask[8]; + for (int i = 0; i < 8; ++i) + MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2; + if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) || + makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) { + // We can replace all three shuffles with an unpack. + V = DAG.getBitcast(VT, D.getOperand(0)); + DCI.AddToWorklist(V.getNode()); + return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL + : X86ISD::UNPCKH, + DL, VT, V, V); + } + } + } + + break; + + case X86ISD::PSHUFD: + if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI)) + return NewN; + + break; + } + + return SDValue(); +} + +/// \brief Try to combine a shuffle into a target-specific add-sub node. +/// +/// We combine this directly on the abstract vector shuffle nodes so it is +/// easier to generically match. We also insert dummy vector shuffle nodes for +/// the operands which explicitly discard the lanes which are unused by this +/// operation to try to flow through the rest of the combiner the fact that +/// they're unused. +static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // We only handle target-independent shuffles. + // FIXME: It would be easy and harmless to use the target shuffle mask + // extraction tool to support more. + if (N->getOpcode() != ISD::VECTOR_SHUFFLE) + return SDValue(); + + auto *SVN = cast<ShuffleVectorSDNode>(N); + SmallVector<int, 8> Mask; + for (int M : SVN->getMask()) + Mask.push_back(M); + + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + + // We require the first shuffle operand to be the FSUB node, and the second to + // be the FADD node. + if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) { + ShuffleVectorSDNode::commuteMask(Mask); + std::swap(V1, V2); + } else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD) + return SDValue(); + + // If there are other uses of these operations we can't fold them. + if (!V1->hasOneUse() || !V2->hasOneUse()) + return SDValue(); + + // Ensure that both operations have the same operands. Note that we can + // commute the FADD operands. + SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1); + if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) && + (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS)) + return SDValue(); + + // We're looking for blends between FADD and FSUB nodes. We insist on these + // nodes being lined up in a specific expected pattern. + if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) || + isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) || + isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15}))) + return SDValue(); + + // Only specific types are legal at this point, assert so we notice if and + // when these change. + assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 || + VT == MVT::v4f64) && + "Unknown vector type encountered!"); + + return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS); +} + +/// PerformShuffleCombine - Performs several different shuffle combines. +static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc dl(N); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + + // Don't create instructions with illegal types after legalize types has run. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) + return SDValue(); + + // If we have legalized the vector types, look for blends of FADD and FSUB + // nodes that we can fuse into an ADDSUB node. + if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3()) + if (SDValue AddSub = combineShuffleToAddSub(N, DAG)) + return AddSub; + + // Combine 256-bit vector shuffles. This is only profitable when in AVX mode + if (TLI.isTypeLegal(VT) && Subtarget->hasFp256() && VT.is256BitVector() && + N->getOpcode() == ISD::VECTOR_SHUFFLE) + return PerformShuffleCombine256(N, DAG, DCI, Subtarget); + + // During Type Legalization, when promoting illegal vector types, + // the backend might introduce new shuffle dag nodes and bitcasts. + // + // This code performs the following transformation: + // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) -> + // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>) + // + // We do this only if both the bitcast and the BINOP dag nodes have + // one use. Also, perform this transformation only if the new binary + // operation is legal. This is to avoid introducing dag nodes that + // potentially need to be further expanded (or custom lowered) into a + // less optimal sequence of dag nodes. + if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() && + N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() && + N0.getOpcode() == ISD::BITCAST) { + SDValue BC0 = N0.getOperand(0); + EVT SVT = BC0.getValueType(); + unsigned Opcode = BC0.getOpcode(); + unsigned NumElts = VT.getVectorNumElements(); + + if (BC0.hasOneUse() && SVT.isVector() && + SVT.getVectorNumElements() * 2 == NumElts && + TLI.isOperationLegal(Opcode, VT)) { + bool CanFold = false; + switch (Opcode) { + default : break; + case ISD::ADD : + case ISD::FADD : + case ISD::SUB : + case ISD::FSUB : + case ISD::MUL : + case ISD::FMUL : + CanFold = true; + } + + unsigned SVTNumElts = SVT.getVectorNumElements(); + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i) + CanFold = SVOp->getMaskElt(i) == (int)(i * 2); + for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i) + CanFold = SVOp->getMaskElt(i) < 0; + + if (CanFold) { + SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0)); + SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1)); + SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01); + return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]); + } + } + } + + // Combine a vector_shuffle that is equal to build_vector load1, load2, load3, + // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are + // consecutive, non-overlapping, and in the right order. + SmallVector<SDValue, 16> Elts; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) + Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); + + if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true)) + return LD; + + if (isTargetShuffle(N->getOpcode())) { + SDValue Shuffle = + PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget); + if (Shuffle.getNode()) + return Shuffle; + + // Try recursively combining arbitrary sequences of x86 shuffle + // instructions into higher-order shuffles. We do this after combining + // specific PSHUF instruction sequences into their minimal form so that we + // can evaluate how many specialized shuffle instructions are involved in + // a particular chain. + SmallVector<int, 1> NonceMask; // Just a placeholder. + NonceMask.push_back(0); + if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask, + /*Depth*/ 1, /*HasPSHUFB*/ false, DAG, + DCI, Subtarget)) + return SDValue(); // This routine will use CombineTo to replace N. + } + + return SDValue(); +} + +/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target +/// specific shuffle of a load can be folded into a single element load. +/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but +/// shuffles have been custom lowered so we need to handle those here. +static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue InVec = N->getOperand(0); + SDValue EltNo = N->getOperand(1); + + if (!isa<ConstantSDNode>(EltNo)) + return SDValue(); + + EVT OriginalVT = InVec.getValueType(); + + if (InVec.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!InVec.hasOneUse()) + return SDValue(); + EVT BCVT = InVec.getOperand(0).getValueType(); + if (!BCVT.isVector() || + BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements()) + return SDValue(); + InVec = InVec.getOperand(0); + } + + EVT CurrentVT = InVec.getValueType(); + + if (!isTargetShuffle(InVec.getOpcode())) + return SDValue(); + + // Don't duplicate a load with other uses. + if (!InVec.hasOneUse()) + return SDValue(); + + SmallVector<int, 16> ShuffleMask; + bool UnaryShuffle; + if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), + ShuffleMask, UnaryShuffle)) + return SDValue(); + + // Select the input vector, guarding against out of range extract vector. + unsigned NumElems = CurrentVT.getVectorNumElements(); + int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); + int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt]; + SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0) + : InVec.getOperand(1); + + // If inputs to shuffle are the same for both ops, then allow 2 uses + unsigned AllowedUses = InVec.getNumOperands() > 1 && + InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1; + + if (LdNode.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0)) + return SDValue(); + + AllowedUses = 1; // only allow 1 load use if we have a bitcast + LdNode = LdNode.getOperand(0); + } + + if (!ISD::isNormalLoad(LdNode.getNode())) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(LdNode); + + if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile()) + return SDValue(); + + EVT EltVT = N->getValueType(0); + // If there's a bitcast before the shuffle, check if the load type and + // alignment is valid. + unsigned Align = LN0->getAlignment(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment( + EltVT.getTypeForEVT(*DAG.getContext())); + + if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT)) + return SDValue(); + + // All checks match so transform back to vector_shuffle so that DAG combiner + // can finish the job + SDLoc dl(N); + + // Create shuffle node taking into account the case that its a unary shuffle + SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) + : InVec.getOperand(1); + Shuffle = DAG.getVectorShuffle(CurrentVT, dl, + InVec.getOperand(0), Shuffle, + &ShuffleMask[0]); + Shuffle = DAG.getBitcast(OriginalVT, Shuffle); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle, + EltNo); +} + +static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // Detect bitcasts between i32 to x86mmx low word. Since MMX types are + // special and don't usually play with other vector types, it's better to + // handle them early to be sure we emit efficient code by avoiding + // store-load conversions. + if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR && + N0.getValueType() == MVT::v2i32 && + isNullConstant(N0.getOperand(1))) { + SDValue N00 = N0->getOperand(0); + if (N00.getValueType() == MVT::i32) + return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00); + } + + // Convert a bitcasted integer logic operation that has one bitcasted + // floating-point operand and one constant operand into a floating-point + // logic operation. This may create a load of the constant, but that is + // cheaper than materializing the constant in an integer register and + // transferring it to an SSE register or transferring the SSE operand to + // integer register and back. + unsigned FPOpcode; + switch (N0.getOpcode()) { + case ISD::AND: FPOpcode = X86ISD::FAND; break; + case ISD::OR: FPOpcode = X86ISD::FOR; break; + case ISD::XOR: FPOpcode = X86ISD::FXOR; break; + default: return SDValue(); + } + if (((Subtarget->hasSSE1() && VT == MVT::f32) || + (Subtarget->hasSSE2() && VT == MVT::f64)) && + isa<ConstantSDNode>(N0.getOperand(1)) && + N0.getOperand(0).getOpcode() == ISD::BITCAST && + N0.getOperand(0).getOperand(0).getValueType() == VT) { + SDValue N000 = N0.getOperand(0).getOperand(0); + SDValue FPConst = DAG.getBitcast(VT, N0.getOperand(1)); + return DAG.getNode(FPOpcode, SDLoc(N0), VT, N000, FPConst); + } + + return SDValue(); +} + +/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index +/// generation and convert it from being a bunch of shuffles and extracts +/// into a somewhat faster sequence. For i686, the best sequence is apparently +/// storing the value and loading scalars back, while for x64 we should +/// use 64-bit extracts and shifts. +static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI)) + return NewOp; + + SDValue InputVector = N->getOperand(0); + SDLoc dl(InputVector); + // Detect mmx to i32 conversion through a v2i32 elt extract. + if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() && + N->getValueType(0) == MVT::i32 && + InputVector.getValueType() == MVT::v2i32) { + + // The bitcast source is a direct mmx result. + SDValue MMXSrc = InputVector.getNode()->getOperand(0); + if (MMXSrc.getValueType() == MVT::x86mmx) + return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), + N->getValueType(0), + InputVector.getNode()->getOperand(0)); + + // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))). + if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() && + MMXSrc.getValueType() == MVT::i64) { + SDValue MMXSrcOp = MMXSrc.getOperand(0); + if (MMXSrcOp.hasOneUse() && MMXSrcOp.getOpcode() == ISD::BITCAST && + MMXSrcOp.getValueType() == MVT::v1i64 && + MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx) + return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector), + N->getValueType(0), MMXSrcOp.getOperand(0)); + } + } + + EVT VT = N->getValueType(0); + + if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) && + InputVector.getOpcode() == ISD::BITCAST && + isa<ConstantSDNode>(InputVector.getOperand(0))) { + uint64_t ExtractedElt = + cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); + uint64_t InputValue = + cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue(); + uint64_t Res = (InputValue >> ExtractedElt) & 1; + return DAG.getConstant(Res, dl, MVT::i1); + } + // Only operate on vectors of 4 elements, where the alternative shuffling + // gets to be more expensive. + if (InputVector.getValueType() != MVT::v4i32) + return SDValue(); + + // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a + // single use which is a sign-extend or zero-extend, and all elements are + // used. + SmallVector<SDNode *, 4> Uses; + unsigned ExtractedElements = 0; + for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), + UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { + if (UI.getUse().getResNo() != InputVector.getResNo()) + return SDValue(); + + SDNode *Extract = *UI; + if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + if (Extract->getValueType(0) != MVT::i32) + return SDValue(); + if (!Extract->hasOneUse()) + return SDValue(); + if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && + Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + if (!isa<ConstantSDNode>(Extract->getOperand(1))) + return SDValue(); + + // Record which element was extracted. + ExtractedElements |= + 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); + + Uses.push_back(Extract); + } + + // If not all the elements were used, this may not be worthwhile. + if (ExtractedElements != 15) + return SDValue(); + + // Ok, we've now decided to do the transformation. + // If 64-bit shifts are legal, use the extract-shift sequence, + // otherwise bounce the vector off the cache. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Vals[4]; + + if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) { + SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector); + auto &DL = DAG.getDataLayout(); + EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL); + SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, + DAG.getConstant(0, dl, VecIdxTy)); + SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst, + DAG.getConstant(1, dl, VecIdxTy)); + + SDValue ShAmt = DAG.getConstant( + 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL)); + Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf); + Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, + DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt)); + Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf); + Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, + DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt)); + } else { + // Store the value to a temporary stack slot. + SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, + MachinePointerInfo(), false, false, 0); + + EVT ElementType = InputVector.getValueType().getVectorElementType(); + unsigned EltSize = ElementType.getSizeInBits() / 8; + + // Replace each use (extract) with a load of the appropriate element. + for (unsigned i = 0; i < 4; ++i) { + uint64_t Offset = EltSize * i; + auto PtrVT = TLI.getPointerTy(DAG.getDataLayout()); + SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT); + + SDValue ScalarAddr = + DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal); + + // Load the scalar. + Vals[i] = DAG.getLoad(ElementType, dl, Ch, + ScalarAddr, MachinePointerInfo(), + false, false, false, 0); + + } + } + + // Replace the extracts + for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), + UE = Uses.end(); UI != UE; ++UI) { + SDNode *Extract = *UI; + + SDValue Idx = Extract->getOperand(1); + uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue(); + DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]); + } + + // The replacement was made in place; don't return anything. + return SDValue(); +} + +static SDValue +transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDLoc dl(N); + SDValue Cond = N->getOperand(0); + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + + if (Cond.getOpcode() == ISD::SIGN_EXTEND) { + SDValue CondSrc = Cond->getOperand(0); + if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG) + Cond = CondSrc->getOperand(0); + } + + if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) + return SDValue(); + + // A vselect where all conditions and data are constants can be optimized into + // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR(). + if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) && + ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) + return SDValue(); + + unsigned MaskValue = 0; + if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue)) + return SDValue(); + + MVT VT = N->getSimpleValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> ShuffleMask(NumElems, -1); + for (unsigned i = 0; i < NumElems; ++i) { + // Be sure we emit undef where we can. + if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF) + ShuffleMask[i] = -1; + else + ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1); + } + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.isShuffleMaskLegal(ShuffleMask, VT)) + return SDValue(); + return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]); +} + +/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT +/// nodes. +static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + SDValue Cond = N->getOperand(0); + // Get the LHS/RHS of the select. + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + EVT VT = LHS.getValueType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // If we have SSE[12] support, try to form min/max nodes. SSE min/max + // instructions match the semantics of the common C idiom x<y?x:y but not + // x<=y?x:y, because of how they handle negative zero (which can be + // ignored in unsafe-math mode). + // We also try to create v2f32 min/max nodes, which we later widen to v4f32. + if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() && + VT != MVT::f80 && VT != MVT::f128 && + (TLI.isTypeLegal(VT) || VT == MVT::v2f32) && + (Subtarget->hasSSE2() || + (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + unsigned Opcode = 0; + // Check for x CC y ? x : y. + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + switch (CC) { + default: break; + case ISD::SETULT: + // Converting this to a min would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETOLE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETULE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETOGE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGT: + // Converting this to a max would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMAX; + break; + } + // Check for x CC y ? y : x -- a min/max with reversed arms. + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { + switch (CC) { + default: break; + case ISD::SETOGE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGT: + // Converting this to a min would handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETULT: + // Converting this to a max would handle NaNs incorrectly. + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETOLE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!DAG.getTarget().Options.UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { + if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETULE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMAX; + break; + } + } + + if (Opcode) + return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); + } + + EVT CondVT = Cond.getValueType(); + if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() && + CondVT.getVectorElementType() == MVT::i1) { + // v16i8 (select v16i1, v16i8, v16i8) does not have a proper + // lowering on KNL. In this case we convert it to + // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction. + // The same situation for all 128 and 256-bit vectors of i8 and i16. + // Since SKX these selects have a proper lowering. + EVT OpVT = LHS.getValueType(); + if ((OpVT.is128BitVector() || OpVT.is256BitVector()) && + (OpVT.getVectorElementType() == MVT::i8 || + OpVT.getVectorElementType() == MVT::i16) && + !(Subtarget->hasBWI() && Subtarget->hasVLX())) { + Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond); + DCI.AddToWorklist(Cond.getNode()); + return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS); + } + } + // If this is a select between two integer constants, try to do some + // optimizations. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) + // Don't do this for crazy integer types. + if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { + // If this is efficiently invertible, canonicalize the LHSC/RHSC values + // so that TrueC (the true value) is larger than FalseC. + bool NeedsCondInvert = false; + + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && + // Efficiently invertible. + (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. + (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. + isa<ConstantSDNode>(Cond.getOperand(1))))) { + NeedsCondInvert = true; + std::swap(TrueC, FalseC); + } + + // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. + if (FalseC->getAPIntValue() == 0 && + TrueC->getAPIntValue().isPowerOf2()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, DL, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, + DAG.getConstant(ShAmt, DL, MVT::i8)); + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, DL, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, DL, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, DL, + Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + return Cond; + } + } + } + } + + // Canonicalize max and min: + // (x > y) ? x : y -> (x >= y) ? x : y + // (x < y) ? x : y -> (x <= y) ? x : y + // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates + // the need for an extra compare + // against zero. e.g. + // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0 + // subl %esi, %edi + // testl %edi, %edi + // movl $0, %eax + // cmovgl %edi, %eax + // => + // xorl %eax, %eax + // subl %esi, $edi + // cmovsl %eax, %edi + if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC && + DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + switch (CC) { + default: break; + case ISD::SETLT: + case ISD::SETGT: { + ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE; + Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(), + Cond.getOperand(0), Cond.getOperand(1), NewCC); + return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS); + } + } + } + + // Early exit check + if (!TLI.isTypeLegal(VT)) + return SDValue(); + + // Match VSELECTs into subs with unsigned saturation. + if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC && + // psubus is available in SSE2 and AVX2 for i8 and i16 vectors. + ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) || + (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + // Check if one of the arms of the VSELECT is a zero vector. If it's on the + // left side invert the predicate to simplify logic below. + SDValue Other; + if (ISD::isBuildVectorAllZeros(LHS.getNode())) { + Other = RHS; + CC = ISD::getSetCCInverse(CC, true); + } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) { + Other = LHS; + } + + if (Other.getNode() && Other->getNumOperands() == 2 && + DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) { + SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1); + SDValue CondRHS = Cond->getOperand(1); + + // Look for a general sub with unsigned saturation first. + // x >= y ? x-y : 0 --> subus x, y + // x > y ? x-y : 0 --> subus x, y + if ((CC == ISD::SETUGE || CC == ISD::SETUGT) && + Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS)) + return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS); + + if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) + if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) { + if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS)) + if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode()) + // If the RHS is a constant we have to reverse the const + // canonicalization. + // x > C-1 ? x+-C : 0 --> subus x, C + if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD && + CondRHSConst->getAPIntValue() == + (-OpRHSConst->getAPIntValue() - 1)) + return DAG.getNode( + X86ISD::SUBUS, DL, VT, OpLHS, + DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT)); + + // Another special case: If C was a sign bit, the sub has been + // canonicalized into a xor. + // FIXME: Would it be better to use computeKnownBits to determine + // whether it's safe to decanonicalize the xor? + // x s< 0 ? x^C : 0 --> subus x, C + if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR && + ISD::isBuildVectorAllZeros(CondRHS.getNode()) && + OpRHSConst->getAPIntValue().isSignBit()) + // Note that we have to rebuild the RHS constant here to ensure we + // don't rely on particular values of undef lanes. + return DAG.getNode( + X86ISD::SUBUS, DL, VT, OpLHS, + DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT)); + } + } + } + + // Simplify vector selection if condition value type matches vselect + // operand type + if (N->getOpcode() == ISD::VSELECT && CondVT == VT) { + assert(Cond.getValueType().isVector() && + "vector select expects a vector selector!"); + + bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode()); + bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); + + // Try invert the condition if true value is not all 1s and false value + // is not all 0s. + if (!TValIsAllOnes && !FValIsAllZeros && + // Check if the selector will be produced by CMPP*/PCMP* + Cond.getOpcode() == ISD::SETCC && + // Check if SETCC has already been promoted + TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) == + CondVT) { + bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode()); + bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode()); + + if (TValIsAllZeros || FValIsAllOnes) { + SDValue CC = Cond.getOperand(2); + ISD::CondCode NewCC = + ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), + Cond.getOperand(0).getValueType().isInteger()); + Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC); + std::swap(LHS, RHS); + TValIsAllOnes = FValIsAllOnes; + FValIsAllZeros = TValIsAllZeros; + } + } + + if (TValIsAllOnes || FValIsAllZeros) { + SDValue Ret; + + if (TValIsAllOnes && FValIsAllZeros) + Ret = Cond; + else if (TValIsAllOnes) + Ret = + DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS)); + else if (FValIsAllZeros) + Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond, + DAG.getBitcast(CondVT, LHS)); + + return DAG.getBitcast(VT, Ret); + } + } + + // We should generate an X86ISD::BLENDI from a vselect if its argument + // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of + // constants. This specific pattern gets generated when we split a + // selector for a 512 bit vector in a machine without AVX512 (but with + // 256-bit vectors), during legalization: + // + // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS) + // + // Iff we find this pattern and the build_vectors are built from + // constants, we translate the vselect into a shuffle_vector that we + // know will be matched by LowerVECTOR_SHUFFLEtoBlend. + if ((N->getOpcode() == ISD::VSELECT || + N->getOpcode() == X86ISD::SHRUNKBLEND) && + !DCI.isBeforeLegalize() && !VT.is512BitVector()) { + SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget); + if (Shuffle.getNode()) + return Shuffle; + } + + // If this is a *dynamic* select (non-constant condition) and we can match + // this node with one of the variable blend instructions, restructure the + // condition so that the blends can use the high bit of each element and use + // SimplifyDemandedBits to simplify the condition operand. + if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() && + !DCI.isBeforeLegalize() && + !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) { + unsigned BitWidth = Cond.getValueType().getScalarSizeInBits(); + + // Don't optimize vector selects that map to mask-registers. + if (BitWidth == 1) + return SDValue(); + + // We can only handle the cases where VSELECT is directly legal on the + // subtarget. We custom lower VSELECT nodes with constant conditions and + // this makes it hard to see whether a dynamic VSELECT will correctly + // lower, so we both check the operation's status and explicitly handle the + // cases where a *dynamic* blend will fail even though a constant-condition + // blend could be custom lowered. + // FIXME: We should find a better way to handle this class of problems. + // Potentially, we should combine constant-condition vselect nodes + // pre-legalization into shuffles and not mark as many types as custom + // lowered. + if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) + return SDValue(); + // FIXME: We don't support i16-element blends currently. We could and + // should support them by making *all* the bits in the condition be set + // rather than just the high bit and using an i8-element blend. + if (VT.getVectorElementType() == MVT::i16) + return SDValue(); + // Dynamic blending was only available from SSE4.1 onward. + if (VT.is128BitVector() && !Subtarget->hasSSE41()) + return SDValue(); + // Byte blends are only available in AVX2 + if (VT == MVT::v32i8 && !Subtarget->hasAVX2()) + return SDValue(); + + assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size"); + APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1); + + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), + DCI.isBeforeLegalizeOps()); + if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) || + TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, + TLO)) { + // If we changed the computation somewhere in the DAG, this change + // will affect all users of Cond. + // Make sure it is fine and update all the nodes so that we do not + // use the generic VSELECT anymore. Otherwise, we may perform + // wrong optimizations as we messed up with the actual expectation + // for the vector boolean values. + if (Cond != TLO.Old) { + // Check all uses of that condition operand to check whether it will be + // consumed by non-BLEND instructions, which may depend on all bits are + // set properly. + for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); + I != E; ++I) + if (I->getOpcode() != ISD::VSELECT) + // TODO: Add other opcodes eventually lowered into BLEND. + return SDValue(); + + // Update all the users of the condition, before committing the change, + // so that the VSELECT optimizations that expect the correct vector + // boolean value will not be triggered. + for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end(); + I != E; ++I) + DAG.ReplaceAllUsesOfValueWith( + SDValue(*I, 0), + DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0), + Cond, I->getOperand(1), I->getOperand(2))); + DCI.CommitTargetLoweringOpt(TLO); + return SDValue(); + } + // At this point, only Cond is changed. Change the condition + // just for N to keep the opportunity to optimize all other + // users their own way. + DAG.ReplaceAllUsesOfValueWith( + SDValue(N, 0), + DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0), + TLO.New, N->getOperand(1), N->getOperand(2))); + return SDValue(); + } + } + + return SDValue(); +} + +// Check whether a boolean test is testing a boolean value generated by +// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition +// code. +// +// Simplify the following patterns: +// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ) +// to (Op EFLAGS Cond) +// +// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or +// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ) +// to (Op EFLAGS !Cond) +// +// where Op could be BRCOND or CMOV. +// +static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) { + // Quit if not CMP and SUB with its value result used. + if (Cmp.getOpcode() != X86ISD::CMP && + (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0))) + return SDValue(); + + // Quit if not used as a boolean value. + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + // Check CMP operands. One of them should be 0 or 1 and the other should be + // an SetCC or extended from it. + SDValue Op1 = Cmp.getOperand(0); + SDValue Op2 = Cmp.getOperand(1); + + SDValue SetCC; + const ConstantSDNode* C = nullptr; + bool needOppositeCond = (CC == X86::COND_E); + bool checkAgainstTrue = false; // Is it a comparison against 1? + + if ((C = dyn_cast<ConstantSDNode>(Op1))) + SetCC = Op2; + else if ((C = dyn_cast<ConstantSDNode>(Op2))) + SetCC = Op1; + else // Quit if all operands are not constants. + return SDValue(); + + if (C->getZExtValue() == 1) { + needOppositeCond = !needOppositeCond; + checkAgainstTrue = true; + } else if (C->getZExtValue() != 0) + // Quit if the constant is neither 0 or 1. + return SDValue(); + + bool truncatedToBoolWithAnd = false; + // Skip (zext $x), (trunc $x), or (and $x, 1) node. + while (SetCC.getOpcode() == ISD::ZERO_EXTEND || + SetCC.getOpcode() == ISD::TRUNCATE || + SetCC.getOpcode() == ISD::AND) { + if (SetCC.getOpcode() == ISD::AND) { + int OpIdx = -1; + if (isOneConstant(SetCC.getOperand(0))) + OpIdx = 1; + if (isOneConstant(SetCC.getOperand(1))) + OpIdx = 0; + if (OpIdx == -1) + break; + SetCC = SetCC.getOperand(OpIdx); + truncatedToBoolWithAnd = true; + } else + SetCC = SetCC.getOperand(0); + } + + switch (SetCC.getOpcode()) { + case X86ISD::SETCC_CARRY: + // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to + // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1, + // i.e. it's a comparison against true but the result of SETCC_CARRY is not + // truncated to i1 using 'and'. + if (checkAgainstTrue && !truncatedToBoolWithAnd) + break; + assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B && + "Invalid use of SETCC_CARRY!"); + // FALL THROUGH + case X86ISD::SETCC: + // Set the condition code or opposite one if necessary. + CC = X86::CondCode(SetCC.getConstantOperandVal(0)); + if (needOppositeCond) + CC = X86::GetOppositeBranchCondition(CC); + return SetCC.getOperand(1); + case X86ISD::CMOV: { + // Check whether false/true value has canonical one, i.e. 0 or 1. + ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0)); + ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1)); + // Quit if true value is not a constant. + if (!TVal) + return SDValue(); + // Quit if false value is not a constant. + if (!FVal) { + SDValue Op = SetCC.getOperand(0); + // Skip 'zext' or 'trunc' node. + if (Op.getOpcode() == ISD::ZERO_EXTEND || + Op.getOpcode() == ISD::TRUNCATE) + Op = Op.getOperand(0); + // A special case for rdrand/rdseed, where 0 is set if false cond is + // found. + if ((Op.getOpcode() != X86ISD::RDRAND && + Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0) + return SDValue(); + } + // Quit if false value is not the constant 0 or 1. + bool FValIsFalse = true; + if (FVal && FVal->getZExtValue() != 0) { + if (FVal->getZExtValue() != 1) + return SDValue(); + // If FVal is 1, opposite cond is needed. + needOppositeCond = !needOppositeCond; + FValIsFalse = false; + } + // Quit if TVal is not the constant opposite of FVal. + if (FValIsFalse && TVal->getZExtValue() != 1) + return SDValue(); + if (!FValIsFalse && TVal->getZExtValue() != 0) + return SDValue(); + CC = X86::CondCode(SetCC.getConstantOperandVal(2)); + if (needOppositeCond) + CC = X86::GetOppositeBranchCondition(CC); + return SetCC.getOperand(3); + } + } + + return SDValue(); +} + +/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS. +/// Match: +/// (X86or (X86setcc) (X86setcc)) +/// (X86cmp (and (X86setcc) (X86setcc)), 0) +static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0, + X86::CondCode &CC1, SDValue &Flags, + bool &isAnd) { + if (Cond->getOpcode() == X86ISD::CMP) { + if (!isNullConstant(Cond->getOperand(1))) + return false; + + Cond = Cond->getOperand(0); + } + + isAnd = false; + + SDValue SetCC0, SetCC1; + switch (Cond->getOpcode()) { + default: return false; + case ISD::AND: + case X86ISD::AND: + isAnd = true; + // fallthru + case ISD::OR: + case X86ISD::OR: + SetCC0 = Cond->getOperand(0); + SetCC1 = Cond->getOperand(1); + break; + }; + + // Make sure we have SETCC nodes, using the same flags value. + if (SetCC0.getOpcode() != X86ISD::SETCC || + SetCC1.getOpcode() != X86ISD::SETCC || + SetCC0->getOperand(1) != SetCC1->getOperand(1)) + return false; + + CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0); + CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0); + Flags = SetCC0->getOperand(1); + return true; +} + +/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] +static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + + // If the flag operand isn't dead, don't touch this CMOV. + if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) + return SDValue(); + + SDValue FalseOp = N->getOperand(0); + SDValue TrueOp = N->getOperand(1); + X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); + SDValue Cond = N->getOperand(3); + + if (CC == X86::COND_E || CC == X86::COND_NE) { + switch (Cond.getOpcode()) { + default: break; + case X86ISD::BSR: + case X86ISD::BSF: + // If operand of BSR / BSF are proven never zero, then ZF cannot be set. + if (DAG.isKnownNeverZero(Cond.getOperand(0))) + return (CC == X86::COND_E) ? FalseOp : TrueOp; + } + } + + SDValue Flags; + + Flags = checkBoolTestSetCCCombine(Cond, CC); + if (Flags.getNode() && + // Extra check as FCMOV only supports a subset of X86 cond. + (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) { + SDValue Ops[] = { FalseOp, TrueOp, + DAG.getConstant(CC, DL, MVT::i8), Flags }; + return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); + } + + // If this is a select between two integer constants, try to do some + // optimizations. Note that the operands are ordered the opposite of SELECT + // operands. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) { + // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is + // larger than FalseC (the false value). + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueC, FalseC); + std::swap(TrueOp, FalseOp); + } + + // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. + // This is efficient for any integer data type (including i8/i16) and + // shift amount. + if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, DL, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, + DAG.getConstant(ShAmt, DL, MVT::i8)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient + // for any integer data type, including i8/i16. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, DL, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, DL, MVT::i8), Cond); + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, DL, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + } + } + } + + // Handle these cases: + // (select (x != c), e, c) -> select (x != c), e, x), + // (select (x == c), c, e) -> select (x == c), x, e) + // where the c is an integer constant, and the "select" is the combination + // of CMOV and CMP. + // + // The rationale for this change is that the conditional-move from a constant + // needs two instructions, however, conditional-move from a register needs + // only one instruction. + // + // CAVEAT: By replacing a constant with a symbolic value, it may obscure + // some instruction-combining opportunities. This opt needs to be + // postponed as late as possible. + // + if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) { + // the DCI.xxxx conditions are provided to postpone the optimization as + // late as possible. + + ConstantSDNode *CmpAgainst = nullptr; + if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) && + (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) && + !isa<ConstantSDNode>(Cond.getOperand(0))) { + + if (CC == X86::COND_NE && + CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueOp, FalseOp); + } + + if (CC == X86::COND_E && + CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) { + SDValue Ops[] = { FalseOp, Cond.getOperand(0), + DAG.getConstant(CC, DL, MVT::i8), Cond }; + return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops); + } + } + } + + // Fold and/or of setcc's to double CMOV: + // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2) + // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2) + // + // This combine lets us generate: + // cmovcc1 (jcc1 if we don't have CMOV) + // cmovcc2 (same) + // instead of: + // setcc1 + // setcc2 + // and/or + // cmovne (jne if we don't have CMOV) + // When we can't use the CMOV instruction, it might increase branch + // mispredicts. + // When we can use CMOV, or when there is no mispredict, this improves + // throughput and reduces register pressure. + // + if (CC == X86::COND_NE) { + SDValue Flags; + X86::CondCode CC0, CC1; + bool isAndSetCC; + if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) { + if (isAndSetCC) { + std::swap(FalseOp, TrueOp); + CC0 = X86::GetOppositeBranchCondition(CC0); + CC1 = X86::GetOppositeBranchCondition(CC1); + } + + SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8), + Flags}; + SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps); + SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags}; + SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1)); + return CMOV; + } + } + + return SDValue(); +} + +/// PerformMulCombine - Optimize a single multiply with constant into two +/// in order to implement it with two cheaper instructions, e.g. +/// LEA + SHL, LEA + LEA. +static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // An imul is usually smaller than the alternative sequence. + if (DAG.getMachineFunction().getFunction()->optForMinSize()) + return SDValue(); + + if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i64 && VT != MVT::i32) + return SDValue(); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!C) + return SDValue(); + uint64_t MulAmt = C->getZExtValue(); + if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) + return SDValue(); + + uint64_t MulAmt1 = 0; + uint64_t MulAmt2 = 0; + if ((MulAmt % 9) == 0) { + MulAmt1 = 9; + MulAmt2 = MulAmt / 9; + } else if ((MulAmt % 5) == 0) { + MulAmt1 = 5; + MulAmt2 = MulAmt / 5; + } else if ((MulAmt % 3) == 0) { + MulAmt1 = 3; + MulAmt2 = MulAmt / 3; + } + + SDLoc DL(N); + SDValue NewMul; + if (MulAmt2 && + (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ + + if (isPowerOf2_64(MulAmt2) && + !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) + // If second multiplifer is pow2, issue it first. We want the multiply by + // 3, 5, or 9 to be folded into the addressing mode unless the lone use + // is an add. + std::swap(MulAmt1, MulAmt2); + + if (isPowerOf2_64(MulAmt1)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(MulAmt1, DL, VT)); + + if (isPowerOf2_64(MulAmt2)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, + DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, + DAG.getConstant(MulAmt2, DL, VT)); + } + + if (!NewMul) { + assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) + && "Both cases that could cause potential overflows should have " + "already been handled."); + if (isPowerOf2_64(MulAmt - 1)) + // (mul x, 2^N + 1) => (add (shl x, N), x) + NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0), + DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt - 1), DL, + MVT::i8))); + + else if (isPowerOf2_64(MulAmt + 1)) + // (mul x, 2^N - 1) => (sub (shl x, N), x) + NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT, + N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt + 1), + DL, MVT::i8)), N->getOperand(0)); + } + + if (NewMul) + // Do not add new nodes to DAG combiner worklist. + DCI.CombineTo(N, NewMul, false); + + return SDValue(); +} + +static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + EVT VT = N0.getValueType(); + + // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) + // since the result of setcc_c is all zero's or all ones. + if (VT.isInteger() && !VT.isVector() && + N1C && N0.getOpcode() == ISD::AND && + N0.getOperand(1).getOpcode() == ISD::Constant) { + SDValue N00 = N0.getOperand(0); + APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + APInt ShAmt = N1C->getAPIntValue(); + Mask = Mask.shl(ShAmt); + bool MaskOK = false; + // We can handle cases concerning bit-widening nodes containing setcc_c if + // we carefully interrogate the mask to make sure we are semantics + // preserving. + // The transform is not safe if the result of C1 << C2 exceeds the bitwidth + // of the underlying setcc_c operation if the setcc_c was zero extended. + // Consider the following example: + // zext(setcc_c) -> i32 0x0000FFFF + // c1 -> i32 0x0000FFFF + // c2 -> i32 0x00000001 + // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE + // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = true; + } else if (N00.getOpcode() == ISD::SIGN_EXTEND && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = true; + } else if ((N00.getOpcode() == ISD::ZERO_EXTEND || + N00.getOpcode() == ISD::ANY_EXTEND) && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits()); + } + if (MaskOK && Mask != 0) { + SDLoc DL(N); + return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT)); + } + } + + // Hardware support for vector shifts is sparse which makes us scalarize the + // vector operations in many cases. Also, on sandybridge ADD is faster than + // shl. + // (shl V, 1) -> add V,V + if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1)) + if (auto *N1SplatC = N1BV->getConstantSplatNode()) { + assert(N0.getValueType().isVector() && "Invalid vector shift type"); + // We shift all of the values by one. In many cases we do not have + // hardware support for this operation. This is better expressed as an ADD + // of two values. + if (N1SplatC->getAPIntValue() == 1) + return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0); + } + + return SDValue(); +} + +static SDValue PerformSRACombine(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + unsigned Size = VT.getSizeInBits(); + + // fold (ashr (shl, a, [56,48,32,24,16]), SarConst) + // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or + // into (lshr, (sext (a), SarConst - [56,48,32,24,16])) + // depending on sign of (SarConst - [56,48,32,24,16]) + + // sexts in X86 are MOVs. The MOVs have the same code size + // as above SHIFTs (only SHIFT on 1 has lower code size). + // However the MOVs have 2 advantages to a SHIFT: + // 1. MOVs can write to a register that differs from source + // 2. MOVs accept memory operands + + if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant || + N0.getOpcode() != ISD::SHL || !N0.hasOneUse() || + N0.getOperand(1).getOpcode() != ISD::Constant) + return SDValue(); + + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue(); + APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue(); + EVT CVT = N1.getValueType(); + + if (SarConst.isNegative()) + return SDValue(); + + for (MVT SVT : MVT::integer_valuetypes()) { + unsigned ShiftSize = SVT.getSizeInBits(); + // skipping types without corresponding sext/zext and + // ShlConst that is not one of [56,48,32,24,16] + if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize) + continue; + SDLoc DL(N); + SDValue NN = + DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT)); + SarConst = SarConst - (Size - ShiftSize); + if (SarConst == 0) + return NN; + else if (SarConst.isNegative()) + return DAG.getNode(ISD::SHL, DL, VT, NN, + DAG.getConstant(-SarConst, DL, CVT)); + else + return DAG.getNode(ISD::SRA, DL, VT, NN, + DAG.getConstant(SarConst, DL, CVT)); + } + return SDValue(); +} + +/// \brief Returns a vector of 0s if the node in input is a vector logical +/// shift by a constant amount which is known to be bigger than or equal +/// to the vector element size in bits. +static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + + if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 && + (!Subtarget->hasInt256() || + (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16))) + return SDValue(); + + SDValue Amt = N->getOperand(1); + SDLoc DL(N); + if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt)) + if (auto *AmtSplat = AmtBV->getConstantSplatNode()) { + APInt ShiftAmt = AmtSplat->getAPIntValue(); + unsigned MaxAmount = + VT.getSimpleVT().getVectorElementType().getSizeInBits(); + + // SSE2/AVX2 logical shifts always return a vector of 0s + // if the shift amount is bigger than or equal to + // the element size. The constant shift amount will be + // encoded as a 8-bit immediate. + if (ShiftAmt.trunc(8).uge(MaxAmount)) + return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL); + } + + return SDValue(); +} + +/// PerformShiftCombine - Combine shifts. +static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (N->getOpcode() == ISD::SHL) + if (SDValue V = PerformSHLCombine(N, DAG)) + return V; + + if (N->getOpcode() == ISD::SRA) + if (SDValue V = PerformSRACombine(N, DAG)) + return V; + + // Try to fold this logical shift into a zero vector. + if (N->getOpcode() != ISD::SRA) + if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget)) + return V; + + return SDValue(); +} + +// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..)) +// where both setccs reference the same FP CMP, and rewrite for CMPEQSS +// and friends. Likewise for OR -> CMPNEQSS. +static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + unsigned opcode; + + // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but + // we're requiring SSE2 for both. + if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CMP0 = N0->getOperand(1); + SDValue CMP1 = N1->getOperand(1); + SDLoc DL(N); + + // The SETCCs should both refer to the same CMP. + if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1) + return SDValue(); + + SDValue CMP00 = CMP0->getOperand(0); + SDValue CMP01 = CMP0->getOperand(1); + EVT VT = CMP00.getValueType(); + + if (VT == MVT::f32 || VT == MVT::f64) { + bool ExpectingFlags = false; + // Check for any users that want flags: + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + !ExpectingFlags && UI != UE; ++UI) + switch (UI->getOpcode()) { + default: + case ISD::BR_CC: + case ISD::BRCOND: + case ISD::SELECT: + ExpectingFlags = true; + break; + case ISD::CopyToReg: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + break; + } + + if (!ExpectingFlags) { + enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0); + enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0); + + if (cc1 == X86::COND_E || cc1 == X86::COND_NE) { + X86::CondCode tmp = cc0; + cc0 = cc1; + cc1 = tmp; + } + + if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) || + (cc0 == X86::COND_NE && cc1 == X86::COND_P)) { + // FIXME: need symbolic constants for these magic numbers. + // See X86ATTInstPrinter.cpp:printSSECC(). + unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4; + if (Subtarget->hasAVX512()) { + SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00, + CMP01, + DAG.getConstant(x86cc, DL, MVT::i8)); + if (N->getValueType(0) != MVT::i1) + return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), + FSetCC); + return FSetCC; + } + SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL, + CMP00.getValueType(), CMP00, CMP01, + DAG.getConstant(x86cc, DL, + MVT::i8)); + + bool is64BitFP = (CMP00.getValueType() == MVT::f64); + MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32; + + if (is64BitFP && !Subtarget->is64Bit()) { + // On a 32-bit target, we cannot bitcast the 64-bit float to a + // 64-bit integer, since that's not a legal type. Since + // OnesOrZeroesF is all ones of all zeroes, we don't need all the + // bits, but can do this little dance to extract the lowest 32 bits + // and work with those going forward. + SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, + OnesOrZeroesF); + SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64); + OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, + Vector32, DAG.getIntPtrConstant(0, DL)); + IntVT = MVT::i32; + } + + SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF); + SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI, + DAG.getConstant(1, DL, IntVT)); + SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, + ANDed); + return OneBitOfTruth; + } + } + } + } + return SDValue(); +} + +/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector +/// so it can be folded inside ANDNP. +static bool CanFoldXORWithAllOnes(const SDNode *N) { + EVT VT = N->getValueType(0); + + // Match direct AllOnes for 128 and 256-bit vectors + if (ISD::isBuildVectorAllOnes(N)) + return true; + + // Look through a bit convert. + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0).getNode(); + + // Sometimes the operand may come from a insert_subvector building a 256-bit + // allones vector + if (VT.is256BitVector() && + N->getOpcode() == ISD::INSERT_SUBVECTOR) { + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + + if (V1.getOpcode() == ISD::INSERT_SUBVECTOR && + V1.getOperand(0).getOpcode() == ISD::UNDEF && + ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) && + ISD::isBuildVectorAllOnes(V2.getNode())) + return true; + } + + return false; +} + +// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized +// register. In most cases we actually compare or select YMM-sized registers +// and mixing the two types creates horrible code. This method optimizes +// some of the transition sequences. +static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.is256BitVector()) + return SDValue(); + + assert((N->getOpcode() == ISD::ANY_EXTEND || + N->getOpcode() == ISD::ZERO_EXTEND || + N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node"); + + SDValue Narrow = N->getOperand(0); + EVT NarrowVT = Narrow->getValueType(0); + if (!NarrowVT.is128BitVector()) + return SDValue(); + + if (Narrow->getOpcode() != ISD::XOR && + Narrow->getOpcode() != ISD::AND && + Narrow->getOpcode() != ISD::OR) + return SDValue(); + + SDValue N0 = Narrow->getOperand(0); + SDValue N1 = Narrow->getOperand(1); + SDLoc DL(Narrow); + + // The Left side has to be a trunc. + if (N0.getOpcode() != ISD::TRUNCATE) + return SDValue(); + + // The type of the truncated inputs. + EVT WideVT = N0->getOperand(0)->getValueType(0); + if (WideVT != VT) + return SDValue(); + + // The right side has to be a 'trunc' or a constant vector. + bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE; + ConstantSDNode *RHSConstSplat = nullptr; + if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1)) + RHSConstSplat = RHSBV->getConstantSplatNode(); + if (!RHSTrunc && !RHSConstSplat) + return SDValue(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT)) + return SDValue(); + + // Set N0 and N1 to hold the inputs to the new wide operation. + N0 = N0->getOperand(0); + if (RHSConstSplat) { + N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(), + SDValue(RHSConstSplat, 0)); + SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1); + N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C); + } else if (RHSTrunc) { + N1 = N1->getOperand(0); + } + + // Generate the wide operation. + SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1); + unsigned Opcode = N->getOpcode(); + switch (Opcode) { + case ISD::ANY_EXTEND: + return Op; + case ISD::ZERO_EXTEND: { + unsigned InBits = NarrowVT.getScalarSizeInBits(); + APInt Mask = APInt::getAllOnesValue(InBits); + Mask = Mask.zext(VT.getScalarSizeInBits()); + return DAG.getNode(ISD::AND, DL, VT, + Op, DAG.getConstant(Mask, DL, VT)); + } + case ISD::SIGN_EXTEND: + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, + Op, DAG.getValueType(NarrowVT)); + default: + llvm_unreachable("Unexpected opcode"); + } +} + +static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + + // A vector zext_in_reg may be represented as a shuffle, + // feeding into a bitcast (this represents anyext) feeding into + // an and with a mask. + // We'd like to try to combine that into a shuffle with zero + // plus a bitcast, removing the and. + if (N0.getOpcode() != ISD::BITCAST || + N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE) + return SDValue(); + + // The other side of the AND should be a splat of 2^C, where C + // is the number of bits in the source type. + if (N1.getOpcode() == ISD::BITCAST) + N1 = N1.getOperand(0); + if (N1.getOpcode() != ISD::BUILD_VECTOR) + return SDValue(); + BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1); + + ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0)); + EVT SrcType = Shuffle->getValueType(0); + + // We expect a single-source shuffle + if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF) + return SDValue(); + + unsigned SrcSize = SrcType.getScalarSizeInBits(); + + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (!Vector->isConstantSplat(SplatValue, SplatUndef, + SplatBitSize, HasAnyUndefs)) + return SDValue(); + + unsigned ResSize = N1.getValueType().getScalarSizeInBits(); + // Make sure the splat matches the mask we expect + if (SplatBitSize > ResSize || + (SplatValue + 1).exactLogBase2() != (int)SrcSize) + return SDValue(); + + // Make sure the input and output size make sense + if (SrcSize >= ResSize || ResSize % SrcSize) + return SDValue(); + + // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...> + // The number of u's between each two values depends on the ratio between + // the source and dest type. + unsigned ZextRatio = ResSize / SrcSize; + bool IsZext = true; + for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) { + if (i % ZextRatio) { + if (Shuffle->getMaskElt(i) > 0) { + // Expected undef + IsZext = false; + break; + } + } else { + if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) { + // Expected element number + IsZext = false; + break; + } + } + } + + if (!IsZext) + return SDValue(); + + // Ok, perform the transformation - replace the shuffle with + // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero + // (instead of undef) where the k elements come from the zero vector. + SmallVector<int, 8> Mask; + unsigned NumElems = SrcType.getVectorNumElements(); + for (unsigned i = 0; i < NumElems; ++i) + if (i % ZextRatio) + Mask.push_back(NumElems); + else + Mask.push_back(i / ZextRatio); + + SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL, + Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask); + return DAG.getBitcast(N0.getValueType(), NewShuffle); +} + +/// If both input operands of a logic op are being cast from floating point +/// types, try to convert this into a floating point logic node to avoid +/// unnecessary moves from SSE to integer registers. +static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + unsigned FPOpcode = ISD::DELETED_NODE; + if (N->getOpcode() == ISD::AND) + FPOpcode = X86ISD::FAND; + else if (N->getOpcode() == ISD::OR) + FPOpcode = X86ISD::FOR; + else if (N->getOpcode() == ISD::XOR) + FPOpcode = X86ISD::FXOR; + + assert(FPOpcode != ISD::DELETED_NODE && + "Unexpected input node for FP logic conversion"); + + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST && + ((Subtarget->hasSSE1() && VT == MVT::i32) || + (Subtarget->hasSSE2() && VT == MVT::i64))) { + SDValue N00 = N0.getOperand(0); + SDValue N10 = N1.getOperand(0); + EVT N00Type = N00.getValueType(); + EVT N10Type = N10.getValueType(); + if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) { + SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10); + return DAG.getBitcast(VT, FPLogic); + } + } + return SDValue(); +} + +static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget)) + return Zext; + + if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + + // Create BEXTR instructions + // BEXTR is ((X >> imm) & (2**size-1)) + if (VT == MVT::i32 || VT == MVT::i64) { + // Check for BEXTR. + if ((Subtarget->hasBMI() || Subtarget->hasTBM()) && + (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) { + ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1); + ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (MaskNode && ShiftNode) { + uint64_t Mask = MaskNode->getZExtValue(); + uint64_t Shift = ShiftNode->getZExtValue(); + if (isMask_64(Mask)) { + uint64_t MaskSize = countPopulation(Mask); + if (Shift + MaskSize <= VT.getSizeInBits()) + return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0), + DAG.getConstant(Shift | (MaskSize << 8), DL, + VT)); + } + } + } // BEXTR + + return SDValue(); + } + + // Want to form ANDNP nodes: + // 1) In the hopes of then easily combining them with OR and AND nodes + // to form PBLEND/PSIGN. + // 2) To match ANDN packed intrinsics + if (VT != MVT::v2i64 && VT != MVT::v4i64) + return SDValue(); + + // Check LHS for vnot + if (N0.getOpcode() == ISD::XOR && + //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) + CanFoldXORWithAllOnes(N0.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1); + + // Check RHS for vnot + if (N1.getOpcode() == ISD::XOR && + //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) + CanFoldXORWithAllOnes(N1.getOperand(1).getNode())) + return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0); + + return SDValue(); +} + +static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + + // look for psign/blend + if (VT == MVT::v2i64 || VT == MVT::v4i64) { + if (!Subtarget->hasSSSE3() || + (VT == MVT::v4i64 && !Subtarget->hasInt256())) + return SDValue(); + + // Canonicalize pandn to RHS + if (N0.getOpcode() == X86ISD::ANDNP) + std::swap(N0, N1); + // or (and (m, y), (pandn m, x)) + if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) { + SDValue Mask = N1.getOperand(0); + SDValue X = N1.getOperand(1); + SDValue Y; + if (N0.getOperand(0) == Mask) + Y = N0.getOperand(1); + if (N0.getOperand(1) == Mask) + Y = N0.getOperand(0); + + // Check to see if the mask appeared in both the AND and ANDNP and + if (!Y.getNode()) + return SDValue(); + + // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. + // Look through mask bitcast. + if (Mask.getOpcode() == ISD::BITCAST) + Mask = Mask.getOperand(0); + if (X.getOpcode() == ISD::BITCAST) + X = X.getOperand(0); + if (Y.getOpcode() == ISD::BITCAST) + Y = Y.getOperand(0); + + EVT MaskVT = Mask.getValueType(); + + // Validate that the Mask operand is a vector sra node. + // FIXME: what to do for bytes, since there is a psignb/pblendvb, but + // there is no psrai.b + unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); + unsigned SraAmt = ~0; + if (Mask.getOpcode() == ISD::SRA) { + if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1))) + if (auto *AmtConst = AmtBV->getConstantSplatNode()) + SraAmt = AmtConst->getZExtValue(); + } else if (Mask.getOpcode() == X86ISD::VSRAI) { + SDValue SraC = Mask.getOperand(1); + SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); + } + if ((SraAmt + 1) != EltBits) + return SDValue(); + + SDLoc DL(N); + + // Now we know we at least have a plendvb with the mask val. See if + // we can form a psignb/w/d. + // psign = x.type == y.type == mask.type && y = sub(0, x); + if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && + ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && + X.getValueType() == MaskVT && Y.getValueType() == MaskVT) { + assert((EltBits == 8 || EltBits == 16 || EltBits == 32) && + "Unsupported VT for PSIGN"); + Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0)); + return DAG.getBitcast(VT, Mask); + } + // PBLENDVB only available on SSE 4.1 + if (!Subtarget->hasSSE41()) + return SDValue(); + + MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8; + + X = DAG.getBitcast(BlendVT, X); + Y = DAG.getBitcast(BlendVT, Y); + Mask = DAG.getBitcast(BlendVT, Mask); + Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X); + return DAG.getBitcast(VT, Mask); + } + } + + if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) + bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize(); + + // SHLD/SHRD instructions have lower register pressure, but on some + // platforms they have higher latency than the equivalent + // series of shifts/or that would otherwise be generated. + // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions + // have higher latencies and we are not optimizing for size. + if (!OptForSize && Subtarget->isSHLDSlow()) + return SDValue(); + + if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) + return SDValue(); + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SDValue ShAmt0 = N0.getOperand(1); + if (ShAmt0.getValueType() != MVT::i8) + return SDValue(); + SDValue ShAmt1 = N1.getOperand(1); + if (ShAmt1.getValueType() != MVT::i8) + return SDValue(); + if (ShAmt0.getOpcode() == ISD::TRUNCATE) + ShAmt0 = ShAmt0.getOperand(0); + if (ShAmt1.getOpcode() == ISD::TRUNCATE) + ShAmt1 = ShAmt1.getOperand(0); + + SDLoc DL(N); + unsigned Opc = X86ISD::SHLD; + SDValue Op0 = N0.getOperand(0); + SDValue Op1 = N1.getOperand(0); + if (ShAmt0.getOpcode() == ISD::SUB) { + Opc = X86ISD::SHRD; + std::swap(Op0, Op1); + std::swap(ShAmt0, ShAmt1); + } + + unsigned Bits = VT.getSizeInBits(); + if (ShAmt1.getOpcode() == ISD::SUB) { + SDValue Sum = ShAmt1.getOperand(0); + if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { + SDValue ShAmt1Op1 = ShAmt1.getOperand(1); + if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) + ShAmt1Op1 = ShAmt1Op1.getOperand(0); + if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) + return DAG.getNode(Opc, DL, VT, + Op0, Op1, + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { + ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); + if (ShAmt0C && + ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) + return DAG.getNode(Opc, DL, VT, + N0.getOperand(0), N1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + + return SDValue(); +} + +// Generate NEG and CMOV for integer abs. +static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + + // Since X86 does not have CMOV for 8-bit integer, we don't convert + // 8-bit integer abs to NEG and CMOV. + if (VT.isInteger() && VT.getSizeInBits() == 8) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDLoc DL(N); + + // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) + // and change it to SUB and CMOV. + if (VT.isInteger() && N->getOpcode() == ISD::XOR && + N0.getOpcode() == ISD::ADD && + N0.getOperand(1) == N1 && + N1.getOpcode() == ISD::SRA && + N1.getOperand(0) == N0.getOperand(0)) + if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) + if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) { + // Generate SUB & CMOV. + SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32), + DAG.getConstant(0, DL, VT), N0.getOperand(0)); + + SDValue Ops[] = { N0.getOperand(0), Neg, + DAG.getConstant(X86::COND_GE, DL, MVT::i8), + SDValue(Neg.getNode(), 1) }; + return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops); + } + return SDValue(); +} + +// Try to turn tests against the signbit in the form of: +// XOR(TRUNCATE(SRL(X, size(X)-1)), 1) +// into: +// SETGT(X, -1) +static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) { + // This is only worth doing if the output type is i8. + if (N->getValueType(0) != MVT::i8) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // We should be performing an xor against a truncated shift. + if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse()) + return SDValue(); + + // Make sure we are performing an xor against one. + if (!isOneConstant(N1)) + return SDValue(); + + // SetCC on x86 zero extends so only act on this if it's a logical shift. + SDValue Shift = N0.getOperand(0); + if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse()) + return SDValue(); + + // Make sure we are truncating from one of i16, i32 or i64. + EVT ShiftTy = Shift.getValueType(); + if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64) + return SDValue(); + + // Make sure the shift amount extracts the sign bit. + if (!isa<ConstantSDNode>(Shift.getOperand(1)) || + Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1) + return SDValue(); + + // Create a greater-than comparison against -1. + // N.B. Using SETGE against 0 works but we want a canonical looking + // comparison, using SETGT matches up with what TranslateX86CC. + SDLoc DL(N); + SDValue ShiftOp = Shift.getOperand(0); + EVT ShiftOpTy = ShiftOp.getValueType(); + SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp, + DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT); + return Cond; +} + +static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG)) + return RV; + + if (Subtarget->hasCMov()) + if (SDValue RV = performIntegerAbsCombine(N, DAG)) + return RV; + + if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget)) + return FPLogic; + + return SDValue(); +} + +/// This function detects the AVG pattern between vectors of unsigned i8/i16, +/// which is c = (a + b + 1) / 2, and replace this operation with the efficient +/// X86ISD::AVG instruction. +static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG, + const X86Subtarget *Subtarget, SDLoc DL) { + if (!VT.isVector() || !VT.isSimple()) + return SDValue(); + EVT InVT = In.getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + + EVT ScalarVT = VT.getVectorElementType(); + if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) && + isPowerOf2_32(NumElems))) + return SDValue(); + + // InScalarVT is the intermediate type in AVG pattern and it should be greater + // than the original input type (i8/i16). + EVT InScalarVT = InVT.getVectorElementType(); + if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits()) + return SDValue(); + + if (Subtarget->hasAVX512()) { + if (VT.getSizeInBits() > 512) + return SDValue(); + } else if (Subtarget->hasAVX2()) { + if (VT.getSizeInBits() > 256) + return SDValue(); + } else { + if (VT.getSizeInBits() > 128) + return SDValue(); + } + + // Detect the following pattern: + // + // %1 = zext <N x i8> %a to <N x i32> + // %2 = zext <N x i8> %b to <N x i32> + // %3 = add nuw nsw <N x i32> %1, <i32 1 x N> + // %4 = add nuw nsw <N x i32> %3, %2 + // %5 = lshr <N x i32> %N, <i32 1 x N> + // %6 = trunc <N x i32> %5 to <N x i8> + // + // In AVX512, the last instruction can also be a trunc store. + + if (In.getOpcode() != ISD::SRL) + return SDValue(); + + // A lambda checking the given SDValue is a constant vector and each element + // is in the range [Min, Max]. + auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) { + BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V); + if (!BV || !BV->isConstant()) + return false; + for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i)); + if (!C) + return false; + uint64_t Val = C->getZExtValue(); + if (Val < Min || Val > Max) + return false; + } + return true; + }; + + // Check if each element of the vector is left-shifted by one. + auto LHS = In.getOperand(0); + auto RHS = In.getOperand(1); + if (!IsConstVectorInRange(RHS, 1, 1)) + return SDValue(); + if (LHS.getOpcode() != ISD::ADD) + return SDValue(); + + // Detect a pattern of a + b + 1 where the order doesn't matter. + SDValue Operands[3]; + Operands[0] = LHS.getOperand(0); + Operands[1] = LHS.getOperand(1); + + // Take care of the case when one of the operands is a constant vector whose + // element is in the range [1, 256]. + if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) && + Operands[0].getOpcode() == ISD::ZERO_EXTEND && + Operands[0].getOperand(0).getValueType() == VT) { + // The pattern is detected. Subtract one from the constant vector, then + // demote it and emit X86ISD::AVG instruction. + SDValue One = DAG.getConstant(1, DL, InScalarVT); + SDValue Ones = DAG.getNode(ISD::BUILD_VECTOR, DL, InVT, + SmallVector<SDValue, 8>(NumElems, One)); + Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], Ones); + Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]); + return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0), + Operands[1]); + } + + if (Operands[0].getOpcode() == ISD::ADD) + std::swap(Operands[0], Operands[1]); + else if (Operands[1].getOpcode() != ISD::ADD) + return SDValue(); + Operands[2] = Operands[1].getOperand(0); + Operands[1] = Operands[1].getOperand(1); + + // Now we have three operands of two additions. Check that one of them is a + // constant vector with ones, and the other two are promoted from i8/i16. + for (int i = 0; i < 3; ++i) { + if (!IsConstVectorInRange(Operands[i], 1, 1)) + continue; + std::swap(Operands[i], Operands[2]); + + // Check if Operands[0] and Operands[1] are results of type promotion. + for (int j = 0; j < 2; ++j) + if (Operands[j].getOpcode() != ISD::ZERO_EXTEND || + Operands[j].getOperand(0).getValueType() != VT) + return SDValue(); + + // The pattern is detected, emit X86ISD::AVG instruction. + return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0), + Operands[1].getOperand(0)); + } + + return SDValue(); +} + +/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes. +static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + LoadSDNode *Ld = cast<LoadSDNode>(N); + EVT RegVT = Ld->getValueType(0); + EVT MemVT = Ld->getMemoryVT(); + SDLoc dl(Ld); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // For chips with slow 32-byte unaligned loads, break the 32-byte operation + // into two 16-byte operations. + ISD::LoadExtType Ext = Ld->getExtensionType(); + bool Fast; + unsigned AddressSpace = Ld->getAddressSpace(); + unsigned Alignment = Ld->getAlignment(); + if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() && + Ext == ISD::NON_EXTLOAD && + TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT, + AddressSpace, Alignment, &Fast) && !Fast) { + unsigned NumElems = RegVT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Ptr = Ld->getBasePtr(); + SDValue Increment = + DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); + + EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), + NumElems/2); + SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + Alignment); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr, + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + std::min(16U, Alignment)); + SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + Load1.getValue(1), + Load2.getValue(1)); + + SDValue NewVec = DAG.getUNDEF(RegVT); + NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl); + NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl); + return DCI.CombineTo(N, NewVec, TF, true); + } + + return SDValue(); +} + +/// PerformMLOADCombine - Resolve extending loads +static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N); + if (Mld->getExtensionType() != ISD::SEXTLOAD) + return SDValue(); + + EVT VT = Mld->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + EVT LdVT = Mld->getMemoryVT(); + SDLoc dl(Mld); + + assert(LdVT != VT && "Cannot extend to the same type"); + unsigned ToSz = VT.getVectorElementType().getSizeInBits(); + unsigned FromSz = LdVT.getVectorElementType().getSizeInBits(); + // From, To sizes and ElemCount must be pow of two + assert (isPowerOf2_32(NumElems * FromSz * ToSz) && + "Unexpected size for extending masked load"); + + unsigned SizeRatio = ToSz / FromSz; + assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + LdVT.getScalarType(), NumElems*SizeRatio); + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + // Convert Src0 value + SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0()); + if (Mld->getSrc0().getOpcode() != ISD::UNDEF) { + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && + "WideVecVT should be legal"); + WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0, + DAG.getUNDEF(WideVecVT), &ShuffleVec[0]); + } + // Prepare the new mask + SDValue NewMask; + SDValue Mask = Mld->getMask(); + if (Mask.getValueType() == VT) { + // Mask and original value have the same type + NewMask = DAG.getBitcast(WideVecVT, Mask); + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i) + ShuffleVec[i] = NumElems * SizeRatio; + NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, + DAG.getConstant(0, dl, WideVecVT), + &ShuffleVec[0]); + } + else { + assert(Mask.getValueType().getVectorElementType() == MVT::i1); + unsigned WidenNumElts = NumElems*SizeRatio; + unsigned MaskNumElts = VT.getVectorNumElements(); + EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + WidenNumElts); + + unsigned NumConcat = WidenNumElts / MaskNumElts; + SmallVector<SDValue, 16> Ops(NumConcat); + SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); + Ops[0] = Mask; + for (unsigned i = 1; i != NumConcat; ++i) + Ops[i] = ZeroVal; + + NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); + } + + SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(), + Mld->getBasePtr(), NewMask, WideSrc0, + Mld->getMemoryVT(), Mld->getMemOperand(), + ISD::NON_EXTLOAD); + SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd); + return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true); +} +/// PerformMSTORECombine - Resolve truncating stores +static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N); + if (!Mst->isTruncatingStore()) + return SDValue(); + + EVT VT = Mst->getValue().getValueType(); + unsigned NumElems = VT.getVectorNumElements(); + EVT StVT = Mst->getMemoryVT(); + SDLoc dl(Mst); + + assert(StVT != VT && "Cannot truncate to the same type"); + unsigned FromSz = VT.getVectorElementType().getSizeInBits(); + unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // The truncating store is legal in some cases. For example + // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw + // are designated for truncate store. + // In this case we don't need any further transformations. + if (TLI.isTruncStoreLegal(VT, StVT)) + return SDValue(); + + // From, To sizes and ElemCount must be pow of two + assert (isPowerOf2_32(NumElems * FromSz * ToSz) && + "Unexpected size for truncating masked store"); + // We are going to use the original vector elt for storing. + // Accumulated smaller vector elements must be a multiple of the store size. + assert (((NumElems * FromSz) % ToSz) == 0 && + "Unexpected ratio for truncating masked store"); + + unsigned SizeRatio = FromSz / ToSz; + assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + StVT.getScalarType(), NumElems*SizeRatio); + + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue()); + SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) && + "WideVecVT should be legal"); + + SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec, + DAG.getUNDEF(WideVecVT), + &ShuffleVec[0]); + + SDValue NewMask; + SDValue Mask = Mst->getMask(); + if (Mask.getValueType() == VT) { + // Mask and original value have the same type + NewMask = DAG.getBitcast(WideVecVT, Mask); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i) + ShuffleVec[i] = NumElems*SizeRatio; + NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask, + DAG.getConstant(0, dl, WideVecVT), + &ShuffleVec[0]); + } + else { + assert(Mask.getValueType().getVectorElementType() == MVT::i1); + unsigned WidenNumElts = NumElems*SizeRatio; + unsigned MaskNumElts = VT.getVectorNumElements(); + EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, + WidenNumElts); + + unsigned NumConcat = WidenNumElts / MaskNumElts; + SmallVector<SDValue, 16> Ops(NumConcat); + SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType()); + Ops[0] = Mask; + for (unsigned i = 1; i != NumConcat; ++i) + Ops[i] = ZeroVal; + + NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops); + } + + return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal, + Mst->getBasePtr(), NewMask, StVT, + Mst->getMemOperand(), false); +} +/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. +static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + StoreSDNode *St = cast<StoreSDNode>(N); + EVT VT = St->getValue().getValueType(); + EVT StVT = St->getMemoryVT(); + SDLoc dl(St); + SDValue StoredVal = St->getOperand(1); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // If we are saving a concatenation of two XMM registers and 32-byte stores + // are slow, such as on Sandy Bridge, perform two 16-byte stores. + bool Fast; + unsigned AddressSpace = St->getAddressSpace(); + unsigned Alignment = St->getAlignment(); + if (VT.is256BitVector() && StVT == VT && + TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, + AddressSpace, Alignment, &Fast) && !Fast) { + unsigned NumElems = VT.getVectorNumElements(); + if (NumElems < 2) + return SDValue(); + + SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl); + SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl); + + SDValue Stride = + DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout())); + SDValue Ptr0 = St->getBasePtr(); + SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride); + + SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), Alignment); + SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), + std::min(16U, Alignment)); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1); + } + + // Optimize trunc store (of multiple scalars) to shuffle and store. + // First, pack all of the elements in one place. Next, store to memory + // in fewer chunks. + if (St->isTruncatingStore() && VT.isVector()) { + // Check if we can detect an AVG pattern from the truncation. If yes, + // replace the trunc store by a normal store with the result of X86ISD::AVG + // instruction. + SDValue Avg = + detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, Subtarget, dl); + if (Avg.getNode()) + return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(), + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + unsigned NumElems = VT.getVectorNumElements(); + assert(StVT != VT && "Cannot truncate to the same type"); + unsigned FromSz = VT.getVectorElementType().getSizeInBits(); + unsigned ToSz = StVT.getVectorElementType().getSizeInBits(); + + // The truncating store is legal in some cases. For example + // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw + // are designated for truncate store. + // In this case we don't need any further transformations. + if (TLI.isTruncStoreLegal(VT, StVT)) + return SDValue(); + + // From, To sizes and ElemCount must be pow of two + if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue(); + // We are going to use the original vector elt for storing. + // Accumulated smaller vector elements must be a multiple of the store size. + if (0 != (NumElems * FromSz) % ToSz) return SDValue(); + + unsigned SizeRatio = FromSz / ToSz; + + assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits()); + + // Create a type on which we perform the shuffle + EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), + StVT.getScalarType(), NumElems*SizeRatio); + + assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); + + SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue()); + SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); + for (unsigned i = 0; i != NumElems; ++i) + ShuffleVec[i] = i * SizeRatio; + + // Can't shuffle using an illegal type. + if (!TLI.isTypeLegal(WideVecVT)) + return SDValue(); + + SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec, + DAG.getUNDEF(WideVecVT), + &ShuffleVec[0]); + // At this point all of the data is stored at the bottom of the + // register. We now need to save it to mem. + + // Find the largest store unit + MVT StoreType = MVT::i8; + for (MVT Tp : MVT::integer_valuetypes()) { + if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz) + StoreType = Tp; + } + + // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64. + if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 && + (64 <= NumElems * ToSz)) + StoreType = MVT::f64; + + // Bitcast the original vector into a vector of store-size units + EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), + StoreType, VT.getSizeInBits()/StoreType.getSizeInBits()); + assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); + SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff); + SmallVector<SDValue, 8> Chains; + SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, dl, + TLI.getPointerTy(DAG.getDataLayout())); + SDValue Ptr = St->getBasePtr(); + + // Perform one or more big stores into memory. + for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) { + SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, + StoreType, ShuffWide, + DAG.getIntPtrConstant(i, dl)); + SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr, + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); + Chains.push_back(Ch); + } + + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); + } + + // Turn load->store of MMX types into GPR load/stores. This avoids clobbering + // the FP state in cases where an emms may be missing. + // A preferable solution to the general problem is to figure out the right + // places to insert EMMS. This qualifies as a quick hack. + + // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. + if (VT.getSizeInBits() != 64) + return SDValue(); + + const Function *F = DAG.getMachineFunction().getFunction(); + bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat); + bool F64IsLegal = + !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2(); + if ((VT.isVector() || + (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && + isa<LoadSDNode>(St->getValue()) && + !cast<LoadSDNode>(St->getValue())->isVolatile() && + St->getChain().hasOneUse() && !St->isVolatile()) { + SDNode* LdVal = St->getValue().getNode(); + LoadSDNode *Ld = nullptr; + int TokenFactorIndex = -1; + SmallVector<SDValue, 8> Ops; + SDNode* ChainVal = St->getChain().getNode(); + // Must be a store of a load. We currently handle two cases: the load + // is a direct child, and it's under an intervening TokenFactor. It is + // possible to dig deeper under nested TokenFactors. + if (ChainVal == LdVal) + Ld = cast<LoadSDNode>(St->getChain()); + else if (St->getValue().hasOneUse() && + ChainVal->getOpcode() == ISD::TokenFactor) { + for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) { + if (ChainVal->getOperand(i).getNode() == LdVal) { + TokenFactorIndex = i; + Ld = cast<LoadSDNode>(St->getValue()); + } else + Ops.push_back(ChainVal->getOperand(i)); + } + } + + if (!Ld || !ISD::isNormalLoad(Ld)) + return SDValue(); + + // If this is not the MMX case, i.e. we are just turning i64 load/store + // into f64 load/store, avoid the transformation if there are multiple + // uses of the loaded value. + if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) + return SDValue(); + + SDLoc LdDL(Ld); + SDLoc StDL(N); + // If we are a 64-bit capable x86, lower to a single movq load/store pair. + // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store + // pair instead. + if (Subtarget->is64Bit() || F64IsLegal) { + MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; + SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), + Ld->getPointerInfo(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->isInvariant(), + Ld->getAlignment()); + SDValue NewChain = NewLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(NewChain); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); + } + return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), + St->getPointerInfo(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + } + + // Otherwise, lower to two pairs of 32-bit loads / stores. + SDValue LoAddr = Ld->getBasePtr(); + SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, + DAG.getConstant(4, LdDL, MVT::i32)); + + SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, + Ld->getPointerInfo(), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), Ld->getAlignment()); + SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, + Ld->getPointerInfo().getWithOffset(4), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->isInvariant(), + MinAlign(Ld->getAlignment(), 4)); + + SDValue NewChain = LoLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(LoLd); + Ops.push_back(HiLd); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops); + } + + LoAddr = St->getBasePtr(); + HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, + DAG.getConstant(4, StDL, MVT::i32)); + + SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, + St->getPointerInfo(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, + St->getPointerInfo().getWithOffset(4), + St->isVolatile(), + St->isNonTemporal(), + MinAlign(St->getAlignment(), 4)); + return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); + } + + // This is similar to the above case, but here we handle a scalar 64-bit + // integer store that is extracted from a vector on a 32-bit target. + // If we have SSE2, then we can treat it like a floating-point double + // to get past legalization. The execution dependencies fixup pass will + // choose the optimal machine instruction for the store if this really is + // an integer or v2f32 rather than an f64. + if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() && + St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { + SDValue OldExtract = St->getOperand(1); + SDValue ExtOp0 = OldExtract.getOperand(0); + unsigned VecSize = ExtOp0.getValueSizeInBits(); + EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64); + SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0); + SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + BitCast, OldExtract.getOperand(1)); + return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(), + St->getPointerInfo(), St->isVolatile(), + St->isNonTemporal(), St->getAlignment()); + } + + return SDValue(); +} + +/// Return 'true' if this vector operation is "horizontal" +/// and return the operands for the horizontal operation in LHS and RHS. A +/// horizontal operation performs the binary operation on successive elements +/// of its first operand, then on successive elements of its second operand, +/// returning the resulting values in a vector. For example, if +/// A = < float a0, float a1, float a2, float a3 > +/// and +/// B = < float b0, float b1, float b2, float b3 > +/// then the result of doing a horizontal operation on A and B is +/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >. +/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form +/// A horizontal-op B, for some already available A and B, and if so then LHS is +/// set to A, RHS to B, and the routine returns 'true'. +/// Note that the binary operation should have the property that if one of the +/// operands is UNDEF then the result is UNDEF. +static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) { + // Look for the following pattern: if + // A = < float a0, float a1, float a2, float a3 > + // B = < float b0, float b1, float b2, float b3 > + // and + // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6> + // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7> + // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 > + // which is A horizontal-op B. + + // At least one of the operands should be a vector shuffle. + if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE && + RHS.getOpcode() != ISD::VECTOR_SHUFFLE) + return false; + + MVT VT = LHS.getSimpleValueType(); + + assert((VT.is128BitVector() || VT.is256BitVector()) && + "Unsupported vector type for horizontal add/sub"); + + // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to + // operate independently on 128-bit lanes. + unsigned NumElts = VT.getVectorNumElements(); + unsigned NumLanes = VT.getSizeInBits()/128; + unsigned NumLaneElts = NumElts / NumLanes; + assert((NumLaneElts % 2 == 0) && + "Vector type should have an even number of elements in each lane"); + unsigned HalfLaneElts = NumLaneElts/2; + + // View LHS in the form + // LHS = VECTOR_SHUFFLE A, B, LMask + // If LHS is not a shuffle then pretend it is the shuffle + // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1> + // NOTE: in what follows a default initialized SDValue represents an UNDEF of + // type VT. + SDValue A, B; + SmallVector<int, 16> LMask(NumElts); + if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (LHS.getOperand(0).getOpcode() != ISD::UNDEF) + A = LHS.getOperand(0); + if (LHS.getOperand(1).getOpcode() != ISD::UNDEF) + B = LHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), LMask.begin()); + } else { + if (LHS.getOpcode() != ISD::UNDEF) + A = LHS; + for (unsigned i = 0; i != NumElts; ++i) + LMask[i] = i; + } + + // Likewise, view RHS in the form + // RHS = VECTOR_SHUFFLE C, D, RMask + SDValue C, D; + SmallVector<int, 16> RMask(NumElts); + if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) { + if (RHS.getOperand(0).getOpcode() != ISD::UNDEF) + C = RHS.getOperand(0); + if (RHS.getOperand(1).getOpcode() != ISD::UNDEF) + D = RHS.getOperand(1); + ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(); + std::copy(Mask.begin(), Mask.end(), RMask.begin()); + } else { + if (RHS.getOpcode() != ISD::UNDEF) + C = RHS; + for (unsigned i = 0; i != NumElts; ++i) + RMask[i] = i; + } + + // Check that the shuffles are both shuffling the same vectors. + if (!(A == C && B == D) && !(A == D && B == C)) + return false; + + // If everything is UNDEF then bail out: it would be better to fold to UNDEF. + if (!A.getNode() && !B.getNode()) + return false; + + // If A and B occur in reverse order in RHS, then "swap" them (which means + // rewriting the mask). + if (A != C) + ShuffleVectorSDNode::commuteMask(RMask); + + // At this point LHS and RHS are equivalent to + // LHS = VECTOR_SHUFFLE A, B, LMask + // RHS = VECTOR_SHUFFLE A, B, RMask + // Check that the masks correspond to performing a horizontal operation. + for (unsigned l = 0; l != NumElts; l += NumLaneElts) { + for (unsigned i = 0; i != NumLaneElts; ++i) { + int LIdx = LMask[i+l], RIdx = RMask[i+l]; + + // Ignore any UNDEF components. + if (LIdx < 0 || RIdx < 0 || + (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) || + (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts))) + continue; + + // Check that successive elements are being operated on. If not, this is + // not a horizontal operation. + unsigned Src = (i/HalfLaneElts); // each lane is split between srcs + int Index = 2*(i%HalfLaneElts) + NumElts*Src + l; + if (!(LIdx == Index && RIdx == Index + 1) && + !(IsCommutative && LIdx == Index + 1 && RIdx == Index)) + return false; + } + } + + LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it. + RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it. + return true; +} + +/// Do target-specific dag combines on floating point adds. +static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // Try to synthesize horizontal adds from adds of shuffles. + if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || + (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + isHorizontalBinOp(LHS, RHS, true)) + return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS); + return SDValue(); +} + +/// Do target-specific dag combines on floating point subs. +static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + + // Try to synthesize horizontal subs from subs of shuffles. + if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) || + (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) && + isHorizontalBinOp(LHS, RHS, false)) + return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS); + return SDValue(); +} + +/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS. +static SDValue +combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG, + SmallVector<SDValue, 8> &Regs) { + assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 || + Regs[0].getValueType() == MVT::v2i64)); + EVT OutVT = N->getValueType(0); + EVT OutSVT = OutVT.getVectorElementType(); + EVT InVT = Regs[0].getValueType(); + EVT InSVT = InVT.getVectorElementType(); + SDLoc DL(N); + + // First, use mask to unset all bits that won't appear in the result. + assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) && + "OutSVT can only be either i8 or i16."); + SDValue MaskVal = + DAG.getConstant(OutSVT == MVT::i8 ? 0xFF : 0xFFFF, DL, InSVT); + SDValue MaskVec = DAG.getNode( + ISD::BUILD_VECTOR, DL, InVT, + SmallVector<SDValue, 8>(InVT.getVectorNumElements(), MaskVal)); + for (auto &Reg : Regs) + Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVec, Reg); + + MVT UnpackedVT, PackedVT; + if (OutSVT == MVT::i8) { + UnpackedVT = MVT::v8i16; + PackedVT = MVT::v16i8; + } else { + UnpackedVT = MVT::v4i32; + PackedVT = MVT::v8i16; + } + + // In each iteration, truncate the type by a half size. + auto RegNum = Regs.size(); + for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits(); + j < e; j *= 2, RegNum /= 2) { + for (unsigned i = 0; i < RegNum; i++) + Regs[i] = DAG.getNode(ISD::BITCAST, DL, UnpackedVT, Regs[i]); + for (unsigned i = 0; i < RegNum / 2; i++) + Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2], + Regs[i * 2 + 1]); + } + + // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and + // then extract a subvector as the result since v8i8 is not a legal type. + if (OutVT == MVT::v8i8) { + Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]); + Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0], + DAG.getIntPtrConstant(0, DL)); + return Regs[0]; + } else if (RegNum > 1) { + Regs.resize(RegNum); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); + } else + return Regs[0]; +} + +/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS. +static SDValue +combineVectorTruncationWithPACKSS(SDNode *N, SelectionDAG &DAG, + SmallVector<SDValue, 8> &Regs) { + assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32); + EVT OutVT = N->getValueType(0); + SDLoc DL(N); + + // Shift left by 16 bits, then arithmetic-shift right by 16 bits. + SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32); + for (auto &Reg : Regs) { + Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, DAG); + Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, DAG); + } + + for (unsigned i = 0, e = Regs.size() / 2; i < e; i++) + Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2], + Regs[i * 2 + 1]); + + if (Regs.size() > 2) { + Regs.resize(Regs.size() / 2); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs); + } else + return Regs[0]; +} + +/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into +/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type +/// legalization the truncation will be translated into a BUILD_VECTOR with each +/// element that is extracted from a vector and then truncated, and it is +/// diffcult to do this optimization based on them. +static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT OutVT = N->getValueType(0); + if (!OutVT.isVector()) + return SDValue(); + + SDValue In = N->getOperand(0); + if (!In.getValueType().isSimple()) + return SDValue(); + + EVT InVT = In.getValueType(); + unsigned NumElems = OutVT.getVectorNumElements(); + + // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on + // SSE2, and we need to take care of it specially. + // AVX512 provides vpmovdb. + if (!Subtarget->hasSSE2() || Subtarget->hasAVX2()) + return SDValue(); + + EVT OutSVT = OutVT.getVectorElementType(); + EVT InSVT = InVT.getVectorElementType(); + if (!((InSVT == MVT::i32 || InSVT == MVT::i64) && + (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) && + NumElems >= 8)) + return SDValue(); + + // SSSE3's pshufb results in less instructions in the cases below. + if (Subtarget->hasSSSE3() && NumElems == 8 && + ((OutSVT == MVT::i8 && InSVT != MVT::i64) || + (InSVT == MVT::i32 && OutSVT == MVT::i16))) + return SDValue(); + + SDLoc DL(N); + + // Split a long vector into vectors of legal type. + unsigned RegNum = InVT.getSizeInBits() / 128; + SmallVector<SDValue, 8> SubVec(RegNum); + if (InSVT == MVT::i32) { + for (unsigned i = 0; i < RegNum; i++) + SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In, + DAG.getIntPtrConstant(i * 4, DL)); + } else { + for (unsigned i = 0; i < RegNum; i++) + SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In, + DAG.getIntPtrConstant(i * 2, DL)); + } + + // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PAKCUS + // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to + // truncate 2 x v4i32 to v8i16. + if (Subtarget->hasSSE41() || OutSVT == MVT::i8) + return combineVectorTruncationWithPACKUS(N, DAG, SubVec); + else if (InSVT == MVT::i32) + return combineVectorTruncationWithPACKSS(N, DAG, SubVec); + else + return SDValue(); +} + +static SDValue PerformTRUNCATECombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // Try to detect AVG pattern first. + SDValue Avg = detectAVGPattern(N->getOperand(0), N->getValueType(0), DAG, + Subtarget, SDLoc(N)); + if (Avg.getNode()) + return Avg; + + return combineVectorTruncation(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on floating point negations. +static SDValue PerformFNEGCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + SDValue Arg = N->getOperand(0); + SDLoc DL(N); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + // If we're negating a FMUL node on a target with FMA, then we can avoid the + // use of a constant by performing (-0 - A*B) instead. + // FIXME: Check rounding control flags as well once it becomes available. + if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) && + Arg->getFlags()->hasNoSignedZeros() && Subtarget->hasAnyFMA()) { + SDValue Zero = DAG.getConstantFP(0.0, DL, VT); + return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Zero); + } + + // If we're negating a FMA node, then we can adjust the + // instruction to include the extra negation. + if (Arg.hasOneUse()) { + switch (Arg.getOpcode()) { + case X86ISD::FMADD: + return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Arg.getOperand(2)); + case X86ISD::FMSUB: + return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Arg.getOperand(2)); + case X86ISD::FNMADD: + return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Arg.getOperand(2)); + case X86ISD::FNMSUB: + return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0), + Arg.getOperand(1), Arg.getOperand(2)); + } + } + return SDValue(); +} + +static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (VT.is512BitVector() && !Subtarget->hasDQI()) { + // VXORPS, VORPS, VANDPS, VANDNPS are supported only under DQ extention. + // These logic operations may be executed in the integer domain. + SDLoc dl(N); + MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits()); + MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements()); + + SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(0)); + SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(1)); + unsigned IntOpcode = 0; + switch (N->getOpcode()) { + default: llvm_unreachable("Unexpected FP logic op"); + case X86ISD::FOR: IntOpcode = ISD::OR; break; + case X86ISD::FXOR: IntOpcode = ISD::XOR; break; + case X86ISD::FAND: IntOpcode = ISD::AND; break; + case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break; + } + SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1); + return DAG.getNode(ISD::BITCAST, dl, VT, IntOp); + } + return SDValue(); +} +/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes. +static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); + + // F[X]OR(0.0, x) -> x + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + + // F[X]OR(x, 0.0) -> x + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes. +static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) { + assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX); + + // Only perform optimizations if UnsafeMath is used. + if (!DAG.getTarget().Options.UnsafeFPMath) + return SDValue(); + + // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes + // into FMINC and FMAXC, which are Commutative operations. + unsigned NewOp = 0; + switch (N->getOpcode()) { + default: llvm_unreachable("unknown opcode"); + case X86ISD::FMIN: NewOp = X86ISD::FMINC; break; + case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break; + } + + return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0), + N->getOperand(0), N->getOperand(1)); +} + +static SDValue performFMinNumFMaxNumCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + if (Subtarget->useSoftFloat()) + return SDValue(); + + // TODO: Check for global or instruction-level "nnan". In that case, we + // should be able to lower to FMAX/FMIN alone. + // TODO: If an operand is already known to be a NaN or not a NaN, this + // should be an optional swap and FMAX/FMIN. + + EVT VT = N->getValueType(0); + if (!((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) || + (Subtarget->hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) || + (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64)))) + return SDValue(); + + // This takes at least 3 instructions, so favor a library call when operating + // on a scalar and minimizing code size. + if (!VT.isVector() && DAG.getMachineFunction().getFunction()->optForMinSize()) + return SDValue(); + + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + SDLoc DL(N); + EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType( + DAG.getDataLayout(), *DAG.getContext(), VT); + + // There are 4 possibilities involving NaN inputs, and these are the required + // outputs: + // Op1 + // Num NaN + // ---------------- + // Num | Max | Op0 | + // Op0 ---------------- + // NaN | Op1 | NaN | + // ---------------- + // + // The SSE FP max/min instructions were not designed for this case, but rather + // to implement: + // Min = Op1 < Op0 ? Op1 : Op0 + // Max = Op1 > Op0 ? Op1 : Op0 + // + // So they always return Op0 if either input is a NaN. However, we can still + // use those instructions for fmaxnum by selecting away a NaN input. + + // If either operand is NaN, the 2nd source operand (Op0) is passed through. + auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN; + SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0); + SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO); + + // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands + // are NaN, the NaN value of Op1 is the result. + auto SelectOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT; + return DAG.getNode(SelectOpcode, DL, VT, IsOp0Nan, Op1, MinOrMax); +} + +/// Do target-specific dag combines on X86ISD::FAND nodes. +static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // FAND(0.0, x) -> 0.0 + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + + // FAND(x, 0.0) -> 0.0 + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +/// Do target-specific dag combines on X86ISD::FANDN nodes +static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // FANDN(0.0, x) -> x + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + + // FANDN(x, 0.0) -> 0.0 + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + + return lowerX86FPLogicOp(N, DAG, Subtarget); +} + +static SDValue PerformBTCombine(SDNode *N, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // BT ignores high bits in the bit index operand. + SDValue Op1 = N->getOperand(1); + if (Op1.hasOneUse()) { + unsigned BitWidth = Op1.getValueSizeInBits(); + APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || + TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) + DCI.CommitTargetLoweringOpt(TLO); + } + return SDValue(); +} + +static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue Op = N->getOperand(0); + if (Op.getOpcode() == ISD::BITCAST) + Op = Op.getOperand(0); + EVT VT = N->getValueType(0), OpVT = Op.getValueType(); + if (Op.getOpcode() == X86ISD::VZEXT_LOAD && + VT.getVectorElementType().getSizeInBits() == + OpVT.getVectorElementType().getSizeInBits()) { + return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); + } + return SDValue(); +} + +static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.isVector()) + return SDValue(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT ExtraVT = cast<VTSDNode>(N1)->getVT(); + SDLoc dl(N); + + // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the + // both SSE and AVX2 since there is no sign-extended shift right + // operation on a vector with 64-bit elements. + //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) -> + // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT))) + if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND)) { + SDValue N00 = N0.getOperand(0); + + // EXTLOAD has a better solution on AVX2, + // it may be replaced with X86ISD::VSEXT node. + if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256()) + if (!ISD::isNormalLoad(N00.getNode())) + return SDValue(); + + if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) { + SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, + N00, N1); + return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp); + } + } + return SDValue(); +} + +/// sext(add_nsw(x, C)) --> add(sext(x), C_sext) +/// Promoting a sign extension ahead of an 'add nsw' exposes opportunities +/// to combine math ops, use an LEA, or use a complex addressing mode. This can +/// eliminate extend, add, and shift instructions. +static SDValue promoteSextBeforeAddNSW(SDNode *Sext, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // TODO: This should be valid for other integer types. + EVT VT = Sext->getValueType(0); + if (VT != MVT::i64) + return SDValue(); + + // We need an 'add nsw' feeding into the 'sext'. + SDValue Add = Sext->getOperand(0); + if (Add.getOpcode() != ISD::ADD || !Add->getFlags()->hasNoSignedWrap()) + return SDValue(); + + // Having a constant operand to the 'add' ensures that we are not increasing + // the instruction count because the constant is extended for free below. + // A constant operand can also become the displacement field of an LEA. + auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1)); + if (!AddOp1) + return SDValue(); + + // Don't make the 'add' bigger if there's no hope of combining it with some + // other 'add' or 'shl' instruction. + // TODO: It may be profitable to generate simpler LEA instructions in place + // of single 'add' instructions, but the cost model for selecting an LEA + // currently has a high threshold. + bool HasLEAPotential = false; + for (auto *User : Sext->uses()) { + if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) { + HasLEAPotential = true; + break; + } + } + if (!HasLEAPotential) + return SDValue(); + + // Everything looks good, so pull the 'sext' ahead of the 'add'. + int64_t AddConstant = AddOp1->getSExtValue(); + SDValue AddOp0 = Add.getOperand(0); + SDValue NewSext = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Sext), VT, AddOp0); + SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT); + + // The wider add is guaranteed to not wrap because both operands are + // sign-extended. + SDNodeFlags Flags; + Flags.setNoSignedWrap(true); + return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewSext, NewConstant, &Flags); +} + +static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SVT = VT.getScalarType(); + EVT InVT = N0.getValueType(); + EVT InSVT = InVT.getScalarType(); + SDLoc DL(N); + + // (i8,i32 sext (sdivrem (i8 x, i8 y)) -> + // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y) + // This exposes the sext to the sdivrem lowering, so that it directly extends + // from AH (which we otherwise need to do contortions to access). + if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 && + InVT == MVT::i8 && VT == MVT::i32) { + SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); + SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys, + N0.getOperand(0), N0.getOperand(1)); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); + return R.getValue(1); + } + + if (!DCI.isBeforeLegalizeOps()) { + if (InVT == MVT::i1) { + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue AllOnes = + DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT); + return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero); + } + return SDValue(); + } + + if (VT.isVector() && Subtarget->hasSSE2()) { + auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) { + EVT InVT = N.getValueType(); + EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(), + Size / InVT.getScalarSizeInBits()); + SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(), + DAG.getUNDEF(InVT)); + Opnds[0] = N; + return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds); + }; + + // If target-size is less than 128-bits, extend to a type that would extend + // to 128 bits, extend that and extract the original target vector. + if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) && + (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && + (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { + unsigned Scale = 128 / VT.getSizeInBits(); + EVT ExVT = + EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits()); + SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits()); + SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt, + DAG.getIntPtrConstant(0, DL)); + } + + // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG + // which ensures lowering to X86ISD::VSEXT (pmovsx*). + if (VT.getSizeInBits() == 128 && + (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && + (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { + SDValue ExOp = ExtendVecSize(DL, N0, 128); + return DAG.getSignExtendVectorInReg(ExOp, DL, VT); + } + + // On pre-AVX2 targets, split into 128-bit nodes of + // ISD::SIGN_EXTEND_VECTOR_INREG. + if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) && + (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) && + (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) { + unsigned NumVecs = VT.getSizeInBits() / 128; + unsigned NumSubElts = 128 / SVT.getSizeInBits(); + EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts); + EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts); + + SmallVector<SDValue, 8> Opnds; + for (unsigned i = 0, Offset = 0; i != NumVecs; + ++i, Offset += NumSubElts) { + SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0, + DAG.getIntPtrConstant(Offset, DL)); + SrcVec = ExtendVecSize(DL, SrcVec, 128); + SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT); + Opnds.push_back(SrcVec); + } + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds); + } + } + + if (Subtarget->hasAVX() && VT.is256BitVector()) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) + return R; + + if (SDValue NewAdd = promoteSextBeforeAddNSW(N, DAG, Subtarget)) + return NewAdd; + + return SDValue(); +} + +static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget* Subtarget) { + SDLoc dl(N); + EVT VT = N->getValueType(0); + + // Let legalize expand this if it isn't a legal type yet. + if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) + return SDValue(); + + EVT ScalarVT = VT.getScalarType(); + if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasAnyFMA()) + return SDValue(); + + SDValue A = N->getOperand(0); + SDValue B = N->getOperand(1); + SDValue C = N->getOperand(2); + + bool NegA = (A.getOpcode() == ISD::FNEG); + bool NegB = (B.getOpcode() == ISD::FNEG); + bool NegC = (C.getOpcode() == ISD::FNEG); + + // Negative multiplication when NegA xor NegB + bool NegMul = (NegA != NegB); + if (NegA) + A = A.getOperand(0); + if (NegB) + B = B.getOperand(0); + if (NegC) + C = C.getOperand(0); + + unsigned Opcode; + if (!NegMul) + Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB; + else + Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB; + + return DAG.getNode(Opcode, dl, VT, A, B, C); +} + +static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> + // (and (i32 x86isd::setcc_carry), 1) + // This eliminates the zext. This transformation is necessary because + // ISD::SETCC is always legalized to i8. + SDLoc dl(N); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (N0.getOpcode() == ISD::AND && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + if (!isOneConstant(N0.getOperand(1))) + return SDValue(); + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, dl, VT)); + } + } + + if (N0.getOpcode() == ISD::TRUNCATE && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY) { + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, dl, VT)); + } + } + + if (VT.is256BitVector()) + if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget)) + return R; + + // (i8,i32 zext (udivrem (i8 x, i8 y)) -> + // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y) + // This exposes the zext to the udivrem lowering, so that it directly extends + // from AH (which we otherwise need to do contortions to access). + if (N0.getOpcode() == ISD::UDIVREM && + N0.getResNo() == 1 && N0.getValueType() == MVT::i8 && + (VT == MVT::i32 || VT == MVT::i64)) { + SDVTList NodeTys = DAG.getVTList(MVT::i8, VT); + SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys, + N0.getOperand(0), N0.getOperand(1)); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0)); + return R.getValue(1); + } + + return SDValue(); +} + +// Optimize x == -y --> x+y == 0 +// x != -y --> x+y != 0 +static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget* Subtarget) { + ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB) + if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) { + SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS, + LHS.getOperand(1)); + return DAG.getSetCC(DL, N->getValueType(0), addV, + DAG.getConstant(0, DL, addV.getValueType()), CC); + } + if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB) + if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) { + SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS, + RHS.getOperand(1)); + return DAG.getSetCC(DL, N->getValueType(0), addV, + DAG.getConstant(0, DL, addV.getValueType()), CC); + } + + if (VT.getScalarType() == MVT::i1 && + (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) { + bool IsSEXT0 = + (LHS.getOpcode() == ISD::SIGN_EXTEND) && + (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); + bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); + + if (!IsSEXT0 || !IsVZero1) { + // Swap the operands and update the condition code. + std::swap(LHS, RHS); + CC = ISD::getSetCCSwappedOperands(CC); + + IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) && + (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1); + IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode()); + } + + if (IsSEXT0 && IsVZero1) { + assert(VT == LHS.getOperand(0).getValueType() && + "Uexpected operand type"); + if (CC == ISD::SETGT) + return DAG.getConstant(0, DL, VT); + if (CC == ISD::SETLE) + return DAG.getConstant(1, DL, VT); + if (CC == ISD::SETEQ || CC == ISD::SETGE) + return DAG.getNOT(DL, LHS.getOperand(0), VT); + + assert((CC == ISD::SETNE || CC == ISD::SETLT) && + "Unexpected condition code!"); + return LHS.getOperand(0); + } + } + + return SDValue(); +} + +static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) { + SDValue V0 = N->getOperand(0); + SDValue V1 = N->getOperand(1); + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector + // operands and changing the mask to 1. This saves us a bunch of + // pattern-matching possibilities related to scalar math ops in SSE/AVX. + // x86InstrInfo knows how to commute this back after instruction selection + // if it would help register allocation. + + // TODO: If optimizing for size or a processor that doesn't suffer from + // partial register update stalls, this should be transformed into a MOVSD + // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD. + + if (VT == MVT::v2f64) + if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2))) + if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) { + SDValue NewMask = DAG.getConstant(1, DL, MVT::i8); + return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask); + } + + return SDValue(); +} + +static SDValue PerformGatherScatterCombine(SDNode *N, SelectionDAG &DAG) { + SDLoc DL(N); + // Gather and Scatter instructions use k-registers for masks. The type of + // the masks is v*i1. So the mask will be truncated anyway. + // The SIGN_EXTEND_INREG my be dropped. + SDValue Mask = N->getOperand(2); + if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) { + SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); + NewOps[2] = Mask.getOperand(0); + DAG.UpdateNodeOperands(N, NewOps); + } + return SDValue(); +} + +// Helper function of PerformSETCCCombine. It is to materialize "setb reg" +// as "sbb reg,reg", since it can be extended without zext and produces +// an all-ones bit which is more useful than 0/1 in some cases. +static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG, + MVT VT) { + if (VT == MVT::i8) + return DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, + DAG.getConstant(X86::COND_B, DL, MVT::i8), + EFLAGS), + DAG.getConstant(1, DL, VT)); + assert (VT == MVT::i1 && "Unexpected type for SECCC node"); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, + DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, + DAG.getConstant(X86::COND_B, DL, MVT::i8), + EFLAGS)); +} + +// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT +static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0)); + SDValue EFLAGS = N->getOperand(1); + + if (CC == X86::COND_A) { + // Try to convert COND_A into COND_B in an attempt to facilitate + // materializing "setb reg". + // + // Do not flip "e > c", where "c" is a constant, because Cmp instruction + // cannot take an immediate as its first operand. + // + if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() && + EFLAGS.getValueType().isInteger() && + !isa<ConstantSDNode>(EFLAGS.getOperand(1))) { + SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS), + EFLAGS.getNode()->getVTList(), + EFLAGS.getOperand(1), EFLAGS.getOperand(0)); + SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo()); + return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0)); + } + } + + // Materialize "setb reg" as "sbb reg,reg", since it can be extended without + // a zext and produces an all-ones bit which is more useful than 0/1 in some + // cases. + if (CC == X86::COND_B) + return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0)); + + if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { + SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); + return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags); + } + + return SDValue(); +} + +// Optimize branch condition evaluation. +// +static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + SDValue Chain = N->getOperand(0); + SDValue Dest = N->getOperand(1); + SDValue EFLAGS = N->getOperand(3); + X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2)); + + if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) { + SDValue Cond = DAG.getConstant(CC, DL, MVT::i8); + return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond, + Flags); + } + + return SDValue(); +} + +static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, + SelectionDAG &DAG) { + // Take advantage of vector comparisons producing 0 or -1 in each lane to + // optimize away operation when it's from a constant. + // + // The general transformation is: + // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> + // AND(VECTOR_CMP(x,y), constant2) + // constant2 = UNARYOP(constant) + + // Early exit if this isn't a vector operation, the operand of the + // unary operation isn't a bitwise AND, or if the sizes of the operations + // aren't the same. + EVT VT = N->getValueType(0); + if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || + N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || + VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) + return SDValue(); + + // Now check that the other operand of the AND is a constant. We could + // make the transformation for non-constant splats as well, but it's unclear + // that would be a benefit as it would not eliminate any operations, just + // perform one more step in scalar code before moving to the vector unit. + if (BuildVectorSDNode *BV = + dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { + // Bail out if the vector isn't a constant. + if (!BV->isConstant()) + return SDValue(); + + // Everything checks out. Build up the new and improved node. + SDLoc DL(N); + EVT IntVT = BV->getValueType(0); + // Create a new constant of the appropriate type for the transformed + // DAG. + SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); + // The AND node needs bitcasts to/from an integer vector type around it. + SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst); + SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, + N->getOperand(0)->getOperand(0), MaskConst); + SDValue Res = DAG.getBitcast(VT, NewAnd); + return Res; + } + + return SDValue(); +} + +static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDValue Op0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT InVT = Op0.getValueType(); + EVT InSVT = InVT.getScalarType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32)) + // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32)) + if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { + SDLoc dl(N); + EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + InVT.getVectorNumElements()); + SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0); + + if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT)) + return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P); + + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); + } + + return SDValue(); +} + +static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // First try to optimize away the conversion entirely when it's + // conditionally from a constant. Vectors only. + if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) + return Res; + + // Now move on to more general possibilities. + SDValue Op0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT InVT = Op0.getValueType(); + EVT InSVT = InVT.getScalarType(); + + // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32)) + // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32)) + if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) { + SDLoc dl(N); + EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, + InVT.getVectorNumElements()); + SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0); + return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P); + } + + // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have + // a 32-bit target where SSE doesn't support i64->FP operations. + if (!Subtarget->useSoftFloat() && Op0.getOpcode() == ISD::LOAD) { + LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode()); + EVT LdVT = Ld->getValueType(0); + + // This transformation is not supported if the result type is f16 + if (VT == MVT::f16) + return SDValue(); + + if (!Ld->isVolatile() && !VT.isVector() && + ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() && + !Subtarget->is64Bit() && LdVT == MVT::i64) { + SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD( + SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG); + DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1)); + return FILDChain; + } + } + return SDValue(); +} + +// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS +static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, + X86TargetLowering::DAGCombinerInfo &DCI) { + // If the LHS and RHS of the ADC node are zero, then it can't overflow and + // the result is either zero or one (depending on the input carry bit). + // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. + if (X86::isZeroNode(N->getOperand(0)) && + X86::isZeroNode(N->getOperand(1)) && + // We don't have a good way to replace an EFLAGS use, so only do this when + // dead right now. + SDValue(N, 1).use_empty()) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1)); + SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, + DAG.getConstant(X86::COND_B, DL, + MVT::i8), + N->getOperand(2)), + DAG.getConstant(1, DL, VT)); + return DCI.CombineTo(N, Res1, CarryOut); + } + + return SDValue(); +} + +// fold (add Y, (sete X, 0)) -> adc 0, Y +// (add Y, (setne X, 0)) -> sbb -1, Y +// (sub (sete X, 0), Y) -> sbb 0, Y +// (sub (setne X, 0), Y) -> adc -1, Y +static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) { + SDLoc DL(N); + + // Look through ZExts. + SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); + if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) + return SDValue(); + + SDValue SetCC = Ext.getOperand(0); + if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) + return SDValue(); + + X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); + if (CC != X86::COND_E && CC != X86::COND_NE) + return SDValue(); + + SDValue Cmp = SetCC.getOperand(1); + if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || + !X86::isZeroNode(Cmp.getOperand(1)) || + !Cmp.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue CmpOp0 = Cmp.getOperand(0); + SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, + DAG.getConstant(1, DL, CmpOp0.getValueType())); + + SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); + if (CC == X86::COND_NE) + return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, + DL, OtherVal.getValueType(), OtherVal, + DAG.getConstant(-1ULL, DL, OtherVal.getValueType()), + NewCmp); + return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, + DL, OtherVal.getValueType(), OtherVal, + DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp); +} + +/// PerformADDCombine - Do target-specific dag combines on integer adds. +static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // Try to synthesize horizontal adds from adds of shuffles. + if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, true)) + return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1); + + return OptimizeConditionalInDecrement(N, DAG); +} + +static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + // X86 can't encode an immediate LHS of a sub. See if we can push the + // negation into a preceding instruction. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) { + // If the RHS of the sub is a XOR with one use and a constant, invert the + // immediate. Then add one to the LHS of the sub so we can turn + // X-Y -> X+~Y+1, saving one register. + if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR && + isa<ConstantSDNode>(Op1.getOperand(1))) { + APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue(); + EVT VT = Op0.getValueType(); + SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT, + Op1.getOperand(0), + DAG.getConstant(~XorC, SDLoc(Op1), VT)); + return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor, + DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT)); + } + } + + // Try to synthesize horizontal adds from adds of shuffles. + EVT VT = N->getValueType(0); + if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) || + (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) && + isHorizontalBinOp(Op0, Op1, true)) + return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1); + + return OptimizeConditionalInDecrement(N, DAG); +} + +/// performVZEXTCombine - Performs build vector combines +static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + SDLoc DL(N); + MVT VT = N->getSimpleValueType(0); + SDValue Op = N->getOperand(0); + MVT OpVT = Op.getSimpleValueType(); + MVT OpEltVT = OpVT.getVectorElementType(); + unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements(); + + // (vzext (bitcast (vzext (x)) -> (vzext x) + SDValue V = Op; + while (V.getOpcode() == ISD::BITCAST) + V = V.getOperand(0); + + if (V != Op && V.getOpcode() == X86ISD::VZEXT) { + MVT InnerVT = V.getSimpleValueType(); + MVT InnerEltVT = InnerVT.getVectorElementType(); + + // If the element sizes match exactly, we can just do one larger vzext. This + // is always an exact type match as vzext operates on integer types. + if (OpEltVT == InnerEltVT) { + assert(OpVT == InnerVT && "Types must match for vzext!"); + return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0)); + } + + // The only other way we can combine them is if only a single element of the + // inner vzext is used in the input to the outer vzext. + if (InnerEltVT.getSizeInBits() < InputBits) + return SDValue(); + + // In this case, the inner vzext is completely dead because we're going to + // only look at bits inside of the low element. Just do the outer vzext on + // a bitcast of the input to the inner. + return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V)); + } + + // Check if we can bypass extracting and re-inserting an element of an input + // vector. Essentially: + // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x) + if (V.getOpcode() == ISD::SCALAR_TO_VECTOR && + V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && + V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) { + SDValue ExtractedV = V.getOperand(0); + SDValue OrigV = ExtractedV.getOperand(0); + if (isNullConstant(ExtractedV.getOperand(1))) { + MVT OrigVT = OrigV.getSimpleValueType(); + // Extract a subvector if necessary... + if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) { + int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits(); + OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(), + OrigVT.getVectorNumElements() / Ratio); + OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV, + DAG.getIntPtrConstant(0, DL)); + } + Op = DAG.getBitcast(OpVT, OrigV); + return DAG.getNode(X86ISD::VZEXT, DL, VT, Op); + } + } + + return SDValue(); +} + +SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + switch (N->getOpcode()) { + default: break; + case ISD::EXTRACT_VECTOR_ELT: + return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI); + case ISD::VSELECT: + case ISD::SELECT: + case X86ISD::SHRUNKBLEND: + return PerformSELECTCombine(N, DAG, DCI, Subtarget); + case ISD::BITCAST: return PerformBITCASTCombine(N, DAG, Subtarget); + case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget); + case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget); + case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget); + case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); + case ISD::MUL: return PerformMulCombine(N, DAG, DCI); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget); + case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); + case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); + case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget); + case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget); + case ISD::MLOAD: return PerformMLOADCombine(N, DAG, DCI, Subtarget); + case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); + case ISD::MSTORE: return PerformMSTORECombine(N, DAG, Subtarget); + case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, Subtarget); + case ISD::UINT_TO_FP: return PerformUINT_TO_FPCombine(N, DAG, Subtarget); + case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget); + case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget); + case ISD::FNEG: return PerformFNEGCombine(N, DAG, Subtarget); + case ISD::TRUNCATE: return PerformTRUNCATECombine(N, DAG, Subtarget); + case X86ISD::FXOR: + case X86ISD::FOR: return PerformFORCombine(N, DAG, Subtarget); + case X86ISD::FMIN: + case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG); + case ISD::FMINNUM: + case ISD::FMAXNUM: return performFMinNumFMaxNumCombine(N, DAG, + Subtarget); + case X86ISD::FAND: return PerformFANDCombine(N, DAG, Subtarget); + case X86ISD::FANDN: return PerformFANDNCombine(N, DAG, Subtarget); + case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); + case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); + case ISD::ANY_EXTEND: + case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget); + case ISD::SIGN_EXTEND_INREG: + return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget); + case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget); + case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget); + case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget); + case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget); + case X86ISD::SHUFP: // Handle all target specific shuffles + case X86ISD::PALIGNR: + case X86ISD::UNPCKH: + case X86ISD::UNPCKL: + case X86ISD::MOVHLPS: + case X86ISD::MOVLHPS: + case X86ISD::PSHUFB: + case X86ISD::PSHUFD: + case X86ISD::PSHUFHW: + case X86ISD::PSHUFLW: + case X86ISD::MOVSS: + case X86ISD::MOVSD: + case X86ISD::VPERMILPI: + case X86ISD::VPERM2X128: + case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget); + case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget); + case X86ISD::BLENDI: return PerformBLENDICombine(N, DAG); + case ISD::MGATHER: + case ISD::MSCATTER: return PerformGatherScatterCombine(N, DAG); + } + + return SDValue(); +} + +/// isTypeDesirableForOp - Return true if the target has native support for +/// the specified value type and it is 'desirable' to use the type for the +/// given node type. e.g. On x86 i16 is legal, but undesirable since i16 +/// instruction encodings are longer and some i16 instructions are slow. +bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { + if (!isTypeLegal(VT)) + return false; + if (VT != MVT::i16) + return true; + + switch (Opc) { + default: + return true; + case ISD::LOAD: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + case ISD::SHL: + case ISD::SRL: + case ISD::SUB: + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + return false; + } +} + +/// IsDesirableToPromoteOp - This method query the target whether it is +/// beneficial for dag combiner to promote the specified node. If true, it +/// should return the desired promotion type by reference. +bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { + EVT VT = Op.getValueType(); + if (VT != MVT::i16) + return false; + + bool Promote = false; + bool Commute = false; + switch (Op.getOpcode()) { + default: break; + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + // If the non-extending load has a single use and it's not live out, then it + // might be folded. + if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& + Op.hasOneUse()*/) { + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + // The only case where we'd want to promote LOAD (rather then it being + // promoted as an operand is when it's only use is liveout. + if (UI->getOpcode() != ISD::CopyToReg) + return false; + } + } + Promote = true; + break; + } + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + Promote = true; + break; + case ISD::SHL: + case ISD::SRL: { + SDValue N0 = Op.getOperand(0); + // Look out for (store (shl (load), x)). + if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) + return false; + Promote = true; + break; + } + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + Commute = true; + // fallthrough + case ISD::SUB: { + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + if (!Commute && MayFoldLoad(N1)) + return false; + // Avoid disabling potential load folding opportunities. + if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) + return false; + if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) + return false; + Promote = true; + } + } + + PVT = MVT::i32; + return Promote; +} + +//===----------------------------------------------------------------------===// +// X86 Inline Assembly Support +//===----------------------------------------------------------------------===// + +// Helper to match a string separated by whitespace. +static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) { + S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace. + + for (StringRef Piece : Pieces) { + if (!S.startswith(Piece)) // Check if the piece matches. + return false; + + S = S.substr(Piece.size()); + StringRef::size_type Pos = S.find_first_not_of(" \t"); + if (Pos == 0) // We matched a prefix. + return false; + + S = S.substr(Pos); + } + + return S.empty(); +} + +static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) { + + if (AsmPieces.size() == 3 || AsmPieces.size() == 4) { + if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") && + std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") && + std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) { + + if (AsmPieces.size() == 3) + return true; + else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}")) + return true; + } + } + return false; +} + +bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { + InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); + + std::string AsmStr = IA->getAsmString(); + + IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); + if (!Ty || Ty->getBitWidth() % 16 != 0) + return false; + + // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" + SmallVector<StringRef, 4> AsmPieces; + SplitString(AsmStr, AsmPieces, ";\n"); + + switch (AsmPieces.size()) { + default: return false; + case 1: + // FIXME: this should verify that we are targeting a 486 or better. If not, + // we will turn this bswap into something that will be lowered to logical + // ops instead of emitting the bswap asm. For now, we don't support 486 or + // lower so don't worry about this. + // bswap $0 + if (matchAsm(AsmPieces[0], {"bswap", "$0"}) || + matchAsm(AsmPieces[0], {"bswapl", "$0"}) || + matchAsm(AsmPieces[0], {"bswapq", "$0"}) || + matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) || + matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) || + matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) { + // No need to check constraints, nothing other than the equivalent of + // "=r,0" would be valid here. + return IntrinsicLowering::LowerToByteSwap(CI); + } + + // rorw $$8, ${0:w} --> llvm.bswap.i16 + if (CI->getType()->isIntegerTy(16) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) || + matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) { + AsmPieces.clear(); + StringRef ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); + if (clobbersFlagRegisters(AsmPieces)) + return IntrinsicLowering::LowerToByteSwap(CI); + } + break; + case 3: + if (CI->getType()->isIntegerTy(32) && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0 && + matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) && + matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) && + matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) { + AsmPieces.clear(); + StringRef ConstraintsStr = IA->getConstraintString(); + SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ","); + array_pod_sort(AsmPieces.begin(), AsmPieces.end()); + if (clobbersFlagRegisters(AsmPieces)) + return IntrinsicLowering::LowerToByteSwap(CI); + } + + if (CI->getType()->isIntegerTy(64)) { + InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); + if (Constraints.size() >= 2 && + Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && + Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { + // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 + if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) && + matchAsm(AsmPieces[1], {"bswap", "%edx"}) && + matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"})) + return IntrinsicLowering::LowerToByteSwap(CI); + } + } + break; + } + return false; +} + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +X86TargetLowering::ConstraintType +X86TargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'R': + case 'q': + case 'Q': + case 'f': + case 't': + case 'u': + case 'y': + case 'x': + case 'Y': + case 'l': + return C_RegisterClass; + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + return C_Register; + case 'I': + case 'J': + case 'K': + case 'L': + case 'M': + case 'N': + case 'G': + case 'C': + case 'e': + case 'Z': + return C_Other; + default: + break; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight + X86TargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + case 'R': + case 'q': + case 'Q': + case 'a': + case 'b': + case 'c': + case 'd': + case 'S': + case 'D': + case 'A': + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_SpecificReg; + break; + case 'f': + case 't': + case 'u': + if (type->isFloatingPointTy()) + weight = CW_SpecificReg; + break; + case 'y': + if (type->isX86_MMXTy() && Subtarget->hasMMX()) + weight = CW_SpecificReg; + break; + case 'x': + case 'Y': + if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) || + ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256())) + weight = CW_Register; + break; + case 'I': + if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { + if (C->getZExtValue() <= 31) + weight = CW_Constant; + } + break; + case 'J': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 63) + weight = CW_Constant; + } + break; + case 'K': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) + weight = CW_Constant; + } + break; + case 'L': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) + weight = CW_Constant; + } + break; + case 'M': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 3) + weight = CW_Constant; + } + break; + case 'N': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xff) + weight = CW_Constant; + } + break; + case 'G': + case 'C': + if (isa<ConstantFP>(CallOperandVal)) { + weight = CW_Constant; + } + break; + case 'e': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if ((C->getSExtValue() >= -0x80000000LL) && + (C->getSExtValue() <= 0x7fffffffLL)) + weight = CW_Constant; + } + break; + case 'Z': + if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { + if (C->getZExtValue() <= 0xffffffff) + weight = CW_Constant; + } + break; + } + return weight; +} + +/// LowerXConstraint - try to replace an X constraint, which matches anything, +/// with another that has more specific requirements based on the type of the +/// corresponding operand. +const char *X86TargetLowering:: +LowerXConstraint(EVT ConstraintVT) const { + // FP X constraints get lowered to SSE1/2 registers if available, otherwise + // 'f' like normal targets. + if (ConstraintVT.isFloatingPoint()) { + if (Subtarget->hasSSE2()) + return "Y"; + if (Subtarget->hasSSE1()) + return "x"; + } + + return TargetLowering::LowerXConstraint(ConstraintVT); +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + std::string &Constraint, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDValue Result; + + // Only support length 1 constraints for now. + if (Constraint.length() > 1) return; + + char ConstraintLetter = Constraint[0]; + switch (ConstraintLetter) { + default: break; + case 'I': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 31) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'J': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 63) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'K': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (isInt<8>(C->getSExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'L': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff || + (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) { + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'M': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 3) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'N': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 255) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'O': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 127) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + return; + case 'e': { + // 32-bit signed value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getSExtValue())) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64); + break; + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + } + return; + } + case 'Z': { + // 32-bit unsigned value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getZExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType()); + break; + } + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + return; + } + case 'i': { + // Literal immediates are always ok. + if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64); + break; + } + + // In any sort of PIC mode addresses need to be computed at runtime by + // adding in a register or some sort of table lookup. These can't + // be used as immediates. + if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) + return; + + // If we are in non-pic codegen mode, we allow the address of a global (with + // an optional displacement) to be used with 'i'. + GlobalAddressSDNode *GA = nullptr; + int64_t Offset = 0; + + // Match either (GA), (GA+C), (GA+C1+C2), etc. + while (1) { + if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { + Offset += GA->getOffset(); + break; + } else if (Op.getOpcode() == ISD::ADD) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } else if (Op.getOpcode() == ISD::SUB) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += -C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } + + // Otherwise, this isn't something we can handle, reject it. + return; + } + + const GlobalValue *GV = GA->getGlobal(); + // If we require an extra load to get this address, as in PIC mode, we + // can't accept it. + if (isGlobalStubReference( + Subtarget->ClassifyGlobalReference(GV, DAG.getTarget()))) + return; + + Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), + GA->getValueType(0), Offset); + break; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +std::pair<unsigned, const TargetRegisterClass *> +X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, + StringRef Constraint, + MVT VT) const { + // First, see if this is a constraint that directly corresponds to an LLVM + // register class. + if (Constraint.size() == 1) { + // GCC Constraint Letters + switch (Constraint[0]) { + default: break; + // TODO: Slight differences here in allocation order and leaving + // RIP in the class. Do they matter any more here than they do + // in the normal allocation? + case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. + if (Subtarget->is64Bit()) { + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i64 || VT == MVT::f64) + return std::make_pair(0U, &X86::GR64RegClass); + break; + } + // 32-bit fallthrough + case 'Q': // Q_REGS + if (VT == MVT::i32 || VT == MVT::f32) + return std::make_pair(0U, &X86::GR32_ABCDRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_ABCDRegClass); + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_ABCD_LRegClass); + if (VT == MVT::i64) + return std::make_pair(0U, &X86::GR64_ABCDRegClass); + break; + case 'r': // GENERAL_REGS + case 'l': // INDEX_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8RegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16RegClass); + if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit()) + return std::make_pair(0U, &X86::GR32RegClass); + return std::make_pair(0U, &X86::GR64RegClass); + case 'R': // LEGACY_REGS + if (VT == MVT::i8 || VT == MVT::i1) + return std::make_pair(0U, &X86::GR8_NOREXRegClass); + if (VT == MVT::i16) + return std::make_pair(0U, &X86::GR16_NOREXRegClass); + if (VT == MVT::i32 || !Subtarget->is64Bit()) + return std::make_pair(0U, &X86::GR32_NOREXRegClass); + return std::make_pair(0U, &X86::GR64_NOREXRegClass); + case 'f': // FP Stack registers. + // If SSE is enabled for this VT, use f80 to ensure the isel moves the + // value to the correct fpstack register class. + if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP32RegClass); + if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, &X86::RFP64RegClass); + return std::make_pair(0U, &X86::RFP80RegClass); + case 'y': // MMX_REGS if MMX allowed. + if (!Subtarget->hasMMX()) break; + return std::make_pair(0U, &X86::VR64RegClass); + case 'Y': // SSE_REGS if SSE2 allowed + if (!Subtarget->hasSSE2()) break; + // FALL THROUGH. + case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed + if (!Subtarget->hasSSE1()) break; + + switch (VT.SimpleTy) { + default: break; + // Scalar SSE types. + case MVT::f32: + case MVT::i32: + return std::make_pair(0U, &X86::FR32RegClass); + case MVT::f64: + case MVT::i64: + return std::make_pair(0U, &X86::FR64RegClass); + // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. + // Vector types. + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v2i64: + case MVT::v4f32: + case MVT::v2f64: + return std::make_pair(0U, &X86::VR128RegClass); + // AVX types. + case MVT::v32i8: + case MVT::v16i16: + case MVT::v8i32: + case MVT::v4i64: + case MVT::v8f32: + case MVT::v4f64: + return std::make_pair(0U, &X86::VR256RegClass); + case MVT::v8f64: + case MVT::v16f32: + case MVT::v16i32: + case MVT::v8i64: + return std::make_pair(0U, &X86::VR512RegClass); + } + break; + } + } + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + std::pair<unsigned, const TargetRegisterClass*> Res; + Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); + + // Not found as a standard register? + if (!Res.second) { + // Map st(0) -> st(7) -> ST0 + if (Constraint.size() == 7 && Constraint[0] == '{' && + tolower(Constraint[1]) == 's' && + tolower(Constraint[2]) == 't' && + Constraint[3] == '(' && + (Constraint[4] >= '0' && Constraint[4] <= '7') && + Constraint[5] == ')' && + Constraint[6] == '}') { + + Res.first = X86::FP0+Constraint[4]-'0'; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // GCC allows "st(0)" to be called just plain "st". + if (StringRef("{st}").equals_lower(Constraint)) { + Res.first = X86::FP0; + Res.second = &X86::RFP80RegClass; + return Res; + } + + // flags -> EFLAGS + if (StringRef("{flags}").equals_lower(Constraint)) { + Res.first = X86::EFLAGS; + Res.second = &X86::CCRRegClass; + return Res; + } + + // 'A' means EAX + EDX. + if (Constraint == "A") { + Res.first = X86::EAX; + Res.second = &X86::GR32_ADRegClass; + return Res; + } + return Res; + } + + // Otherwise, check to see if this is a register class of the wrong value + // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to + // turn into {ax},{dx}. + // MVT::Other is used to specify clobber names. + if (Res.second->hasType(VT) || VT == MVT::Other) + return Res; // Correct type already, nothing to do. + + // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should + // return "eax". This should even work for things like getting 64bit integer + // registers when given an f64 type. + const TargetRegisterClass *Class = Res.second; + if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass || + Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) { + unsigned Size = VT.getSizeInBits(); + if (Size == 1) Size = 8; + unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size); + if (DestReg > 0) { + Res.first = DestReg; + Res.second = Size == 8 ? &X86::GR8RegClass + : Size == 16 ? &X86::GR16RegClass + : Size == 32 ? &X86::GR32RegClass + : &X86::GR64RegClass; + assert(Res.second->contains(Res.first) && "Register in register class"); + } else { + // No register found/type mismatch. + Res.first = 0; + Res.second = nullptr; + } + } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass || + Class == &X86::VR128RegClass || Class == &X86::VR256RegClass || + Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass || + Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass || + Class == &X86::VR512RegClass) { + // Handle references to XMM physical registers that got mapped into the + // wrong class. This can happen with constraints like {xmm0} where the + // target independent register mapper will just pick the first match it can + // find, ignoring the required type. + + // TODO: Handle f128 and i128 in FR128RegClass after it is tested well. + if (VT == MVT::f32 || VT == MVT::i32) + Res.second = &X86::FR32RegClass; + else if (VT == MVT::f64 || VT == MVT::i64) + Res.second = &X86::FR64RegClass; + else if (X86::VR128RegClass.hasType(VT)) + Res.second = &X86::VR128RegClass; + else if (X86::VR256RegClass.hasType(VT)) + Res.second = &X86::VR256RegClass; + else if (X86::VR512RegClass.hasType(VT)) + Res.second = &X86::VR512RegClass; + else { + // Type mismatch and not a clobber: Return an error; + Res.first = 0; + Res.second = nullptr; + } + } + + return Res; +} + +int X86TargetLowering::getScalingFactorCost(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // Scaling factors are not free at all. + // An indexed folded instruction, i.e., inst (reg1, reg2, scale), + // will take 2 allocations in the out of order engine instead of 1 + // for plain addressing mode, i.e. inst (reg1). + // E.g., + // vaddps (%rsi,%drx), %ymm0, %ymm1 + // Requires two allocations (one for the load, one for the computation) + // whereas: + // vaddps (%rsi), %ymm0, %ymm1 + // Requires just 1 allocation, i.e., freeing allocations for other operations + // and having less micro operations to execute. + // + // For some X86 architectures, this is even worse because for instance for + // stores, the complex addressing mode forces the instruction to use the + // "load" ports instead of the dedicated "store" port. + // E.g., on Haswell: + // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3. + // vmovaps %ymm1, (%r8) can use port 2, 3, or 7. + if (isLegalAddressingMode(DL, AM, Ty, AS)) + // Scale represents reg2 * scale, thus account for 1 + // as soon as we use a second register. + return AM.Scale != 0; + return -1; +} + +bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const { + // Integer division on x86 is expensive. However, when aggressively optimizing + // for code size, we prefer to use a div instruction, as it is usually smaller + // than the alternative sequence. + // The exception to this is vector division. Since x86 doesn't have vector + // integer division, leaving the division as-is is a loss even in terms of + // size, because it will have to be scalarized, while the alternative code + // sequence can be performed in vector form. + bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex, + Attribute::MinSize); + return OptSize && !VT.isVector(); +} |