summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp28669
1 files changed, 28669 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
new file mode 100644
index 0000000..0927c2f
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -0,0 +1,28669 @@
+//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86ISelLowering.h"
+#include "Utils/X86ShuffleDecode.h"
+#include "X86CallingConv.h"
+#include "X86FrameLowering.h"
+#include "X86InstrBuilder.h"
+#include "X86MachineFunctionInfo.h"
+#include "X86TargetMachine.h"
+#include "X86TargetObjectFile.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/WinEHFuncInfo.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Target/TargetOptions.h"
+#include "X86IntrinsicsInfo.h"
+#include <bitset>
+#include <numeric>
+#include <cctype>
+using namespace llvm;
+
+#define DEBUG_TYPE "x86-isel"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool> ExperimentalVectorWideningLegalization(
+ "x86-experimental-vector-widening-legalization", cl::init(false),
+ cl::desc("Enable an experimental vector type legalization through widening "
+ "rather than promotion."),
+ cl::Hidden);
+
+X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
+ const X86Subtarget &STI)
+ : TargetLowering(TM), Subtarget(&STI) {
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
+
+ // Set up the TargetLowering object.
+
+ // X86 is weird. It always uses i8 for shift amounts and setcc results.
+ setBooleanContents(ZeroOrOneBooleanContent);
+ // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ // For 64-bit, since we have so many registers, use the ILP scheduler.
+ // For 32-bit, use the register pressure specific scheduling.
+ // For Atom, always use ILP scheduling.
+ if (Subtarget->isAtom())
+ setSchedulingPreference(Sched::ILP);
+ else if (Subtarget->is64Bit())
+ setSchedulingPreference(Sched::ILP);
+ else
+ setSchedulingPreference(Sched::RegPressure);
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
+
+ // Bypass expensive divides on Atom when compiling with O2.
+ if (TM.getOptLevel() >= CodeGenOpt::Default) {
+ if (Subtarget->hasSlowDivide32())
+ addBypassSlowDiv(32, 8);
+ if (Subtarget->hasSlowDivide64() && Subtarget->is64Bit())
+ addBypassSlowDiv(64, 16);
+ }
+
+ if (Subtarget->isTargetKnownWindowsMSVC()) {
+ // Setup Windows compiler runtime calls.
+ setLibcallName(RTLIB::SDIV_I64, "_alldiv");
+ setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
+ setLibcallName(RTLIB::SREM_I64, "_allrem");
+ setLibcallName(RTLIB::UREM_I64, "_aullrem");
+ setLibcallName(RTLIB::MUL_I64, "_allmul");
+ setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
+ setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
+ }
+
+ if (Subtarget->isTargetDarwin()) {
+ // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(false);
+ setUseUnderscoreLongJmp(false);
+ } else if (Subtarget->isTargetWindowsGNU()) {
+ // MS runtime is weird: it exports _setjmp, but longjmp!
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(false);
+ } else {
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+ }
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, &X86::GR8RegClass);
+ addRegisterClass(MVT::i16, &X86::GR16RegClass);
+ addRegisterClass(MVT::i32, &X86::GR32RegClass);
+ if (Subtarget->is64Bit())
+ addRegisterClass(MVT::i64, &X86::GR64RegClass);
+
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+
+ // We don't accept any truncstore of integer registers.
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i32, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // SETOEQ and SETUNE require checking two conditions.
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
+
+ // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
+ // operation.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512())
+ // f32/f64 are legal, f80 is custom.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ else
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ } else if (!Subtarget->useSoftFloat()) {
+ // We have an algorithm for SSE2->double, and we turn this into a
+ // 64-bit FILD followed by conditional FADD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ // We have an algorithm for SSE2, and we turn this into a 64-bit
+ // FILD or VCVTUSI2SS/SD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ }
+
+ // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
+
+ if (!Subtarget->useSoftFloat()) {
+ // SSE has no i16 to fp conversion, only i32
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
+ }
+
+ // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
+
+ if (!Subtarget->useSoftFloat()) {
+ // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
+ // are Legal, f80 is custom lowered.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
+
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand);
+ }
+
+ // Handle FP_TO_UINT by promoting the destination to a larger signed
+ // conversion.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
+ // FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
+ }
+ } else if (!Subtarget->useSoftFloat()) {
+ // Since AVX is a superset of SSE3, only check for SSE here.
+ if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
+ // Expand FP_TO_UINT into a select.
+ // FIXME: We would like to use a Custom expander here eventually to do
+ // the optimal thing for SSE vs. the default expansion in the legalizer.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
+ else
+ // With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
+ // With SSE3 we can use fisttpll to convert to a signed i64; without
+ // SSE, we're stuck with a fistpll.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
+ }
+
+ // TODO: when we have SSE, these could be more efficient, by using movd/movq.
+ if (!X86ScalarSSEf64) {
+ setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
+ setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
+ // Without SSE, i64->f64 goes through memory.
+ setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
+ }
+ }
+
+ // Scalar integer divide and remainder are lowered to use operations that
+ // produce two results, to match the available instructions. This exposes
+ // the two-result form to trivial CSE, which is able to combine x/y and x%y
+ // into a single instruction.
+ //
+ // Scalar integer multiply-high is also lowered to use two-result
+ // operations, to match the available instructions. However, plain multiply
+ // (low) operations are left as Legal, as there are single-result
+ // instructions for this in x86. Using the two-result multiply instructions
+ // when both high and low results are needed must be arranged by dagcombine.
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+
+ // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
+ setOperationAction(ISD::ADDC, VT, Custom);
+ setOperationAction(ISD::ADDE, VT, Custom);
+ setOperationAction(ISD::SUBC, VT, Custom);
+ setOperationAction(ISD::SUBE, VT, Custom);
+ }
+
+ setOperationAction(ISD::BR_JT , MVT::Other, Expand);
+ setOperationAction(ISD::BRCOND , MVT::Other, Custom);
+ setOperationAction(ISD::BR_CC , MVT::f32, Expand);
+ setOperationAction(ISD::BR_CC , MVT::f64, Expand);
+ setOperationAction(ISD::BR_CC , MVT::f80, Expand);
+ setOperationAction(ISD::BR_CC , MVT::f128, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i8, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i16, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i32, Expand);
+ setOperationAction(ISD::BR_CC , MVT::i64, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f32, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f64, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f80, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::f128, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i8, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i16, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i32, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::i64, Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+ setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
+
+ if (Subtarget->is32Bit() && Subtarget->isTargetKnownWindowsMSVC()) {
+ // On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
+ // is. We should promote the value to 64-bits to solve this.
+ // This is what the CRT headers do - `fmodf` is an inline header
+ // function casting to f64 and calling `fmod`.
+ setOperationAction(ISD::FREM , MVT::f32 , Promote);
+ } else {
+ setOperationAction(ISD::FREM , MVT::f32 , Expand);
+ }
+
+ setOperationAction(ISD::FREM , MVT::f64 , Expand);
+ setOperationAction(ISD::FREM , MVT::f80 , Expand);
+ setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
+
+ // Promote the i8 variants and force them on up to i32 which has a shorter
+ // encoding.
+ setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTTZ , MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTTZ_ZERO_UNDEF , MVT::i8 , MVT::i32);
+ if (Subtarget->hasBMI()) {
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
+ } else {
+ setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
+ }
+
+ if (Subtarget->hasLZCNT()) {
+ // When promoting the i8 variants, force them to i32 for a shorter
+ // encoding.
+ setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTLZ , MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Promote);
+ AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
+ } else {
+ setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
+ }
+ }
+
+ // Special handling for half-precision floating point conversions.
+ // If we don't have F16C support, then lower half float conversions
+ // into library calls.
+ if (Subtarget->useSoftFloat() || !Subtarget->hasF16C()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ }
+
+ // There's never any support for operations beyond MVT::f32.
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f80, MVT::f16, Expand);
+
+ if (Subtarget->hasPOPCNT()) {
+ setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
+ } else {
+ setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
+ setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
+ }
+
+ setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
+
+ if (!Subtarget->hasMOVBE())
+ setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
+
+ // These should be promoted to a larger select which is supported.
+ setOperationAction(ISD::SELECT , MVT::i1 , Promote);
+ // X86 wants to expand cmov itself.
+ setOperationAction(ISD::SELECT , MVT::i8 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i16 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f64 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f80 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f128 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i8 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i16 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f80 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f128 , Custom);
+ setOperationAction(ISD::SETCCE , MVT::i8 , Custom);
+ setOperationAction(ISD::SETCCE , MVT::i16 , Custom);
+ setOperationAction(ISD::SETCCE , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SELECT , MVT::i64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i64 , Custom);
+ setOperationAction(ISD::SETCCE , MVT::i64 , Custom);
+ }
+ setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
+ // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
+ // SjLj exception handling but a light-weight setjmp/longjmp replacement to
+ // support continuation, user-level threading, and etc.. As a result, no
+ // other SjLj exception interfaces are implemented and please don't build
+ // your own exception handling based on them.
+ // LLVM/Clang supports zero-cost DWARF exception handling.
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+
+ // Darwin ABI issue.
+ setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
+ setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
+ }
+ // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
+ setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
+ }
+
+ if (Subtarget->hasSSE1())
+ setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
+
+ setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
+
+ // Expand certain atomics
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
+ }
+
+ if (Subtarget->hasCmpxchg16b()) {
+ setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
+ }
+
+ // FIXME - use subtarget debug flags
+ if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetELF() &&
+ !Subtarget->isTargetCygMing() && !Subtarget->isTargetWin64()) {
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
+
+ setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
+ setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+ setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::VAARG , MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY , MVT::Other, Custom);
+ } else {
+ // TargetInfo::CharPtrBuiltinVaList
+ setOperationAction(ISD::VAARG , MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
+
+ // GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
+ setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
+ setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
+
+ if (!Subtarget->useSoftFloat() && X86ScalarSSEf64) {
+ // f32 and f64 use SSE.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, &X86::FR64RegClass);
+
+ // Use ANDPD to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f64, Custom);
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f64, Custom);
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ // Use ANDPD and ORPD to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // Lower this to FGETSIGNx86 plus an AND.
+ setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
+ setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // Expand FP immediates into loads from the stack, except for the special
+ // cases we handle.
+ addLegalFPImmediate(APFloat(+0.0)); // xorpd
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ } else if (!Subtarget->useSoftFloat() && X86ScalarSSEf32) {
+ // Use SSE for f32, x87 for f64.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, &X86::FR32RegClass);
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+
+ // Use ANDPS to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+
+ // Use ANDPS and ORPS to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+
+ // Special cases we handle for FP constants.
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ }
+ } else if (!Subtarget->useSoftFloat()) {
+ // f32 and f64 in x87.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f64, &X86::RFP64RegClass);
+ addRegisterClass(MVT::f32, &X86::RFP32RegClass);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+ setOperationAction(ISD::UNDEF, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ }
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+ addLegalFPImmediate(APFloat(+0.0f)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0f)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
+ }
+
+ // We don't support FMA.
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+
+ // Long double always uses X87, except f128 in MMX.
+ if (!Subtarget->useSoftFloat()) {
+ if (Subtarget->is64Bit() && Subtarget->hasMMX()) {
+ addRegisterClass(MVT::f128, &X86::FR128RegClass);
+ ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
+ setOperationAction(ISD::FABS , MVT::f128, Custom);
+ setOperationAction(ISD::FNEG , MVT::f128, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
+ }
+
+ addRegisterClass(MVT::f80, &X86::RFP80RegClass);
+ setOperationAction(ISD::UNDEF, MVT::f80, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
+ {
+ APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
+ addLegalFPImmediate(TmpFlt); // FLD0
+ TmpFlt.changeSign();
+ addLegalFPImmediate(TmpFlt); // FLD0/FCHS
+
+ bool ignored;
+ APFloat TmpFlt2(+1.0);
+ TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
+ &ignored);
+ addLegalFPImmediate(TmpFlt2); // FLD1
+ TmpFlt2.changeSign();
+ addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
+ }
+
+ if (!TM.Options.UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f80, Expand);
+ setOperationAction(ISD::FCOS , MVT::f80, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
+ }
+
+ setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f80, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
+ setOperationAction(ISD::FRINT, MVT::f80, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
+ setOperationAction(ISD::FMA, MVT::f80, Expand);
+ }
+
+ // Always use a library call for pow.
+ setOperationAction(ISD::FPOW , MVT::f32 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f64 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f80 , Expand);
+
+ setOperationAction(ISD::FLOG, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f80, Expand);
+ setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
+ setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
+
+ // First set operation action for all vector types to either promote
+ // (for widening) or expand (for scalarization). Then we will selectively
+ // turn on ones that can be effectively codegen'd.
+ for (MVT VT : MVT::vector_valuetypes()) {
+ setOperationAction(ISD::ADD , VT, Expand);
+ setOperationAction(ISD::SUB , VT, Expand);
+ setOperationAction(ISD::FADD, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::FSUB, VT, Expand);
+ setOperationAction(ISD::MUL , VT, Expand);
+ setOperationAction(ISD::FMUL, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::LOAD, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FSINCOS, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FPOWI, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Expand);
+ setOperationAction(ISD::UDIVREM, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::SHL, VT, Expand);
+ setOperationAction(ISD::SRA, VT, Expand);
+ setOperationAction(ISD::SRL, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::SETCC, VT, Expand);
+ setOperationAction(ISD::FLOG, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FLOG10, VT, Expand);
+ setOperationAction(ISD::FEXP, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
+ setOperationAction(ISD::TRUNCATE, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(InnerVT, VT, Expand);
+
+ setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
+
+ // N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
+ // types, we have to deal with them whether we ask for Expansion or not.
+ // Setting Expand causes its own optimisation problems though, so leave
+ // them legal.
+ if (VT.getVectorElementType() == MVT::i1)
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+
+ // EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
+ // split/scalarized right now.
+ if (VT.getVectorElementType() == MVT::f16)
+ setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
+ }
+ }
+
+ // FIXME: In order to prevent SSE instructions being expanded to MMX ones
+ // with -msoft-float, disable use of MMX as well.
+ if (!Subtarget->useSoftFloat() && Subtarget->hasMMX()) {
+ addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
+ // No operations on x86mmx supported, everything uses intrinsics.
+ }
+
+ // MMX-sized vectors (other than x86mmx) are expected to be expanded
+ // into smaller operations.
+ for (MVT MMXTy : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v1i64}) {
+ setOperationAction(ISD::MULHS, MMXTy, Expand);
+ setOperationAction(ISD::AND, MMXTy, Expand);
+ setOperationAction(ISD::OR, MMXTy, Expand);
+ setOperationAction(ISD::XOR, MMXTy, Expand);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MMXTy, Expand);
+ setOperationAction(ISD::SELECT, MMXTy, Expand);
+ setOperationAction(ISD::BITCAST, MMXTy, Expand);
+ }
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasSSE1()) {
+ addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
+
+ setOperationAction(ISD::FADD, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
+ }
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasSSE2()) {
+ addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
+
+ // FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
+ // registers cannot be used even for integer operations.
+ addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
+ addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
+ addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
+ addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
+
+ setOperationAction(ISD::ADD, MVT::v16i8, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v4i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v16i8, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v4i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v8i16, Legal);
+ setOperationAction(ISD::FADD, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v16i8, Legal);
+
+ setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
+ setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::CTPOP, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
+ // ISD::CTTZ v2i64 - scalarization is faster.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
+ // ISD::CTTZ_ZERO_UNDEF v2i64 - scalarization is faster.
+
+ // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ }
+
+ // We support custom legalizing of sext and anyext loads for specific
+ // memory vector types which we can load as a scalar (or sequence of
+ // scalars) and extend in-register to a legal 128-bit vector type. For sext
+ // loads these must work with a single scalar load.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
+ }
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v2i64, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+ }
+
+ // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
+ for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v2i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v2i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v2i64);
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, MVT::v2i64);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
+ }
+
+ // Custom lower v2i64 and v2f64 selects.
+ setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
+ setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
+ // As there is no 64-bit GPR available, we need build a special custom
+ // sequence to convert from v2i32 to v2f32.
+ if (!Subtarget->is64Bit())
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
+
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
+
+ setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
+ setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
+ }
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasSSE41()) {
+ for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
+ setOperationAction(ISD::FFLOOR, RoundedTy, Legal);
+ setOperationAction(ISD::FCEIL, RoundedTy, Legal);
+ setOperationAction(ISD::FTRUNC, RoundedTy, Legal);
+ setOperationAction(ISD::FRINT, RoundedTy, Legal);
+ setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal);
+ }
+
+ setOperationAction(ISD::SMAX, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMAX, MVT::v4i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v4i32, Legal);
+ setOperationAction(ISD::SMIN, MVT::v16i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v4i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::v8i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v4i32, Legal);
+
+ // FIXME: Do we need to handle scalar-to-vector here?
+ setOperationAction(ISD::MUL, MVT::v4i32, Legal);
+
+ // We directly match byte blends in the backend as they match the VSELECT
+ // condition form.
+ setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
+
+ // SSE41 brings specific instructions for doing vector sign extend even in
+ // cases where we don't have SRA.
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
+ }
+
+ // SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
+
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
+
+ // i8 and i16 vectors are custom because the source register and source
+ // source memory operand types are not the same width. f32 vectors are
+ // custom since the immediate controlling the insert encodes additional
+ // information.
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ // FIXME: these should be Legal, but that's only for the case where
+ // the index is constant. For now custom expand to deal with that.
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+ }
+ }
+
+ if (Subtarget->hasSSE2()) {
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
+
+ setOperationAction(ISD::SRL, MVT::v8i16, Custom);
+ setOperationAction(ISD::SRL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v8i16, Custom);
+ setOperationAction(ISD::SHL, MVT::v16i8, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i16, Custom);
+ setOperationAction(ISD::SRA, MVT::v16i8, Custom);
+
+ // In the customized shift lowering, the legal cases in AVX2 will be
+ // recognized.
+ setOperationAction(ISD::SRL, MVT::v2i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v2i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v2i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v4i32, Custom);
+ }
+
+ if (Subtarget->hasXOP()) {
+ setOperationAction(ISD::ROTL, MVT::v16i8, Custom);
+ setOperationAction(ISD::ROTL, MVT::v8i16, Custom);
+ setOperationAction(ISD::ROTL, MVT::v4i32, Custom);
+ setOperationAction(ISD::ROTL, MVT::v2i64, Custom);
+ setOperationAction(ISD::ROTL, MVT::v32i8, Custom);
+ setOperationAction(ISD::ROTL, MVT::v16i16, Custom);
+ setOperationAction(ISD::ROTL, MVT::v8i32, Custom);
+ setOperationAction(ISD::ROTL, MVT::v4i64, Custom);
+ }
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasFp256()) {
+ addRegisterClass(MVT::v32i8, &X86::VR256RegClass);
+ addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
+ addRegisterClass(MVT::v8i32, &X86::VR256RegClass);
+ addRegisterClass(MVT::v8f32, &X86::VR256RegClass);
+ addRegisterClass(MVT::v4i64, &X86::VR256RegClass);
+ addRegisterClass(MVT::v4f64, &X86::VR256RegClass);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v8f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v8f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v8f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v4f64, Custom);
+
+ // (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
+ // even though v8i16 is a legal type.
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
+
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
+
+ setOperationAction(ISD::SRL, MVT::v16i16, Custom);
+ setOperationAction(ISD::SRL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v16i16, Custom);
+ setOperationAction(ISD::SHL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v16i16, Custom);
+ setOperationAction(ISD::SRA, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::CTPOP, MVT::v32i8, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v16i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i64, Custom);
+
+ setOperationAction(ISD::CTTZ, MVT::v32i8, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v16i16, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v4i64, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v32i8, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i16, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom);
+
+ if (Subtarget->hasAnyFMA()) {
+ setOperationAction(ISD::FMA, MVT::v8f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMA, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMA, MVT::f32, Legal);
+ setOperationAction(ISD::FMA, MVT::f64, Legal);
+ }
+
+ if (Subtarget->hasInt256()) {
+ setOperationAction(ISD::ADD, MVT::v4i64, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v16i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v32i8, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v4i64, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v32i8, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v4i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i32, Legal);
+ setOperationAction(ISD::MUL, MVT::v16i16, Legal);
+ setOperationAction(ISD::MUL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
+ setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
+ setOperationAction(ISD::MULHU, MVT::v16i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v16i16, Legal);
+
+ setOperationAction(ISD::SMAX, MVT::v32i8, Legal);
+ setOperationAction(ISD::SMAX, MVT::v16i16, Legal);
+ setOperationAction(ISD::SMAX, MVT::v8i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::v32i8, Legal);
+ setOperationAction(ISD::UMAX, MVT::v16i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v8i32, Legal);
+ setOperationAction(ISD::SMIN, MVT::v32i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v16i16, Legal);
+ setOperationAction(ISD::SMIN, MVT::v8i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::v32i8, Legal);
+ setOperationAction(ISD::UMIN, MVT::v16i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v8i32, Legal);
+
+ // The custom lowering for UINT_TO_FP for v8i32 becomes interesting
+ // when we have a 256bit-wide blend with immediate.
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
+
+ // AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
+
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
+ } else {
+ setOperationAction(ISD::ADD, MVT::v4i64, Custom);
+ setOperationAction(ISD::ADD, MVT::v8i32, Custom);
+ setOperationAction(ISD::ADD, MVT::v16i16, Custom);
+ setOperationAction(ISD::ADD, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SUB, MVT::v4i64, Custom);
+ setOperationAction(ISD::SUB, MVT::v8i32, Custom);
+ setOperationAction(ISD::SUB, MVT::v16i16, Custom);
+ setOperationAction(ISD::SUB, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v4i64, Custom);
+ setOperationAction(ISD::MUL, MVT::v8i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v16i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v32i8, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v32i8, Custom);
+ setOperationAction(ISD::SMAX, MVT::v16i16, Custom);
+ setOperationAction(ISD::SMAX, MVT::v8i32, Custom);
+ setOperationAction(ISD::UMAX, MVT::v32i8, Custom);
+ setOperationAction(ISD::UMAX, MVT::v16i16, Custom);
+ setOperationAction(ISD::UMAX, MVT::v8i32, Custom);
+ setOperationAction(ISD::SMIN, MVT::v32i8, Custom);
+ setOperationAction(ISD::SMIN, MVT::v16i16, Custom);
+ setOperationAction(ISD::SMIN, MVT::v8i32, Custom);
+ setOperationAction(ISD::UMIN, MVT::v32i8, Custom);
+ setOperationAction(ISD::UMIN, MVT::v16i16, Custom);
+ setOperationAction(ISD::UMIN, MVT::v8i32, Custom);
+ }
+
+ // In the customized shift lowering, the legal cases in AVX2 will be
+ // recognized.
+ setOperationAction(ISD::SRL, MVT::v4i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v8i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v4i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v8i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v4i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v8i32, Custom);
+
+ // Custom lower several nodes for 256-bit types.
+ for (MVT VT : MVT::vector_valuetypes()) {
+ if (VT.getScalarSizeInBits() >= 32) {
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ }
+ // Extract subvector is special because the value type
+ // (result) is 128-bit but the source is 256-bit wide.
+ if (VT.is128BitVector()) {
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
+ }
+ // Do not attempt to custom lower other non-256-bit vectors
+ if (!VT.is256BitVector())
+ continue;
+
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
+ }
+
+ if (Subtarget->hasInt256())
+ setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
+
+ // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
+ for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v4i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v4i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
+ }
+ }
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasAVX512()) {
+ addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::i1, &X86::VK1RegClass);
+ addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
+ addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
+
+ for (MVT VT : MVT::fp_vector_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
+
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v16i32, MVT::v16i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v32i16, MVT::v32i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i8, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i16, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i16, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i64, MVT::v8i32, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::v8i64, MVT::v8i32, Legal);
+
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+ setOperationAction(ISD::SETCC, MVT::i1, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
+ setOperationAction(ISD::XOR, MVT::i1, Legal);
+ setOperationAction(ISD::OR, MVT::i1, Legal);
+ setOperationAction(ISD::AND, MVT::i1, Legal);
+ setOperationAction(ISD::SUB, MVT::i1, Custom);
+ setOperationAction(ISD::ADD, MVT::i1, Custom);
+ setOperationAction(ISD::MUL, MVT::i1, Custom);
+ setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i1, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v16f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v16f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v16f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v16f32, Custom);
+ setOperationAction(ISD::FABS, MVT::v16f32, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f64, Custom);
+ setOperationAction(ISD::FABS, MVT::v8f64, Custom);
+ setOperationAction(ISD::FMA, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v16f32, Legal);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i16, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
+
+ setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal);
+ setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal);
+ setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal);
+ setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal);
+ if (Subtarget->hasVLX()){
+ setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal);
+ setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
+
+ setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
+ } else {
+ setOperationAction(ISD::MLOAD, MVT::v8i32, Custom);
+ setOperationAction(ISD::MLOAD, MVT::v8f32, Custom);
+ setOperationAction(ISD::MSTORE, MVT::v8i32, Custom);
+ setOperationAction(ISD::MSTORE, MVT::v8f32, Custom);
+ }
+ setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i1, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i1, Custom);
+ if (Subtarget->hasDQI()) {
+ setOperationAction(ISD::TRUNCATE, MVT::v2i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v4i1, Custom);
+
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
+ if (Subtarget->hasVLX()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i64, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i64, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
+ }
+ }
+ if (Subtarget->hasVLX()) {
+ setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
+ }
+ setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
+ if (Subtarget->hasDQI()) {
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom);
+ }
+ setOperationAction(ISD::FFLOOR, MVT::v16f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::v8f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v16f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::v8f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v16f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::v8f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::v16f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::v8f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v16f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::v8f64, Legal);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v8i64, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::v16i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8i1, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v16i32, Legal);
+ setOperationAction(ISD::SMAX, MVT::v8i64, Legal);
+ setOperationAction(ISD::UMAX, MVT::v16i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::v8i64, Legal);
+ setOperationAction(ISD::SMIN, MVT::v16i32, Legal);
+ setOperationAction(ISD::SMIN, MVT::v8i64, Legal);
+ setOperationAction(ISD::UMIN, MVT::v16i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::v8i64, Legal);
+
+ setOperationAction(ISD::ADD, MVT::v8i64, Legal);
+ setOperationAction(ISD::ADD, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v8i64, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SRL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::AND, MVT::v8i64, Legal);
+ setOperationAction(ISD::OR, MVT::v8i64, Legal);
+ setOperationAction(ISD::XOR, MVT::v8i64, Legal);
+ setOperationAction(ISD::AND, MVT::v16i32, Legal);
+ setOperationAction(ISD::OR, MVT::v16i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v16i32, Legal);
+
+ if (Subtarget->hasCDI()) {
+ setOperationAction(ISD::CTLZ, MVT::v8i64, Legal);
+ setOperationAction(ISD::CTLZ, MVT::v16i32, Legal);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i32, Expand);
+
+ setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v16i16, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v32i8, Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i16, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i8, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v16i16, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i8, Expand);
+
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i64, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i32, Custom);
+
+ if (Subtarget->hasVLX()) {
+ setOperationAction(ISD::CTLZ, MVT::v4i64, Legal);
+ setOperationAction(ISD::CTLZ, MVT::v8i32, Legal);
+ setOperationAction(ISD::CTLZ, MVT::v2i64, Legal);
+ setOperationAction(ISD::CTLZ, MVT::v4i32, Legal);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Expand);
+
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
+ } else {
+ setOperationAction(ISD::CTLZ, MVT::v4i64, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v8i32, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v8i32, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v2i64, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v4i32, Expand);
+ }
+ } // Subtarget->hasCDI()
+
+ if (Subtarget->hasDQI()) {
+ setOperationAction(ISD::MUL, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v4i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v8i64, Legal);
+ }
+ // Custom lower several nodes.
+ for (MVT VT : MVT::vector_valuetypes()) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize == 1) {
+ setOperationAction(ISD::AND, VT, Legal);
+ setOperationAction(ISD::OR, VT, Legal);
+ setOperationAction(ISD::XOR, VT, Legal);
+ }
+ if ((VT.is128BitVector() || VT.is256BitVector()) && EltSize >= 32) {
+ setOperationAction(ISD::MGATHER, VT, Custom);
+ setOperationAction(ISD::MSCATTER, VT, Custom);
+ }
+ // Extract subvector is special because the value type
+ // (result) is 256/128-bit but the source is 512-bit wide.
+ if (VT.is128BitVector() || VT.is256BitVector()) {
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
+ }
+ if (VT.getVectorElementType() == MVT::i1)
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+
+ // Do not attempt to custom lower other non-512-bit vectors
+ if (!VT.is512BitVector())
+ continue;
+
+ if (EltSize >= 32) {
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ setOperationAction(ISD::MLOAD, VT, Legal);
+ setOperationAction(ISD::MSTORE, VT, Legal);
+ setOperationAction(ISD::MGATHER, VT, Legal);
+ setOperationAction(ISD::MSCATTER, VT, Custom);
+ }
+ }
+ for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
+ }
+ }// has AVX-512
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasBWI()) {
+ addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
+ addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
+ addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
+
+ setOperationAction(ISD::LOAD, MVT::v32i16, Legal);
+ setOperationAction(ISD::LOAD, MVT::v64i8, Legal);
+ setOperationAction(ISD::SETCC, MVT::v32i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v64i1, Custom);
+ setOperationAction(ISD::ADD, MVT::v32i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v64i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v32i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v64i8, Legal);
+ setOperationAction(ISD::MUL, MVT::v32i16, Legal);
+ setOperationAction(ISD::MULHS, MVT::v32i16, Legal);
+ setOperationAction(ISD::MULHU, MVT::v32i16, Legal);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
+ setOperationAction(ISD::SELECT, MVT::v32i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v64i1, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i1, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v32i16, Legal);
+ setOperationAction(ISD::VSELECT, MVT::v64i8, Legal);
+ setOperationAction(ISD::TRUNCATE, MVT::v32i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v64i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i1, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i1, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v64i8, Legal);
+ setOperationAction(ISD::SMAX, MVT::v32i16, Legal);
+ setOperationAction(ISD::UMAX, MVT::v64i8, Legal);
+ setOperationAction(ISD::UMAX, MVT::v32i16, Legal);
+ setOperationAction(ISD::SMIN, MVT::v64i8, Legal);
+ setOperationAction(ISD::SMIN, MVT::v32i16, Legal);
+ setOperationAction(ISD::UMIN, MVT::v64i8, Legal);
+ setOperationAction(ISD::UMIN, MVT::v32i16, Legal);
+
+ setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal);
+ setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal);
+ if (Subtarget->hasVLX())
+ setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
+
+ if (Subtarget->hasCDI()) {
+ setOperationAction(ISD::CTLZ, MVT::v32i16, Custom);
+ setOperationAction(ISD::CTLZ, MVT::v64i8, Custom);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v32i16, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::v64i8, Expand);
+ }
+
+ for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Legal);
+ setOperationAction(ISD::SRL, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v8i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v8i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v8i64);
+ }
+ }
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasVLX()) {
+ addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
+ addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
+
+ setOperationAction(ISD::SETCC, MVT::v4i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v2i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i1, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i1, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i1, Custom);
+
+ setOperationAction(ISD::AND, MVT::v8i32, Legal);
+ setOperationAction(ISD::OR, MVT::v8i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v8i32, Legal);
+ setOperationAction(ISD::AND, MVT::v4i32, Legal);
+ setOperationAction(ISD::OR, MVT::v4i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v4i32, Legal);
+ setOperationAction(ISD::SRA, MVT::v2i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v4i64, Custom);
+
+ setOperationAction(ISD::SMAX, MVT::v2i64, Legal);
+ setOperationAction(ISD::SMAX, MVT::v4i64, Legal);
+ setOperationAction(ISD::UMAX, MVT::v2i64, Legal);
+ setOperationAction(ISD::UMAX, MVT::v4i64, Legal);
+ setOperationAction(ISD::SMIN, MVT::v2i64, Legal);
+ setOperationAction(ISD::SMIN, MVT::v4i64, Legal);
+ setOperationAction(ISD::UMIN, MVT::v2i64, Legal);
+ setOperationAction(ISD::UMIN, MVT::v4i64, Legal);
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
+ if (!Subtarget->is64Bit()) {
+ setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
+ }
+
+ // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
+ // handle type legalization for these operations here.
+ //
+ // FIXME: We really should do custom legalization for addition and
+ // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
+ // than generic legalization for 64-bit multiplication-with-overflow, though.
+ for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
+ if (VT == MVT::i64 && !Subtarget->is64Bit())
+ continue;
+ // Add/Sub/Mul with overflow operations are custom lowered.
+ setOperationAction(ISD::SADDO, VT, Custom);
+ setOperationAction(ISD::UADDO, VT, Custom);
+ setOperationAction(ISD::SSUBO, VT, Custom);
+ setOperationAction(ISD::USUBO, VT, Custom);
+ setOperationAction(ISD::SMULO, VT, Custom);
+ setOperationAction(ISD::UMULO, VT, Custom);
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+ }
+
+ // Combine sin / cos into one node or libcall if possible.
+ if (Subtarget->hasSinCos()) {
+ setLibcallName(RTLIB::SINCOS_F32, "sincosf");
+ setLibcallName(RTLIB::SINCOS_F64, "sincos");
+ if (Subtarget->isTargetDarwin()) {
+ // For MacOSX, we don't want the normal expansion of a libcall to sincos.
+ // We want to issue a libcall to __sincos_stret to avoid memory traffic.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ }
+ }
+
+ if (Subtarget->isTargetWin64()) {
+ setOperationAction(ISD::SDIV, MVT::i128, Custom);
+ setOperationAction(ISD::UDIV, MVT::i128, Custom);
+ setOperationAction(ISD::SREM, MVT::i128, Custom);
+ setOperationAction(ISD::UREM, MVT::i128, Custom);
+ setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::BITCAST);
+ setTargetDAGCombine(ISD::VSELECT);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+ setTargetDAGCombine(ISD::FNEG);
+ setTargetDAGCombine(ISD::FMA);
+ setTargetDAGCombine(ISD::FMINNUM);
+ setTargetDAGCombine(ISD::FMAXNUM);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::LOAD);
+ setTargetDAGCombine(ISD::MLOAD);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::MSTORE);
+ setTargetDAGCombine(ISD::TRUNCATE);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
+ setTargetDAGCombine(ISD::SINT_TO_FP);
+ setTargetDAGCombine(ISD::UINT_TO_FP);
+ setTargetDAGCombine(ISD::SETCC);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::XOR);
+ setTargetDAGCombine(ISD::MSCATTER);
+ setTargetDAGCombine(ISD::MGATHER);
+
+ computeRegisterProperties(Subtarget->getRegisterInfo());
+
+ MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
+ MaxStoresPerMemsetOptSize = 8;
+ MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = 4;
+ MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = 4;
+ setPrefLoopAlignment(4); // 2^4 bytes.
+
+ // A predictable cmov does not hurt on an in-order CPU.
+ // FIXME: Use a CPU attribute to trigger this, not a CPU model.
+ PredictableSelectIsExpensive = !Subtarget->isAtom();
+ EnableExtLdPromotion = true;
+ setPrefFunctionAlignment(4); // 2^4 bytes.
+
+ verifyIntrinsicTables();
+}
+
+// This has so far only been implemented for 64-bit MachO.
+bool X86TargetLowering::useLoadStackGuardNode() const {
+ return Subtarget->isTargetMachO() && Subtarget->is64Bit();
+}
+
+TargetLoweringBase::LegalizeTypeAction
+X86TargetLowering::getPreferredVectorAction(EVT VT) const {
+ if (ExperimentalVectorWideningLegalization &&
+ VT.getVectorNumElements() != 1 &&
+ VT.getVectorElementType().getSimpleVT() != MVT::i1)
+ return TypeWidenVector;
+
+ return TargetLoweringBase::getPreferredVectorAction(VT);
+}
+
+EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
+ EVT VT) const {
+ if (!VT.isVector())
+ return Subtarget->hasAVX512() ? MVT::i1: MVT::i8;
+
+ if (VT.isSimple()) {
+ MVT VVT = VT.getSimpleVT();
+ const unsigned NumElts = VVT.getVectorNumElements();
+ const MVT EltVT = VVT.getVectorElementType();
+ if (VVT.is512BitVector()) {
+ if (Subtarget->hasAVX512())
+ if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
+ EltVT == MVT::f32 || EltVT == MVT::f64)
+ switch(NumElts) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ }
+ if (Subtarget->hasBWI())
+ if (EltVT == MVT::i8 || EltVT == MVT::i16)
+ switch(NumElts) {
+ case 32: return MVT::v32i1;
+ case 64: return MVT::v64i1;
+ }
+ }
+
+ if (VVT.is256BitVector() || VVT.is128BitVector()) {
+ if (Subtarget->hasVLX())
+ if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
+ EltVT == MVT::f32 || EltVT == MVT::f64)
+ switch(NumElts) {
+ case 2: return MVT::v2i1;
+ case 4: return MVT::v4i1;
+ case 8: return MVT::v8i1;
+ }
+ if (Subtarget->hasBWI() && Subtarget->hasVLX())
+ if (EltVT == MVT::i8 || EltVT == MVT::i16)
+ switch(NumElts) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ case 32: return MVT::v32i1;
+ }
+ }
+ }
+
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
+ if (MaxAlign == 16)
+ return;
+ if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (VTy->getBitWidth() == 128)
+ MaxAlign = 16;
+ } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (auto *EltTy : STy->elements()) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(EltTy, EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == 16)
+ break;
+ }
+ }
+}
+
+/// Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. For X86, aggregates
+/// that contain SSE vectors are placed at 16-byte boundaries while the rest
+/// are at 4-byte boundaries.
+unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
+ const DataLayout &DL) const {
+ if (Subtarget->is64Bit()) {
+ // Max of 8 and alignment of type.
+ unsigned TyAlign = DL.getABITypeAlignment(Ty);
+ if (TyAlign > 8)
+ return TyAlign;
+ return 8;
+ }
+
+ unsigned Align = 4;
+ if (Subtarget->hasSSE1())
+ getMaxByValAlign(Ty, Align);
+ return Align;
+}
+
+/// Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If 'IsMemset' is
+/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
+/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
+/// source is constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT
+X86TargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function *F = MF.getFunction();
+ if ((!IsMemset || ZeroMemset) &&
+ !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
+ if (Size >= 16 &&
+ (!Subtarget->isUnalignedMem16Slow() ||
+ ((DstAlign == 0 || DstAlign >= 16) &&
+ (SrcAlign == 0 || SrcAlign >= 16)))) {
+ if (Size >= 32) {
+ // FIXME: Check if unaligned 32-byte accesses are slow.
+ if (Subtarget->hasInt256())
+ return MVT::v8i32;
+ if (Subtarget->hasFp256())
+ return MVT::v8f32;
+ }
+ if (Subtarget->hasSSE2())
+ return MVT::v4i32;
+ if (Subtarget->hasSSE1())
+ return MVT::v4f32;
+ } else if (!MemcpyStrSrc && Size >= 8 &&
+ !Subtarget->is64Bit() &&
+ Subtarget->hasSSE2()) {
+ // Do not use f64 to lower memcpy if source is string constant. It's
+ // better to use i32 to avoid the loads.
+ return MVT::f64;
+ }
+ }
+ // This is a compromise. If we reach here, unaligned accesses may be slow on
+ // this target. However, creating smaller, aligned accesses could be even
+ // slower and would certainly be a lot more code.
+ if (Subtarget->is64Bit() && Size >= 8)
+ return MVT::i64;
+ return MVT::i32;
+}
+
+bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
+ if (VT == MVT::f32)
+ return X86ScalarSSEf32;
+ else if (VT == MVT::f64)
+ return X86ScalarSSEf64;
+ return true;
+}
+
+bool
+X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
+ if (Fast) {
+ switch (VT.getSizeInBits()) {
+ default:
+ // 8-byte and under are always assumed to be fast.
+ *Fast = true;
+ break;
+ case 128:
+ *Fast = !Subtarget->isUnalignedMem16Slow();
+ break;
+ case 256:
+ *Fast = !Subtarget->isUnalignedMem32Slow();
+ break;
+ // TODO: What about AVX-512 (512-bit) accesses?
+ }
+ }
+ // Misaligned accesses of any size are always allowed.
+ return true;
+}
+
+/// Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned X86TargetLowering::getJumpTableEncoding() const {
+ // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
+ // symbol.
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT())
+ return MachineJumpTableInfo::EK_Custom32;
+
+ // Otherwise, use the normal jump table encoding heuristics.
+ return TargetLowering::getJumpTableEncoding();
+}
+
+bool X86TargetLowering::useSoftFloat() const {
+ return Subtarget->useSoftFloat();
+}
+
+const MCExpr *
+X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid,MCContext &Ctx) const{
+ assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT());
+ // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
+ // entries.
+ return MCSymbolRefExpr::create(MBB->getSymbol(),
+ MCSymbolRefExpr::VK_GOTOFF, Ctx);
+}
+
+/// Returns relocation base for the given PIC jumptable.
+SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ if (!Subtarget->is64Bit())
+ // This doesn't have SDLoc associated with it, but is not really the
+ // same as a Register.
+ return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
+ getPointerTy(DAG.getDataLayout()));
+ return Table;
+}
+
+/// This returns the relocation base for the given PIC jumptable,
+/// the same as getPICJumpTableRelocBase, but as an MCExpr.
+const MCExpr *X86TargetLowering::
+getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
+ MCContext &Ctx) const {
+ // X86-64 uses RIP relative addressing based on the jump table label.
+ if (Subtarget->isPICStyleRIPRel())
+ return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
+
+ // Otherwise, the reference is relative to the PIC base.
+ return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
+}
+
+std::pair<const TargetRegisterClass *, uint8_t>
+X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
+ MVT VT) const {
+ const TargetRegisterClass *RRC = nullptr;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(TRI, VT);
+ case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
+ RRC = Subtarget->is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
+ break;
+ case MVT::x86mmx:
+ RRC = &X86::VR64RegClass;
+ break;
+ case MVT::f32: case MVT::f64:
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
+ case MVT::v4f64:
+ RRC = &X86::VR128RegClass;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
+ unsigned &Offset) const {
+ if (!Subtarget->isTargetLinux())
+ return false;
+
+ if (Subtarget->is64Bit()) {
+ // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
+ Offset = 0x28;
+ if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
+ AddressSpace = 256;
+ else
+ AddressSpace = 257;
+ } else {
+ // %gs:0x14 on i386
+ Offset = 0x14;
+ AddressSpace = 256;
+ }
+ return true;
+}
+
+Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
+ if (!Subtarget->isTargetAndroid())
+ return TargetLowering::getSafeStackPointerLocation(IRB);
+
+ // Android provides a fixed TLS slot for the SafeStack pointer. See the
+ // definition of TLS_SLOT_SAFESTACK in
+ // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
+ unsigned AddressSpace, Offset;
+ if (Subtarget->is64Bit()) {
+ // %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
+ Offset = 0x48;
+ if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
+ AddressSpace = 256;
+ else
+ AddressSpace = 257;
+ } else {
+ // %gs:0x24 on i386
+ Offset = 0x24;
+ AddressSpace = 256;
+ }
+
+ return ConstantExpr::getIntToPtr(
+ ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
+ Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
+}
+
+bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ assert(SrcAS != DestAS && "Expected different address spaces!");
+
+ return SrcAS < 256 && DestAS < 256;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "X86GenCallingConv.inc"
+
+bool X86TargetLowering::CanLowerReturn(
+ CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, RetCC_X86);
+}
+
+const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
+ return ScratchRegs;
+}
+
+SDValue
+X86TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ if (CallConv == CallingConv::X86_INTR && !Outs.empty())
+ report_fatal_error("X86 interrupts may not return any value");
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ SDValue Flag;
+ SmallVector<SDValue, 6> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ // Operand #1 = Bytes To Pop
+ RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
+ MVT::i16));
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue ValToCopy = OutVals[i];
+ EVT ValVT = ValToCopy.getValueType();
+
+ // Promote values to the appropriate types.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else if (VA.getLocInfo() == CCValAssign::AExt) {
+ if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
+ ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ else
+ ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
+ }
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
+
+ assert(VA.getLocInfo() != CCValAssign::FPExt &&
+ "Unexpected FP-extend for return value.");
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values,
+ // or SSE or MMX vectors.
+ if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
+ VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
+ (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+ // Likewise we can't return F64 values with SSE1 only. gcc does so, but
+ // llvm-gcc has never done it right and no one has noticed, so this
+ // should be OK for now.
+ if (ValVT == MVT::f64 &&
+ (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
+ report_fatal_error("SSE2 register return with SSE2 disabled");
+
+ // Returns in ST0/ST1 are handled specially: these are pushed as operands to
+ // the RET instruction and handled by the FP Stackifier.
+ if (VA.getLocReg() == X86::FP0 ||
+ VA.getLocReg() == X86::FP1) {
+ // If this is a copy from an xmm register to ST(0), use an FPExtend to
+ // change the value to the FP stack register class.
+ if (isScalarFPTypeInSSEReg(VA.getValVT()))
+ ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
+ RetOps.push_back(ValToCopy);
+ // Don't emit a copytoreg.
+ continue;
+ }
+
+ // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
+ // which is returned in RAX / RDX.
+ if (Subtarget->is64Bit()) {
+ if (ValVT == MVT::x86mmx) {
+ if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
+ ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
+ ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ ValToCopy);
+ // If we don't have SSE2 available, convert to v4f32 so the generated
+ // register is legal.
+ if (!Subtarget->hasSSE2())
+ ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
+ }
+ }
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // All x86 ABIs require that for returning structs by value we copy
+ // the sret argument into %rax/%eax (depending on ABI) for the return.
+ // We saved the argument into a virtual register in the entry block,
+ // so now we copy the value out and into %rax/%eax.
+ //
+ // Checking Function.hasStructRetAttr() here is insufficient because the IR
+ // may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
+ // false, then an sret argument may be implicitly inserted in the SelDAG. In
+ // either case FuncInfo->setSRetReturnReg() will have been called.
+ if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, SRetReg,
+ getPointerTy(MF.getDataLayout()));
+
+ unsigned RetValReg
+ = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
+ X86::RAX : X86::EAX;
+ Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
+ Flag = Chain.getValue(1);
+
+ // RAX/EAX now acts like a return value.
+ RetOps.push_back(
+ DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ X86ISD::NodeType opcode = X86ISD::RET_FLAG;
+ if (CallConv == CallingConv::X86_INTR)
+ opcode = X86ISD::IRET;
+ return DAG.getNode(opcode, dl, MVT::Other, RetOps);
+}
+
+bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() != ISD::FP_EXTEND)
+ return false;
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != X86ISD::RET_FLAG)
+ return false;
+ // If we are returning more than one value, we can definitely
+ // not make a tail call see PR19530
+ if (UI->getNumOperands() > 4)
+ return false;
+ if (UI->getNumOperands() == 4 &&
+ UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+EVT
+X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
+ ISD::NodeType ExtendKind) const {
+ MVT ReturnMVT;
+ // TODO: Is this also valid on 32-bit?
+ if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
+ ReturnMVT = MVT::i8;
+ else
+ ReturnMVT = MVT::i32;
+
+ EVT MinVT = getRegisterType(Context, ReturnMVT);
+ return VT.bitsLT(MinVT) ? MinVT : VT;
+}
+
+/// Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ bool Is64Bit = Subtarget->is64Bit();
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ EVT CopyVT = VA.getLocVT();
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+
+ // If we prefer to use the value in xmm registers, copy it out as f80 and
+ // use a truncate to move it from fp stack reg to xmm reg.
+ bool RoundAfterCopy = false;
+ if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT())) {
+ CopyVT = MVT::f80;
+ RoundAfterCopy = (CopyVT != VA.getLocVT());
+ }
+
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ CopyVT, InFlag).getValue(1);
+ SDValue Val = Chain.getValue(0);
+
+ if (RoundAfterCopy)
+ Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
+ // This truncation won't change the value.
+ DAG.getIntPtrConstant(1, dl));
+
+ if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
+ Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
+
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// C & StdCall & Fast Calling Convention implementation
+//===----------------------------------------------------------------------===//
+// StdCall calling convention seems to be standard for many Windows' API
+// routines and around. It differs from C calling convention just a little:
+// callee should clean up the stack, not caller. Symbols should be also
+// decorated in some fancy way :) It doesn't support any vector arguments.
+// For info on fast calling convention see Fast Calling Convention (tail call)
+// implementation LowerX86_32FastCCCallTo.
+
+/// CallIsStructReturn - Determines whether a call uses struct return
+/// semantics.
+enum StructReturnType {
+ NotStructReturn,
+ RegStructReturn,
+ StackStructReturn
+};
+static StructReturnType
+callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) {
+ if (Outs.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg() || IsMCU)
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// Determines whether a function uses struct return semantics.
+static StructReturnType
+argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) {
+ if (Ins.empty())
+ return NotStructReturn;
+
+ const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
+ if (!Flags.isSRet())
+ return NotStructReturn;
+ if (Flags.isInReg() || IsMCU)
+ return RegStructReturn;
+ return StackStructReturn;
+}
+
+/// Make a copy of an aggregate at address specified by "Src" to address
+/// "Dst" with size and alignment information specified by the specific
+/// parameter attribute. The copy will be passed as a byval function parameter.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
+
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile*/false, /*AlwaysInline=*/true,
+ /*isTailCall*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+/// Return true if the calling convention is one that we can guarantee TCO for.
+static bool canGuaranteeTCO(CallingConv::ID CC) {
+ return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
+ CC == CallingConv::HiPE || CC == CallingConv::HHVM);
+}
+
+/// Return true if we might ever do TCO for calls with this calling convention.
+static bool mayTailCallThisCC(CallingConv::ID CC) {
+ switch (CC) {
+ // C calling conventions:
+ case CallingConv::C:
+ case CallingConv::X86_64_Win64:
+ case CallingConv::X86_64_SysV:
+ // Callee pop conventions:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::X86_StdCall:
+ case CallingConv::X86_VectorCall:
+ case CallingConv::X86_FastCall:
+ return true;
+ default:
+ return canGuaranteeTCO(CC);
+ }
+}
+
+/// Return true if the function is being made into a tailcall target by
+/// changing its ABI.
+static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
+ return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
+}
+
+bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ auto Attr =
+ CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
+ if (!CI->isTailCall() || Attr.getValueAsString() == "true")
+ return false;
+
+ CallSite CS(CI);
+ CallingConv::ID CalleeCC = CS.getCallingConv();
+ if (!mayTailCallThisCC(CalleeCC))
+ return false;
+
+ return true;
+}
+
+SDValue
+X86TargetLowering::LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ MachineFrameInfo *MFI,
+ unsigned i) const {
+ // Create the nodes corresponding to a load from this parameter slot.
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool AlwaysUseMutable = shouldGuaranteeTCO(
+ CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
+ bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
+ EVT ValVT;
+
+ // If value is passed by pointer we have address passed instead of the value
+ // itself.
+ bool ExtendedInMem = VA.isExtInLoc() &&
+ VA.getValVT().getScalarType() == MVT::i1;
+
+ if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
+ ValVT = VA.getLocVT();
+ else
+ ValVT = VA.getValVT();
+
+ // Calculate SP offset of interrupt parameter, re-arrange the slot normally
+ // taken by a return address.
+ int Offset = 0;
+ if (CallConv == CallingConv::X86_INTR) {
+ const X86Subtarget& Subtarget =
+ static_cast<const X86Subtarget&>(DAG.getSubtarget());
+ // X86 interrupts may take one or two arguments.
+ // On the stack there will be no return address as in regular call.
+ // Offset of last argument need to be set to -4/-8 bytes.
+ // Where offset of the first argument out of two, should be set to 0 bytes.
+ Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
+ }
+
+ // FIXME: For now, all byval parameter objects are marked mutable. This can be
+ // changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable. Since they
+ // could be overwritten by lowering of arguments in case of a tail call.
+ if (Flags.isByVal()) {
+ unsigned Bytes = Flags.getByValSize();
+ if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
+ int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
+ // Adjust SP offset of interrupt parameter.
+ if (CallConv == CallingConv::X86_INTR) {
+ MFI->setObjectOffset(FI, Offset);
+ }
+ return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ } else {
+ int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
+ VA.getLocMemOffset(), isImmutable);
+ // Adjust SP offset of interrupt parameter.
+ if (CallConv == CallingConv::X86_INTR) {
+ MFI->setObjectOffset(FI, Offset);
+ }
+
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ SDValue Val = DAG.getLoad(
+ ValVT, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
+ false, false, 0);
+ return ExtendedInMem ?
+ DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
+ }
+}
+
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
+ const X86Subtarget *Subtarget) {
+ assert(Subtarget->is64Bit());
+
+ if (Subtarget->isCallingConvWin64(CallConv)) {
+ static const MCPhysReg GPR64ArgRegsWin64[] = {
+ X86::RCX, X86::RDX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
+ }
+
+ static const MCPhysReg GPR64ArgRegs64Bit[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
+ };
+ return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
+}
+
+// FIXME: Get this from tablegen.
+static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
+ CallingConv::ID CallConv,
+ const X86Subtarget *Subtarget) {
+ assert(Subtarget->is64Bit());
+ if (Subtarget->isCallingConvWin64(CallConv)) {
+ // The XMM registers which might contain var arg parameters are shadowed
+ // in their paired GPR. So we only need to save the GPR to their home
+ // slots.
+ // TODO: __vectorcall will change this.
+ return None;
+ }
+
+ const Function *Fn = MF.getFunction();
+ bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
+ bool isSoftFloat = Subtarget->useSoftFloat();
+ assert(!(isSoftFloat && NoImplicitFloatOps) &&
+ "SSE register cannot be used when SSE is disabled!");
+ if (isSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
+ // Kernel mode asks for SSE to be disabled, so there are no XMM argument
+ // registers.
+ return None;
+
+ static const MCPhysReg XMMArgRegs64Bit[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
+}
+
+SDValue X86TargetLowering::LowerFormalArguments(
+ SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
+
+ const Function* Fn = MF.getFunction();
+ if (Fn->hasExternalLinkage() &&
+ Subtarget->isTargetCygMing() &&
+ Fn->getName() == "main")
+ FuncInfo->setForceFramePointer(true);
+
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
+
+ assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
+ "Var args not supported with calling convention fastcc, ghc or hipe");
+
+ if (CallConv == CallingConv::X86_INTR) {
+ bool isLegal = Ins.size() == 1 ||
+ (Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
+ (!Is64Bit && Ins[1].VT == MVT::i32)));
+ if (!isLegal)
+ report_fatal_error("X86 interrupts may take one or two arguments");
+ }
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
+
+ unsigned LastVal = ~0U;
+ SDValue ArgValue;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+ // places.
+ assert(VA.getValNo() != LastVal &&
+ "Don't support value assigned to multiple locs yet");
+ (void)LastVal;
+ LastVal = VA.getValNo();
+
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ const TargetRegisterClass *RC;
+ if (RegVT == MVT::i32)
+ RC = &X86::GR32RegClass;
+ else if (Is64Bit && RegVT == MVT::i64)
+ RC = &X86::GR64RegClass;
+ else if (RegVT == MVT::f32)
+ RC = &X86::FR32RegClass;
+ else if (RegVT == MVT::f64)
+ RC = &X86::FR64RegClass;
+ else if (RegVT == MVT::f128)
+ RC = &X86::FR128RegClass;
+ else if (RegVT.is512BitVector())
+ RC = &X86::VR512RegClass;
+ else if (RegVT.is256BitVector())
+ RC = &X86::VR256RegClass;
+ else if (RegVT.is128BitVector())
+ RC = &X86::VR128RegClass;
+ else if (RegVT == MVT::x86mmx)
+ RC = &X86::VR64RegClass;
+ else if (RegVT == MVT::i1)
+ RC = &X86::VK1RegClass;
+ else if (RegVT == MVT::v8i1)
+ RC = &X86::VK8RegClass;
+ else if (RegVT == MVT::v16i1)
+ RC = &X86::VK16RegClass;
+ else if (RegVT == MVT::v32i1)
+ RC = &X86::VK32RegClass;
+ else if (RegVT == MVT::v64i1)
+ RC = &X86::VK64RegClass;
+ else
+ llvm_unreachable("Unknown argument type!");
+
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it is really passed promoted to 32
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
+
+ if (VA.isExtInLoc()) {
+ // Handle MMX values passed in XMM regs.
+ if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
+ ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
+ else
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ }
+ } else {
+ assert(VA.isMemLoc());
+ ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
+ }
+
+ // If value is passed via pointer - do a load.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
+ MachinePointerInfo(), false, false, false, 0);
+
+ InVals.push_back(ArgValue);
+ }
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // All x86 ABIs require that for returning structs by value we copy the
+ // sret argument into %rax/%eax (depending on ABI) for the return. Save
+ // the argument into a virtual register so that we can access it from the
+ // return points.
+ if (Ins[i].Flags.isSRet()) {
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ if (!Reg) {
+ MVT PtrTy = getPointerTy(DAG.getDataLayout());
+ Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
+ FuncInfo->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ break;
+ }
+ }
+
+ unsigned StackSize = CCInfo.getNextStackOffset();
+ // Align stack specially for tail calls.
+ if (shouldGuaranteeTCO(CallConv,
+ MF.getTarget().Options.GuaranteedTailCallOpt))
+ StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start. We
+ // can skip this if there are no va_start calls.
+ if (MFI->hasVAStart() &&
+ (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
+ CallConv != CallingConv::X86_ThisCall))) {
+ FuncInfo->setVarArgsFrameIndex(
+ MFI->CreateFixedObject(1, StackSize, true));
+ }
+
+ // Figure out if XMM registers are in use.
+ assert(!(Subtarget->useSoftFloat() &&
+ Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // 64-bit calling conventions support varargs and register parameters, so we
+ // have to do extra work to spill them in the prologue.
+ if (Is64Bit && isVarArg && MFI->hasVAStart()) {
+ // Find the first unallocated argument registers.
+ ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
+ ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
+ unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
+ assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
+ "SSE register cannot be used when SSE is disabled!");
+
+ // Gather all the live in physical registers.
+ SmallVector<SDValue, 6> LiveGPRs;
+ SmallVector<SDValue, 8> LiveXMMRegs;
+ SDValue ALVal;
+ for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
+ unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
+ LiveGPRs.push_back(
+ DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
+ }
+ if (!ArgXMMs.empty()) {
+ unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
+ for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
+ unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
+ LiveXMMRegs.push_back(
+ DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
+ }
+ }
+
+ if (IsWin64) {
+ // Get to the caller-allocated home save location. Add 8 to account
+ // for the return address.
+ int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
+ FuncInfo->setRegSaveFrameIndex(
+ MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
+ // Fixup to set vararg frame on shadow area (4 x i64).
+ if (NumIntRegs < 4)
+ FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
+ } else {
+ // For X86-64, if there are vararg parameters that are passed via
+ // registers, then we must store them to their spots on the stack so
+ // they may be loaded by deferencing the result of va_next.
+ FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
+ FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
+ FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
+ ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
+ }
+
+ // Store the integer parameter registers.
+ SmallVector<SDValue, 8> MemOps;
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy(DAG.getDataLayout()));
+ unsigned Offset = FuncInfo->getVarArgsGPOffset();
+ for (SDValue Val : LiveGPRs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ RSFIN, DAG.getIntPtrConstant(Offset, dl));
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo::getFixedStack(
+ DAG.getMachineFunction(),
+ FuncInfo->getRegSaveFrameIndex(), Offset),
+ false, false, 0);
+ MemOps.push_back(Store);
+ Offset += 8;
+ }
+
+ if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 12> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+ SaveXMMOps.push_back(ALVal);
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getRegSaveFrameIndex(), dl));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getVarArgsFPOffset(), dl));
+ SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
+ LiveXMMRegs.end());
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other, SaveXMMOps));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ }
+
+ if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
+ // Find the largest legal vector type.
+ MVT VecVT = MVT::Other;
+ // FIXME: Only some x86_32 calling conventions support AVX512.
+ if (Subtarget->hasAVX512() &&
+ (Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
+ CallConv == CallingConv::Intel_OCL_BI)))
+ VecVT = MVT::v16f32;
+ else if (Subtarget->hasAVX())
+ VecVT = MVT::v8f32;
+ else if (Subtarget->hasSSE2())
+ VecVT = MVT::v4f32;
+
+ // We forward some GPRs and some vector types.
+ SmallVector<MVT, 2> RegParmTypes;
+ MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
+ RegParmTypes.push_back(IntVT);
+ if (VecVT != MVT::Other)
+ RegParmTypes.push_back(VecVT);
+
+ // Compute the set of forwarded registers. The rest are scratch.
+ SmallVectorImpl<ForwardedRegister> &Forwards =
+ FuncInfo->getForwardedMustTailRegParms();
+ CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
+
+ // Conservatively forward AL on x86_64, since it might be used for varargs.
+ if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
+ unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
+ Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
+ }
+
+ // Copy all forwards from physical to virtual registers.
+ for (ForwardedRegister &F : Forwards) {
+ // FIXME: Can we use a less constrained schedule?
+ SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
+ Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
+ }
+ }
+
+ // Some CCs need callee pop.
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt)) {
+ FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
+ } else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
+ // X86 interrupts must pop the error code if present
+ FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4);
+ } else {
+ FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
+ // If this is an sret function, the return should pop the hidden pointer.
+ if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
+ !Subtarget->getTargetTriple().isOSMSVCRT() &&
+ argsAreStructReturn(Ins, Subtarget->isTargetMCU()) == StackStructReturn)
+ FuncInfo->setBytesToPopOnReturn(4);
+ }
+
+ if (!Is64Bit) {
+ // RegSaveFrameIndex is X86-64 only.
+ FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
+ if (CallConv == CallingConv::X86_FastCall ||
+ CallConv == CallingConv::X86_ThisCall)
+ // fastcc functions can't have varargs.
+ FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
+ }
+
+ FuncInfo->setArgumentStackSize(StackSize);
+
+ if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
+ EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
+ if (Personality == EHPersonality::CoreCLR) {
+ assert(Is64Bit);
+ // TODO: Add a mechanism to frame lowering that will allow us to indicate
+ // that we'd prefer this slot be allocated towards the bottom of the frame
+ // (i.e. near the stack pointer after allocating the frame). Every
+ // funclet needs a copy of this slot in its (mostly empty) frame, and the
+ // offset from the bottom of this and each funclet's frame must be the
+ // same, so the size of funclets' (mostly empty) frames is dictated by
+ // how far this slot is from the bottom (since they allocate just enough
+ // space to accomodate holding this slot at the correct offset).
+ int PSPSymFI = MFI->CreateStackObject(8, 8, /*isSS=*/false);
+ EHInfo->PSPSymFrameIdx = PSPSymFI;
+ }
+ }
+
+ return Chain;
+}
+
+SDValue
+X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ StackPtr, PtrOff);
+ if (Flags.isByVal())
+ return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
+
+ return DAG.getStore(
+ Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
+ false, false, 0);
+}
+
+/// Emit a load of return address if tail call
+/// optimization is performed and it is required.
+SDValue
+X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
+ SDValue &OutRetAddr, SDValue Chain,
+ bool IsTailCall, bool Is64Bit,
+ int FPDiff, SDLoc dl) const {
+ // Adjust the Return address stack slot.
+ EVT VT = getPointerTy(DAG.getDataLayout());
+ OutRetAddr = getReturnAddressFrameIndex(DAG);
+
+ // Load the "old" Return address.
+ OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
+ false, false, false, 0);
+ return SDValue(OutRetAddr.getNode(), 1);
+}
+
+/// Emit a store of the return address if tail call
+/// optimization is performed and it is required (FPDiff!=0).
+static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
+ SDValue Chain, SDValue RetAddrFrIdx,
+ EVT PtrVT, unsigned SlotSize,
+ int FPDiff, SDLoc dl) {
+ // Store the return address to the appropriate stack slot.
+ if (!FPDiff) return Chain;
+ // Calculate the new stack slot for the return address.
+ int NewReturnAddrFI =
+ MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
+ false);
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
+ Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
+ MachinePointerInfo::getFixedStack(
+ DAG.getMachineFunction(), NewReturnAddrFI),
+ false, false, 0);
+ return Chain;
+}
+
+/// Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ Mask.push_back(NumElems);
+ for (unsigned i = 1; i != NumElems; ++i)
+ Mask.push_back(i);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+SDValue
+X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool &isTailCall = CLI.IsTailCall;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
+ StructReturnType SR = callIsStructReturn(Outs, Subtarget->isTargetMCU());
+ bool IsSibcall = false;
+ X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
+ auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
+
+ if (CallConv == CallingConv::X86_INTR)
+ report_fatal_error("X86 interrupts may not be called directly");
+
+ if (Attr.getValueAsString() == "true")
+ isTailCall = false;
+
+ if (Subtarget->isPICStyleGOT() &&
+ !MF.getTarget().Options.GuaranteedTailCallOpt) {
+ // If we are using a GOT, disable tail calls to external symbols with
+ // default visibility. Tail calling such a symbol requires using a GOT
+ // relocation, which forces early binding of the symbol. This breaks code
+ // that require lazy function symbol resolution. Using musttail or
+ // GuaranteedTailCallOpt will override this.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (!G || (!G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility()))
+ isTailCall = false;
+ }
+
+ bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
+ if (IsMustTail) {
+ // Force this to be a tail call. The verifier rules are enough to ensure
+ // that we can lower this successfully without moving the return address
+ // around.
+ isTailCall = true;
+ } else if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, SR != NotStructReturn,
+ MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
+ Outs, OutVals, Ins, DAG);
+
+ // Sibcalls are automatically detected tailcalls which do not require
+ // ABI changes.
+ if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
+ IsSibcall = true;
+
+ if (isTailCall)
+ ++NumTailCalls;
+ }
+
+ assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
+ "Var args not supported with calling convention fastcc, ghc or hipe");
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
+ if (IsSibcall)
+ // This is a sibcall. The memory operands are available in caller's
+ // own caller's stack.
+ NumBytes = 0;
+ else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
+ canGuaranteeTCO(CallConv))
+ NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
+
+ int FPDiff = 0;
+ if (isTailCall && !IsSibcall && !IsMustTail) {
+ // Lower arguments at fp - stackoffset + fpdiff.
+ unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
+
+ FPDiff = NumBytesCallerPushed - NumBytes;
+
+ // Set the delta of movement of the returnaddr stackslot.
+ // But only set if delta is greater than previous delta.
+ if (FPDiff < X86Info->getTCReturnAddrDelta())
+ X86Info->setTCReturnAddrDelta(FPDiff);
+ }
+
+ unsigned NumBytesToPush = NumBytes;
+ unsigned NumBytesToPop = NumBytes;
+
+ // If we have an inalloca argument, all stack space has already been allocated
+ // for us and be right at the top of the stack. We don't support multiple
+ // arguments passed in memory when using inalloca.
+ if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
+ NumBytesToPush = 0;
+ if (!ArgLocs.back().isMemLoc())
+ report_fatal_error("cannot use inalloca attribute on a register "
+ "parameter");
+ if (ArgLocs.back().getLocMemOffset() != 0)
+ report_fatal_error("any parameter with the inalloca attribute must be "
+ "the only memory argument");
+ }
+
+ if (!IsSibcall)
+ Chain = DAG.getCALLSEQ_START(
+ Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl);
+
+ SDValue RetAddrFrIdx;
+ // Load return address for tail calls.
+ if (isTailCall && FPDiff)
+ Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
+ Is64Bit, FPDiff, dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization arguments are handle later.
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ // Skip inalloca arguments, they have already been written.
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (Flags.isInAlloca())
+ continue;
+
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[i];
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ if (Arg.getValueType().isVector() &&
+ Arg.getValueType().getVectorElementType() == MVT::i1)
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+ else if (RegVT.is128BitVector()) {
+ // Special case: passing MMX values in XMM registers.
+ Arg = DAG.getBitcast(MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
+ Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
+ } else
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getBitcast(RegVT, Arg);
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Chain = DAG.getStore(
+ Chain, dl, Arg, SpillSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+ false, false, 0);
+ Arg = SpillSlot;
+ break;
+ }
+ }
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ if (isVarArg && IsWin64) {
+ // Win64 ABI requires argument XMM reg to be copied to the corresponding
+ // shadow reg if callee is a varargs function.
+ unsigned ShadowReg = 0;
+ switch (VA.getLocReg()) {
+ case X86::XMM0: ShadowReg = X86::RCX; break;
+ case X86::XMM1: ShadowReg = X86::RDX; break;
+ case X86::XMM2: ShadowReg = X86::R8; break;
+ case X86::XMM3: ShadowReg = X86::R9; break;
+ }
+ if (ShadowReg)
+ RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
+ }
+ } else if (!IsSibcall && (!isTailCall || isByVal)) {
+ assert(VA.isMemLoc());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
+ getPointerTy(DAG.getDataLayout()));
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ if (Subtarget->isPICStyleGOT()) {
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (!isTailCall) {
+ RegsToPass.push_back(std::make_pair(
+ unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
+ getPointerTy(DAG.getDataLayout()))));
+ } else {
+ // If we are tail calling and generating PIC/GOT style code load the
+ // address of the callee into ECX. The value in ecx is used as target of
+ // the tail jump. This is done to circumvent the ebx/callee-saved problem
+ // for tail calls on PIC/GOT architectures. Normally we would just put the
+ // address of GOT into ebx and then call target@PLT. But for tail calls
+ // ebx would be restored (since ebx is callee saved) before jumping to the
+ // target@PLT.
+
+ // Note: The actual moving to ECX is done further down.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (G && !G->getGlobal()->hasLocalLinkage() &&
+ G->getGlobal()->hasDefaultVisibility())
+ Callee = LowerGlobalAddress(Callee, DAG);
+ else if (isa<ExternalSymbolSDNode>(Callee))
+ Callee = LowerExternalSymbol(Callee, DAG);
+ }
+ }
+
+ if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // Count the number of XMM registers allocated.
+ static const MCPhysReg XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+
+ RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
+ DAG.getConstant(NumXMMRegs, dl,
+ MVT::i8)));
+ }
+
+ if (isVarArg && IsMustTail) {
+ const auto &Forwards = X86Info->getForwardedMustTailRegParms();
+ for (const auto &F : Forwards) {
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
+ RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
+ }
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slots. Sibcalls
+ // don't need this because the eligibility check rejects calls that require
+ // shuffling arguments passed in memory.
+ if (!IsSibcall && isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
+
+ SmallVector<SDValue, 8> MemOpChains2;
+ SDValue FIN;
+ int FI = 0;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc())
+ continue;
+ assert(VA.isMemLoc());
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ // Skip inalloca arguments. They don't require any work.
+ if (Flags.isInAlloca())
+ continue;
+ // Create frame index.
+ int32_t Offset = VA.getLocMemOffset()+FPDiff;
+ uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
+ FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
+ FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+
+ if (Flags.isByVal()) {
+ // Copy relative to framepointer.
+ SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
+ getPointerTy(DAG.getDataLayout()));
+ Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ StackPtr, Source);
+
+ MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
+ ArgChain,
+ Flags, DAG, dl));
+ } else {
+ // Store relative to framepointer.
+ MemOpChains2.push_back(DAG.getStore(
+ ArgChain, dl, Arg, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+ false, false, 0));
+ }
+ }
+
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
+ getPointerTy(DAG.getDataLayout()),
+ RegInfo->getSlotSize(), FPDiff, dl);
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into registers.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
+ assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
+ // In the 64-bit large code model, we have to make all calls
+ // through a register, since the call instruction's 32-bit
+ // pc-relative offset may not be large enough to hold the whole
+ // address.
+ } else if (Callee->getOpcode() == ISD::GlobalAddress) {
+ // If the callee is a GlobalAddress node (quite common, every direct call
+ // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
+ // it.
+ GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
+
+ // We should use extra load for direct calls to dllimported functions in
+ // non-JIT mode.
+ const GlobalValue *GV = G->getGlobal();
+ if (!GV->hasDLLImportStorageClass()) {
+ unsigned char OpFlags = 0;
+ bool ExtraLoad = false;
+ unsigned WrapperKind = ISD::DELETED_NODE;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ !GV->isStrongDefinitionForLinker() &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ } else if (Subtarget->isPICStyleRIPRel() && isa<Function>(GV) &&
+ cast<Function>(GV)->hasFnAttribute(Attribute::NonLazyBind)) {
+ // If the function is marked as non-lazy, generate an indirect call
+ // which loads from the GOT directly. This avoids runtime overhead
+ // at the cost of eager binding (and one extra byte of encoding).
+ OpFlags = X86II::MO_GOTPCREL;
+ WrapperKind = X86ISD::WrapperRIP;
+ ExtraLoad = true;
+ }
+
+ Callee = DAG.getTargetGlobalAddress(
+ GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
+
+ // Add a wrapper if needed.
+ if (WrapperKind != ISD::DELETED_NODE)
+ Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
+ getPointerTy(DAG.getDataLayout()), Callee);
+ // Add extra indirection if needed.
+ if (ExtraLoad)
+ Callee = DAG.getLoad(
+ getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false,
+ false, 0);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
+ // external symbols should go through the PLT.
+ if (Subtarget->isTargetELF() &&
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(
+ S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
+ } else if (Subtarget->isTarget64BitILP32() &&
+ Callee->getValueType(0) == MVT::i32) {
+ // Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
+ Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+
+ if (!IsSibcall && isTailCall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
+ assert(Mask && "Missing call preserved mask for calling convention");
+
+ // If this is an invoke in a 32-bit function using a funclet-based
+ // personality, assume the function clobbers all registers. If an exception
+ // is thrown, the runtime will not restore CSRs.
+ // FIXME: Model this more precisely so that we can register allocate across
+ // the normal edge and spill and fill across the exceptional edge.
+ if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) {
+ const Function *CallerFn = MF.getFunction();
+ EHPersonality Pers =
+ CallerFn->hasPersonalityFn()
+ ? classifyEHPersonality(CallerFn->getPersonalityFn())
+ : EHPersonality::Unknown;
+ if (isFuncletEHPersonality(Pers))
+ Mask = RegInfo->getNoPreservedMask();
+ }
+
+ Ops.push_back(DAG.getRegisterMask(Mask));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ if (isTailCall) {
+ // We used to do:
+ //// If this is the first return lowered for this function, add the regs
+ //// to the liveout set for the function.
+ // This isn't right, although it's probably harmless on x86; liveouts
+ // should be computed from returns not tail calls. Consider a void
+ // function making a tail call to a function returning int.
+ MF.getFrameInfo()->setHasTailCall();
+ return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
+ }
+
+ Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ unsigned NumBytesForCalleeToPop;
+ if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
+ DAG.getTarget().Options.GuaranteedTailCallOpt))
+ NumBytesForCalleeToPop = NumBytes; // Callee pops everything
+ else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
+ !Subtarget->getTargetTriple().isOSMSVCRT() &&
+ SR == StackStructReturn)
+ // If this is a call to a struct-return function, the callee
+ // pops the hidden struct pointer, so we have to push it back.
+ // This is common for Darwin/X86, Linux & Mingw32 targets.
+ // For MSVC Win32 targets, the caller pops the hidden struct pointer.
+ NumBytesForCalleeToPop = 4;
+ else
+ NumBytesForCalleeToPop = 0; // Callee pops nothing.
+
+ // Returns a flag for retval copy to use.
+ if (!IsSibcall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytesToPop, dl, true),
+ DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
+ true),
+ InFlag, dl);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+//===----------------------------------------------------------------------===//
+// Fast Calling Convention (tail call) implementation
+//===----------------------------------------------------------------------===//
+
+// Like std call, callee cleans arguments, convention except that ECX is
+// reserved for storing the tail called function address. Only 2 registers are
+// free for argument passing (inreg). Tail call optimization is performed
+// provided:
+// * tailcallopt is enabled
+// * caller/callee are fastcc
+// On X86_64 architecture with GOT-style position independent code only local
+// (within module) calls are supported at the moment.
+// To keep the stack aligned according to platform abi the function
+// GetAlignedArgumentStackSize ensures that argument delta is always multiples
+// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
+// If a tail called function callee has more arguments than the caller the
+// caller needs to make sure that there is room to move the RETADDR to. This is
+// achieved by reserving an area the size of the argument delta right after the
+// original RETADDR, but before the saved framepointer or the spilled registers
+// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
+// stack layout:
+// arg1
+// arg2
+// RETADDR
+// [ new RETADDR
+// move area ]
+// (possible EBP)
+// ESI
+// EDI
+// local1 ..
+
+/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
+/// requirement.
+unsigned
+X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG& DAG) const {
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ uint64_t AlignMask = StackAlignment - 1;
+ int64_t Offset = StackSize;
+ unsigned SlotSize = RegInfo->getSlotSize();
+ if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
+ // Number smaller than 12 so just add the difference.
+ Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
+ } else {
+ // Mask out lower bits, add stackalignment once plus the 12 bytes.
+ Offset = ((~AlignMask) & Offset) + StackAlignment +
+ (StackAlignment-SlotSize);
+ }
+ return Offset;
+}
+
+/// Return true if the given stack call argument is already available in the
+/// same position (relatively) of the caller's incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const X86InstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ unsigned Opcode = Def->getOpcode();
+ if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
+ Opcode == X86::LEA64_32r) &&
+ Def->getOperand(1).isFI()) {
+ FI = Def->getOperand(1).getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
+ FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
+ FI = FINode->getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// Check whether the call is eligible for tail call optimization. Targets
+/// that want to do tail call optimization should implement this function.
+bool X86TargetLowering::IsEligibleForTailCallOptimization(
+ SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
+ bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
+ if (!mayTailCallThisCC(CalleeCC))
+ return false;
+
+ // If -tailcallopt is specified, make fastcc functions tail-callable.
+ MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = MF.getFunction();
+
+ // If the function return type is x86_fp80 and the callee return type is not,
+ // then the FP_EXTEND of the call result is not a nop. It's not safe to
+ // perform a tailcall optimization here.
+ if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
+ return false;
+
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+ bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
+ bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
+
+ // Win64 functions have extra shadow space for argument homing. Don't do the
+ // sibcall if the caller and callee have mismatched expectations for this
+ // space.
+ if (IsCalleeWin64 != IsCallerWin64)
+ return false;
+
+ if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
+ if (canGuaranteeTCO(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
+ // emit a special epilogue.
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ if (RegInfo->needsStackRealignment(MF))
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // Do not sibcall optimize vararg calls unless all arguments are passed via
+ // registers.
+ if (isVarArg && !Outs.empty()) {
+ // Optimizing for varargs on Win64 is unlikely to be safe without
+ // additional testing.
+ if (IsCalleeWin64 || IsCallerWin64)
+ return false;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
+ if (!ArgLocs[i].isRegLoc())
+ return false;
+ }
+
+ // If the call result is in ST0 / ST1, it needs to be popped off the x87
+ // stack. Therefore, if it's not used by the call it is not safe to optimize
+ // this into a sibcall.
+ bool Unused = false;
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ if (!Ins[i].Used) {
+ Unused = true;
+ break;
+ }
+ }
+ if (Unused) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
+ return false;
+ }
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
+ *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
+ *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ unsigned StackArgsSize = 0;
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ // Allocate shadow area for Win64
+ if (IsCalleeWin64)
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(Outs, CC_X86);
+ StackArgsSize = CCInfo.getNextStackOffset();
+
+ if (CCInfo.getNextStackOffset()) {
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const X86InstrInfo *TII = Subtarget->getInstrInfo();
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+
+ // If the tailcall address may be in a register, then make sure it's
+ // possible to register allocate for it. In 32-bit, the call address can
+ // only target EAX, EDX, or ECX since the tail call must be scheduled after
+ // callee-saved registers are restored. These happen to be the same
+ // registers used to pass 'inreg' arguments so watch out for those.
+ if (!Subtarget->is64Bit() &&
+ ((!isa<GlobalAddressSDNode>(Callee) &&
+ !isa<ExternalSymbolSDNode>(Callee)) ||
+ DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
+ unsigned NumInRegs = 0;
+ // In PIC we need an extra register to formulate the address computation
+ // for the callee.
+ unsigned MaxInRegs =
+ (DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (!VA.isRegLoc())
+ continue;
+ unsigned Reg = VA.getLocReg();
+ switch (Reg) {
+ default: break;
+ case X86::EAX: case X86::EDX: case X86::ECX:
+ if (++NumInRegs == MaxInRegs)
+ return false;
+ break;
+ }
+ }
+ }
+ }
+
+ bool CalleeWillPop =
+ X86::isCalleePop(CalleeCC, Subtarget->is64Bit(), isVarArg,
+ MF.getTarget().Options.GuaranteedTailCallOpt);
+
+ if (unsigned BytesToPop =
+ MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
+ // If we have bytes to pop, the callee must pop them.
+ bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
+ if (!CalleePopMatches)
+ return false;
+ } else if (CalleeWillPop && StackArgsSize > 0) {
+ // If we don't have bytes to pop, make sure the callee doesn't pop any.
+ return false;
+ }
+
+ return true;
+}
+
+FastISel *
+X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return X86::createFastISel(funcInfo, libInfo);
+}
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Hooks
+//===----------------------------------------------------------------------===//
+
+static bool MayFoldLoad(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
+}
+
+static bool MayFoldIntoStore(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
+}
+
+static bool isTargetShuffle(unsigned Opcode) {
+ switch(Opcode) {
+ default: return false;
+ case X86ISD::BLENDI:
+ case X86ISD::PSHUFB:
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::SHUFP:
+ case X86ISD::PALIGNR:
+ case X86ISD::MOVLHPS:
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVSHDUP:
+ case X86ISD::MOVSLDUP:
+ case X86ISD::MOVDDUP:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ case X86ISD::VPERMILPI:
+ case X86ISD::VPERM2X128:
+ case X86ISD::VPERMI:
+ case X86ISD::VPERMV:
+ case X86ISD::VPERMV3:
+ return true;
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue V1, unsigned TargetMask,
+ SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::VPERMILPI:
+ case X86ISD::VPERMI:
+ return DAG.getNode(Opc, dl, VT, V1,
+ DAG.getConstant(TargetMask, dl, MVT::i8));
+ }
+}
+
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue V1, SDValue V2, SelectionDAG &DAG) {
+ switch(Opc) {
+ default: llvm_unreachable("Unknown x86 shuffle node");
+ case X86ISD::MOVLHPS:
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLPS:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ return DAG.getNode(Opc, dl, VT, V1, V2);
+ }
+}
+
+SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ int ReturnAddrIndex = FuncInfo->getRAIndex();
+
+ if (ReturnAddrIndex == 0) {
+ // Set up a frame object for the return address.
+ unsigned SlotSize = RegInfo->getSlotSize();
+ ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
+ -(int64_t)SlotSize,
+ false);
+ FuncInfo->setRAIndex(ReturnAddrIndex);
+ }
+
+ return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
+}
+
+bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement) {
+ // Offset should fit into 32 bit immediate field.
+ if (!isInt<32>(Offset))
+ return false;
+
+ // If we don't have a symbolic displacement - we don't have any extra
+ // restrictions.
+ if (!hasSymbolicDisplacement)
+ return true;
+
+ // FIXME: Some tweaks might be needed for medium code model.
+ if (M != CodeModel::Small && M != CodeModel::Kernel)
+ return false;
+
+ // For small code model we assume that latest object is 16MB before end of 31
+ // bits boundary. We may also accept pretty large negative constants knowing
+ // that all objects are in the positive half of address space.
+ if (M == CodeModel::Small && Offset < 16*1024*1024)
+ return true;
+
+ // For kernel code model we know that all object resist in the negative half
+ // of 32bits address space. We may not accept negative offsets, since they may
+ // be just off and we may accept pretty large positive ones.
+ if (M == CodeModel::Kernel && Offset >= 0)
+ return true;
+
+ return false;
+}
+
+/// Determines whether the callee is required to pop its own arguments.
+/// Callee pop is necessary to support tail calls.
+bool X86::isCalleePop(CallingConv::ID CallingConv,
+ bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
+ // If GuaranteeTCO is true, we force some calls to be callee pop so that we
+ // can guarantee TCO.
+ if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
+ return true;
+
+ switch (CallingConv) {
+ default:
+ return false;
+ case CallingConv::X86_StdCall:
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::X86_VectorCall:
+ return !is64Bit;
+ }
+}
+
+/// \brief Return true if the condition is an unsigned comparison operation.
+static bool isX86CCUnsigned(unsigned X86CC) {
+ switch (X86CC) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case X86::COND_E: return true;
+ case X86::COND_G: return false;
+ case X86::COND_GE: return false;
+ case X86::COND_L: return false;
+ case X86::COND_LE: return false;
+ case X86::COND_NE: return true;
+ case X86::COND_B: return true;
+ case X86::COND_A: return true;
+ case X86::COND_BE: return true;
+ case X86::COND_AE: return true;
+ }
+}
+
+static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETGT: return X86::COND_G;
+ case ISD::SETGE: return X86::COND_GE;
+ case ISD::SETLT: return X86::COND_L;
+ case ISD::SETLE: return X86::COND_LE;
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETULT: return X86::COND_B;
+ case ISD::SETUGT: return X86::COND_A;
+ case ISD::SETULE: return X86::COND_BE;
+ case ISD::SETUGE: return X86::COND_AE;
+ }
+}
+
+/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
+/// condition code, returning the condition code and the LHS/RHS of the
+/// comparison to make.
+static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
+ SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
+ if (!isFP) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
+ // X > -1 -> X == 0, jump !sign.
+ RHS = DAG.getConstant(0, DL, RHS.getValueType());
+ return X86::COND_NS;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
+ // X < 0 -> X == 0, jump on sign.
+ return X86::COND_S;
+ }
+ if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
+ // X < 1 -> X <= 0
+ RHS = DAG.getConstant(0, DL, RHS.getValueType());
+ return X86::COND_LE;
+ }
+ }
+
+ return TranslateIntegerX86CC(SetCCOpcode);
+ }
+
+ // First determine if it is required or is profitable to flip the operands.
+
+ // If LHS is a foldable load, but RHS is not, flip the condition.
+ if (ISD::isNON_EXTLoad(LHS.getNode()) &&
+ !ISD::isNON_EXTLoad(RHS.getNode())) {
+ SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
+ std::swap(LHS, RHS);
+ }
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ std::swap(LHS, RHS);
+ break;
+ }
+
+ // On a floating point condition, the flags are set as follows:
+ // ZF PF CF op
+ // 0 | 0 | 0 | X > Y
+ // 0 | 0 | 1 | X < Y
+ // 1 | 0 | 0 | X == Y
+ // 1 | 1 | 1 | unordered
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Condcode should be pre-legalized away");
+ case ISD::SETUEQ:
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETOLT: // flipped
+ case ISD::SETOGT:
+ case ISD::SETGT: return X86::COND_A;
+ case ISD::SETOLE: // flipped
+ case ISD::SETOGE:
+ case ISD::SETGE: return X86::COND_AE;
+ case ISD::SETUGT: // flipped
+ case ISD::SETULT:
+ case ISD::SETLT: return X86::COND_B;
+ case ISD::SETUGE: // flipped
+ case ISD::SETULE:
+ case ISD::SETLE: return X86::COND_BE;
+ case ISD::SETONE:
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETUO: return X86::COND_P;
+ case ISD::SETO: return X86::COND_NP;
+ case ISD::SETOEQ:
+ case ISD::SETUNE: return X86::COND_INVALID;
+ }
+}
+
+/// Is there a floating point cmov for the specific X86 condition code?
+/// Current x86 isa includes the following FP cmov instructions:
+/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
+static bool hasFPCMov(unsigned X86CC) {
+ switch (X86CC) {
+ default:
+ return false;
+ case X86::COND_B:
+ case X86::COND_BE:
+ case X86::COND_E:
+ case X86::COND_P:
+ case X86::COND_A:
+ case X86::COND_AE:
+ case X86::COND_NE:
+ case X86::COND_NP:
+ return true;
+ }
+}
+
+/// Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
+ if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
+ return true;
+ }
+ return false;
+}
+
+bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
+ ISD::LoadExtType ExtTy,
+ EVT NewVT) const {
+ // "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
+ // relocation target a movq or addq instruction: don't let the load shrink.
+ SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
+ if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
+ if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
+ return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
+ return true;
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned BitSize = Ty->getPrimitiveSizeInBits();
+ if (BitSize == 0 || BitSize > 64)
+ return false;
+ return true;
+}
+
+bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
+ unsigned Index) const {
+ if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
+ return false;
+
+ return (Index == 0 || Index == ResVT.getVectorNumElements());
+}
+
+bool X86TargetLowering::isCheapToSpeculateCttz() const {
+ // Speculate cttz only if we can directly use TZCNT.
+ return Subtarget->hasBMI();
+}
+
+bool X86TargetLowering::isCheapToSpeculateCtlz() const {
+ // Speculate ctlz only if we can directly use LZCNT.
+ return Subtarget->hasLZCNT();
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size is undef.
+static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
+ for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
+ if (0 <= Mask[i])
+ return false;
+ return true;
+}
+
+/// Return true if Val is undef or if its value falls within the
+/// specified range (L, H].
+static bool isUndefOrInRange(int Val, int Low, int Hi) {
+ return (Val < 0) || (Val >= Low && Val < Hi);
+}
+
+/// Val is either less than zero (undef) or equal to the specified value.
+static bool isUndefOrEqual(int Val, int CmpVal) {
+ return (Val < 0 || Val == CmpVal);
+}
+
+/// Return true if every element in Mask, beginning
+/// from position Pos and ending in Pos+Size, falls within the specified
+/// sequential range (Low, Low+Size]. or is undef.
+static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
+ unsigned Pos, unsigned Size, int Low) {
+ for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
+ if (!isUndefOrEqual(Mask[i], Low))
+ return false;
+ return true;
+}
+
+/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector
+/// extract that is suitable for instruction that extract 128 or 256 bit vectors
+static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
+ return false;
+
+ // The index should be aligned on a vecWidth-bit boundary.
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ unsigned ElSize = VT.getVectorElementType().getSizeInBits();
+ bool Result = (Index * ElSize) % vecWidth == 0;
+
+ return Result;
+}
+
+/// Return true if the specified INSERT_SUBVECTOR
+/// operand specifies a subvector insert that is suitable for input to
+/// insertion of 128 or 256-bit subvectors
+static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
+ if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
+ return false;
+ // The index should be aligned on a vecWidth-bit boundary.
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ unsigned ElSize = VT.getVectorElementType().getSizeInBits();
+ bool Result = (Index * ElSize) % vecWidth == 0;
+
+ return Result;
+}
+
+bool X86::isVINSERT128Index(SDNode *N) {
+ return isVINSERTIndex(N, 128);
+}
+
+bool X86::isVINSERT256Index(SDNode *N) {
+ return isVINSERTIndex(N, 256);
+}
+
+bool X86::isVEXTRACT128Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 128);
+}
+
+bool X86::isVEXTRACT256Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 256);
+}
+
+static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
+ assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) &&
+ "Illegal extract subvector for VEXTRACT");
+
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
+
+ MVT VecVT = N->getOperand(0).getSimpleValueType();
+ MVT ElVT = VecVT.getVectorElementType();
+
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
+ return Index / NumElemsPerChunk;
+}
+
+static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
+ assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) &&
+ "Illegal insert subvector for VINSERT");
+
+ uint64_t Index =
+ cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
+
+ MVT VecVT = N->getSimpleValueType(0);
+ MVT ElVT = VecVT.getVectorElementType();
+
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
+ return Index / NumElemsPerChunk;
+}
+
+/// Return the appropriate immediate to extract the specified
+/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions.
+unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 128);
+}
+
+/// Return the appropriate immediate to extract the specified
+/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions.
+unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 256);
+}
+
+/// Return the appropriate immediate to insert at the specified
+/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions.
+unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 128);
+}
+
+/// Return the appropriate immediate to insert at the specified
+/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions.
+unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 256);
+}
+
+/// Returns true if Elt is a constant zero or a floating point constant +0.0.
+bool X86::isZeroNode(SDValue Elt) {
+ return isNullConstant(Elt) || isNullFPConstant(Elt);
+}
+
+// Build a vector of constants
+// Use an UNDEF node if MaskElt == -1.
+// Spilt 64-bit constants in the 32-bit mode.
+static SDValue getConstVector(ArrayRef<int> Values, MVT VT,
+ SelectionDAG &DAG,
+ SDLoc dl, bool IsMask = false) {
+
+ SmallVector<SDValue, 32> Ops;
+ bool Split = false;
+
+ MVT ConstVecVT = VT;
+ unsigned NumElts = VT.getVectorNumElements();
+ bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
+ if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
+ ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
+ Split = true;
+ }
+
+ MVT EltVT = ConstVecVT.getVectorElementType();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ bool IsUndef = Values[i] < 0 && IsMask;
+ SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
+ DAG.getConstant(Values[i], dl, EltVT);
+ Ops.push_back(OpNode);
+ if (Split)
+ Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
+ DAG.getConstant(0, dl, EltVT));
+ }
+ SDValue ConstsNode = DAG.getNode(ISD::BUILD_VECTOR, dl, ConstVecVT, Ops);
+ if (Split)
+ ConstsNode = DAG.getBitcast(VT, ConstsNode);
+ return ConstsNode;
+}
+
+/// Returns a vector of specified type with all zero elements.
+static SDValue getZeroVector(MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Always build SSE zero vectors as <4 x i32> bitcasted
+ // to their dest type. This ensures they get CSE'd.
+ SDValue Vec;
+ if (VT.is128BitVector()) { // SSE
+ if (Subtarget->hasSSE2()) { // SSE2
+ SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ } else { // SSE1
+ SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
+ }
+ } else if (VT.is256BitVector()) { // AVX
+ if (Subtarget->hasInt256()) { // AVX2
+ SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
+ } else {
+ // 256-bit logic and arithmetic instructions in AVX are all
+ // floating-point, no support for integer ops. Emit fp zeroed vectors.
+ SDValue Cst = DAG.getConstantFP(+0.0, dl, MVT::f32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops);
+ }
+ } else if (VT.is512BitVector()) { // AVX-512
+ SDValue Cst = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
+ } else if (VT.getVectorElementType() == MVT::i1) {
+
+ assert((Subtarget->hasBWI() || VT.getVectorNumElements() <= 16)
+ && "Unexpected vector type");
+ assert((Subtarget->hasVLX() || VT.getVectorNumElements() >= 8)
+ && "Unexpected vector type");
+ SDValue Cst = DAG.getConstant(0, dl, MVT::i1);
+ SmallVector<SDValue, 64> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ } else
+ llvm_unreachable("Unexpected vector type");
+
+ return DAG.getBitcast(VT, Vec);
+}
+
+static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl,
+ unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ unsigned Factor = VT.getSizeInBits()/vectorWidth;
+ EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
+ VT.getVectorNumElements()/Factor);
+
+ // Extract from UNDEF is UNDEF.
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return DAG.getUNDEF(ResultVT);
+
+ // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
+ unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
+ IdxVal &= ~(ElemsPerChunk - 1);
+
+ // If the input is a buildvector just emit a smaller one.
+ if (Vec.getOpcode() == ISD::BUILD_VECTOR)
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
+ makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk));
+
+ SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
+}
+
+/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
+/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
+/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
+/// instructions or a simple subregister reference. Idx is an index in the
+/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
+/// lowering EXTRACT_VECTOR_ELT operations easier.
+static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert((Vec.getValueType().is256BitVector() ||
+ Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
+}
+
+/// Generate a DAG to grab 256-bits from a 512-bit vector.
+static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
+}
+
+static SDValue InsertSubVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl, unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
+ // Inserting UNDEF is Result
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return Result;
+ EVT VT = Vec.getValueType();
+ EVT ElVT = VT.getVectorElementType();
+ EVT ResultVT = Result.getValueType();
+
+ // Insert the relevant vectorWidth bits.
+ unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // This is the index of the first element of the vectorWidth-bit chunk
+ // we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
+ IdxVal &= ~(ElemsPerChunk - 1);
+
+ SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
+}
+
+/// Generate a DAG to put 128-bits into a vector > 128 bits. This
+/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
+/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
+/// simple superregister reference. Idx is an index in the 128 bits
+/// we want. It need not be aligned to a 128-bit boundary. That makes
+/// lowering INSERT_VECTOR_ELT operations easier.
+static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
+
+ // For insertion into the zero index (low half) of a 256-bit vector, it is
+ // more efficient to generate a blend with immediate instead of an insert*128.
+ // We are still creating an INSERT_SUBVECTOR below with an undef node to
+ // extend the subvector to the size of the result vector. Make sure that
+ // we are not recursing on that node by checking for undef here.
+ if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
+ Result.getOpcode() != ISD::UNDEF) {
+ EVT ResultVT = Result.getValueType();
+ SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl);
+ SDValue Undef = DAG.getUNDEF(ResultVT);
+ SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
+ Vec, ZeroIndex);
+
+ // The blend instruction, and therefore its mask, depend on the data type.
+ MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT();
+ if (ScalarType.isFloatingPoint()) {
+ // Choose either vblendps (float) or vblendpd (double).
+ unsigned ScalarSize = ScalarType.getSizeInBits();
+ assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
+ unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
+ SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8);
+ return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
+ }
+
+ const X86Subtarget &Subtarget =
+ static_cast<const X86Subtarget &>(DAG.getSubtarget());
+
+ // AVX2 is needed for 256-bit integer blend support.
+ // Integers must be cast to 32-bit because there is only vpblendd;
+ // vpblendw can't be used for this because it has a handicapped mask.
+
+ // If we don't have AVX2, then cast to float. Using a wrong domain blend
+ // is still more efficient than using the wrong domain vinsertf128 that
+ // will be created by InsertSubVector().
+ MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
+
+ SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
+ Vec256 = DAG.getBitcast(CastVT, Vec256);
+ Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
+ return DAG.getBitcast(ResultVT, Vec256);
+ }
+
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
+}
+
+static SDValue Insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
+}
+
+/// Insert i1-subvector to i1-vector.
+static SDValue Insert1BitVector(SDValue Op, SelectionDAG &DAG) {
+
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue SubVec = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
+ return Op;
+
+ MVT OpVT = Op.getSimpleValueType();
+ MVT SubVecVT = SubVec.getSimpleValueType();
+ unsigned NumElems = OpVT.getVectorNumElements();
+ unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
+
+ assert(IdxVal + SubVecNumElems <= NumElems &&
+ IdxVal % SubVecVT.getSizeInBits() == 0 &&
+ "Unexpected index value in INSERT_SUBVECTOR");
+
+ // There are 3 possible cases:
+ // 1. Subvector should be inserted in the lower part (IdxVal == 0)
+ // 2. Subvector should be inserted in the upper part
+ // (IdxVal + SubVecNumElems == NumElems)
+ // 3. Subvector should be inserted in the middle (for example v2i1
+ // to v16i1, index 2)
+
+ SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
+ SDValue Undef = DAG.getUNDEF(OpVT);
+ SDValue WideSubVec =
+ DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef, SubVec, ZeroIdx);
+ if (Vec.isUndef())
+ return DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+
+ if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
+ unsigned ShiftLeft = NumElems - SubVecNumElems;
+ unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
+ WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, WideSubVec,
+ DAG.getConstant(ShiftLeft, dl, MVT::i8));
+ return ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, OpVT, WideSubVec,
+ DAG.getConstant(ShiftRight, dl, MVT::i8)) : WideSubVec;
+ }
+
+ if (IdxVal == 0) {
+ // Zero lower bits of the Vec
+ SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
+ Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
+ Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
+ // Merge them together
+ return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec);
+ }
+
+ // Simple case when we put subvector in the upper part
+ if (IdxVal + SubVecNumElems == NumElems) {
+ // Zero upper bits of the Vec
+ WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
+ Vec = DAG.getNode(X86ISD::VSHLI, dl, OpVT, Vec, ShiftBits);
+ Vec = DAG.getNode(X86ISD::VSRLI, dl, OpVT, Vec, ShiftBits);
+ return DAG.getNode(ISD::OR, dl, OpVT, Vec, WideSubVec);
+ }
+ // Subvector should be inserted in the middle - use shuffle
+ SmallVector<int, 64> Mask;
+ for (unsigned i = 0; i < NumElems; ++i)
+ Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ?
+ i : i + NumElems);
+ return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask);
+}
+
+/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
+/// instructions. This is used because creating CONCAT_VECTOR nodes of
+/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
+/// large BUILD_VECTORS.
+static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
+/// Returns a vector of specified type with all bits set.
+/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
+/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
+/// Then bitcast to their original type, ensuring they get CSE'd.
+static SDValue getOnesVector(EVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ SDValue Cst = DAG.getConstant(~0U, dl, MVT::i32);
+ SDValue Vec;
+ if (VT.is512BitVector()) {
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops);
+ } else if (VT.is256BitVector()) {
+ if (Subtarget->hasInt256()) { // AVX2
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops);
+ } else { // AVX
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
+ }
+ } else if (VT.is128BitVector()) {
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ } else
+ llvm_unreachable("Unexpected vector type");
+
+ return DAG.getBitcast(VT, Vec);
+}
+
+/// Returns a vector_shuffle node for an unpackl operation.
+static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
+ Mask.push_back(i);
+ Mask.push_back(i + NumElems);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// Returns a vector_shuffle node for an unpackh operation.
+static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
+ Mask.push_back(i + Half);
+ Mask.push_back(i + NumElems + Half);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// Return a vector_shuffle of the specified vector of zero or undef vector.
+/// This produces a shuffle where the low element of V2 is swizzled into the
+/// zero/undef vector, landing at element Idx.
+/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
+static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
+ bool IsZero,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = V2.getSimpleValueType();
+ SDValue V1 = IsZero
+ ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 16> MaskVec;
+ for (unsigned i = 0; i != NumElems; ++i)
+ // If this is the insertion idx, put the low elt of V2 here.
+ MaskVec.push_back(i == Idx ? NumElems : i);
+ return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
+}
+
+/// Calculates the shuffle mask corresponding to the target-specific opcode.
+/// Returns true if the Mask could be calculated. Sets IsUnary to true if only
+/// uses one source. Note that this will set IsUnary for shuffles which use a
+/// single input multiple times, and in those cases it will
+/// adjust the mask to only have indices within that single input.
+/// FIXME: Add support for Decode*Mask functions that return SM_SentinelZero.
+static bool getTargetShuffleMask(SDNode *N, MVT VT,
+ SmallVectorImpl<int> &Mask, bool &IsUnary) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue ImmN;
+
+ IsUnary = false;
+ bool IsFakeUnary = false;
+ switch(N->getOpcode()) {
+ case X86ISD::BLENDI:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ break;
+ case X86ISD::SHUFP:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::UNPCKH:
+ DecodeUNPCKHMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::UNPCKL:
+ DecodeUNPCKLMask(VT, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::MOVHLPS:
+ DecodeMOVHLPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::MOVLHPS:
+ DecodeMOVLHPSMask(NumElems, Mask);
+ IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
+ break;
+ case X86ISD::PALIGNR:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ break;
+ case X86ISD::PSHUFD:
+ case X86ISD::VPERMILPI:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFHW:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFLW:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::PSHUFB: {
+ IsUnary = true;
+ SDValue MaskNode = N->getOperand(1);
+ while (MaskNode->getOpcode() == ISD::BITCAST)
+ MaskNode = MaskNode->getOperand(0);
+
+ if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
+ // If we have a build-vector, then things are easy.
+ MVT VT = MaskNode.getSimpleValueType();
+ assert(VT.isVector() &&
+ "Can't produce a non-vector with a build_vector!");
+ if (!VT.isInteger())
+ return false;
+
+ int NumBytesPerElement = VT.getVectorElementType().getSizeInBits() / 8;
+
+ SmallVector<uint64_t, 32> RawMask;
+ for (int i = 0, e = MaskNode->getNumOperands(); i < e; ++i) {
+ SDValue Op = MaskNode->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ RawMask.push_back((uint64_t)SM_SentinelUndef);
+ continue;
+ }
+ auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
+ if (!CN)
+ return false;
+ APInt MaskElement = CN->getAPIntValue();
+
+ // We now have to decode the element which could be any integer size and
+ // extract each byte of it.
+ for (int j = 0; j < NumBytesPerElement; ++j) {
+ // Note that this is x86 and so always little endian: the low byte is
+ // the first byte of the mask.
+ RawMask.push_back(MaskElement.getLoBits(8).getZExtValue());
+ MaskElement = MaskElement.lshr(8);
+ }
+ }
+ DecodePSHUFBMask(RawMask, Mask);
+ break;
+ }
+
+ auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
+ if (!MaskLoad)
+ return false;
+
+ SDValue Ptr = MaskLoad->getBasePtr();
+ if (Ptr->getOpcode() == X86ISD::Wrapper ||
+ Ptr->getOpcode() == X86ISD::WrapperRIP)
+ Ptr = Ptr->getOperand(0);
+
+ auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
+ return false;
+
+ if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
+ DecodePSHUFBMask(C, Mask);
+ if (Mask.empty())
+ return false;
+ break;
+ }
+
+ return false;
+ }
+ case X86ISD::VPERMI:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
+ break;
+ case X86ISD::VPERM2X128:
+ ImmN = N->getOperand(N->getNumOperands()-1);
+ DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
+ if (Mask.empty()) return false;
+ // Mask only contains negative index if an element is zero.
+ if (std::any_of(Mask.begin(), Mask.end(),
+ [](int M){ return M == SM_SentinelZero; }))
+ return false;
+ break;
+ case X86ISD::MOVSLDUP:
+ DecodeMOVSLDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVSHDUP:
+ DecodeMOVSHDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVDDUP:
+ DecodeMOVDDUPMask(VT, Mask);
+ IsUnary = true;
+ break;
+ case X86ISD::MOVLHPD:
+ case X86ISD::MOVLPD:
+ case X86ISD::MOVLPS:
+ // Not yet implemented
+ return false;
+ case X86ISD::VPERMV: {
+ IsUnary = true;
+ SDValue MaskNode = N->getOperand(0);
+ while (MaskNode->getOpcode() == ISD::BITCAST)
+ MaskNode = MaskNode->getOperand(0);
+
+ unsigned MaskLoBits = Log2_64(VT.getVectorNumElements());
+ SmallVector<uint64_t, 32> RawMask;
+ if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
+ // If we have a build-vector, then things are easy.
+ assert(MaskNode.getSimpleValueType().isInteger() &&
+ MaskNode.getSimpleValueType().getVectorNumElements() ==
+ VT.getVectorNumElements());
+
+ for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) {
+ SDValue Op = MaskNode->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF)
+ RawMask.push_back((uint64_t)SM_SentinelUndef);
+ else if (isa<ConstantSDNode>(Op)) {
+ APInt MaskElement = cast<ConstantSDNode>(Op)->getAPIntValue();
+ RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue());
+ } else
+ return false;
+ }
+ DecodeVPERMVMask(RawMask, Mask);
+ break;
+ }
+ if (MaskNode->getOpcode() == X86ISD::VBROADCAST) {
+ unsigned NumEltsInMask = MaskNode->getNumOperands();
+ MaskNode = MaskNode->getOperand(0);
+ if (auto *CN = dyn_cast<ConstantSDNode>(MaskNode)) {
+ APInt MaskEltValue = CN->getAPIntValue();
+ for (unsigned i = 0; i < NumEltsInMask; ++i)
+ RawMask.push_back(MaskEltValue.getLoBits(MaskLoBits).getZExtValue());
+ DecodeVPERMVMask(RawMask, Mask);
+ break;
+ }
+ // It may be a scalar load
+ }
+
+ auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
+ if (!MaskLoad)
+ return false;
+
+ SDValue Ptr = MaskLoad->getBasePtr();
+ if (Ptr->getOpcode() == X86ISD::Wrapper ||
+ Ptr->getOpcode() == X86ISD::WrapperRIP)
+ Ptr = Ptr->getOperand(0);
+
+ auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
+ return false;
+
+ if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
+ DecodeVPERMVMask(C, VT, Mask);
+ if (Mask.empty())
+ return false;
+ break;
+ }
+ return false;
+ }
+ case X86ISD::VPERMV3: {
+ IsUnary = false;
+ SDValue MaskNode = N->getOperand(1);
+ while (MaskNode->getOpcode() == ISD::BITCAST)
+ MaskNode = MaskNode->getOperand(1);
+
+ if (MaskNode->getOpcode() == ISD::BUILD_VECTOR) {
+ // If we have a build-vector, then things are easy.
+ assert(MaskNode.getSimpleValueType().isInteger() &&
+ MaskNode.getSimpleValueType().getVectorNumElements() ==
+ VT.getVectorNumElements());
+
+ SmallVector<uint64_t, 32> RawMask;
+ unsigned MaskLoBits = Log2_64(VT.getVectorNumElements()*2);
+
+ for (unsigned i = 0; i < MaskNode->getNumOperands(); ++i) {
+ SDValue Op = MaskNode->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF)
+ RawMask.push_back((uint64_t)SM_SentinelUndef);
+ else {
+ auto *CN = dyn_cast<ConstantSDNode>(Op.getNode());
+ if (!CN)
+ return false;
+ APInt MaskElement = CN->getAPIntValue();
+ RawMask.push_back(MaskElement.getLoBits(MaskLoBits).getZExtValue());
+ }
+ }
+ DecodeVPERMV3Mask(RawMask, Mask);
+ break;
+ }
+
+ auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
+ if (!MaskLoad)
+ return false;
+
+ SDValue Ptr = MaskLoad->getBasePtr();
+ if (Ptr->getOpcode() == X86ISD::Wrapper ||
+ Ptr->getOpcode() == X86ISD::WrapperRIP)
+ Ptr = Ptr->getOperand(0);
+
+ auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
+ if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
+ return false;
+
+ if (auto *C = dyn_cast<Constant>(MaskCP->getConstVal())) {
+ DecodeVPERMV3Mask(C, VT, Mask);
+ if (Mask.empty())
+ return false;
+ break;
+ }
+ return false;
+ }
+ default: llvm_unreachable("unknown target shuffle node");
+ }
+
+ // If we have a fake unary shuffle, the shuffle mask is spread across two
+ // inputs that are actually the same node. Re-map the mask to always point
+ // into the first input.
+ if (IsFakeUnary)
+ for (int &M : Mask)
+ if (M >= (int)Mask.size())
+ M -= Mask.size();
+
+ return true;
+}
+
+/// Returns the scalar element that will make up the ith
+/// element of the result of the vector shuffle.
+static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
+ unsigned Depth) {
+ if (Depth == 6)
+ return SDValue(); // Limit search depth.
+
+ SDValue V = SDValue(N, 0);
+ EVT VT = V.getValueType();
+ unsigned Opcode = V.getOpcode();
+
+ // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
+ if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
+ int Elt = SV->getMaskElt(Index);
+
+ if (Elt < 0)
+ return DAG.getUNDEF(VT.getVectorElementType());
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
+ : SV->getOperand(1);
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
+ }
+
+ // Recurse into target specific vector shuffles to find scalars.
+ if (isTargetShuffle(Opcode)) {
+ MVT ShufVT = V.getSimpleValueType();
+ unsigned NumElems = ShufVT.getVectorNumElements();
+ SmallVector<int, 16> ShuffleMask;
+ bool IsUnary;
+
+ if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
+ return SDValue();
+
+ int Elt = ShuffleMask[Index];
+ if (Elt < 0)
+ return DAG.getUNDEF(ShufVT.getVectorElementType());
+
+ SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
+ : N->getOperand(1);
+ return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
+ Depth+1);
+ }
+
+ // Actual nodes that may contain scalar elements
+ if (Opcode == ISD::BITCAST) {
+ V = V.getOperand(0);
+ EVT SrcVT = V.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
+ return SDValue();
+ }
+
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return (Index == 0) ? V.getOperand(0)
+ : DAG.getUNDEF(VT.getVectorElementType());
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR)
+ return V.getOperand(Index);
+
+ return SDValue();
+}
+
+/// Custom lower build_vector of v16i8.
+static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget* Subtarget,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 8)
+ return SDValue();
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+
+ // SSE4.1 - use PINSRB to insert each byte directly.
+ if (Subtarget->hasSSE41()) {
+ for (unsigned i = 0; i < 16; ++i) {
+ bool isNonZero = (NonZeros & (1 << i)) != 0;
+ if (isNonZero) {
+ if (First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v16i8);
+ First = false;
+ }
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ MVT::v16i8, V, Op.getOperand(i),
+ DAG.getIntPtrConstant(i, dl));
+ }
+ }
+
+ return V;
+ }
+
+ // Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
+ for (unsigned i = 0; i < 16; ++i) {
+ bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
+ if (ThisIsNonZero && First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+
+ if ((i & 1) != 0) {
+ SDValue ThisElt, LastElt;
+ bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
+ if (LastIsNonZero) {
+ LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
+ MVT::i16, Op.getOperand(i-1));
+ }
+ if (ThisIsNonZero) {
+ ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
+ ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
+ ThisElt, DAG.getConstant(8, dl, MVT::i8));
+ if (LastIsNonZero)
+ ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
+ } else
+ ThisElt = LastElt;
+
+ if (ThisElt.getNode())
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
+ DAG.getIntPtrConstant(i/2, dl));
+ }
+ }
+
+ return DAG.getBitcast(MVT::v16i8, V);
+}
+
+/// Custom lower build_vector of v8i16.
+static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const X86Subtarget* Subtarget,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 4)
+ return SDValue();
+
+ SDLoc dl(Op);
+ SDValue V;
+ bool First = true;
+ for (unsigned i = 0; i < 8; ++i) {
+ bool isNonZero = (NonZeros & (1 << i)) != 0;
+ if (isNonZero) {
+ if (First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ MVT::v8i16, V, Op.getOperand(i),
+ DAG.getIntPtrConstant(i, dl));
+ }
+ }
+
+ return V;
+}
+
+/// Custom lower build_vector of v4i32 or v4f32.
+static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget,
+ const TargetLowering &TLI) {
+ // Find all zeroable elements.
+ std::bitset<4> Zeroable;
+ for (int i=0; i < 4; ++i) {
+ SDValue Elt = Op->getOperand(i);
+ Zeroable[i] = (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt));
+ }
+ assert(Zeroable.size() - Zeroable.count() > 1 &&
+ "We expect at least two non-zero elements!");
+
+ // We only know how to deal with build_vector nodes where elements are either
+ // zeroable or extract_vector_elt with constant index.
+ SDValue FirstNonZero;
+ unsigned FirstNonZeroIdx;
+ for (unsigned i=0; i < 4; ++i) {
+ if (Zeroable[i])
+ continue;
+ SDValue Elt = Op->getOperand(i);
+ if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Elt.getOperand(1)))
+ return SDValue();
+ // Make sure that this node is extracting from a 128-bit vector.
+ MVT VT = Elt.getOperand(0).getSimpleValueType();
+ if (!VT.is128BitVector())
+ return SDValue();
+ if (!FirstNonZero.getNode()) {
+ FirstNonZero = Elt;
+ FirstNonZeroIdx = i;
+ }
+ }
+
+ assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
+ SDValue V1 = FirstNonZero.getOperand(0);
+ MVT VT = V1.getSimpleValueType();
+
+ // See if this build_vector can be lowered as a blend with zero.
+ SDValue Elt;
+ unsigned EltMaskIdx, EltIdx;
+ int Mask[4];
+ for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
+ if (Zeroable[EltIdx]) {
+ // The zero vector will be on the right hand side.
+ Mask[EltIdx] = EltIdx+4;
+ continue;
+ }
+
+ Elt = Op->getOperand(EltIdx);
+ // By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
+ EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
+ if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
+ break;
+ Mask[EltIdx] = EltIdx;
+ }
+
+ if (EltIdx == 4) {
+ // Let the shuffle legalizer deal with blend operations.
+ SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
+ if (V1.getSimpleValueType() != VT)
+ V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), VT, V1);
+ return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
+ }
+
+ // See if we can lower this build_vector to a INSERTPS.
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ SDValue V2 = Elt.getOperand(0);
+ if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
+ V1 = SDValue();
+
+ bool CanFold = true;
+ for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
+ if (Zeroable[i])
+ continue;
+
+ SDValue Current = Op->getOperand(i);
+ SDValue SrcVector = Current->getOperand(0);
+ if (!V1.getNode())
+ V1 = SrcVector;
+ CanFold = SrcVector == V1 &&
+ cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
+ }
+
+ if (!CanFold)
+ return SDValue();
+
+ assert(V1.getNode() && "Expected at least two non-zero elements!");
+ if (V1.getSimpleValueType() != MVT::v4f32)
+ V1 = DAG.getNode(ISD::BITCAST, SDLoc(V1), MVT::v4f32, V1);
+ if (V2.getSimpleValueType() != MVT::v4f32)
+ V2 = DAG.getNode(ISD::BITCAST, SDLoc(V2), MVT::v4f32, V2);
+
+ // Ok, we can emit an INSERTPS instruction.
+ unsigned ZMask = Zeroable.to_ulong();
+
+ unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+ SDLoc DL(Op);
+ SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+ DAG.getIntPtrConstant(InsertPSMask, DL));
+ return DAG.getBitcast(VT, Result);
+}
+
+/// Return a vector logical shift node.
+static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
+ unsigned NumBits, SelectionDAG &DAG,
+ const TargetLowering &TLI, SDLoc dl) {
+ assert(VT.is128BitVector() && "Unknown type for VShift");
+ MVT ShVT = MVT::v2i64;
+ unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
+ SrcOp = DAG.getBitcast(ShVT, SrcOp);
+ MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT);
+ assert(NumBits % 8 == 0 && "Only support byte sized shifts");
+ SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
+ return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
+}
+
+static SDValue
+LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
+
+ // Check if the scalar load can be widened into a vector load. And if
+ // the address is "base + cst" see if the cst can be "absorbed" into
+ // the shuffle mask.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
+ SDValue Ptr = LD->getBasePtr();
+ if (!ISD::isNormalLoad(LD) || LD->isVolatile())
+ return SDValue();
+ EVT PVT = LD->getValueType(0);
+ if (PVT != MVT::i32 && PVT != MVT::f32)
+ return SDValue();
+
+ int FI = -1;
+ int64_t Offset = 0;
+ if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FI = FINode->getIndex();
+ Offset = 0;
+ } else if (DAG.isBaseWithConstantOffset(Ptr) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ Offset = Ptr.getConstantOperandVal(1);
+ Ptr = Ptr.getOperand(0);
+ } else {
+ return SDValue();
+ }
+
+ // FIXME: 256-bit vector instructions don't require a strict alignment,
+ // improve this code to support it better.
+ unsigned RequiredAlign = VT.getSizeInBits()/8;
+ SDValue Chain = LD->getChain();
+ // Make sure the stack object alignment is at least 16 or 32.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
+ if (MFI->isFixedObjectIndex(FI)) {
+ // Can't change the alignment. FIXME: It's possible to compute
+ // the exact stack offset and reference FI + adjust offset instead.
+ // If someone *really* cares about this. That's the way to implement it.
+ return SDValue();
+ } else {
+ MFI->setObjectAlignment(FI, RequiredAlign);
+ }
+ }
+
+ // (Offset % 16 or 32) must be multiple of 4. Then address is then
+ // Ptr + (Offset & ~15).
+ if (Offset < 0)
+ return SDValue();
+ if ((Offset % RequiredAlign) & 3)
+ return SDValue();
+ int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
+ if (StartOffset) {
+ SDLoc DL(Ptr);
+ Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
+ DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
+ }
+
+ int EltNo = (Offset - StartOffset) >> 2;
+ unsigned NumElems = VT.getVectorNumElements();
+
+ EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
+ SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
+ LD->getPointerInfo().getWithOffset(StartOffset),
+ false, false, false, 0);
+
+ SmallVector<int, 8> Mask(NumElems, EltNo);
+
+ return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
+ }
+
+ return SDValue();
+}
+
+/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
+/// elements can be replaced by a single large load which has the same value as
+/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
+///
+/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
+///
+/// FIXME: we'd also like to handle the case where the last elements are zero
+/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
+/// There's even a handy isZeroNode for that purpose.
+static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
+ SDLoc &DL, SelectionDAG &DAG,
+ bool isAfterLegalize) {
+ unsigned NumElems = Elts.size();
+
+ LoadSDNode *LDBase = nullptr;
+ unsigned LastLoadedElt = -1U;
+
+ // For each element in the initializer, see if we've found a load or an undef.
+ // If we don't find an initial load element, or later load elements are
+ // non-consecutive, bail out.
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Elts[i];
+ // Look through a bitcast.
+ if (Elt.getNode() && Elt.getOpcode() == ISD::BITCAST)
+ Elt = Elt.getOperand(0);
+ if (!Elt.getNode() ||
+ (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
+ return SDValue();
+ if (!LDBase) {
+ if (Elt.getNode()->getOpcode() == ISD::UNDEF)
+ return SDValue();
+ LDBase = cast<LoadSDNode>(Elt.getNode());
+ LastLoadedElt = i;
+ continue;
+ }
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+
+ LoadSDNode *LD = cast<LoadSDNode>(Elt);
+ EVT LdVT = Elt.getValueType();
+ // Each loaded element must be the correct fractional portion of the
+ // requested vector load.
+ if (LdVT.getSizeInBits() != VT.getSizeInBits() / NumElems)
+ return SDValue();
+ if (!DAG.isConsecutiveLoad(LD, LDBase, LdVT.getSizeInBits() / 8, i))
+ return SDValue();
+ LastLoadedElt = i;
+ }
+
+ // If we have found an entire vector of loads and undefs, then return a large
+ // load of the entire vector width starting at the base pointer. If we found
+ // consecutive loads for the low half, generate a vzext_load node.
+ if (LastLoadedElt == NumElems - 1) {
+ assert(LDBase && "Did not find base load for merging consecutive loads");
+ EVT EltVT = LDBase->getValueType(0);
+ // Ensure that the input vector size for the merged loads matches the
+ // cumulative size of the input elements.
+ if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
+ return SDValue();
+
+ if (isAfterLegalize &&
+ !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
+ return SDValue();
+
+ SDValue NewLd = SDValue();
+
+ NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(), LDBase->isVolatile(),
+ LDBase->isNonTemporal(), LDBase->isInvariant(),
+ LDBase->getAlignment());
+
+ if (LDBase->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ }
+
+ return NewLd;
+ }
+
+ //TODO: The code below fires only for for loading the low v2i32 / v2f32
+ //of a v4i32 / v4f32. It's probably worth generalizing.
+ EVT EltVT = VT.getVectorElementType();
+ if (NumElems == 4 && LastLoadedElt == 1 && (EltVT.getSizeInBits() == 32) &&
+ DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
+ SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
+ SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
+ SDValue ResNode =
+ DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, MVT::i64,
+ LDBase->getPointerInfo(),
+ LDBase->getAlignment(),
+ false/*isVolatile*/, true/*ReadMem*/,
+ false/*WriteMem*/);
+
+ // Make sure the newly-created LOAD is in the same position as LDBase in
+ // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
+ // update uses of LDBase's output chain to use the TokenFactor.
+ if (LDBase->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
+ SDValue(ResNode.getNode(), 1));
+ }
+
+ return DAG.getBitcast(VT, ResNode);
+ }
+ return SDValue();
+}
+
+/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
+/// to generate a splat value for the following cases:
+/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
+/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
+/// a scalar load, or a constant.
+/// The VBROADCAST node is returned when a pattern is found,
+/// or SDValue() otherwise.
+static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ // VBROADCAST requires AVX.
+ // TODO: Splats could be generated for non-AVX CPUs using SSE
+ // instructions, but there's less potential gain for only 128-bit vectors.
+ if (!Subtarget->hasAVX())
+ return SDValue();
+
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
+ "Unsupported vector type for broadcast.");
+
+ SDValue Ld;
+ bool ConstSplatVal;
+
+ switch (Op.getOpcode()) {
+ default:
+ // Unknown pattern found.
+ return SDValue();
+
+ case ISD::BUILD_VECTOR: {
+ auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
+ BitVector UndefElements;
+ SDValue Splat = BVOp->getSplatValue(&UndefElements);
+
+ // We need a splat of a single value to use broadcast, and it doesn't
+ // make any sense if the value is only in one element of the vector.
+ if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
+ return SDValue();
+
+ Ld = Splat;
+ ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
+ Ld.getOpcode() == ISD::ConstantFP);
+
+ // Make sure that all of the users of a non-constant load are from the
+ // BUILD_VECTOR node.
+ if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
+ return SDValue();
+ break;
+ }
+
+ case ISD::VECTOR_SHUFFLE: {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+
+ // Shuffles must have a splat mask where the first element is
+ // broadcasted.
+ if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
+ return SDValue();
+
+ SDValue Sc = Op.getOperand(0);
+ if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
+ Sc.getOpcode() != ISD::BUILD_VECTOR) {
+
+ if (!Subtarget->hasInt256())
+ return SDValue();
+
+ // Use the register form of the broadcast instruction available on AVX2.
+ if (VT.getSizeInBits() >= 256)
+ Sc = Extract128BitVector(Sc, 0, DAG, dl);
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
+ }
+
+ Ld = Sc.getOperand(0);
+ ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
+ Ld.getOpcode() == ISD::ConstantFP);
+
+ // The scalar_to_vector node and the suspected
+ // load node must have exactly one user.
+ // Constants may have multiple users.
+
+ // AVX-512 has register version of the broadcast
+ bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
+ Ld.getValueType().getSizeInBits() >= 32;
+ if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
+ !hasRegVer))
+ return SDValue();
+ break;
+ }
+ }
+
+ unsigned ScalarSize = Ld.getValueType().getSizeInBits();
+ bool IsGE256 = (VT.getSizeInBits() >= 256);
+
+ // When optimizing for size, generate up to 5 extra bytes for a broadcast
+ // instruction to save 8 or more bytes of constant pool data.
+ // TODO: If multiple splats are generated to load the same constant,
+ // it may be detrimental to overall size. There needs to be a way to detect
+ // that condition to know if this is truly a size win.
+ bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
+
+ // Handle broadcasting a single constant scalar from the constant pool
+ // into a vector.
+ // On Sandybridge (no AVX2), it is still better to load a constant vector
+ // from the constant pool and not to broadcast it from a scalar.
+ // But override that restriction when optimizing for size.
+ // TODO: Check if splatting is recommended for other AVX-capable CPUs.
+ if (ConstSplatVal && (Subtarget->hasAVX2() || OptForSize)) {
+ EVT CVT = Ld.getValueType();
+ assert(!CVT.isVector() && "Must not broadcast a vector type");
+
+ // Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
+ // For size optimization, also splat v2f64 and v2i64, and for size opt
+ // with AVX2, also splat i8 and i16.
+ // With pattern matching, the VBROADCAST node may become a VMOVDDUP.
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (OptForSize && (ScalarSize == 64 || Subtarget->hasAVX2()))) {
+ const Constant *C = nullptr;
+ if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
+ C = CI->getConstantIntValue();
+ else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
+ C = CF->getConstantFPValue();
+
+ assert(C && "Invalid constant type");
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CP =
+ DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ Ld = DAG.getLoad(
+ CVT, dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, Alignment);
+
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+ }
+
+ bool IsLoad = ISD::isNormalLoad(Ld.getNode());
+
+ // Handle AVX2 in-register broadcasts.
+ if (!IsLoad && Subtarget->hasInt256() &&
+ (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The scalar source must be a normal load.
+ if (!IsLoad)
+ return SDValue();
+
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
+ (Subtarget->hasVLX() && ScalarSize == 64))
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+
+ // The integer check is needed for the 64-bit into 128-bit so it doesn't match
+ // double since there is no vbroadcastsd xmm
+ if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
+ if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
+ return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
+ }
+
+ // Unsupported broadcast.
+ return SDValue();
+}
+
+/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
+/// underlying vector and index.
+///
+/// Modifies \p ExtractedFromVec to the real vector and returns the real
+/// index.
+static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
+ SDValue ExtIdx) {
+ int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
+ if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
+ return Idx;
+
+ // For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
+ // lowered this:
+ // (extract_vector_elt (v8f32 %vreg1), Constant<6>)
+ // to:
+ // (extract_vector_elt (vector_shuffle<2,u,u,u>
+ // (extract_subvector (v8f32 %vreg0), Constant<4>),
+ // undef)
+ // Constant<0>)
+ // In this case the vector is the extract_subvector expression and the index
+ // is 2, as specified by the shuffle.
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
+ SDValue ShuffleVec = SVOp->getOperand(0);
+ MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
+ assert(ShuffleVecVT.getVectorElementType() ==
+ ExtractedFromVec.getSimpleValueType().getVectorElementType());
+
+ int ShuffleIdx = SVOp->getMaskElt(Idx);
+ if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
+ ExtractedFromVec = ShuffleVec;
+ return ShuffleIdx;
+ }
+ return Idx;
+}
+
+static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ // Skip if insert_vec_elt is not supported.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
+ return SDValue();
+
+ SDLoc DL(Op);
+ unsigned NumElems = Op.getNumOperands();
+
+ SDValue VecIn1;
+ SDValue VecIn2;
+ SmallVector<unsigned, 4> InsertIndices;
+ SmallVector<int, 8> Mask(NumElems, -1);
+
+ for (unsigned i = 0; i != NumElems; ++i) {
+ unsigned Opc = Op.getOperand(i).getOpcode();
+
+ if (Opc == ISD::UNDEF)
+ continue;
+
+ if (Opc != ISD::EXTRACT_VECTOR_ELT) {
+ // Quit if more than 1 elements need inserting.
+ if (InsertIndices.size() > 1)
+ return SDValue();
+
+ InsertIndices.push_back(i);
+ continue;
+ }
+
+ SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
+ SDValue ExtIdx = Op.getOperand(i).getOperand(1);
+ // Quit if non-constant index.
+ if (!isa<ConstantSDNode>(ExtIdx))
+ return SDValue();
+ int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
+
+ // Quit if extracted from vector of different type.
+ if (ExtractedFromVec.getValueType() != VT)
+ return SDValue();
+
+ if (!VecIn1.getNode())
+ VecIn1 = ExtractedFromVec;
+ else if (VecIn1 != ExtractedFromVec) {
+ if (!VecIn2.getNode())
+ VecIn2 = ExtractedFromVec;
+ else if (VecIn2 != ExtractedFromVec)
+ // Quit if more than 2 vectors to shuffle
+ return SDValue();
+ }
+
+ if (ExtractedFromVec == VecIn1)
+ Mask[i] = Idx;
+ else if (ExtractedFromVec == VecIn2)
+ Mask[i] = Idx + NumElems;
+ }
+
+ if (!VecIn1.getNode())
+ return SDValue();
+
+ VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
+ SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
+ for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
+ unsigned Idx = InsertIndices[i];
+ NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
+ DAG.getIntPtrConstant(Idx, DL));
+ }
+
+ return NV;
+}
+
+static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
+ assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
+ Op.getScalarValueSizeInBits() == 1 &&
+ "Can not convert non-constant vector");
+ uint64_t Immediate = 0;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (In.getOpcode() != ISD::UNDEF)
+ Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
+ }
+ SDLoc dl(Op);
+ MVT VT =
+ MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8));
+ return DAG.getConstant(Immediate, dl, VT);
+}
+// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
+SDValue
+X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+ assert((VT.getVectorElementType() == MVT::i1) &&
+ "Unexpected type in LowerBUILD_VECTORvXi1!");
+
+ SDLoc dl(Op);
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(0, dl, MVT::i1);
+ SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ }
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(1, dl, MVT::i1);
+ SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Cst);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
+ }
+
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
+ SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
+ if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+ return DAG.getBitcast(VT, Imm);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ // Vector has one or more non-const elements
+ uint64_t Immediate = 0;
+ SmallVector<unsigned, 16> NonConstIdx;
+ bool IsSplat = true;
+ bool HasConstElts = false;
+ int SplatIdx = -1;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (In.getOpcode() == ISD::UNDEF)
+ continue;
+ if (!isa<ConstantSDNode>(In))
+ NonConstIdx.push_back(idx);
+ else {
+ Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
+ HasConstElts = true;
+ }
+ if (SplatIdx == -1)
+ SplatIdx = idx;
+ else if (In != Op.getOperand(SplatIdx))
+ IsSplat = false;
+ }
+
+ // for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
+ if (IsSplat)
+ return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx),
+ DAG.getConstant(1, dl, VT),
+ DAG.getConstant(0, dl, VT));
+
+ // insert elements one by one
+ SDValue DstVec;
+ SDValue Imm;
+ if (Immediate) {
+ MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
+ Imm = DAG.getConstant(Immediate, dl, ImmVT);
+ }
+ else if (HasConstElts)
+ Imm = DAG.getConstant(0, dl, VT);
+ else
+ Imm = DAG.getUNDEF(VT);
+ if (Imm.getValueSizeInBits() == VT.getSizeInBits())
+ DstVec = DAG.getBitcast(VT, Imm);
+ else {
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
+ DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ for (unsigned i = 0; i < NonConstIdx.size(); ++i) {
+ unsigned InsertIdx = NonConstIdx[i];
+ DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
+ Op.getOperand(InsertIdx),
+ DAG.getIntPtrConstant(InsertIdx, dl));
+ }
+ return DstVec;
+}
+
+/// \brief Return true if \p N implements a horizontal binop and return the
+/// operands for the horizontal binop into V0 and V1.
+///
+/// This is a helper function of LowerToHorizontalOp().
+/// This function checks that the build_vector \p N in input implements a
+/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
+/// operation to match.
+/// For example, if \p Opcode is equal to ISD::ADD, then this function
+/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
+/// is equal to ISD::SUB, then this function checks if this is a horizontal
+/// arithmetic sub.
+///
+/// This function only analyzes elements of \p N whose indices are
+/// in range [BaseIdx, LastIdx).
+static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
+ SelectionDAG &DAG,
+ unsigned BaseIdx, unsigned LastIdx,
+ SDValue &V0, SDValue &V1) {
+ EVT VT = N->getValueType(0);
+
+ assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
+ assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
+ "Invalid Vector in input!");
+
+ bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
+ bool CanFold = true;
+ unsigned ExpectedVExtractIdx = BaseIdx;
+ unsigned NumElts = LastIdx - BaseIdx;
+ V0 = DAG.getUNDEF(VT);
+ V1 = DAG.getUNDEF(VT);
+
+ // Check if N implements a horizontal binop.
+ for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
+ SDValue Op = N->getOperand(i + BaseIdx);
+
+ // Skip UNDEFs.
+ if (Op->getOpcode() == ISD::UNDEF) {
+ // Update the expected vector extract index.
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ ExpectedVExtractIdx += 2;
+ continue;
+ }
+
+ CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
+
+ if (!CanFold)
+ break;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
+ CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ Op0.getOperand(0) == Op1.getOperand(0) &&
+ isa<ConstantSDNode>(Op0.getOperand(1)) &&
+ isa<ConstantSDNode>(Op1.getOperand(1)));
+ if (!CanFold)
+ break;
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
+
+ if (i * 2 < NumElts) {
+ if (V0.getOpcode() == ISD::UNDEF) {
+ V0 = Op0.getOperand(0);
+ if (V0.getValueType() != VT)
+ return false;
+ }
+ } else {
+ if (V1.getOpcode() == ISD::UNDEF) {
+ V1 = Op0.getOperand(0);
+ if (V1.getValueType() != VT)
+ return false;
+ }
+ if (i * 2 == NumElts)
+ ExpectedVExtractIdx = BaseIdx;
+ }
+
+ SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
+ if (I0 == ExpectedVExtractIdx)
+ CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
+ else if (IsCommutable && I1 == ExpectedVExtractIdx) {
+ // Try to match the following dag sequence:
+ // (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
+ CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
+ } else
+ CanFold = false;
+
+ ExpectedVExtractIdx += 2;
+ }
+
+ return CanFold;
+}
+
+/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
+/// a concat_vector.
+///
+/// This is a helper function of LowerToHorizontalOp().
+/// This function expects two 256-bit vectors called V0 and V1.
+/// At first, each vector is split into two separate 128-bit vectors.
+/// Then, the resulting 128-bit vectors are used to implement two
+/// horizontal binary operations.
+///
+/// The kind of horizontal binary operation is defined by \p X86Opcode.
+///
+/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
+/// the two new horizontal binop.
+/// When Mode is set, the first horizontal binop dag node would take as input
+/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
+/// horizontal binop dag node would take as input the lower 128-bit of V1
+/// and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V0_HI
+/// HADD V1_LO, V1_HI
+///
+/// Otherwise, the first horizontal binop dag node takes as input the lower
+/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
+/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
+/// Example:
+/// HADD V0_LO, V1_LO
+/// HADD V0_HI, V1_HI
+///
+/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
+/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
+/// the upper 128-bits of the result.
+static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
+ SDLoc DL, SelectionDAG &DAG,
+ unsigned X86Opcode, bool Mode,
+ bool isUndefLO, bool isUndefHI) {
+ EVT VT = V0.getValueType();
+ assert(VT.is256BitVector() && VT == V1.getValueType() &&
+ "Invalid nodes in input!");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue V0_LO = Extract128BitVector(V0, 0, DAG, DL);
+ SDValue V0_HI = Extract128BitVector(V0, NumElts/2, DAG, DL);
+ SDValue V1_LO = Extract128BitVector(V1, 0, DAG, DL);
+ SDValue V1_HI = Extract128BitVector(V1, NumElts/2, DAG, DL);
+ EVT NewVT = V0_LO.getValueType();
+
+ SDValue LO = DAG.getUNDEF(NewVT);
+ SDValue HI = DAG.getUNDEF(NewVT);
+
+ if (Mode) {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && V0->getOpcode() != ISD::UNDEF)
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
+ if (!isUndefHI && V1->getOpcode() != ISD::UNDEF)
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
+ } else {
+ // Don't emit a horizontal binop if the result is expected to be UNDEF.
+ if (!isUndefLO && (V0_LO->getOpcode() != ISD::UNDEF ||
+ V1_LO->getOpcode() != ISD::UNDEF))
+ LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
+
+ if (!isUndefHI && (V0_HI->getOpcode() != ISD::UNDEF ||
+ V1_HI->getOpcode() != ISD::UNDEF))
+ HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
+ }
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
+}
+
+/// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB
+/// node.
+static SDValue LowerToAddSub(const BuildVectorSDNode *BV,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ MVT VT = BV->getSimpleValueType(0);
+ if ((!Subtarget->hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
+ (!Subtarget->hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)))
+ return SDValue();
+
+ SDLoc DL(BV);
+ unsigned NumElts = VT.getVectorNumElements();
+ SDValue InVec0 = DAG.getUNDEF(VT);
+ SDValue InVec1 = DAG.getUNDEF(VT);
+
+ assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
+ VT == MVT::v2f64) && "build_vector with an invalid type found!");
+
+ // Odd-numbered elements in the input build vector are obtained from
+ // adding two integer/float elements.
+ // Even-numbered elements in the input build vector are obtained from
+ // subtracting two integer/float elements.
+ unsigned ExpectedOpcode = ISD::FSUB;
+ unsigned NextExpectedOpcode = ISD::FADD;
+ bool AddFound = false;
+ bool SubFound = false;
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ SDValue Op = BV->getOperand(i);
+
+ // Skip 'undef' values.
+ unsigned Opcode = Op.getOpcode();
+ if (Opcode == ISD::UNDEF) {
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+ continue;
+ }
+
+ // Early exit if we found an unexpected opcode.
+ if (Opcode != ExpectedOpcode)
+ return SDValue();
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+
+ // Try to match the following pattern:
+ // (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
+ // Early exit if we cannot match that sequence.
+ if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !isa<ConstantSDNode>(Op0.getOperand(1)) ||
+ !isa<ConstantSDNode>(Op1.getOperand(1)) ||
+ Op0.getOperand(1) != Op1.getOperand(1))
+ return SDValue();
+
+ unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
+ if (I0 != i)
+ return SDValue();
+
+ // We found a valid add/sub node. Update the information accordingly.
+ if (i & 1)
+ AddFound = true;
+ else
+ SubFound = true;
+
+ // Update InVec0 and InVec1.
+ if (InVec0.getOpcode() == ISD::UNDEF) {
+ InVec0 = Op0.getOperand(0);
+ if (InVec0.getSimpleValueType() != VT)
+ return SDValue();
+ }
+ if (InVec1.getOpcode() == ISD::UNDEF) {
+ InVec1 = Op1.getOperand(0);
+ if (InVec1.getSimpleValueType() != VT)
+ return SDValue();
+ }
+
+ // Make sure that operands in input to each add/sub node always
+ // come from a same pair of vectors.
+ if (InVec0 != Op0.getOperand(0)) {
+ if (ExpectedOpcode == ISD::FSUB)
+ return SDValue();
+
+ // FADD is commutable. Try to commute the operands
+ // and then test again.
+ std::swap(Op0, Op1);
+ if (InVec0 != Op0.getOperand(0))
+ return SDValue();
+ }
+
+ if (InVec1 != Op1.getOperand(0))
+ return SDValue();
+
+ // Update the pair of expected opcodes.
+ std::swap(ExpectedOpcode, NextExpectedOpcode);
+ }
+
+ // Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
+ if (AddFound && SubFound && InVec0.getOpcode() != ISD::UNDEF &&
+ InVec1.getOpcode() != ISD::UNDEF)
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
+
+ return SDValue();
+}
+
+/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
+static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = BV->getSimpleValueType(0);
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumUndefsLO = 0;
+ unsigned NumUndefsHI = 0;
+ unsigned Half = NumElts/2;
+
+ // Count the number of UNDEF operands in the build_vector in input.
+ for (unsigned i = 0, e = Half; i != e; ++i)
+ if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
+ NumUndefsLO++;
+
+ for (unsigned i = Half, e = NumElts; i != e; ++i)
+ if (BV->getOperand(i)->getOpcode() == ISD::UNDEF)
+ NumUndefsHI++;
+
+ // Early exit if this is either a build_vector of all UNDEFs or all the
+ // operands but one are UNDEF.
+ if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
+ return SDValue();
+
+ SDLoc DL(BV);
+ SDValue InVec0, InVec1;
+ if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget->hasSSE3()) {
+ // Try to match an SSE3 float HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget->hasSSSE3()) {
+ // Try to match an SSSE3 integer HADD/HSUB.
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
+ }
+
+ if (!Subtarget->hasAVX())
+ return SDValue();
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
+ // Try to match an AVX horizontal add/sub of packed single/double
+ // precision floating point values from 256-bit vectors.
+ SDValue InVec2, InVec3;
+ if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
+
+ if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
+ } else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
+ // Try to match an AVX2 horizontal add/sub of signed integers.
+ SDValue InVec2, InVec3;
+ unsigned X86Opcode;
+ bool CanFold = true;
+
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
+ isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
+ ((InVec0.getOpcode() == ISD::UNDEF ||
+ InVec2.getOpcode() == ISD::UNDEF) || InVec0 == InVec2) &&
+ ((InVec1.getOpcode() == ISD::UNDEF ||
+ InVec3.getOpcode() == ISD::UNDEF) || InVec1 == InVec3))
+ X86Opcode = X86ISD::HSUB;
+ else
+ CanFold = false;
+
+ if (CanFold) {
+ // Fold this build_vector into a single horizontal add/sub.
+ // Do this only if the target has AVX2.
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
+
+ // Do not try to expand this build_vector into a pair of horizontal
+ // add/sub if we can emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into a pair of horizontal binop followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
+ isUndefLO, isUndefHI);
+ }
+ }
+
+ if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
+ VT == MVT::v16i16) && Subtarget->hasAVX()) {
+ unsigned X86Opcode;
+ if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HADD;
+ else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::HSUB;
+ else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHADD;
+ else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
+ X86Opcode = X86ISD::FHSUB;
+ else
+ return SDValue();
+
+ // Don't try to expand this build_vector into a pair of horizontal add/sub
+ // if we can simply emit a pair of scalar add/sub.
+ if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
+ return SDValue();
+
+ // Convert this build_vector into two horizontal add/sub followed by
+ // a concat vector.
+ bool isUndefLO = NumUndefsLO == Half;
+ bool isUndefHI = NumUndefsHI == Half;
+ return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
+ isUndefLO, isUndefHI);
+ }
+
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+
+ MVT VT = Op.getSimpleValueType();
+ MVT ExtVT = VT.getVectorElementType();
+ unsigned NumElems = Op.getNumOperands();
+
+ // Generate vectors for predicate vectors.
+ if (VT.getVectorElementType() == MVT::i1 && Subtarget->hasAVX512())
+ return LowerBUILD_VECTORvXi1(Op, DAG);
+
+ // Vectors containing all zeros can be matched by pxor and xorps later
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
+ // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
+ if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
+ return Op;
+
+ return getZeroVector(VT, Subtarget, DAG, dl);
+ }
+
+ // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
+ // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
+ // vpcmpeqd on 256-bit vectors.
+ if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
+ if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
+ return Op;
+
+ if (!VT.is512BitVector())
+ return getOnesVector(VT, Subtarget, DAG, dl);
+ }
+
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
+ if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG))
+ return AddSub;
+ if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
+ return HorizontalOp;
+ if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
+ return Broadcast;
+
+ unsigned EVTBits = ExtVT.getSizeInBits();
+
+ unsigned NumZero = 0;
+ unsigned NumNonZero = 0;
+ uint64_t NonZeros = 0;
+ bool IsAllConstants = true;
+ SmallSet<SDValue, 8> Values;
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+ Values.insert(Elt);
+ if (Elt.getOpcode() != ISD::Constant &&
+ Elt.getOpcode() != ISD::ConstantFP)
+ IsAllConstants = false;
+ if (X86::isZeroNode(Elt))
+ NumZero++;
+ else {
+ assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
+ NonZeros |= ((uint64_t)1 << i);
+ NumNonZero++;
+ }
+ }
+
+ // All undef vector. Return an UNDEF. All zero vectors were handled above.
+ if (NumNonZero == 0)
+ return DAG.getUNDEF(VT);
+
+ // Special case for single non-zero, non-undef, element.
+ if (NumNonZero == 1) {
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+
+ // If this is an insertion of an i64 value on x86-32, and if the top bits of
+ // the value are obviously zero, truncate the value to i32 and do the
+ // insertion that way. Only do this if the value is non-constant or if the
+ // value is a constant being inserted into element 0. It is cheaper to do
+ // a constant pool load than it is to do a movd + shuffle.
+ if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
+ (!IsAllConstants || Idx == 0)) {
+ if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
+ // Handle SSE only.
+ assert(VT == MVT::v2i64 && "Expected an SSE value type!");
+ MVT VecVT = MVT::v4i32;
+
+ // Truncate the value (which may itself be a constant) to i32, and
+ // convert it to a vector with movd (S2V+shuffle to zero extend).
+ Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
+ return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
+ Item, Idx * 2, true, Subtarget, DAG));
+ }
+ }
+
+ // If we have a constant or non-constant insertion into the low element of
+ // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
+ // the rest of the elements. This will be matched as movd/movq/movss/movsd
+ // depending on what the source datatype is.
+ if (Idx == 0) {
+ if (NumZero == 0)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+
+ if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
+ (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
+ if (VT.is512BitVector()) {
+ SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
+ Item, DAG.getIntPtrConstant(0, dl));
+ }
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Expected an SSE value type!");
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
+ return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+
+ // We can't directly insert an i8 or i16 into a vector, so zero extend
+ // it to i32 first.
+ if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
+ Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
+ if (VT.is256BitVector()) {
+ if (Subtarget->hasAVX()) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v8i32, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ } else {
+ // Without AVX, we need to extend to a 128-bit vector and then
+ // insert into the 256-bit vector.
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+ SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
+ Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
+ }
+ } else {
+ assert(VT.is128BitVector() && "Expected an SSE value type!");
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
+ }
+ return DAG.getBitcast(VT, Item);
+ }
+ }
+
+ // Is it a vector logical left shift?
+ if (NumElems == 2 && Idx == 1 &&
+ X86::isZeroNode(Op.getOperand(0)) &&
+ !X86::isZeroNode(Op.getOperand(1))) {
+ unsigned NumBits = VT.getSizeInBits();
+ return getVShift(true, VT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ VT, Op.getOperand(1)),
+ NumBits/2, DAG, *this, dl);
+ }
+
+ if (IsAllConstants) // Otherwise, it's better to do a constpool load.
+ return SDValue();
+
+ // Otherwise, if this is a vector with i32 or f32 elements, and the element
+ // is a non-constant being inserted into an element other than the low one,
+ // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
+ // movd/movss) to move this into the low element, then shuffle it into
+ // place.
+ if (EVTBits == 32) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
+ }
+ }
+
+ // Splat is obviously ok. Let legalizer expand it to a shuffle.
+ if (Values.size() == 1) {
+ if (EVTBits == 32) {
+ // Instead of a shuffle like this:
+ // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
+ // Check if it's possible to issue this instead.
+ // shuffle (vload ptr)), undef, <1, 1, 1, 1>
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+ if (Op.getNode()->isOnlyUserOf(Item.getNode()))
+ return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
+ }
+ return SDValue();
+ }
+
+ // A vector full of immediates; various special cases are already
+ // handled, so this is best done with a single constant-pool load.
+ if (IsAllConstants)
+ return SDValue();
+
+ // For AVX-length vectors, see if we can use a vector load to get all of the
+ // elements, otherwise build the individual 128-bit pieces and use
+ // shuffles to put them in place.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ SmallVector<SDValue, 64> V(Op->op_begin(), Op->op_begin() + NumElems);
+
+ // Check for a build vector of consecutive loads.
+ if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
+ return LD;
+
+ EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
+
+ // Build both the lower and upper subvector.
+ SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
+ makeArrayRef(&V[0], NumElems/2));
+ SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT,
+ makeArrayRef(&V[NumElems / 2], NumElems/2));
+
+ // Recreate the wider vector with the lower and upper part.
+ if (VT.is256BitVector())
+ return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ return Concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
+ }
+
+ // Let legalizer expand 2-wide build_vectors.
+ if (EVTBits == 64) {
+ if (NumNonZero == 1) {
+ // One half is zero or undef.
+ unsigned Idx = countTrailingZeros(NonZeros);
+ SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
+ Op.getOperand(Idx));
+ return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
+ }
+ return SDValue();
+ }
+
+ // If element VT is < 32 bits, convert it to inserts into a zero vector.
+ if (EVTBits == 8 && NumElems == 16)
+ if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
+ DAG, Subtarget, *this))
+ return V;
+
+ if (EVTBits == 16 && NumElems == 8)
+ if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
+ DAG, Subtarget, *this))
+ return V;
+
+ // If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
+ if (EVTBits == 32 && NumElems == 4)
+ if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
+ return V;
+
+ // If element VT is == 32 bits, turn it into a number of shuffles.
+ SmallVector<SDValue, 8> V(NumElems);
+ if (NumElems == 4 && NumZero > 0) {
+ for (unsigned i = 0; i < 4; ++i) {
+ bool isZero = !(NonZeros & (1ULL << i));
+ if (isZero)
+ V[i] = getZeroVector(VT, Subtarget, DAG, dl);
+ else
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ }
+
+ for (unsigned i = 0; i < 2; ++i) {
+ switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
+ default: break;
+ case 0:
+ V[i] = V[i*2]; // Must be a zero vector.
+ break;
+ case 1:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
+ break;
+ case 2:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ case 3:
+ V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ }
+ }
+
+ bool Reverse1 = (NonZeros & 0x3) == 2;
+ bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
+ int MaskVec[] = {
+ Reverse1 ? 1 : 0,
+ Reverse1 ? 0 : 1,
+ static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
+ static_cast<int>(Reverse2 ? NumElems : NumElems+1)
+ };
+ return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
+ }
+
+ if (Values.size() > 1 && VT.is128BitVector()) {
+ // Check for a build vector of consecutive loads.
+ for (unsigned i = 0; i < NumElems; ++i)
+ V[i] = Op.getOperand(i);
+
+ // Check for elements which are consecutive loads.
+ if (SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false))
+ return LD;
+
+ // Check for a build vector from mostly shuffle plus few inserting.
+ if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
+ return Sh;
+
+ // For SSE 4.1, use insertps to put the high elements into the low element.
+ if (Subtarget->hasSSE41()) {
+ SDValue Result;
+ if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
+ Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
+ else
+ Result = DAG.getUNDEF(VT);
+
+ for (unsigned i = 1; i < NumElems; ++i) {
+ if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
+ Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
+ Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
+ }
+ return Result;
+ }
+
+ // Otherwise, expand into a number of unpckl*, start by extending each of
+ // our (non-undef) elements to the full vector width with the element in the
+ // bottom slot of the vector (which generates no code for SSE).
+ for (unsigned i = 0; i < NumElems; ++i) {
+ if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ else
+ V[i] = DAG.getUNDEF(VT);
+ }
+
+ // Next, we iteratively mix elements, e.g. for v4f32:
+ // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
+ // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
+ // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
+ unsigned EltStride = NumElems >> 1;
+ while (EltStride != 0) {
+ for (unsigned i = 0; i < EltStride; ++i) {
+ // If V[i+EltStride] is undef and this is the first round of mixing,
+ // then it is safe to just drop this shuffle: V[i] is already in the
+ // right place, the one element (since it's the first round) being
+ // inserted as undef can be dropped. This isn't safe for successive
+ // rounds because they will permute elements within both vectors.
+ if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
+ EltStride == NumElems/2)
+ continue;
+
+ V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
+ }
+ EltStride >>= 1;
+ }
+ return V[0];
+ }
+ return SDValue();
+}
+
+// 256-bit AVX can use the vinsertf128 instruction
+// to create 256-bit vectors from two other 128-bit ones.
+static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
+
+ assert((ResVT.is256BitVector() ||
+ ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
+
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ unsigned NumElems = ResVT.getVectorNumElements();
+ if (ResVT.is256BitVector())
+ return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+
+ if (Op.getNumOperands() == 4) {
+ MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
+ ResVT.getVectorNumElements()/2);
+ SDValue V3 = Op.getOperand(2);
+ SDValue V4 = Op.getOperand(3);
+ return Concat256BitVectors(Concat128BitVectors(V1, V2, HalfVT, NumElems/2, DAG, dl),
+ Concat128BitVectors(V3, V4, HalfVT, NumElems/2, DAG, dl), ResVT, NumElems, DAG, dl);
+ }
+ return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+}
+
+static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
+ const X86Subtarget *Subtarget,
+ SelectionDAG & DAG) {
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
+ unsigned NumOfOperands = Op.getNumOperands();
+
+ assert(isPowerOf2_32(NumOfOperands) &&
+ "Unexpected number of operands in CONCAT_VECTORS");
+
+ SDValue Undef = DAG.getUNDEF(ResVT);
+ if (NumOfOperands > 2) {
+ // Specialize the cases when all, or all but one, of the operands are undef.
+ unsigned NumOfDefinedOps = 0;
+ unsigned OpIdx = 0;
+ for (unsigned i = 0; i < NumOfOperands; i++)
+ if (!Op.getOperand(i).isUndef()) {
+ NumOfDefinedOps++;
+ OpIdx = i;
+ }
+ if (NumOfDefinedOps == 0)
+ return Undef;
+ if (NumOfDefinedOps == 1) {
+ unsigned SubVecNumElts =
+ Op.getOperand(OpIdx).getValueType().getVectorNumElements();
+ SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef,
+ Op.getOperand(OpIdx), IdxVal);
+ }
+
+ MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
+ ResVT.getVectorNumElements()/2);
+ SmallVector<SDValue, 2> Ops;
+ for (unsigned i = 0; i < NumOfOperands/2; i++)
+ Ops.push_back(Op.getOperand(i));
+ SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
+ Ops.clear();
+ for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
+ Ops.push_back(Op.getOperand(i));
+ SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
+ }
+
+ // 2 operands
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ unsigned NumElems = ResVT.getVectorNumElements();
+ assert(V1.getValueType() == V2.getValueType() &&
+ V1.getValueType().getVectorNumElements() == NumElems/2 &&
+ "Unexpected operands in CONCAT_VECTORS");
+
+ if (ResVT.getSizeInBits() >= 16)
+ return Op; // The operation is legal with KUNPCK
+
+ bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
+ SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl);
+ if (IsZeroV1 && IsZeroV2)
+ return ZeroVec;
+
+ SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
+ if (V2.isUndef())
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
+ if (IsZeroV2)
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx);
+
+ SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl);
+ if (V1.isUndef())
+ V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal);
+
+ if (IsZeroV1)
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal);
+
+ V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal);
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ if (VT.getVectorElementType() == MVT::i1)
+ return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
+
+ assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
+ (VT.is512BitVector() && (Op.getNumOperands() == 2 ||
+ Op.getNumOperands() == 4)));
+
+ // AVX can use the vinsertf128 instruction to create 256-bit vectors
+ // from two other 128-bit ones.
+
+ // 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
+ return LowerAVXCONCAT_VECTORS(Op, DAG);
+}
+
+//===----------------------------------------------------------------------===//
+// Vector shuffle lowering
+//
+// This is an experimental code path for lowering vector shuffles on x86. It is
+// designed to handle arbitrary vector shuffles and blends, gracefully
+// degrading performance as necessary. It works hard to recognize idiomatic
+// shuffles and lower them to optimal instruction patterns without leaving
+// a framework that allows reasonably efficient handling of all vector shuffle
+// patterns.
+//===----------------------------------------------------------------------===//
+
+/// \brief Tiny helper function to identify a no-op mask.
+///
+/// This is a somewhat boring predicate function. It checks whether the mask
+/// array input, which is assumed to be a single-input shuffle mask of the kind
+/// used by the X86 shuffle instructions (not a fully general
+/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
+/// in-place shuffle are 'no-op's.
+static bool isNoopShuffleMask(ArrayRef<int> Mask) {
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] != -1 && Mask[i] != i)
+ return false;
+ return true;
+}
+
+/// \brief Helper function to classify a mask as a single-input mask.
+///
+/// This isn't a generic single-input test because in the vector shuffle
+/// lowering we canonicalize single inputs to be the first input operand. This
+/// means we can more quickly test for a single input by only checking whether
+/// an input from the second operand exists. We also assume that the size of
+/// mask corresponds to the size of the input vectors which isn't true in the
+/// fully general case.
+static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
+ for (int M : Mask)
+ if (M >= (int)Mask.size())
+ return false;
+ return true;
+}
+
+/// \brief Test whether there are elements crossing 128-bit lanes in this
+/// shuffle mask.
+///
+/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
+/// and we routinely test for these.
+static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ return true;
+ return false;
+}
+
+/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
+///
+/// This checks a shuffle mask to see if it is performing the same
+/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
+/// that it is also not lane-crossing. It may however involve a blend from the
+/// same lane of a second vector.
+///
+/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
+/// non-trivial to compute in the face of undef lanes. The representation is
+/// *not* suitable for use with existing 128-bit shuffles as it will contain
+/// entries from both V1 and V2 inputs to the wider mask.
+static bool
+is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
+ SmallVectorImpl<int> &RepeatedMask) {
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ RepeatedMask.resize(LaneSize, -1);
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ if ((Mask[i] % Size) / LaneSize != i / LaneSize)
+ // This entry crosses lanes, so there is no way to model this shuffle.
+ return false;
+
+ // Ok, handle the in-lane shuffles by detecting if and when they repeat.
+ if (RepeatedMask[i % LaneSize] == -1)
+ // This is the first non-undef entry in this slot of a 128-bit lane.
+ RepeatedMask[i % LaneSize] =
+ Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
+ else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
+ // Found a mismatch with the repeated mask.
+ return false;
+ }
+ return true;
+}
+
+/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
+/// arguments.
+///
+/// This is a fast way to test a shuffle mask against a fixed pattern:
+///
+/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
+///
+/// It returns true if the mask is exactly as wide as the argument list, and
+/// each element of the mask is either -1 (signifying undef) or the value given
+/// in the argument.
+static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ ArrayRef<int> ExpectedMask) {
+ if (Mask.size() != ExpectedMask.size())
+ return false;
+
+ int Size = Mask.size();
+
+ // If the values are build vectors, we can look through them to find
+ // equivalent inputs that make the shuffles equivalent.
+ auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
+ auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
+
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
+ auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
+ auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
+ if (!MaskBV || !ExpectedBV ||
+ MaskBV->getOperand(Mask[i] % Size) !=
+ ExpectedBV->getOperand(ExpectedMask[i] % Size))
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
+///
+/// This helper function produces an 8-bit shuffle immediate corresponding to
+/// the ubiquitous shuffle encoding scheme used in x86 instructions for
+/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
+/// example.
+///
+/// NB: We rely heavily on "undef" masks preserving the input lane.
+static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
+ SelectionDAG &DAG) {
+ assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
+ assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
+ assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
+ assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
+ assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
+
+ unsigned Imm = 0;
+ Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
+ Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
+ Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
+ Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
+ return DAG.getConstant(Imm, DL, MVT::i8);
+}
+
+/// \brief Compute whether each element of a shuffle is zeroable.
+///
+/// A "zeroable" vector shuffle element is one which can be lowered to zero.
+/// Either it is an undef element in the shuffle mask, the element of the input
+/// referenced is undef, or the element of the input referenced is known to be
+/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
+/// as many lanes with this technique as possible to simplify the remaining
+/// shuffle.
+static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
+ SDValue V1, SDValue V2) {
+ SmallBitVector Zeroable(Mask.size(), false);
+
+ while (V1.getOpcode() == ISD::BITCAST)
+ V1 = V1->getOperand(0);
+ while (V2.getOpcode() == ISD::BITCAST)
+ V2 = V2->getOperand(0);
+
+ bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ int M = Mask[i];
+ // Handle the easy cases.
+ if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
+ Zeroable[i] = true;
+ continue;
+ }
+
+ // If this is an index into a build_vector node (which has the same number
+ // of elements), dig out the input value and use it.
+ SDValue V = M < Size ? V1 : V2;
+ if (V.getOpcode() != ISD::BUILD_VECTOR || Size != (int)V.getNumOperands())
+ continue;
+
+ SDValue Input = V.getOperand(M % Size);
+ // The UNDEF opcode check really should be dead code here, but not quite
+ // worth asserting on (it isn't invalid, just unexpected).
+ if (Input.getOpcode() == ISD::UNDEF || X86::isZeroNode(Input))
+ Zeroable[i] = true;
+ }
+
+ return Zeroable;
+}
+
+// X86 has dedicated unpack instructions that can handle specific blend
+// operations: UNPCKH and UNPCKL.
+static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask,
+ SDValue V1, SDValue V2,
+ SelectionDAG &DAG) {
+ int NumElts = VT.getVectorNumElements();
+ int NumEltsInLane = 128 / VT.getScalarSizeInBits();
+ SmallVector<int, 8> Unpckl;
+ SmallVector<int, 8> Unpckh;
+
+ for (int i = 0; i < NumElts; ++i) {
+ unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
+ int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2);
+ int HiPos = LoPos + NumEltsInLane / 2;
+ Unpckl.push_back(LoPos);
+ Unpckh.push_back(HiPos);
+ }
+
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
+
+ // Commute and try again.
+ ShuffleVectorSDNode::commuteMask(Unpckl);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
+ return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
+
+ ShuffleVectorSDNode::commuteMask(Unpckh);
+ if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
+
+ return SDValue();
+}
+
+/// \brief Try to emit a bitmask instruction for a shuffle.
+///
+/// This handles cases where we can model a blend exactly as a bitmask due to
+/// one of the inputs being zeroable.
+static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ MVT EltVT = VT.getVectorElementType();
+ int NumEltBits = EltVT.getSizeInBits();
+ MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
+ SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
+ SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
+ IntEltVT);
+ if (EltVT.isFloatingPoint()) {
+ Zero = DAG.getBitcast(EltVT, Zero);
+ AllOnes = DAG.getBitcast(EltVT, AllOnes);
+ }
+ SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ SDValue V;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Zeroable[i])
+ continue;
+ if (Mask[i] % Size != i)
+ return SDValue(); // Not a blend.
+ if (!V)
+ V = Mask[i] < Size ? V1 : V2;
+ else if (V != (Mask[i] < Size ? V1 : V2))
+ return SDValue(); // Can only let one input through the mask.
+
+ VMaskOps[i] = AllOnes;
+ }
+ if (!V)
+ return SDValue(); // No non-zeroable elements!
+
+ SDValue VMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, VMaskOps);
+ V = DAG.getNode(VT.isFloatingPoint()
+ ? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
+ DL, VT, V, VMask);
+ return V;
+}
+
+/// \brief Try to emit a blend instruction for a shuffle using bit math.
+///
+/// This is used as a fallback approach when first class blend instructions are
+/// unavailable. Currently it is only suitable for integer vectors, but could
+/// be generalized for floating point vectors if desirable.
+static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(VT.isInteger() && "Only supports integer vector types!");
+ MVT EltVT = VT.getVectorElementType();
+ int NumEltBits = EltVT.getSizeInBits();
+ SDValue Zero = DAG.getConstant(0, DL, EltVT);
+ SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
+ EltVT);
+ SmallVector<SDValue, 16> MaskOps;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
+ return SDValue(); // Shuffled input!
+ MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
+ }
+
+ SDValue V1Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, MaskOps);
+ V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
+ // We have to cast V2 around.
+ MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
+ V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
+ DAG.getBitcast(MaskVT, V1Mask),
+ DAG.getBitcast(MaskVT, V2)));
+ return DAG.getNode(ISD::OR, DL, VT, V1, V2);
+}
+
+/// \brief Try to emit a blend instruction for a shuffle.
+///
+/// This doesn't do any checks for the availability of instructions for blending
+/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
+/// be matched in the backend with the type given. What it does check for is
+/// that the shuffle mask is a blend, or convertible into a blend with zero.
+static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Original,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
+ SmallVector<int, 8> Mask(Original.begin(), Original.end());
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ bool ForceV1Zero = false, ForceV2Zero = false;
+
+ // Attempt to generate the binary blend mask. If an input is zero then
+ // we can use any lane.
+ // TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
+ unsigned BlendMask = 0;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ int M = Mask[i];
+ if (M < 0)
+ continue;
+ if (M == i)
+ continue;
+ if (M == i + Size) {
+ BlendMask |= 1u << i;
+ continue;
+ }
+ if (Zeroable[i]) {
+ if (V1IsZero) {
+ ForceV1Zero = true;
+ Mask[i] = i;
+ continue;
+ }
+ if (V2IsZero) {
+ ForceV2Zero = true;
+ BlendMask |= 1u << i;
+ Mask[i] = i + Size;
+ continue;
+ }
+ }
+ return SDValue(); // Shuffled input!
+ }
+
+ // Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
+ if (ForceV1Zero)
+ V1 = getZeroVector(VT, Subtarget, DAG, DL);
+ if (ForceV2Zero)
+ V2 = getZeroVector(VT, Subtarget, DAG, DL);
+
+ auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) {
+ unsigned ScaledMask = 0;
+ for (int i = 0; i != Size; ++i)
+ if (BlendMask & (1u << i))
+ for (int j = 0; j != Scale; ++j)
+ ScaledMask |= 1u << (i * Scale + j);
+ return ScaledMask;
+ };
+
+ switch (VT.SimpleTy) {
+ case MVT::v2f64:
+ case MVT::v4f32:
+ case MVT::v4f64:
+ case MVT::v8f32:
+ return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8));
+
+ case MVT::v4i64:
+ case MVT::v8i32:
+ assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
+ // FALLTHROUGH
+ case MVT::v2i64:
+ case MVT::v4i32:
+ // If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
+ // that instruction.
+ if (Subtarget->hasAVX2()) {
+ // Scale the blend by the number of 32-bit dwords per element.
+ int Scale = VT.getScalarSizeInBits() / 32;
+ BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
+ MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
+ }
+ // FALLTHROUGH
+ case MVT::v8i16: {
+ // For integer shuffles we need to expand the mask and cast the inputs to
+ // v8i16s prior to blending.
+ int Scale = 8 / VT.getVectorNumElements();
+ BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = DAG.getBitcast(MVT::v8i16, V2);
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8)));
+ }
+
+ case MVT::v16i16: {
+ assert(Subtarget->hasAVX2() && "256-bit integer blends require AVX2!");
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+ // We can lower these with PBLENDW which is mirrored across 128-bit lanes.
+ assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
+ BlendMask = 0;
+ for (int i = 0; i < 8; ++i)
+ if (RepeatedMask[i] >= 16)
+ BlendMask |= 1u << i;
+ return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
+ DAG.getConstant(BlendMask, DL, MVT::i8));
+ }
+ }
+ // FALLTHROUGH
+ case MVT::v16i8:
+ case MVT::v32i8: {
+ assert((VT.is128BitVector() || Subtarget->hasAVX2()) &&
+ "256-bit byte-blends require AVX2 support!");
+
+ // Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
+ if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG))
+ return Masked;
+
+ // Scale the blend by the number of bytes per element.
+ int Scale = VT.getScalarSizeInBits() / 8;
+
+ // This form of blend is always done on bytes. Compute the byte vector
+ // type.
+ MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
+
+ // Compute the VSELECT mask. Note that VSELECT is really confusing in the
+ // mix of LLVM's code generator and the x86 backend. We tell the code
+ // generator that boolean values in the elements of an x86 vector register
+ // are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
+ // mapping a select to operand #1, and 'false' mapping to operand #2. The
+ // reality in x86 is that vector masks (pre-AVX-512) use only the high bit
+ // of the element (the remaining are ignored) and 0 in that high bit would
+ // mean operand #1 while 1 in the high bit would mean operand #2. So while
+ // the LLVM model for boolean values in vector elements gets the relevant
+ // bit set, it is set backwards and over constrained relative to x86's
+ // actual model.
+ SmallVector<SDValue, 32> VSELECTMask;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ for (int j = 0; j < Scale; ++j)
+ VSELECTMask.push_back(
+ Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
+ : DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
+ MVT::i8));
+
+ V1 = DAG.getBitcast(BlendVT, V1);
+ V2 = DAG.getBitcast(BlendVT, V2);
+ return DAG.getBitcast(VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ BlendVT, VSELECTMask),
+ V1, V2));
+ }
+
+ default:
+ llvm_unreachable("Not a supported integer vector type!");
+ }
+}
+
+/// \brief Try to lower as a blend of elements from two inputs followed by
+/// a single-input permutation.
+///
+/// This matches the pattern where we can blend elements from two inputs and
+/// then reduce the shuffle to a single-input permutation.
+static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // We build up the blend mask while checking whether a blend is a viable way
+ // to reduce the shuffle.
+ SmallVector<int, 32> BlendMask(Mask.size(), -1);
+ SmallVector<int, 32> PermuteMask(Mask.size(), -1);
+
+ for (int i = 0, Size = Mask.size(); i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
+
+ if (BlendMask[Mask[i] % Size] == -1)
+ BlendMask[Mask[i] % Size] = Mask[i];
+ else if (BlendMask[Mask[i] % Size] != Mask[i])
+ return SDValue(); // Can't blend in the needed input!
+
+ PermuteMask[i] = Mask[i] % Size;
+ }
+
+ SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
+ return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
+}
+
+/// \brief Generic routine to decompose a shuffle and blend into indepndent
+/// blends and permutes.
+///
+/// This matches the extremely common pattern for handling combined
+/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
+/// operations. It will try to pick the best arrangement of shuffles and
+/// blends.
+static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
+ SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // Shuffle the input elements into the desired positions in V1 and V2 and
+ // blend them together.
+ SmallVector<int, 32> V1Mask(Mask.size(), -1);
+ SmallVector<int, 32> V2Mask(Mask.size(), -1);
+ SmallVector<int, 32> BlendMask(Mask.size(), -1);
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] < Size) {
+ V1Mask[i] = Mask[i];
+ BlendMask[i] = i;
+ } else if (Mask[i] >= Size) {
+ V2Mask[i] = Mask[i] - Size;
+ BlendMask[i] = i + Size;
+ }
+
+ // Try to lower with the simpler initial blend strategy unless one of the
+ // input shuffles would be a no-op. We prefer to shuffle inputs as the
+ // shuffle may be able to fold with a load or other benefit. However, when
+ // we'll have to do 2x as many shuffles in order to achieve this, blending
+ // first is a better strategy.
+ if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
+ if (SDValue BlendPerm =
+ lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
+ return BlendPerm;
+
+ V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
+ return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
+}
+
+/// \brief Try to lower a vector shuffle as a byte rotation.
+///
+/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
+/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
+/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
+/// try to generically lower a vector shuffle through such an pattern. It
+/// does not check for the profitability of lowering either as PALIGNR or
+/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
+/// This matches shuffle vectors that look like:
+///
+/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
+///
+/// Essentially it concatenates V1 and V2, shifts right by some number of
+/// elements, and takes the low elements as the result. Note that while this is
+/// specified as a *right shift* because x86 is little-endian, it is a *left
+/// rotate* of the vector lanes.
+static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2,
+ ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
+
+ int NumElts = Mask.size();
+ int NumLanes = VT.getSizeInBits() / 128;
+ int NumLaneElts = NumElts / NumLanes;
+
+ // We need to detect various ways of spelling a rotation:
+ // [11, 12, 13, 14, 15, 0, 1, 2]
+ // [-1, 12, 13, 14, -1, -1, 1, -1]
+ // [-1, -1, -1, -1, -1, -1, 1, 2]
+ // [ 3, 4, 5, 6, 7, 8, 9, 10]
+ // [-1, 4, 5, 6, -1, -1, 9, -1]
+ // [-1, 4, 5, 6, -1, -1, -1, -1]
+ int Rotation = 0;
+ SDValue Lo, Hi;
+ for (int l = 0; l < NumElts; l += NumLaneElts) {
+ for (int i = 0; i < NumLaneElts; ++i) {
+ if (Mask[l + i] == -1)
+ continue;
+ assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!");
+
+ // Get the mod-Size index and lane correct it.
+ int LaneIdx = (Mask[l + i] % NumElts) - l;
+ // Make sure it was in this lane.
+ if (LaneIdx < 0 || LaneIdx >= NumLaneElts)
+ return SDValue();
+
+ // Determine where a rotated vector would have started.
+ int StartIdx = i - LaneIdx;
+ if (StartIdx == 0)
+ // The identity rotation isn't interesting, stop.
+ return SDValue();
+
+ // If we found the tail of a vector the rotation must be the missing
+ // front. If we found the head of a vector, it must be how much of the
+ // head.
+ int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx;
+
+ if (Rotation == 0)
+ Rotation = CandidateRotation;
+ else if (Rotation != CandidateRotation)
+ // The rotations don't match, so we can't match this mask.
+ return SDValue();
+
+ // Compute which value this mask is pointing at.
+ SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2;
+
+ // Compute which of the two target values this index should be assigned
+ // to. This reflects whether the high elements are remaining or the low
+ // elements are remaining.
+ SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
+
+ // Either set up this value if we've not encountered it before, or check
+ // that it remains consistent.
+ if (!TargetV)
+ TargetV = MaskV;
+ else if (TargetV != MaskV)
+ // This may be a rotation, but it pulls from the inputs in some
+ // unsupported interleaving.
+ return SDValue();
+ }
+ }
+
+ // Check that we successfully analyzed the mask, and normalize the results.
+ assert(Rotation != 0 && "Failed to locate a viable rotation!");
+ assert((Lo || Hi) && "Failed to find a rotated input vector!");
+ if (!Lo)
+ Lo = Hi;
+ else if (!Hi)
+ Hi = Lo;
+
+ // The actual rotate instruction rotates bytes, so we need to scale the
+ // rotation based on how many bytes are in the vector lane.
+ int Scale = 16 / NumLaneElts;
+
+ // SSSE3 targets can use the palignr instruction.
+ if (Subtarget->hasSSSE3()) {
+ // Cast the inputs to i8 vector of correct length to match PALIGNR.
+ MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
+ Lo = DAG.getBitcast(AlignVT, Lo);
+ Hi = DAG.getBitcast(AlignVT, Hi);
+
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi,
+ DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
+ }
+
+ assert(VT.is128BitVector() &&
+ "Rotate-based lowering only supports 128-bit lowering!");
+ assert(Mask.size() <= 16 &&
+ "Can shuffle at most 16 bytes in a 128-bit vector!");
+
+ // Default SSE2 implementation
+ int LoByteShift = 16 - Rotation * Scale;
+ int HiByteShift = Rotation * Scale;
+
+ // Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
+ Lo = DAG.getBitcast(MVT::v2i64, Lo);
+ Hi = DAG.getBitcast(MVT::v2i64, Hi);
+
+ SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
+ DAG.getConstant(LoByteShift, DL, MVT::i8));
+ SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
+ DAG.getConstant(HiByteShift, DL, MVT::i8));
+ return DAG.getBitcast(VT,
+ DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
+}
+
+/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
+///
+/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
+/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
+/// matches elements from one of the input vectors shuffled to the left or
+/// right with zeroable elements 'shifted in'. It handles both the strictly
+/// bit-wise element shifts and the byte shift across an entire 128-bit double
+/// quad word lane.
+///
+/// PSHL : (little-endian) left bit shift.
+/// [ zz, 0, zz, 2 ]
+/// [ -1, 4, zz, -1 ]
+/// PSRL : (little-endian) right bit shift.
+/// [ 1, zz, 3, zz]
+/// [ -1, -1, 7, zz]
+/// PSLLDQ : (little-endian) left byte shift
+/// [ zz, 0, 1, 2, 3, 4, 5, 6]
+/// [ zz, zz, -1, -1, 2, 3, 4, -1]
+/// [ zz, zz, zz, zz, zz, zz, -1, 1]
+/// PSRLDQ : (little-endian) right byte shift
+/// [ 5, 6, 7, zz, zz, zz, zz, zz]
+/// [ -1, 5, 6, 7, zz, zz, zz, zz]
+/// [ 1, 2, -1, -1, -1, -1, zz, zz]
+static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ int Size = Mask.size();
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+
+ auto CheckZeros = [&](int Shift, int Scale, bool Left) {
+ for (int i = 0; i < Size; i += Scale)
+ for (int j = 0; j < Shift; ++j)
+ if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
+ return false;
+
+ return true;
+ };
+
+ auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) {
+ for (int i = 0; i != Size; i += Scale) {
+ unsigned Pos = Left ? i + Shift : i;
+ unsigned Low = Left ? i : i + Shift;
+ unsigned Len = Scale - Shift;
+ if (!isSequentialOrUndefInRange(Mask, Pos, Len,
+ Low + (V == V1 ? 0 : Size)))
+ return SDValue();
+ }
+
+ int ShiftEltBits = VT.getScalarSizeInBits() * Scale;
+ bool ByteShift = ShiftEltBits > 64;
+ unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
+ : (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
+ int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1);
+
+ // Normalize the scale for byte shifts to still produce an i64 element
+ // type.
+ Scale = ByteShift ? Scale / 2 : Scale;
+
+ // We need to round trip through the appropriate type for the shift.
+ MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale);
+ MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
+ "Illegal integer vector type");
+ V = DAG.getBitcast(ShiftVT, V);
+
+ V = DAG.getNode(OpCode, DL, ShiftVT, V,
+ DAG.getConstant(ShiftAmt, DL, MVT::i8));
+ return DAG.getBitcast(VT, V);
+ };
+
+ // SSE/AVX supports logical shifts up to 64-bit integers - so we can just
+ // keep doubling the size of the integer elements up to that. We can
+ // then shift the elements of the integer vector by whole multiples of
+ // their width within the elements of the larger integer vector. Test each
+ // multiple to see if we can find a match with the moved element indices
+ // and that the shifted in elements are all zeroable.
+ for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2)
+ for (int Shift = 1; Shift != Scale; ++Shift)
+ for (bool Left : {true, false})
+ if (CheckZeros(Shift, Scale, Left))
+ for (SDValue V : {V1, V2})
+ if (SDValue Match = MatchShift(Shift, Scale, Left, V))
+ return Match;
+
+ // no match
+ return SDValue();
+}
+
+/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
+static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ assert(!Zeroable.all() && "Fully zeroable shuffle mask");
+
+ int Size = Mask.size();
+ int HalfSize = Size / 2;
+ assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
+
+ // Upper half must be undefined.
+ if (!isUndefInRange(Mask, HalfSize, HalfSize))
+ return SDValue();
+
+ // EXTRQ: Extract Len elements from lower half of source, starting at Idx.
+ // Remainder of lower half result is zero and upper half is all undef.
+ auto LowerAsEXTRQ = [&]() {
+ // Determine the extraction length from the part of the
+ // lower half that isn't zeroable.
+ int Len = HalfSize;
+ for (; Len > 0; --Len)
+ if (!Zeroable[Len - 1])
+ break;
+ assert(Len > 0 && "Zeroable shuffle mask");
+
+ // Attempt to match first Len sequential elements from the lower half.
+ SDValue Src;
+ int Idx = -1;
+ for (int i = 0; i != Len; ++i) {
+ int M = Mask[i];
+ if (M < 0)
+ continue;
+ SDValue &V = (M < Size ? V1 : V2);
+ M = M % Size;
+
+ // The extracted elements must start at a valid index and all mask
+ // elements must be in the lower half.
+ if (i > M || M >= HalfSize)
+ return SDValue();
+
+ if (Idx < 0 || (Src == V && Idx == (M - i))) {
+ Src = V;
+ Idx = M - i;
+ continue;
+ }
+ return SDValue();
+ }
+
+ if (Idx < 0)
+ return SDValue();
+
+ assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
+ int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
+ int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
+ return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src,
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+ };
+
+ if (SDValue ExtrQ = LowerAsEXTRQ())
+ return ExtrQ;
+
+ // INSERTQ: Extract lowest Len elements from lower half of second source and
+ // insert over first source, starting at Idx.
+ // { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
+ auto LowerAsInsertQ = [&]() {
+ for (int Idx = 0; Idx != HalfSize; ++Idx) {
+ SDValue Base;
+
+ // Attempt to match first source from mask before insertion point.
+ if (isUndefInRange(Mask, 0, Idx)) {
+ /* EMPTY */
+ } else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
+ Base = V1;
+ } else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
+ Base = V2;
+ } else {
+ continue;
+ }
+
+ // Extend the extraction length looking to match both the insertion of
+ // the second source and the remaining elements of the first.
+ for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
+ SDValue Insert;
+ int Len = Hi - Idx;
+
+ // Match insertion.
+ if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
+ Insert = V1;
+ } else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
+ Insert = V2;
+ } else {
+ continue;
+ }
+
+ // Match the remaining elements of the lower half.
+ if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
+ /* EMPTY */
+ } else if ((!Base || (Base == V1)) &&
+ isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
+ Base = V1;
+ } else if ((!Base || (Base == V2)) &&
+ isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
+ Size + Hi)) {
+ Base = V2;
+ } else {
+ continue;
+ }
+
+ // We may not have a base (first source) - this can safely be undefined.
+ if (!Base)
+ Base = DAG.getUNDEF(VT);
+
+ int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
+ int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
+ return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert,
+ DAG.getConstant(BitLen, DL, MVT::i8),
+ DAG.getConstant(BitIdx, DL, MVT::i8));
+ }
+ }
+
+ return SDValue();
+ };
+
+ if (SDValue InsertQ = LowerAsInsertQ())
+ return InsertQ;
+
+ return SDValue();
+}
+
+/// \brief Lower a vector shuffle as a zero or any extension.
+///
+/// Given a specific number of elements, element bit width, and extension
+/// stride, produce either a zero or any extension based on the available
+/// features of the subtarget. The extended elements are consecutive and
+/// begin and can start from an offseted element index in the input; to
+/// avoid excess shuffling the offset must either being in the bottom lane
+/// or at the start of a higher lane. All extended elements must be from
+/// the same lane.
+static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
+ ArrayRef<int> Mask, const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(Scale > 1 && "Need a scale to extend.");
+ int EltBits = VT.getScalarSizeInBits();
+ int NumElements = VT.getVectorNumElements();
+ int NumEltsPerLane = 128 / EltBits;
+ int OffsetLane = Offset / NumEltsPerLane;
+ assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
+ "Only 8, 16, and 32 bit elements can be extended.");
+ assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
+ assert(0 <= Offset && "Extension offset must be positive.");
+ assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
+ "Extension offset must be in the first lane or start an upper lane.");
+
+ // Check that an index is in same lane as the base offset.
+ auto SafeOffset = [&](int Idx) {
+ return OffsetLane == (Idx / NumEltsPerLane);
+ };
+
+ // Shift along an input so that the offset base moves to the first element.
+ auto ShuffleOffset = [&](SDValue V) {
+ if (!Offset)
+ return V;
+
+ SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
+ for (int i = 0; i * Scale < NumElements; ++i) {
+ int SrcIdx = i + Offset;
+ ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
+ }
+ return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
+ };
+
+ // Found a valid zext mask! Try various lowering strategies based on the
+ // input type and available ISA extensions.
+ if (Subtarget->hasSSE41()) {
+ // Not worth offseting 128-bit vectors if scale == 2, a pattern using
+ // PUNPCK will catch this in a later shuffle match.
+ if (Offset && Scale == 2 && VT.is128BitVector())
+ return SDValue();
+ MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
+ NumElements / Scale);
+ InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, ShuffleOffset(InputV));
+ return DAG.getBitcast(VT, InputV);
+ }
+
+ assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
+
+ // For any extends we can cheat for larger element sizes and use shuffle
+ // instructions that can fold with a load and/or copy.
+ if (AnyExt && EltBits == 32) {
+ int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
+ -1};
+ return DAG.getBitcast(
+ VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getBitcast(MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ }
+ if (AnyExt && EltBits == 16 && Scale > 2) {
+ int PSHUFDMask[4] = {Offset / 2, -1,
+ SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
+ InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
+ DAG.getBitcast(MVT::v4i32, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
+ int PSHUFWMask[4] = {1, -1, -1, -1};
+ unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
+ return DAG.getBitcast(
+ VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
+ DAG.getBitcast(MVT::v8i16, InputV),
+ getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
+ }
+
+ // The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
+ // to 64-bits.
+ if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget->hasSSE4A()) {
+ assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
+ assert(VT.is128BitVector() && "Unexpected vector width!");
+
+ int LoIdx = Offset * EltBits;
+ SDValue Lo = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
+ DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
+ DAG.getConstant(EltBits, DL, MVT::i8),
+ DAG.getConstant(LoIdx, DL, MVT::i8)));
+
+ if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
+ !SafeOffset(Offset + 1))
+ return DAG.getNode(ISD::BITCAST, DL, VT, Lo);
+
+ int HiIdx = (Offset + 1) * EltBits;
+ SDValue Hi = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
+ DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
+ DAG.getConstant(EltBits, DL, MVT::i8),
+ DAG.getConstant(HiIdx, DL, MVT::i8)));
+ return DAG.getNode(ISD::BITCAST, DL, VT,
+ DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
+ }
+
+ // If this would require more than 2 unpack instructions to expand, use
+ // pshufb when available. We can only use more than 2 unpack instructions
+ // when zero extending i8 elements which also makes it easier to use pshufb.
+ if (Scale > 4 && EltBits == 8 && Subtarget->hasSSSE3()) {
+ assert(NumElements == 16 && "Unexpected byte vector width!");
+ SDValue PSHUFBMask[16];
+ for (int i = 0; i < 16; ++i) {
+ int Idx = Offset + (i / Scale);
+ PSHUFBMask[i] = DAG.getConstant(
+ (i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
+ }
+ InputV = DAG.getBitcast(MVT::v16i8, InputV);
+ return DAG.getBitcast(VT,
+ DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v16i8, PSHUFBMask)));
+ }
+
+ // If we are extending from an offset, ensure we start on a boundary that
+ // we can unpack from.
+ int AlignToUnpack = Offset % (NumElements / Scale);
+ if (AlignToUnpack) {
+ SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
+ for (int i = AlignToUnpack; i < NumElements; ++i)
+ ShMask[i - AlignToUnpack] = i;
+ InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
+ Offset -= AlignToUnpack;
+ }
+
+ // Otherwise emit a sequence of unpacks.
+ do {
+ unsigned UnpackLoHi = X86ISD::UNPCKL;
+ if (Offset >= (NumElements / 2)) {
+ UnpackLoHi = X86ISD::UNPCKH;
+ Offset -= (NumElements / 2);
+ }
+
+ MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
+ SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
+ : getZeroVector(InputVT, Subtarget, DAG, DL);
+ InputV = DAG.getBitcast(InputVT, InputV);
+ InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
+ Scale /= 2;
+ EltBits *= 2;
+ NumElements /= 2;
+ } while (Scale > 1);
+ return DAG.getBitcast(VT, InputV);
+}
+
+/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
+///
+/// This routine will try to do everything in its power to cleverly lower
+/// a shuffle which happens to match the pattern of a zero extend. It doesn't
+/// check for the profitability of this lowering, it tries to aggressively
+/// match this pattern. It will use all of the micro-architectural details it
+/// can to emit an efficient lowering. It handles both blends with all-zero
+/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
+/// masking out later).
+///
+/// The reason we have dedicated lowering for zext-style shuffles is that they
+/// are both incredibly common and often quite performance sensitive.
+static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
+ SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ int Bits = VT.getSizeInBits();
+ int NumLanes = Bits / 128;
+ int NumElements = VT.getVectorNumElements();
+ int NumEltsPerLane = NumElements / NumLanes;
+ assert(VT.getScalarSizeInBits() <= 32 &&
+ "Exceeds 32-bit integer zero extension limit");
+ assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
+
+ // Define a helper function to check a particular ext-scale and lower to it if
+ // valid.
+ auto Lower = [&](int Scale) -> SDValue {
+ SDValue InputV;
+ bool AnyExt = true;
+ int Offset = 0;
+ int Matches = 0;
+ for (int i = 0; i < NumElements; ++i) {
+ int M = Mask[i];
+ if (M == -1)
+ continue; // Valid anywhere but doesn't tell us anything.
+ if (i % Scale != 0) {
+ // Each of the extended elements need to be zeroable.
+ if (!Zeroable[i])
+ return SDValue();
+
+ // We no longer are in the anyext case.
+ AnyExt = false;
+ continue;
+ }
+
+ // Each of the base elements needs to be consecutive indices into the
+ // same input vector.
+ SDValue V = M < NumElements ? V1 : V2;
+ M = M % NumElements;
+ if (!InputV) {
+ InputV = V;
+ Offset = M - (i / Scale);
+ } else if (InputV != V)
+ return SDValue(); // Flip-flopping inputs.
+
+ // Offset must start in the lowest 128-bit lane or at the start of an
+ // upper lane.
+ // FIXME: Is it ever worth allowing a negative base offset?
+ if (!((0 <= Offset && Offset < NumEltsPerLane) ||
+ (Offset % NumEltsPerLane) == 0))
+ return SDValue();
+
+ // If we are offsetting, all referenced entries must come from the same
+ // lane.
+ if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
+ return SDValue();
+
+ if ((M % NumElements) != (Offset + (i / Scale)))
+ return SDValue(); // Non-consecutive strided elements.
+ Matches++;
+ }
+
+ // If we fail to find an input, we have a zero-shuffle which should always
+ // have already been handled.
+ // FIXME: Maybe handle this here in case during blending we end up with one?
+ if (!InputV)
+ return SDValue();
+
+ // If we are offsetting, don't extend if we only match a single input, we
+ // can always do better by using a basic PSHUF or PUNPCK.
+ if (Offset != 0 && Matches < 2)
+ return SDValue();
+
+ return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
+ DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
+ };
+
+ // The widest scale possible for extending is to a 64-bit integer.
+ assert(Bits % 64 == 0 &&
+ "The number of bits in a vector must be divisible by 64 on x86!");
+ int NumExtElements = Bits / 64;
+
+ // Each iteration, try extending the elements half as much, but into twice as
+ // many elements.
+ for (; NumExtElements < NumElements; NumExtElements *= 2) {
+ assert(NumElements % NumExtElements == 0 &&
+ "The input vector size must be divisible by the extended size.");
+ if (SDValue V = Lower(NumElements / NumExtElements))
+ return V;
+ }
+
+ // General extends failed, but 128-bit vectors may be able to use MOVQ.
+ if (Bits != 128)
+ return SDValue();
+
+ // Returns one of the source operands if the shuffle can be reduced to a
+ // MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
+ auto CanZExtLowHalf = [&]() {
+ for (int i = NumElements / 2; i != NumElements; ++i)
+ if (!Zeroable[i])
+ return SDValue();
+ if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
+ return V1;
+ if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
+ return V2;
+ return SDValue();
+ };
+
+ if (SDValue V = CanZExtLowHalf()) {
+ V = DAG.getBitcast(MVT::v2i64, V);
+ V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
+ return DAG.getBitcast(VT, V);
+ }
+
+ // No viable ext lowering found.
+ return SDValue();
+}
+
+/// \brief Try to get a scalar value for a specific element of a vector.
+///
+/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
+static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
+ SelectionDAG &DAG) {
+ MVT VT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+ // If the bitcasts shift the element size, we can't extract an equivalent
+ // element from it.
+ MVT NewVT = V.getSimpleValueType();
+ if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
+ return SDValue();
+
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
+ // Ensure the scalar operand is the same size as the destination.
+ // FIXME: Add support for scalar truncation where possible.
+ SDValue S = V.getOperand(Idx);
+ if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
+ return DAG.getNode(ISD::BITCAST, SDLoc(V), EltVT, S);
+ }
+
+ return SDValue();
+}
+
+/// \brief Helper to test for a load that can be folded with x86 shuffles.
+///
+/// This is particularly important because the set of instructions varies
+/// significantly based on whether the operand is a load or not.
+static bool isShuffleFoldableLoad(SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ return ISD::isNON_EXTLoad(V.getNode());
+}
+
+/// \brief Try to lower insertion of a single element into a zero vector.
+///
+/// This is a common pattern that we have especially efficient patterns to lower
+/// across all subtarget feature sets.
+static SDValue lowerVectorShuffleAsElementInsertion(
+ SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ MVT ExtVT = VT;
+ MVT EltVT = VT.getVectorElementType();
+
+ int V2Index = std::find_if(Mask.begin(), Mask.end(),
+ [&Mask](int M) { return M >= (int)Mask.size(); }) -
+ Mask.begin();
+ bool IsV1Zeroable = true;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (i != V2Index && !Zeroable[i]) {
+ IsV1Zeroable = false;
+ break;
+ }
+
+ // Check for a single input from a SCALAR_TO_VECTOR node.
+ // FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
+ // all the smarts here sunk into that routine. However, the current
+ // lowering of BUILD_VECTOR makes that nearly impossible until the old
+ // vector shuffle lowering is dead.
+ SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
+ DAG);
+ if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
+ // We need to zext the scalar if it is smaller than an i32.
+ V2S = DAG.getBitcast(EltVT, V2S);
+ if (EltVT == MVT::i8 || EltVT == MVT::i16) {
+ // Using zext to expand a narrow element won't work for non-zero
+ // insertions.
+ if (!IsV1Zeroable)
+ return SDValue();
+
+ // Zero-extend directly to i32.
+ ExtVT = MVT::v4i32;
+ V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
+ }
+ V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
+ } else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
+ EltVT == MVT::i16) {
+ // Either not inserting from the low element of the input or the input
+ // element size is too small to use VZEXT_MOVL to clear the high bits.
+ return SDValue();
+ }
+
+ if (!IsV1Zeroable) {
+ // If V1 can't be treated as a zero vector we have fewer options to lower
+ // this. We can't support integer vectors or non-zero targets cheaply, and
+ // the V1 elements can't be permuted in any way.
+ assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
+ if (!VT.isFloatingPoint() || V2Index != 0)
+ return SDValue();
+ SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
+ V1Mask[V2Index] = -1;
+ if (!isNoopShuffleMask(V1Mask))
+ return SDValue();
+ // This is essentially a special case blend operation, but if we have
+ // general purpose blend operations, they are always faster. Bail and let
+ // the rest of the lowering handle these as blends.
+ if (Subtarget->hasSSE41())
+ return SDValue();
+
+ // Otherwise, use MOVSD or MOVSS.
+ assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
+ "Only two types of floating point element types to handle!");
+ return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
+ ExtVT, V1, V2);
+ }
+
+ // This lowering only works for the low element with floating point vectors.
+ if (VT.isFloatingPoint() && V2Index != 0)
+ return SDValue();
+
+ V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
+ if (ExtVT != VT)
+ V2 = DAG.getBitcast(VT, V2);
+
+ if (V2Index != 0) {
+ // If we have 4 or fewer lanes we can cheaply shuffle the element into
+ // the desired position. Otherwise it is more efficient to do a vector
+ // shift left. We know that we can do a vector shift left because all
+ // the inputs are zero.
+ if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
+ SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
+ V2Shuffle[V2Index] = 0;
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
+ } else {
+ V2 = DAG.getBitcast(MVT::v2i64, V2);
+ V2 = DAG.getNode(
+ X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
+ DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL,
+ DAG.getTargetLoweringInfo().getScalarShiftAmountTy(
+ DAG.getDataLayout(), VT)));
+ V2 = DAG.getBitcast(VT, V2);
+ }
+ }
+ return V2;
+}
+
+/// \brief Try to lower broadcast of a single - truncated - integer element,
+/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
+///
+/// This assumes we have AVX2.
+static SDValue lowerVectorShuffleAsTruncBroadcast(SDLoc DL, MVT VT, SDValue V0,
+ int BroadcastIdx,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget->hasAVX2() &&
+ "We can only lower integer broadcasts with AVX2!");
+
+ EVT EltVT = VT.getVectorElementType();
+ EVT V0VT = V0.getValueType();
+
+ assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
+ assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
+
+ EVT V0EltVT = V0VT.getVectorElementType();
+ if (!V0EltVT.isInteger())
+ return SDValue();
+
+ const unsigned EltSize = EltVT.getSizeInBits();
+ const unsigned V0EltSize = V0EltVT.getSizeInBits();
+
+ // This is only a truncation if the original element type is larger.
+ if (V0EltSize <= EltSize)
+ return SDValue();
+
+ assert(((V0EltSize % EltSize) == 0) &&
+ "Scalar type sizes must all be powers of 2 on x86!");
+
+ const unsigned V0Opc = V0.getOpcode();
+ const unsigned Scale = V0EltSize / EltSize;
+ const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
+
+ if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
+ V0Opc != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ SDValue Scalar = V0.getOperand(V0BroadcastIdx);
+
+ // If we're extracting non-least-significant bits, shift so we can truncate.
+ // Hopefully, we can fold away the trunc/srl/load into the broadcast.
+ // Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
+ // vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
+ if (const int OffsetIdx = BroadcastIdx % Scale)
+ Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
+ DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType()));
+
+ return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
+ DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
+}
+
+/// \brief Try to lower broadcast of a single element.
+///
+/// For convenience, this code also bundles all of the subtarget feature set
+/// filtering. While a little annoying to re-dispatch on type here, there isn't
+/// a convenient way to factor it out.
+/// FIXME: This is very similar to LowerVectorBroadcast - can we merge them?
+static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V,
+ ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (!Subtarget->hasAVX())
+ return SDValue();
+ if (VT.isInteger() && !Subtarget->hasAVX2())
+ return SDValue();
+
+ // Check that the mask is a broadcast.
+ int BroadcastIdx = -1;
+ for (int M : Mask)
+ if (M >= 0 && BroadcastIdx == -1)
+ BroadcastIdx = M;
+ else if (M >= 0 && M != BroadcastIdx)
+ return SDValue();
+
+ assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
+ "a sorted mask where the broadcast "
+ "comes from V1.");
+
+ // Go up the chain of (vector) values to find a scalar load that we can
+ // combine with the broadcast.
+ for (;;) {
+ switch (V.getOpcode()) {
+ case ISD::CONCAT_VECTORS: {
+ int OperandSize = Mask.size() / V.getNumOperands();
+ V = V.getOperand(BroadcastIdx / OperandSize);
+ BroadcastIdx %= OperandSize;
+ continue;
+ }
+
+ case ISD::INSERT_SUBVECTOR: {
+ SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
+ auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
+ if (!ConstantIdx)
+ break;
+
+ int BeginIdx = (int)ConstantIdx->getZExtValue();
+ int EndIdx =
+ BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
+ if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
+ BroadcastIdx -= BeginIdx;
+ V = VInner;
+ } else {
+ V = VOuter;
+ }
+ continue;
+ }
+ }
+ break;
+ }
+
+ // Check if this is a broadcast of a scalar. We special case lowering
+ // for scalars so that we can more effectively fold with loads.
+ // First, look through bitcast: if the original value has a larger element
+ // type than the shuffle, the broadcast element is in essence truncated.
+ // Make that explicit to ease folding.
+ if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
+ if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
+ DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
+ return TruncBroadcast;
+
+ // Also check the simpler case, where we can directly reuse the scalar.
+ if (V.getOpcode() == ISD::BUILD_VECTOR ||
+ (V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
+ V = V.getOperand(BroadcastIdx);
+
+ // If the scalar isn't a load, we can't broadcast from it in AVX1.
+ // Only AVX2 has register broadcasts.
+ if (!Subtarget->hasAVX2() && !isShuffleFoldableLoad(V))
+ return SDValue();
+ } else if (MayFoldLoad(V) && !cast<LoadSDNode>(V)->isVolatile()) {
+ // If we are broadcasting a load that is only used by the shuffle
+ // then we can reduce the vector load to the broadcasted scalar load.
+ LoadSDNode *Ld = cast<LoadSDNode>(V);
+ SDValue BaseAddr = Ld->getOperand(1);
+ EVT AddrVT = BaseAddr.getValueType();
+ EVT SVT = VT.getScalarType();
+ unsigned Offset = BroadcastIdx * SVT.getStoreSize();
+ SDValue NewAddr = DAG.getNode(
+ ISD::ADD, DL, AddrVT, BaseAddr,
+ DAG.getConstant(Offset, DL, AddrVT));
+ V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
+ DAG.getMachineFunction().getMachineMemOperand(
+ Ld->getMemOperand(), Offset, SVT.getStoreSize()));
+ } else if (BroadcastIdx != 0 || !Subtarget->hasAVX2()) {
+ // We can't broadcast from a vector register without AVX2, and we can only
+ // broadcast from the zero-element of a vector register.
+ return SDValue();
+ }
+
+ return DAG.getNode(X86ISD::VBROADCAST, DL, VT, V);
+}
+
+// Check for whether we can use INSERTPS to perform the shuffle. We only use
+// INSERTPS when the V1 elements are already in the correct locations
+// because otherwise we can just always use two SHUFPS instructions which
+// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
+// perform INSERTPS if a single V1 element is out of place and all V2
+// elements are zeroable.
+static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+
+ unsigned ZMask = 0;
+ int V1DstIndex = -1;
+ int V2DstIndex = -1;
+ bool V1UsedInPlace = false;
+
+ for (int i = 0; i < 4; ++i) {
+ // Synthesize a zero mask from the zeroable elements (includes undefs).
+ if (Zeroable[i]) {
+ ZMask |= 1 << i;
+ continue;
+ }
+
+ // Flag if we use any V1 inputs in place.
+ if (i == Mask[i]) {
+ V1UsedInPlace = true;
+ continue;
+ }
+
+ // We can only insert a single non-zeroable element.
+ if (V1DstIndex != -1 || V2DstIndex != -1)
+ return SDValue();
+
+ if (Mask[i] < 4) {
+ // V1 input out of place for insertion.
+ V1DstIndex = i;
+ } else {
+ // V2 input for insertion.
+ V2DstIndex = i;
+ }
+ }
+
+ // Don't bother if we have no (non-zeroable) element for insertion.
+ if (V1DstIndex == -1 && V2DstIndex == -1)
+ return SDValue();
+
+ // Determine element insertion src/dst indices. The src index is from the
+ // start of the inserted vector, not the start of the concatenated vector.
+ unsigned V2SrcIndex = 0;
+ if (V1DstIndex != -1) {
+ // If we have a V1 input out of place, we use V1 as the V2 element insertion
+ // and don't use the original V2 at all.
+ V2SrcIndex = Mask[V1DstIndex];
+ V2DstIndex = V1DstIndex;
+ V2 = V1;
+ } else {
+ V2SrcIndex = Mask[V2DstIndex] - 4;
+ }
+
+ // If no V1 inputs are used in place, then the result is created only from
+ // the zero mask and the V2 insertion - so remove V1 dependency.
+ if (!V1UsedInPlace)
+ V1 = DAG.getUNDEF(MVT::v4f32);
+
+ unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
+ assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
+
+ // Insert the V2 element into the desired position.
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
+ DAG.getConstant(InsertPSMask, DL, MVT::i8));
+}
+
+/// \brief Try to lower a shuffle as a permute of the inputs followed by an
+/// UNPCK instruction.
+///
+/// This specifically targets cases where we end up with alternating between
+/// the two inputs, and so can permute them into something that feeds a single
+/// UNPCK instruction. Note that this routine only targets integer vectors
+/// because for floating point vectors we have a generalized SHUFPS lowering
+/// strategy that handles everything that doesn't *exactly* match an unpack,
+/// making this clever lowering unnecessary.
+static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!VT.isFloatingPoint() &&
+ "This routine only supports integer vectors.");
+ assert(!isSingleInputShuffleMask(Mask) &&
+ "This routine should only be used when blending two inputs.");
+ assert(Mask.size() >= 2 && "Single element masks are invalid.");
+
+ int Size = Mask.size();
+
+ int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) {
+ return M >= 0 && M % Size < Size / 2;
+ });
+ int NumHiInputs = std::count_if(
+ Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; });
+
+ bool UnpackLo = NumLoInputs >= NumHiInputs;
+
+ auto TryUnpack = [&](MVT UnpackVT, int Scale) {
+ SmallVector<int, 32> V1Mask(Mask.size(), -1);
+ SmallVector<int, 32> V2Mask(Mask.size(), -1);
+
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ // Each element of the unpack contains Scale elements from this mask.
+ int UnpackIdx = i / Scale;
+
+ // We only handle the case where V1 feeds the first slots of the unpack.
+ // We rely on canonicalization to ensure this is the case.
+ if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
+ return SDValue();
+
+ // Setup the mask for this input. The indexing is tricky as we have to
+ // handle the unpack stride.
+ SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
+ VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
+ Mask[i] % Size;
+ }
+
+ // If we will have to shuffle both inputs to use the unpack, check whether
+ // we can just unpack first and shuffle the result. If so, skip this unpack.
+ if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
+ !isNoopShuffleMask(V2Mask))
+ return SDValue();
+
+ // Shuffle the inputs into place.
+ V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
+ V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
+
+ // Cast the inputs to the type we will use to unpack them.
+ V1 = DAG.getBitcast(UnpackVT, V1);
+ V2 = DAG.getBitcast(UnpackVT, V2);
+
+ // Unpack the inputs and cast the result back to the desired type.
+ return DAG.getBitcast(
+ VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ UnpackVT, V1, V2));
+ };
+
+ // We try each unpack from the largest to the smallest to try and find one
+ // that fits this mask.
+ int OrigNumElements = VT.getVectorNumElements();
+ int OrigScalarSize = VT.getScalarSizeInBits();
+ for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) {
+ int Scale = ScalarSize / OrigScalarSize;
+ int NumElements = OrigNumElements / Scale;
+ MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements);
+ if (SDValue Unpack = TryUnpack(UnpackVT, Scale))
+ return Unpack;
+ }
+
+ // If none of the unpack-rooted lowerings worked (or were profitable) try an
+ // initial unpack.
+ if (NumLoInputs == 0 || NumHiInputs == 0) {
+ assert((NumLoInputs > 0 || NumHiInputs > 0) &&
+ "We have to have *some* inputs!");
+ int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
+
+ // FIXME: We could consider the total complexity of the permute of each
+ // possible unpacking. Or at the least we should consider how many
+ // half-crossings are created.
+ // FIXME: We could consider commuting the unpacks.
+
+ SmallVector<int, 32> PermMask;
+ PermMask.assign(Size, -1);
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
+
+ PermMask[i] =
+ 2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
+ }
+ return DAG.getVectorShuffle(
+ VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
+ DL, VT, V1, V2),
+ DAG.getUNDEF(VT), PermMask);
+ }
+
+ return SDValue();
+}
+
+/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
+///
+/// This is the basis function for the 2-lane 64-bit shuffles as we have full
+/// support for floating point shuffles but not integer shuffles. These
+/// instructions will incur a domain crossing penalty on some chips though so
+/// it is better to avoid lowering through this for integer vectors where
+/// possible.
+static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Use low duplicate instructions for masks that match their pattern.
+ if (Subtarget->hasSSE3())
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0}))
+ return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, V1);
+
+ // Straight shuffle of a single input vector. Simulate this by using the
+ // single input as both of the "inputs" to this instruction..
+ unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
+
+ if (Subtarget->hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+ }
+
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+ }
+ assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
+ assert(Mask[1] >= 2 && "Non-canonicalized blend!");
+
+ // If we have a single input, insert that into V1 if we can do so cheaply.
+ if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
+ Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
+ return Insertion;
+ }
+
+ // Try to use one of the special instruction patterns to handle two common
+ // blend patterns if a zero-blend above didn't work.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+ isShuffleEquivalent(V1, V2, Mask, {1, 3}))
+ if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
+ // We can either use a special instruction to load over the low double or
+ // to move just the low double.
+ return DAG.getNode(
+ isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
+ DL, MVT::v2f64, V2,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
+ return V;
+
+ unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
+ DAG.getConstant(SHUFPDMask, DL, MVT::i8));
+}
+
+/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
+///
+/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
+/// the integer unit to minimize domain crossing penalties. However, for blends
+/// it falls back to the floating point shuffle operation with appropriate bit
+/// casting.
+static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v2i64, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ // We have to map the mask as it is actually a v4i32 shuffle instruction.
+ V1 = DAG.getBitcast(MVT::v4i32, V1);
+ int WidenedMask[4] = {
+ std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
+ std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
+ return DAG.getBitcast(
+ MVT::v2i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
+ }
+ assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
+ assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
+ assert(Mask[0] < 2 && "We sort V1 to be the first input.");
+ assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
+
+ // If we have a blend of two PACKUS operations an the blend aligns with the
+ // low and half halves, we can just merge the PACKUS operations. This is
+ // particularly important as it lets us merge shuffles that this routine itself
+ // creates.
+ auto GetPackNode = [](SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
+ };
+ if (SDValue V1Pack = GetPackNode(V1))
+ if (SDValue V2Pack = GetPackNode(V2))
+ return DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
+ Mask[0] == 0 ? V1Pack.getOperand(0)
+ : V1Pack.getOperand(1),
+ Mask[1] == 2 ? V2Pack.getOperand(0)
+ : V2Pack.getOperand(1)));
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG))
+ return Shift;
+
+ // When loading a scalar and then shuffling it into a vector we can often do
+ // the insertion cheaply.
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+ // Try inverting the insertion since for v2 masks it is easy to do and we
+ // can't reliably sort the mask one way or the other.
+ int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
+ return Insertion;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget->hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget->hasSSSE3())
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // If we have direct support for blends, we should lower by decomposing into
+ // a permute. That will be faster than the domain cross.
+ if (IsBlendSupported)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
+ Mask, DAG);
+
+ // We implement this with SHUFPD which is pretty lame because it will likely
+ // incur 2 cycles of stall for integer vectors on Nehalem and older chips.
+ // However, all the alternatives are still more cycles and newer chips don't
+ // have this problem. It would be really nice if x86 had better shuffles here.
+ V1 = DAG.getBitcast(MVT::v2f64, V1);
+ V2 = DAG.getBitcast(MVT::v2f64, V2);
+ return DAG.getBitcast(MVT::v2i64,
+ DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
+}
+
+/// \brief Test whether this can be lowered with a single SHUFPS instruction.
+///
+/// This is used to disable more specialized lowerings when the shufps lowering
+/// will happen to be efficient.
+static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
+ // This routine only handles 128-bit shufps.
+ assert(Mask.size() == 4 && "Unsupported mask size!");
+
+ // To lower with a single SHUFPS we need to have the low half and high half
+ // each requiring a single input.
+ if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4))
+ return false;
+ if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4))
+ return false;
+
+ return true;
+}
+
+/// \brief Lower a vector shuffle using the SHUFPS instruction.
+///
+/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
+/// It makes no assumptions about whether this is the *best* lowering, it simply
+/// uses it.
+static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+ SDValue LowV = V1, HighV = V2;
+ int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 1) {
+ int V2Index =
+ std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
+ Mask.begin();
+
+ // Compute the index adjacent to V2Index and in the same half by toggling
+ // the low bit.
+ int V2AdjIndex = V2Index ^ 1;
+
+ if (Mask[V2AdjIndex] == -1) {
+ // Handles all the cases where we have a single V2 element and an undef.
+ // This will only ever happen in the high lanes because we commute the
+ // vector otherwise.
+ if (V2Index < 2)
+ std::swap(LowV, HighV);
+ NewMask[V2Index] -= 4;
+ } else {
+ // Handle the case where the V2 element ends up adjacent to a V1 element.
+ // To make this work, blend them together as the first step.
+ int V1Index = V2AdjIndex;
+ int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
+ V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
+ getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
+
+ // Now proceed to reconstruct the final blend as we have the necessary
+ // high or low half formed.
+ if (V2Index < 2) {
+ LowV = V2;
+ HighV = V1;
+ } else {
+ HighV = V2;
+ }
+ NewMask[V1Index] = 2; // We put the V1 element in V2[2].
+ NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
+ }
+ } else if (NumV2Elements == 2) {
+ if (Mask[0] < 4 && Mask[1] < 4) {
+ // Handle the easy case where we have V1 in the low lanes and V2 in the
+ // high lanes.
+ NewMask[2] -= 4;
+ NewMask[3] -= 4;
+ } else if (Mask[2] < 4 && Mask[3] < 4) {
+ // We also handle the reversed case because this utility may get called
+ // when we detect a SHUFPS pattern but can't easily commute the shuffle to
+ // arrange things in the right direction.
+ NewMask[0] -= 4;
+ NewMask[1] -= 4;
+ HighV = V1;
+ LowV = V2;
+ } else {
+ // We have a mixture of V1 and V2 in both low and high lanes. Rather than
+ // trying to place elements directly, just blend them and set up the final
+ // shuffle to place them.
+
+ // The first two blend mask elements are for V1, the second two are for
+ // V2.
+ int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
+ Mask[2] < 4 ? Mask[2] : Mask[3],
+ (Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
+ (Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
+ V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+ getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
+
+ // Now we do a normal shuffle of V1 by giving V1 as both operands to
+ // a blend.
+ LowV = HighV = V1;
+ NewMask[0] = Mask[0] < 4 ? 0 : 2;
+ NewMask[1] = Mask[0] < 4 ? 2 : 0;
+ NewMask[2] = Mask[2] < 4 ? 1 : 3;
+ NewMask[3] = Mask[2] < 4 ? 3 : 1;
+ }
+ }
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
+ getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
+}
+
+/// \brief Lower 4-lane 32-bit floating point shuffles.
+///
+/// Uses instructions exclusively from the floating point unit to minimize
+/// domain crossing penalties, as these are sufficient to implement all v4f32
+/// shuffles.
+static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f32, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Use even/odd duplicate instructions for masks that match their pattern.
+ if (Subtarget->hasSSE3()) {
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
+ if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
+ }
+
+ if (Subtarget->hasAVX()) {
+ // If we have AVX, we can use VPERMILPS which will allow folding a load
+ // into the shuffle.
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // Otherwise, use a straight shuffle of a single input vector. We pass the
+ // input vector to both operands to simulate this with a SHUFPS.
+ return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // There are special ways we can lower some single-element blends. However, we
+ // have custom ways we can lower more complex single-element blends below that
+ // we defer to if both this and BLENDPS fail to match, so restrict this to
+ // when the V2 input is targeting element 0 of the mask -- that is the fast
+ // case here.
+ if (NumV2Elements == 1 && Mask[0] >= 4)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ if (Subtarget->hasSSE41()) {
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use INSERTPS if we can complete the shuffle efficiently.
+ if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
+ return V;
+
+ if (!isSingleSHUFPSMask(Mask))
+ if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
+ DL, MVT::v4f32, V1, V2, Mask, DAG))
+ return BlendPerm;
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
+ return V;
+
+ // Otherwise fall back to a SHUFPS lowering strategy.
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
+}
+
+/// \brief Lower 4-lane i32 vector shuffles.
+///
+/// We try to handle these with integer-domain shuffles where we can, but for
+/// blends we use the floating point domain blend instructions.
+static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return ZExt;
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
+
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i32, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Straight shuffle of a single input vector. For everything from SSE2
+ // onward this has a single fast instruction with no scary immediates.
+ // We coerce the shuffle pattern to be compatible with UNPCK instructions
+ // but we aren't actually going to use the UNPCK instruction because doing
+ // so prevents folding a load into this instruction or making a copy.
+ const int UnpackLoMask[] = {0, 0, 1, 1};
+ const int UnpackHiMask[] = {2, 2, 3, 3};
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
+ Mask = UnpackLoMask;
+ else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
+ Mask = UnpackHiMask;
+
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG))
+ return Shift;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget->hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ if (SDValue Masked =
+ lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ // Its more profitable for pre-SSSE3 to use shuffles/unpacks.
+ if (Subtarget->hasSSSE3())
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // If we have direct support for blends, we should lower by decomposing into
+ // a permute. That will be faster than the domain cross.
+ if (IsBlendSupported)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
+ Mask, DAG);
+
+ // Try to lower by permuting the inputs into an unpack instruction.
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1,
+ V2, Mask, DAG))
+ return Unpack;
+
+ // We implement this with SHUFPS because it can blend from two vectors.
+ // Because we're going to eventually use SHUFPS, we use SHUFPS even to build
+ // up the inputs, bypassing domain shift penalties that we would encur if we
+ // directly used PSHUFD on Nehalem and older. For newer chips, this isn't
+ // relevant.
+ return DAG.getBitcast(
+ MVT::v4i32,
+ DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1),
+ DAG.getBitcast(MVT::v4f32, V2), Mask));
+}
+
+/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
+/// shuffle lowering, and the most complex part.
+///
+/// The lowering strategy is to try to form pairs of input lanes which are
+/// targeted at the same half of the final vector, and then use a dword shuffle
+/// to place them onto the right half, and finally unpack the paired lanes into
+/// their final position.
+///
+/// The exact breakdown of how to form these dword pairs and align them on the
+/// correct sides is really tricky. See the comments within the function for
+/// more of the details.
+///
+/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
+/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
+/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
+/// vector, form the analogous 128-bit 8-element Mask.
+static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
+ SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
+ MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+
+ assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
+ MutableArrayRef<int> LoMask = Mask.slice(0, 4);
+ MutableArrayRef<int> HiMask = Mask.slice(4, 4);
+
+ SmallVector<int, 4> LoInputs;
+ std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
+ [](int M) { return M >= 0; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
+ [](int M) { return M >= 0; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
+ int NumLToL =
+ std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
+ int NumHToL = LoInputs.size() - NumLToL;
+ int NumLToH =
+ std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
+ int NumHToH = HiInputs.size() - NumLToH;
+ MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
+ MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
+ MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
+ MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
+
+ // Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
+ // such inputs we can swap two of the dwords across the half mark and end up
+ // with <=2 inputs to each half in each half. Once there, we can fall through
+ // to the generic code below. For example:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
+ //
+ // However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
+ // and an existing 2-into-2 on the other half. In this case we may have to
+ // pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
+ // 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
+ // Fortunately, we don't have to handle anything but a 2-into-2 pattern
+ // because any other situation (including a 3-into-1 or 1-into-3 in the other
+ // half than the one we target for fixing) will be fixed when we re-enter this
+ // path. We will also combine away any sequence of PSHUFD instructions that
+ // result into a single instruction. Here is an example of the tricky case:
+ //
+ // Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
+ //
+ // This now has a 1-into-3 in the high half! Instead, we do two shuffles:
+ //
+ // Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
+ //
+ // Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
+ // Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
+ //
+ // The result is fine to be handled by the generic logic.
+ auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
+ ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
+ int AOffset, int BOffset) {
+ assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
+ "Must call this with A having 3 or 1 inputs from the A half.");
+ assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
+ "Must call this with B having 1 or 3 inputs from the B half.");
+ assert(AToAInputs.size() + BToAInputs.size() == 4 &&
+ "Must call this with either 3:1 or 1:3 inputs (summing to 4).");
+
+ bool ThreeAInputs = AToAInputs.size() == 3;
+
+ // Compute the index of dword with only one word among the three inputs in
+ // a half by taking the sum of the half with three inputs and subtracting
+ // the sum of the actual three inputs. The difference is the remaining
+ // slot.
+ int ADWord, BDWord;
+ int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
+ int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
+ int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
+ ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
+ int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
+ int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
+ int TripleNonInputIdx =
+ TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
+ TripleDWord = TripleNonInputIdx / 2;
+
+ // We use xor with one to compute the adjacent DWord to whichever one the
+ // OneInput is in.
+ OneInputDWord = (OneInput / 2) ^ 1;
+
+ // Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
+ // and BToA inputs. If there is also such a problem with the BToB and AToB
+ // inputs, we don't try to fix it necessarily -- we'll recurse and see it in
+ // the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
+ // is essential that we don't *create* a 3<-1 as then we might oscillate.
+ if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
+ // Compute how many inputs will be flipped by swapping these DWords. We
+ // need
+ // to balance this to ensure we don't form a 3-1 shuffle in the other
+ // half.
+ int NumFlippedAToBInputs =
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
+ std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
+ int NumFlippedBToBInputs =
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
+ std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
+ if ((NumFlippedAToBInputs == 1 &&
+ (NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
+ (NumFlippedBToBInputs == 1 &&
+ (NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
+ // We choose whether to fix the A half or B half based on whether that
+ // half has zero flipped inputs. At zero, we may not be able to fix it
+ // with that half. We also bias towards fixing the B half because that
+ // will more commonly be the high half, and we have to bias one way.
+ auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
+ ArrayRef<int> Inputs) {
+ int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
+ bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ PinnedIdx ^ 1) != Inputs.end();
+ // Determine whether the free index is in the flipped dword or the
+ // unflipped dword based on where the pinned index is. We use this bit
+ // in an xor to conditionally select the adjacent dword.
+ int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
+ bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ FixFreeIdx) != Inputs.end();
+ if (IsFixIdxInput == IsFixFreeIdxInput)
+ FixFreeIdx += 1;
+ IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
+ FixFreeIdx) != Inputs.end();
+ assert(IsFixIdxInput != IsFixFreeIdxInput &&
+ "We need to be changing the number of flipped inputs!");
+ int PSHUFHalfMask[] = {0, 1, 2, 3};
+ std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
+ V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
+ MVT::v8i16, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
+
+ for (int &M : Mask)
+ if (M != -1 && M == FixIdx)
+ M = FixFreeIdx;
+ else if (M != -1 && M == FixFreeIdx)
+ M = FixIdx;
+ };
+ if (NumFlippedBToBInputs != 0) {
+ int BPinnedIdx =
+ BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
+ } else {
+ assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
+ int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
+ FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
+ }
+ }
+ }
+
+ int PSHUFDMask[] = {0, 1, 2, 3};
+ PSHUFDMask[ADWord] = BDWord;
+ PSHUFDMask[BDWord] = ADWord;
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+
+ // Adjust the mask to match the new locations of A and B.
+ for (int &M : Mask)
+ if (M != -1 && M/2 == ADWord)
+ M = 2 * BDWord + M % 2;
+ else if (M != -1 && M/2 == BDWord)
+ M = 2 * ADWord + M % 2;
+
+ // Recurse back into this routine to re-compute state now that this isn't
+ // a 3 and 1 problem.
+ return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
+ DAG);
+ };
+ if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
+ return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
+ else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
+ return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
+
+ // At this point there are at most two inputs to the low and high halves from
+ // each half. That means the inputs can always be grouped into dwords and
+ // those dwords can then be moved to the correct half with a dword shuffle.
+ // We use at most one low and one high word shuffle to collect these paired
+ // inputs into dwords, and finally a dword shuffle to place them.
+ int PSHUFLMask[4] = {-1, -1, -1, -1};
+ int PSHUFHMask[4] = {-1, -1, -1, -1};
+ int PSHUFDMask[4] = {-1, -1, -1, -1};
+
+ // First fix the masks for all the inputs that are staying in their
+ // original halves. This will then dictate the targets of the cross-half
+ // shuffles.
+ auto fixInPlaceInputs =
+ [&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
+ MutableArrayRef<int> SourceHalfMask,
+ MutableArrayRef<int> HalfMask, int HalfOffset) {
+ if (InPlaceInputs.empty())
+ return;
+ if (InPlaceInputs.size() == 1) {
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
+ return;
+ }
+ if (IncomingInputs.empty()) {
+ // Just fix all of the in place inputs.
+ for (int Input : InPlaceInputs) {
+ SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
+ PSHUFDMask[Input / 2] = Input / 2;
+ }
+ return;
+ }
+
+ assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
+ SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
+ InPlaceInputs[0] - HalfOffset;
+ // Put the second input next to the first so that they are packed into
+ // a dword. We find the adjacent index by toggling the low bit.
+ int AdjIndex = InPlaceInputs[0] ^ 1;
+ SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
+ PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
+ };
+ fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
+ fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
+
+ // Now gather the cross-half inputs and place them into a free dword of
+ // their target half.
+ // FIXME: This operation could almost certainly be simplified dramatically to
+ // look more like the 3-1 fixing operation.
+ auto moveInputsToRightHalf = [&PSHUFDMask](
+ MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
+ MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
+ MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
+ int DestOffset) {
+ auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
+ return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
+ };
+ auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
+ int Word) {
+ int LowWord = Word & ~1;
+ int HighWord = Word | 1;
+ return isWordClobbered(SourceHalfMask, LowWord) ||
+ isWordClobbered(SourceHalfMask, HighWord);
+ };
+
+ if (IncomingInputs.empty())
+ return;
+
+ if (ExistingInputs.empty()) {
+ // Map any dwords with inputs from them into the right half.
+ for (int Input : IncomingInputs) {
+ // If the source half mask maps over the inputs, turn those into
+ // swaps and use the swapped lane.
+ if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
+ if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
+ SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
+ Input - SourceOffset;
+ // We have to swap the uses in our half mask in one sweep.
+ for (int &M : HalfMask)
+ if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
+ M = Input;
+ else if (M == Input)
+ M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ } else {
+ assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
+ Input - SourceOffset &&
+ "Previous placement doesn't match!");
+ }
+ // Note that this correctly re-maps both when we do a swap and when
+ // we observe the other side of the swap above. We rely on that to
+ // avoid swapping the members of the input list directly.
+ Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
+ }
+
+ // Map the input's dword into the correct half.
+ if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
+ PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
+ else
+ assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
+ Input / 2 &&
+ "Previous placement doesn't match!");
+ }
+
+ // And just directly shift any other-half mask elements to be same-half
+ // as we will have mirrored the dword containing the element into the
+ // same position within that half.
+ for (int &M : HalfMask)
+ if (M >= SourceOffset && M < SourceOffset + 4) {
+ M = M - SourceOffset + DestOffset;
+ assert(M >= 0 && "This should never wrap below zero!");
+ }
+ return;
+ }
+
+ // Ensure we have the input in a viable dword of its current half. This
+ // is particularly tricky because the original position may be clobbered
+ // by inputs being moved and *staying* in that half.
+ if (IncomingInputs.size() == 1) {
+ if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ int InputFixed = std::find(std::begin(SourceHalfMask),
+ std::end(SourceHalfMask), -1) -
+ std::begin(SourceHalfMask) + SourceOffset;
+ SourceHalfMask[InputFixed - SourceOffset] =
+ IncomingInputs[0] - SourceOffset;
+ std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
+ InputFixed);
+ IncomingInputs[0] = InputFixed;
+ }
+ } else if (IncomingInputs.size() == 2) {
+ if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
+ isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
+ // We have two non-adjacent or clobbered inputs we need to extract from
+ // the source half. To do this, we need to map them into some adjacent
+ // dword slot in the source mask.
+ int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
+ IncomingInputs[1] - SourceOffset};
+
+ // If there is a free slot in the source half mask adjacent to one of
+ // the inputs, place the other input in it. We use (Index XOR 1) to
+ // compute an adjacent index.
+ if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
+ SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
+ SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ } else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
+ SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
+ InputsFixed[0] = InputsFixed[1] ^ 1;
+ } else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
+ // The two inputs are in the same DWord but it is clobbered and the
+ // adjacent DWord isn't used at all. Move both inputs to the free
+ // slot.
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
+ SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
+ InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
+ InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
+ } else {
+ // The only way we hit this point is if there is no clobbering
+ // (because there are no off-half inputs to this half) and there is no
+ // free slot adjacent to one of the inputs. In this case, we have to
+ // swap an input with a non-input.
+ for (int i = 0; i < 4; ++i)
+ assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
+ "We can't handle any clobbers here!");
+ assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
+ "Cannot have adjacent inputs here!");
+
+ SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
+ SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
+
+ // We also have to update the final source mask in this case because
+ // it may need to undo the above swap.
+ for (int &M : FinalSourceHalfMask)
+ if (M == (InputsFixed[0] ^ 1) + SourceOffset)
+ M = InputsFixed[1] + SourceOffset;
+ else if (M == InputsFixed[1] + SourceOffset)
+ M = (InputsFixed[0] ^ 1) + SourceOffset;
+
+ InputsFixed[1] = InputsFixed[0] ^ 1;
+ }
+
+ // Point everything at the fixed inputs.
+ for (int &M : HalfMask)
+ if (M == IncomingInputs[0])
+ M = InputsFixed[0] + SourceOffset;
+ else if (M == IncomingInputs[1])
+ M = InputsFixed[1] + SourceOffset;
+
+ IncomingInputs[0] = InputsFixed[0] + SourceOffset;
+ IncomingInputs[1] = InputsFixed[1] + SourceOffset;
+ }
+ } else {
+ llvm_unreachable("Unhandled input size!");
+ }
+
+ // Now hoist the DWord down to the right half.
+ int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
+ assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
+ PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
+ for (int &M : HalfMask)
+ for (int Input : IncomingInputs)
+ if (M == Input)
+ M = FreeDWord * 2 + Input % 2;
+ };
+ moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
+ /*SourceOffset*/ 4, /*DestOffset*/ 0);
+ moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
+ /*SourceOffset*/ 0, /*DestOffset*/ 4);
+
+ // Now enact all the shuffles we've computed to move the inputs into their
+ // target half.
+ if (!isNoopShuffleMask(PSHUFLMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
+ if (!isNoopShuffleMask(PSHUFHMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
+ if (!isNoopShuffleMask(PSHUFDMask))
+ V = DAG.getBitcast(
+ VT,
+ DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+
+ // At this point, each half should contain all its inputs, and we can then
+ // just shuffle them into their final position.
+ assert(std::count_if(LoMask.begin(), LoMask.end(),
+ [](int M) { return M >= 4; }) == 0 &&
+ "Failed to lift all the high half inputs to the low mask!");
+ assert(std::count_if(HiMask.begin(), HiMask.end(),
+ [](int M) { return M >= 0 && M < 4; }) == 0 &&
+ "Failed to lift all the low half inputs to the high mask!");
+
+ // Do a half shuffle for the low mask.
+ if (!isNoopShuffleMask(LoMask))
+ V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
+
+ // Do a half shuffle with the high mask after shifting its values down.
+ for (int &M : HiMask)
+ if (M >= 0)
+ M -= 4;
+ if (!isNoopShuffleMask(HiMask))
+ V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
+ getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
+
+ return V;
+}
+
+/// \brief Helper to form a PSHUFB-based shuffle+blend.
+static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG, bool &V1InUse,
+ bool &V2InUse) {
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ SDValue V1Mask[16];
+ SDValue V2Mask[16];
+ V1InUse = false;
+ V2InUse = false;
+
+ int Size = Mask.size();
+ int Scale = 16 / Size;
+ for (int i = 0; i < 16; ++i) {
+ if (Mask[i / Scale] == -1) {
+ V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
+ } else {
+ const int ZeroMask = 0x80;
+ int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
+ : ZeroMask;
+ int V2Idx = Mask[i / Scale] < Size
+ ? ZeroMask
+ : (Mask[i / Scale] - Size) * Scale + i % Scale;
+ if (Zeroable[i / Scale])
+ V1Idx = V2Idx = ZeroMask;
+ V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
+ V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
+ V1InUse |= (ZeroMask != V1Idx);
+ V2InUse |= (ZeroMask != V2Idx);
+ }
+ }
+
+ if (V1InUse)
+ V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
+ DAG.getBitcast(MVT::v16i8, V1),
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V1Mask));
+ if (V2InUse)
+ V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
+ DAG.getBitcast(MVT::v16i8, V2),
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, V2Mask));
+
+ // If we need shuffled inputs from both, blend the two.
+ SDValue V;
+ if (V1InUse && V2InUse)
+ V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
+ else
+ V = V1InUse ? V1 : V2;
+
+ // Cast the result back to the correct type.
+ return DAG.getBitcast(VT, V);
+}
+
+/// \brief Generic lowering of 8-lane i16 shuffles.
+///
+/// This handles both single-input shuffles and combined shuffle/blends with
+/// two inputs. The single input shuffles are immediately delegated to
+/// a dedicated lowering routine.
+///
+/// The blends are lowered in one of three fundamental ways. If there are few
+/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
+/// of the input is significantly cheaper when lowered as an interleaving of
+/// the two inputs, try to interleave them. Otherwise, blend the low and high
+/// halves of the inputs separately (making them have relatively few inputs)
+/// and then concatenate them.
+static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> OrigMask = SVOp->getMask();
+ int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
+ OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
+ MutableArrayRef<int> Mask(MaskStorage);
+
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
+ return ZExt;
+
+ auto isV1 = [](int M) { return M >= 0 && M < 8; };
+ (void)isV1;
+ auto isV2 = [](int M) { return M >= 8; };
+
+ int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
+
+ if (NumV2Inputs == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i16, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
+ return Shift;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
+ Mask, Subtarget, DAG))
+ return Rotate;
+
+ return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
+ Subtarget, DAG);
+ }
+
+ assert(std::any_of(Mask.begin(), Mask.end(), isV1) &&
+ "All single-input shuffles should be canonicalized to be V1-input "
+ "shuffles.");
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return Shift;
+
+ // See if we can use SSE4A Extraction / Insertion.
+ if (Subtarget->hasSSE4A())
+ if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return V;
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Inputs == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ // We have different paths for blend lowering, but they all must use the
+ // *exact* same predicate.
+ bool IsBlendSupported = Subtarget->hasSSE41();
+ if (IsBlendSupported)
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ if (SDValue Masked =
+ lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (SDValue BitBlend =
+ lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
+ return BitBlend;
+
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
+ V2, Mask, DAG))
+ return Unpack;
+
+ // If we can't directly blend but can use PSHUFB, that will be better as it
+ // can both shuffle and set up the inefficient blend.
+ if (!IsBlendSupported && Subtarget->hasSSSE3()) {
+ bool V1InUse, V2InUse;
+ return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG,
+ V1InUse, V2InUse);
+ }
+
+ // We can always bit-blend if we have to so the fallback strategy is to
+ // decompose into single-input permutes and blends.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Check whether a compaction lowering can be done by dropping even
+/// elements and compute how many times even elements must be dropped.
+///
+/// This handles shuffles which take every Nth element where N is a power of
+/// two. Example shuffle masks:
+///
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
+/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
+/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
+/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
+/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
+/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
+///
+/// Any of these lanes can of course be undef.
+///
+/// This routine only supports N <= 3.
+/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
+/// for larger N.
+///
+/// \returns N above, or the number of times even elements must be dropped if
+/// there is such a number. Otherwise returns zero.
+static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
+ // Figure out whether we're looping over two inputs or just one.
+ bool IsSingleInput = isSingleInputShuffleMask(Mask);
+
+ // The modulus for the shuffle vector entries is based on whether this is
+ // a single input or not.
+ int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
+ assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
+ "We should only be called with masks with a power-of-2 size!");
+
+ uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
+
+ // We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
+ // and 2^3 simultaneously. This is because we may have ambiguity with
+ // partially undef inputs.
+ bool ViableForN[3] = {true, true, true};
+
+ for (int i = 0, e = Mask.size(); i < e; ++i) {
+ // Ignore undef lanes, we'll optimistically collapse them to the pattern we
+ // want.
+ if (Mask[i] == -1)
+ continue;
+
+ bool IsAnyViable = false;
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j]) {
+ uint64_t N = j + 1;
+
+ // The shuffle mask must be equal to (i * 2^N) % M.
+ if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
+ IsAnyViable = true;
+ else
+ ViableForN[j] = false;
+ }
+ // Early exit if we exhaust the possible powers of two.
+ if (!IsAnyViable)
+ break;
+ }
+
+ for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
+ if (ViableForN[j])
+ return j + 1;
+
+ // Return 0 as there is no viable power of two.
+ return 0;
+}
+
+/// \brief Generic lowering of v16i8 shuffles.
+///
+/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
+/// detect any complexity reducing interleaving. If that doesn't help, it uses
+/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
+/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
+/// back together.
+static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
+ assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // Try to use a zext lowering.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
+ DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
+ return ZExt;
+
+ // See if we can use SSE4A Extraction / Insertion.
+ if (Subtarget->hasSSE4A())
+ if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return V;
+
+ int NumV2Elements =
+ std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
+
+ // For single-input shuffles, there are some nicer lowering tricks we can use.
+ if (NumV2Elements == 0) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i8, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Check whether we can widen this to an i16 shuffle by duplicating bytes.
+ // Notably, this handles splat and partial-splat shuffles more efficiently.
+ // However, it only makes sense if the pre-duplication shuffle simplifies
+ // things significantly. Currently, this means we need to be able to
+ // express the pre-duplication shuffle as an i16 shuffle.
+ //
+ // FIXME: We should check for other patterns which can be widened into an
+ // i16 shuffle as well.
+ auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
+ for (int i = 0; i < 16; i += 2)
+ if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
+ return false;
+
+ return true;
+ };
+ auto tryToWidenViaDuplication = [&]() -> SDValue {
+ if (!canWidenViaDuplication(Mask))
+ return SDValue();
+ SmallVector<int, 4> LoInputs;
+ std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
+ [](int M) { return M >= 0 && M < 8; });
+ std::sort(LoInputs.begin(), LoInputs.end());
+ LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
+ LoInputs.end());
+ SmallVector<int, 4> HiInputs;
+ std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
+ [](int M) { return M >= 8; });
+ std::sort(HiInputs.begin(), HiInputs.end());
+ HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
+ HiInputs.end());
+
+ bool TargetLo = LoInputs.size() >= HiInputs.size();
+ ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
+ ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
+
+ int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ SmallDenseMap<int, int, 8> LaneMap;
+ for (int I : InPlaceInputs) {
+ PreDupI16Shuffle[I/2] = I/2;
+ LaneMap[I] = I;
+ }
+ int j = TargetLo ? 0 : 4, je = j + 4;
+ for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
+ // Check if j is already a shuffle of this input. This happens when
+ // there are two adjacent bytes after we move the low one.
+ if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
+ // If we haven't yet mapped the input, search for a slot into which
+ // we can map it.
+ while (j < je && PreDupI16Shuffle[j] != -1)
+ ++j;
+
+ if (j == je)
+ // We can't place the inputs into a single half with a simple i16 shuffle, so bail.
+ return SDValue();
+
+ // Map this input with the i16 shuffle.
+ PreDupI16Shuffle[j] = MovingInputs[i] / 2;
+ }
+
+ // Update the lane map based on the mapping we ended up with.
+ LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
+ }
+ V1 = DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
+
+ // Unpack the bytes to form the i16s that will be shuffled into place.
+ V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
+ MVT::v16i8, V1, V1);
+
+ int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ for (int i = 0; i < 16; ++i)
+ if (Mask[i] != -1) {
+ int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
+ assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
+ if (PostDupI16Shuffle[i / 2] == -1)
+ PostDupI16Shuffle[i / 2] = MappedMask;
+ else
+ assert(PostDupI16Shuffle[i / 2] == MappedMask &&
+ "Conflicting entrties in the original shuffle!");
+ }
+ return DAG.getBitcast(
+ MVT::v16i8,
+ DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
+ DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
+ };
+ if (SDValue V = tryToWidenViaDuplication())
+ return V;
+ }
+
+ if (SDValue Masked =
+ lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return Masked;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
+ return V;
+
+ // Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
+ // with PSHUFB. It is important to do this before we attempt to generate any
+ // blends but after all of the single-input lowerings. If the single input
+ // lowerings can find an instruction sequence that is faster than a PSHUFB, we
+ // want to preserve that and we can DAG combine any longer sequences into
+ // a PSHUFB in the end. But once we start blending from multiple inputs,
+ // the complexity of DAG combining bad patterns back into PSHUFB is too high,
+ // and there are *very* few patterns that would actually be faster than the
+ // PSHUFB approach because of its ability to zero lanes.
+ //
+ // FIXME: The only exceptions to the above are blends which are exact
+ // interleavings with direct instructions supporting them. We currently don't
+ // handle those well here.
+ if (Subtarget->hasSSSE3()) {
+ bool V1InUse = false;
+ bool V2InUse = false;
+
+ SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask,
+ DAG, V1InUse, V2InUse);
+
+ // If both V1 and V2 are in use and we can use a direct blend or an unpack,
+ // do so. This avoids using them to handle blends-with-zero which is
+ // important as a single pshufb is significantly faster for that.
+ if (V1InUse && V2InUse) {
+ if (Subtarget->hasSSE41())
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2,
+ Mask, Subtarget, DAG))
+ return Blend;
+
+ // We can use an unpack to do the blending rather than an or in some
+ // cases. Even though the or may be (very minorly) more efficient, we
+ // preference this lowering because there are common cases where part of
+ // the complexity of the shuffles goes away when we do the final blend as
+ // an unpack.
+ // FIXME: It might be worth trying to detect if the unpack-feeding
+ // shuffles will both be pshufb, in which case we shouldn't bother with
+ // this.
+ if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
+ DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return Unpack;
+ }
+
+ return PSHUFB;
+ }
+
+ // There are special ways we can lower some single-element blends.
+ if (NumV2Elements == 1)
+ if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
+ Mask, Subtarget, DAG))
+ return V;
+
+ if (SDValue BitBlend =
+ lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
+ return BitBlend;
+
+ // Check whether a compaction lowering can be done. This handles shuffles
+ // which take every Nth element for some even N. See the helper function for
+ // details.
+ //
+ // We special case these as they can be particularly efficiently handled with
+ // the PACKUSB instruction on x86 and they show up in common patterns of
+ // rearranging bytes to truncate wide elements.
+ if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
+ // NumEvenDrops is the power of two stride of the elements. Another way of
+ // thinking about it is that we need to drop the even elements this many
+ // times to get the original input.
+ bool IsSingleInput = isSingleInputShuffleMask(Mask);
+
+ // First we need to zero all the dropped bytes.
+ assert(NumEvenDrops <= 3 &&
+ "No support for dropping even elements more than 3 times.");
+ // We use the mask type to pick which bytes are preserved based on how many
+ // elements are dropped.
+ MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
+ SDValue ByteClearMask = DAG.getBitcast(
+ MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
+ V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
+ if (!IsSingleInput)
+ V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
+
+ // Now pack things back together.
+ V1 = DAG.getBitcast(MVT::v8i16, V1);
+ V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
+ SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
+ for (int i = 1; i < NumEvenDrops; ++i) {
+ Result = DAG.getBitcast(MVT::v8i16, Result);
+ Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
+ }
+
+ return Result;
+ }
+
+ // Handle multi-input cases by blending single-input shuffles.
+ if (NumV2Elements > 0)
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
+ Mask, DAG);
+
+ // The fallback path for single-input shuffles widens this into two v8i16
+ // vectors with unpacks, shuffles those, and then pulls them back together
+ // with a pack.
+ SDValue V = V1;
+
+ int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
+ for (int i = 0; i < 16; ++i)
+ if (Mask[i] >= 0)
+ (i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
+
+ SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
+
+ SDValue VLoHalf, VHiHalf;
+ // Check if any of the odd lanes in the v16i8 are used. If not, we can mask
+ // them out and avoid using UNPCK{L,H} to extract the elements of V as
+ // i16s.
+ if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask),
+ [](int M) { return M >= 0 && M % 2 == 1; }) &&
+ std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
+ [](int M) { return M >= 0 && M % 2 == 1; })) {
+ // Use a mask to drop the high bytes.
+ VLoHalf = DAG.getBitcast(MVT::v8i16, V);
+ VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
+ DAG.getConstant(0x00FF, DL, MVT::v8i16));
+
+ // This will be a single vector shuffle instead of a blend so nuke VHiHalf.
+ VHiHalf = DAG.getUNDEF(MVT::v8i16);
+
+ // Squash the masks to point directly into VLoHalf.
+ for (int &M : LoBlendMask)
+ if (M >= 0)
+ M /= 2;
+ for (int &M : HiBlendMask)
+ if (M >= 0)
+ M /= 2;
+ } else {
+ // Otherwise just unpack the low half of V into VLoHalf and the high half into
+ // VHiHalf so that we can blend them as i16s.
+ VLoHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
+ VHiHalf = DAG.getBitcast(
+ MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
+ }
+
+ SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
+ SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
+
+ return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
+}
+
+/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
+///
+/// This routine breaks down the specific type of 128-bit shuffle and
+/// dispatches to the lowering routines accordingly.
+static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ switch (VT.SimpleTy) {
+ case MVT::v2i64:
+ return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v2f64:
+ return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4i32:
+ return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4f32:
+ return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i16:
+ return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i8:
+ return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Unimplemented!");
+ }
+}
+
+/// \brief Helper function to test whether a shuffle mask could be
+/// simplified by widening the elements being shuffled.
+///
+/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
+/// leaves it in an unspecified state.
+///
+/// NOTE: This must handle normal vector shuffle masks and *target* vector
+/// shuffle masks. The latter have the special property of a '-2' representing
+/// a zero-ed lane of a vector.
+static bool canWidenShuffleElements(ArrayRef<int> Mask,
+ SmallVectorImpl<int> &WidenedMask) {
+ for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
+ // If both elements are undef, its trivial.
+ if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
+ WidenedMask.push_back(SM_SentinelUndef);
+ continue;
+ }
+
+ // Check for an undef mask and a mask value properly aligned to fit with
+ // a pair of values. If we find such a case, use the non-undef mask's value.
+ if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
+ WidenedMask.push_back(Mask[i + 1] / 2);
+ continue;
+ }
+ if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
+ WidenedMask.push_back(Mask[i] / 2);
+ continue;
+ }
+
+ // When zeroing, we need to spread the zeroing across both lanes to widen.
+ if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
+ if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
+ (Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
+ WidenedMask.push_back(SM_SentinelZero);
+ continue;
+ }
+ return false;
+ }
+
+ // Finally check if the two mask values are adjacent and aligned with
+ // a pair.
+ if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
+ WidenedMask.push_back(Mask[i] / 2);
+ continue;
+ }
+
+ // Otherwise we can't safely widen the elements used in this shuffle.
+ return false;
+ }
+ assert(WidenedMask.size() == Mask.size() / 2 &&
+ "Incorrect size of mask after widening the elements!");
+
+ return true;
+}
+
+/// \brief Generic routine to split vector shuffle into half-sized shuffles.
+///
+/// This routine just extracts two subvectors, shuffles them independently, and
+/// then concatenates them back together. This should work effectively with all
+/// AVX vector shuffle types.
+static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(VT.getSizeInBits() >= 256 &&
+ "Only for 256-bit or wider vector shuffles!");
+ assert(V1.getSimpleValueType() == VT && "Bad operand type!");
+ assert(V2.getSimpleValueType() == VT && "Bad operand type!");
+
+ ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
+ ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
+
+ int NumElements = VT.getVectorNumElements();
+ int SplitNumElements = NumElements / 2;
+ MVT ScalarVT = VT.getVectorElementType();
+ MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
+
+ // Rather than splitting build-vectors, just build two narrower build
+ // vectors. This helps shuffling with splats and zeros.
+ auto SplitVector = [&](SDValue V) {
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V->getOperand(0);
+
+ MVT OrigVT = V.getSimpleValueType();
+ int OrigNumElements = OrigVT.getVectorNumElements();
+ int OrigSplitNumElements = OrigNumElements / 2;
+ MVT OrigScalarVT = OrigVT.getVectorElementType();
+ MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
+
+ SDValue LoV, HiV;
+
+ auto *BV = dyn_cast<BuildVectorSDNode>(V);
+ if (!BV) {
+ LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
+ DAG.getIntPtrConstant(0, DL));
+ HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
+ DAG.getIntPtrConstant(OrigSplitNumElements, DL));
+ } else {
+
+ SmallVector<SDValue, 16> LoOps, HiOps;
+ for (int i = 0; i < OrigSplitNumElements; ++i) {
+ LoOps.push_back(BV->getOperand(i));
+ HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
+ }
+ LoV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, LoOps);
+ HiV = DAG.getNode(ISD::BUILD_VECTOR, DL, OrigSplitVT, HiOps);
+ }
+ return std::make_pair(DAG.getBitcast(SplitVT, LoV),
+ DAG.getBitcast(SplitVT, HiV));
+ };
+
+ SDValue LoV1, HiV1, LoV2, HiV2;
+ std::tie(LoV1, HiV1) = SplitVector(V1);
+ std::tie(LoV2, HiV2) = SplitVector(V2);
+
+ // Now create two 4-way blends of these half-width vectors.
+ auto HalfBlend = [&](ArrayRef<int> HalfMask) {
+ bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
+ SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
+ for (int i = 0; i < SplitNumElements; ++i) {
+ int M = HalfMask[i];
+ if (M >= NumElements) {
+ if (M >= NumElements + SplitNumElements)
+ UseHiV2 = true;
+ else
+ UseLoV2 = true;
+ V2BlendMask.push_back(M - NumElements);
+ V1BlendMask.push_back(-1);
+ BlendMask.push_back(SplitNumElements + i);
+ } else if (M >= 0) {
+ if (M >= SplitNumElements)
+ UseHiV1 = true;
+ else
+ UseLoV1 = true;
+ V2BlendMask.push_back(-1);
+ V1BlendMask.push_back(M);
+ BlendMask.push_back(i);
+ } else {
+ V2BlendMask.push_back(-1);
+ V1BlendMask.push_back(-1);
+ BlendMask.push_back(-1);
+ }
+ }
+
+ // Because the lowering happens after all combining takes place, we need to
+ // manually combine these blend masks as much as possible so that we create
+ // a minimal number of high-level vector shuffle nodes.
+
+ // First try just blending the halves of V1 or V2.
+ if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
+ return DAG.getUNDEF(SplitVT);
+ if (!UseLoV2 && !UseHiV2)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ if (!UseLoV1 && !UseHiV1)
+ return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+
+ SDValue V1Blend, V2Blend;
+ if (UseLoV1 && UseHiV1) {
+ V1Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
+ } else {
+ // We only use half of V1 so map the usage down into the final blend mask.
+ V1Blend = UseLoV1 ? LoV1 : HiV1;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
+ BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
+ }
+ if (UseLoV2 && UseHiV2) {
+ V2Blend =
+ DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
+ } else {
+ // We only use half of V2 so map the usage down into the final blend mask.
+ V2Blend = UseLoV2 ? LoV2 : HiV2;
+ for (int i = 0; i < SplitNumElements; ++i)
+ if (BlendMask[i] >= SplitNumElements)
+ BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
+ }
+ return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
+ };
+ SDValue Lo = HalfBlend(LoMask);
+ SDValue Hi = HalfBlend(HiMask);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
+}
+
+/// \brief Either split a vector in halves or decompose the shuffles and the
+/// blend.
+///
+/// This is provided as a good fallback for many lowerings of non-single-input
+/// shuffles with more than one 128-bit lane. In those cases, we want to select
+/// between splitting the shuffle into 128-bit components and stitching those
+/// back together vs. extracting the single-input shuffles and blending those
+/// results.
+static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
+ "lower single-input shuffles as it "
+ "could then recurse on itself.");
+ int Size = Mask.size();
+
+ // If this can be modeled as a broadcast of two elements followed by a blend,
+ // prefer that lowering. This is especially important because broadcasts can
+ // often fold with memory operands.
+ auto DoBothBroadcast = [&] {
+ int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
+ for (int M : Mask)
+ if (M >= Size) {
+ if (V2BroadcastIdx == -1)
+ V2BroadcastIdx = M - Size;
+ else if (M - Size != V2BroadcastIdx)
+ return false;
+ } else if (M >= 0) {
+ if (V1BroadcastIdx == -1)
+ V1BroadcastIdx = M;
+ else if (M != V1BroadcastIdx)
+ return false;
+ }
+ return true;
+ };
+ if (DoBothBroadcast())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
+ DAG);
+
+ // If the inputs all stem from a single 128-bit lane of each input, then we
+ // split them rather than blending because the split will decompose to
+ // unusually few instructions.
+ int LaneCount = VT.getSizeInBits() / 128;
+ int LaneSize = Size / LaneCount;
+ SmallBitVector LaneInputs[2];
+ LaneInputs[0].resize(LaneCount, false);
+ LaneInputs[1].resize(LaneCount, false);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
+ if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ // Otherwise, just fall back to decomposed shuffles and a blend. This requires
+ // that the decomposed single-input shuffles don't end up here.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
+}
+
+/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
+/// a permutation and blend of those lanes.
+///
+/// This essentially blends the out-of-lane inputs to each lane into the lane
+/// from a permuted copy of the vector. This lowering strategy results in four
+/// instructions in the worst case for a single-input cross lane shuffle which
+/// is lower than any other fully general cross-lane shuffle strategy I'm aware
+/// of. Special cases for each particular shuffle pattern should be handled
+/// prior to trying this lowering.
+static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
+ SDValue V1, SDValue V2,
+ ArrayRef<int> Mask,
+ SelectionDAG &DAG) {
+ // FIXME: This should probably be generalized for 512-bit vectors as well.
+ assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
+ int LaneSize = Mask.size() / 2;
+
+ // If there are only inputs from one 128-bit lane, splitting will in fact be
+ // less expensive. The flags track whether the given lane contains an element
+ // that crosses to another lane.
+ bool LaneCrossing[2] = {false, false};
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
+ LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
+ if (!LaneCrossing[0] || !LaneCrossing[1])
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ SmallVector<int, 32> FlippedBlendMask;
+ for (int i = 0, Size = Mask.size(); i < Size; ++i)
+ FlippedBlendMask.push_back(
+ Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
+ ? Mask[i]
+ : Mask[i] % LaneSize +
+ (i / LaneSize) * LaneSize + Size));
+
+ // Flip the vector, and blend the results which should now be in-lane. The
+ // VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
+ // 5 for the high source. The value 3 selects the high half of source 2 and
+ // the value 2 selects the low half of source 2. We only use source 2 to
+ // allow folding it into a memory operand.
+ unsigned PERMMask = 3 | 2 << 4;
+ SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
+ V1, DAG.getConstant(PERMMask, DL, MVT::i8));
+ return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
+ }
+
+ // This now reduces to two single-input shuffles of V1 and V2 which at worst
+ // will be handled by the above logic and a blend of the results, much like
+ // other patterns in AVX.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering 2-lane 128-bit shuffles.
+static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ // TODO: If minimizing size and one of the inputs is a zero vector and the
+ // the zero vector has only one use, we could use a VPERM2X128 to save the
+ // instruction bytes needed to explicitly generate the zero vector.
+
+ // Blends are faster and handle all the non-lane-crossing cases.
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
+ bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
+
+ // If either input operand is a zero vector, use VPERM2X128 because its mask
+ // allows us to replace the zero input with an implicit zero.
+ if (!IsV1Zero && !IsV2Zero) {
+ // Check for patterns which can be matched with a single insert of a 128-bit
+ // subvector.
+ bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
+ if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
+ MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements() / 2);
+ SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
+ OnlyUsesV1 ? V1 : V2,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
+ }
+ }
+
+ // Otherwise form a 128-bit permutation. After accounting for undefs,
+ // convert the 64-bit shuffle mask selection values into 128-bit
+ // selection bits by dividing the indexes by 2 and shifting into positions
+ // defined by a vperm2*128 instruction's immediate control byte.
+
+ // The immediate permute control byte looks like this:
+ // [1:0] - select 128 bits from sources for low half of destination
+ // [2] - ignore
+ // [3] - zero low half of destination
+ // [5:4] - select 128 bits from sources for high half of destination
+ // [6] - ignore
+ // [7] - zero high half of destination
+
+ int MaskLO = Mask[0];
+ if (MaskLO == SM_SentinelUndef)
+ MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
+
+ int MaskHI = Mask[2];
+ if (MaskHI == SM_SentinelUndef)
+ MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
+
+ unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
+
+ // If either input is a zero vector, replace it with an undef input.
+ // Shuffle mask values < 4 are selecting elements of V1.
+ // Shuffle mask values >= 4 are selecting elements of V2.
+ // Adjust each half of the permute mask by clearing the half that was
+ // selecting the zero vector and setting the zero mask bit.
+ if (IsV1Zero) {
+ V1 = DAG.getUNDEF(VT);
+ if (MaskLO < 4)
+ PermMask = (PermMask & 0xf0) | 0x08;
+ if (MaskHI < 4)
+ PermMask = (PermMask & 0x0f) | 0x80;
+ }
+ if (IsV2Zero) {
+ V2 = DAG.getUNDEF(VT);
+ if (MaskLO >= 4)
+ PermMask = (PermMask & 0xf0) | 0x08;
+ if (MaskHI >= 4)
+ PermMask = (PermMask & 0x0f) | 0x80;
+ }
+
+ return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
+ DAG.getConstant(PermMask, DL, MVT::i8));
+}
+
+/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
+/// shuffling each lane.
+///
+/// This will only succeed when the result of fixing the 128-bit lanes results
+/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
+/// each 128-bit lanes. This handles many cases where we can quickly blend away
+/// the lane crosses early and then use simpler shuffles within each lane.
+///
+/// FIXME: It might be worthwhile at some point to support this without
+/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
+/// in x86 only floating point has interesting non-repeating shuffles, and even
+/// those are still *marginally* more expensive.
+static SDValue lowerVectorShuffleByMerging128BitLanes(
+ SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ assert(!isSingleInputShuffleMask(Mask) &&
+ "This is only useful with multiple inputs.");
+
+ int Size = Mask.size();
+ int LaneSize = 128 / VT.getScalarSizeInBits();
+ int NumLanes = Size / LaneSize;
+ assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
+
+ // See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
+ // check whether the in-128-bit lane shuffles share a repeating pattern.
+ SmallVector<int, 4> Lanes;
+ Lanes.resize(NumLanes, -1);
+ SmallVector<int, 4> InLaneMask;
+ InLaneMask.resize(LaneSize, -1);
+ for (int i = 0; i < Size; ++i) {
+ if (Mask[i] < 0)
+ continue;
+
+ int j = i / LaneSize;
+
+ if (Lanes[j] < 0) {
+ // First entry we've seen for this lane.
+ Lanes[j] = Mask[i] / LaneSize;
+ } else if (Lanes[j] != Mask[i] / LaneSize) {
+ // This doesn't match the lane selected previously!
+ return SDValue();
+ }
+
+ // Check that within each lane we have a consistent shuffle mask.
+ int k = i % LaneSize;
+ if (InLaneMask[k] < 0) {
+ InLaneMask[k] = Mask[i] % LaneSize;
+ } else if (InLaneMask[k] != Mask[i] % LaneSize) {
+ // This doesn't fit a repeating in-lane mask.
+ return SDValue();
+ }
+ }
+
+ // First shuffle the lanes into place.
+ MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
+ VT.getSizeInBits() / 64);
+ SmallVector<int, 8> LaneMask;
+ LaneMask.resize(NumLanes * 2, -1);
+ for (int i = 0; i < NumLanes; ++i)
+ if (Lanes[i] >= 0) {
+ LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
+ LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
+ }
+
+ V1 = DAG.getBitcast(LaneVT, V1);
+ V2 = DAG.getBitcast(LaneVT, V2);
+ SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
+
+ // Cast it back to the type we actually want.
+ LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
+
+ // Now do a simple shuffle that isn't lane crossing.
+ SmallVector<int, 8> NewMask;
+ NewMask.resize(Size, -1);
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0)
+ NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
+ assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
+ "Must not introduce lane crosses at this point!");
+
+ return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
+}
+
+/// Lower shuffles where an entire half of a 256-bit vector is UNDEF.
+/// This allows for fast cases such as subvector extraction/insertion
+/// or shuffling smaller vector types which can lower more efficiently.
+static SDValue lowerVectorShuffleWithUndefHalf(SDLoc DL, MVT VT, SDValue V1,
+ SDValue V2, ArrayRef<int> Mask,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(VT.getSizeInBits() == 256 && "Expected 256-bit vector");
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfNumElts = NumElts / 2;
+ MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts);
+
+ bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts);
+ bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts);
+ if (!UndefLower && !UndefUpper)
+ return SDValue();
+
+ // Upper half is undef and lower half is whole upper subvector.
+ // e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
+ if (UndefUpper &&
+ isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
+ DAG.getIntPtrConstant(HalfNumElts, DL));
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ // Lower half is undef and upper half is whole lower subvector.
+ // e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
+ if (UndefLower &&
+ isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
+ DAG.getIntPtrConstant(HalfNumElts, DL));
+ }
+
+ // AVX2 supports efficient immediate 64-bit element cross-lane shuffles.
+ if (UndefLower && Subtarget->hasAVX2() &&
+ (VT == MVT::v4f64 || VT == MVT::v4i64))
+ return SDValue();
+
+ // If the shuffle only uses the lower halves of the input operands,
+ // then extract them and perform the 'half' shuffle at half width.
+ // e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u>
+ int HalfIdx1 = -1, HalfIdx2 = -1;
+ SmallVector<int, 8> HalfMask;
+ unsigned Offset = UndefLower ? HalfNumElts : 0;
+ for (unsigned i = 0; i != HalfNumElts; ++i) {
+ int M = Mask[i + Offset];
+ if (M < 0) {
+ HalfMask.push_back(M);
+ continue;
+ }
+
+ // Determine which of the 4 half vectors this element is from.
+ // i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
+ int HalfIdx = M / HalfNumElts;
+
+ // Only shuffle using the lower halves of the inputs.
+ // TODO: Investigate usefulness of shuffling with upper halves.
+ if (HalfIdx != 0 && HalfIdx != 2)
+ return SDValue();
+
+ // Determine the element index into its half vector source.
+ int HalfElt = M % HalfNumElts;
+
+ // We can shuffle with up to 2 half vectors, set the new 'half'
+ // shuffle mask accordingly.
+ if (-1 == HalfIdx1 || HalfIdx1 == HalfIdx) {
+ HalfMask.push_back(HalfElt);
+ HalfIdx1 = HalfIdx;
+ continue;
+ }
+ if (-1 == HalfIdx2 || HalfIdx2 == HalfIdx) {
+ HalfMask.push_back(HalfElt + HalfNumElts);
+ HalfIdx2 = HalfIdx;
+ continue;
+ }
+
+ // Too many half vectors referenced.
+ return SDValue();
+ }
+ assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
+
+ auto GetHalfVector = [&](int HalfIdx) {
+ if (HalfIdx < 0)
+ return DAG.getUNDEF(HalfVT);
+ SDValue V = (HalfIdx < 2 ? V1 : V2);
+ HalfIdx = (HalfIdx % 2) * HalfNumElts;
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
+ DAG.getIntPtrConstant(HalfIdx, DL));
+ };
+
+ SDValue Half1 = GetHalfVector(HalfIdx1);
+ SDValue Half2 = GetHalfVector(HalfIdx2);
+ SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
+ DAG.getIntPtrConstant(Offset, DL));
+}
+
+/// \brief Test whether the specified input (0 or 1) is in-place blended by the
+/// given mask.
+///
+/// This returns true if the elements from a particular input are already in the
+/// slot required by the given mask and require no permutation.
+static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
+ assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
+ int Size = Mask.size();
+ for (int i = 0; i < Size; ++i)
+ if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
+ return false;
+
+ return true;
+}
+
+static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+
+ // Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
+ // Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
+ assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD");
+ int NumElts = VT.getVectorNumElements();
+ bool ShufpdMask = true;
+ bool CommutableMask = true;
+ unsigned Immediate = 0;
+ for (int i = 0; i < NumElts; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ int Val = (i & 6) + NumElts * (i & 1);
+ int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1);
+ if (Mask[i] < Val || Mask[i] > Val + 1)
+ ShufpdMask = false;
+ if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
+ CommutableMask = false;
+ Immediate |= (Mask[i] % 2) << i;
+ }
+ if (ShufpdMask)
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
+ DAG.getConstant(Immediate, DL, MVT::i8));
+ if (CommutableMask)
+ return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
+ DAG.getConstant(Immediate, DL, MVT::i8));
+ return SDValue();
+}
+
+/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+
+ SmallVector<int, 4> WidenedMask;
+ if (canWidenShuffleElements(Mask, WidenedMask))
+ return lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask, Subtarget,
+ DAG);
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4f64, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Use low duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
+ return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
+
+ if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
+ // Non-half-crossing single input shuffles can be lowerid with an
+ // interleaved permutation.
+ unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
+ ((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
+ DAG.getConstant(VPERMILPMask, DL, MVT::i8));
+ }
+
+ // With AVX2 we have direct support for this permutation.
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
+ DAG);
+ }
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
+ return V;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check if the blend happens to exactly fit that of SHUFPD.
+ if (SDValue Op =
+ lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
+ return Op;
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
+ isShuffleMaskInputInPlace(1, Mask))))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // If we have AVX2 then we always want to lower with a blend because an v4 we
+ // can fully permute the elements.
+ if (Subtarget->hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v4i64 shuffling..
+static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v4i64 with AVX2!");
+
+ SmallVector<int, 4> WidenedMask;
+ if (canWidenShuffleElements(Mask, WidenedMask))
+ return lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask, Subtarget,
+ DAG);
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // When the shuffle is mirrored between the 128-bit lanes of the unit, we can
+ // use lower latency instructions that will operate on both 128-bit lanes.
+ SmallVector<int, 2> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
+ if (isSingleInputShuffleMask(Mask)) {
+ int PSHUFDMask[] = {-1, -1, -1, -1};
+ for (int i = 0; i < 2; ++i)
+ if (RepeatedMask[i] >= 0) {
+ PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
+ PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
+ }
+ return DAG.getBitcast(
+ MVT::v4i64,
+ DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
+ DAG.getBitcast(MVT::v8i32, V1),
+ getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
+ }
+ }
+
+ // AVX2 provides a direct instruction for permuting a single input across
+ // lanes.
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG))
+ return Shift;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle. However, if we have AVX2 and either inputs are already in place,
+ // we will be able to shuffle even across lanes the other input in a single
+ // instruction so skip this pattern.
+ if (!(Subtarget->hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
+ isShuffleMaskInputInPlace(1, Mask))))
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
+///
+/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
+/// isn't available.
+static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane, we have many more
+ // options to efficiently lower the shuffle.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 &&
+ "Repeated masks must be half the mask width!");
+
+ // Use even/odd duplicate instructions for masks that match their pattern.
+ if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
+ return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
+ if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
+ return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
+
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
+ return V;
+
+ // Otherwise, fall back to a SHUFPS sequence. Here it is important that we
+ // have already handled any direct blends. We also need to squash the
+ // repeated mask into a simulated v4f32 mask.
+ for (int i = 0; i < 4; ++i)
+ if (RepeatedMask[i] >= 8)
+ RepeatedMask[i] -= 4;
+ return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
+ }
+
+ // If we have a single input shuffle with different shuffle patterns in the
+ // two 128-bit lanes use the variable mask to VPERMILPS.
+ if (isSingleInputShuffleMask(Mask)) {
+ SDValue VPermMask[8];
+ for (int i = 0; i < 8; ++i)
+ VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
+ : DAG.getConstant(Mask[i], DL, MVT::i32);
+ if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
+ return DAG.getNode(
+ X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask));
+
+ if (Subtarget->hasAVX2())
+ return DAG.getNode(
+ X86ISD::VPERMV, DL, MVT::v8f32,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
+
+ // Otherwise, fall back.
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
+ DAG);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // If we have AVX2 then we always want to lower with a blend because at v8 we
+ // can fully permute the elements.
+ if (Subtarget->hasAVX2())
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
+ Mask, DAG);
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v8i32 shuffling..
+static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v8i32 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2,
+ Mask, Subtarget, DAG))
+ return ZExt;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // If the shuffle mask is repeated in each 128-bit lane we can use more
+ // efficient instructions that mirror the shuffles across the two 128-bit
+ // lanes.
+ SmallVector<int, 4> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
+ assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
+ getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
+ return V;
+ }
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG))
+ return Shift;
+
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ // If the shuffle patterns aren't repeated but it is a single input, directly
+ // generate a cross-lane VPERMD instruction.
+ if (isSingleInputShuffleMask(Mask)) {
+ SDValue VPermMask[8];
+ for (int i = 0; i < 8; ++i)
+ VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
+ : DAG.getConstant(Mask[i], DL, MVT::i32);
+ return DAG.getNode(
+ X86ISD::VPERMV, DL, MVT::v8i32,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i32, VPermMask), V1);
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic blend lowering.
+ return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
+ Mask, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v16i16 shuffling..
+static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v16i16 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2,
+ Mask, Subtarget, DAG))
+ return ZExt;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // There are no generalized cross-lane shuffle operations available on i16
+ // element types.
+ if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
+ Mask, DAG);
+
+ SmallVector<int, 8> RepeatedMask;
+ if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
+ // As this is a single-input shuffle, the repeated mask should be
+ // a strictly valid v8i16 mask that we can pass through to the v8i16
+ // lowering to handle even the v16 case.
+ return lowerV8I16GeneralSingleInputVectorShuffle(
+ DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
+ }
+
+ SDValue PSHUFBMask[32];
+ for (int i = 0; i < 16; ++i) {
+ if (Mask[i] == -1) {
+ PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
+ continue;
+ }
+
+ int M = i < 8 ? Mask[i] : Mask[i] - 8;
+ assert(M >= 0 && M < 8 && "Invalid single-input mask!");
+ PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8);
+ PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8);
+ }
+ return DAG.getBitcast(MVT::v16i16,
+ DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8,
+ DAG.getBitcast(MVT::v32i8, V1),
+ DAG.getNode(ISD::BUILD_VECTOR, DL,
+ MVT::v32i8, PSHUFBMask)));
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
+///
+/// This routine is only called when we have AVX2 and thus a reasonable
+/// instruction set for v32i8 shuffling..
+static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget->hasAVX2() && "We can only lower v32i8 with AVX2!");
+
+ // Whenever we can lower this as a zext, that instruction is strictly faster
+ // than any alternative. It also allows us to fold memory operands into the
+ // shuffle in many cases.
+ if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2,
+ Mask, Subtarget, DAG))
+ return ZExt;
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1,
+ Mask, Subtarget, DAG))
+ return Broadcast;
+
+ if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
+ Subtarget, DAG))
+ return Blend;
+
+ // Use dedicated unpack instructions for masks that match their pattern.
+ if (SDValue V =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
+ return V;
+
+ // Try to use shift instructions.
+ if (SDValue Shift =
+ lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG))
+ return Shift;
+
+ // Try to use byte rotation instructions.
+ if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return Rotate;
+
+ if (isSingleInputShuffleMask(Mask)) {
+ // There are no generalized cross-lane shuffle operations available on i8
+ // element types.
+ if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
+ return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
+ Mask, DAG);
+
+ SDValue PSHUFBMask[32];
+ for (int i = 0; i < 32; ++i)
+ PSHUFBMask[i] =
+ Mask[i] < 0
+ ? DAG.getUNDEF(MVT::i8)
+ : DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL,
+ MVT::i8);
+
+ return DAG.getNode(
+ X86ISD::PSHUFB, DL, MVT::v32i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, PSHUFBMask));
+ }
+
+ // Try to simplify this by merging 128-bit lanes to enable a lane-based
+ // shuffle.
+ if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
+ DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
+ return Result;
+
+ // Otherwise fall back on generic lowering.
+ return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 256-bit x86 vector
+/// shuffle or splits it into two 128-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+
+ // If we have a single input to the zero element, insert that into V1 if we
+ // can do so cheaply.
+ int NumElts = VT.getVectorNumElements();
+ int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) {
+ return M >= NumElts;
+ });
+
+ if (NumV2Elements == 1 && Mask[0] >= NumElts)
+ if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
+ DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return Insertion;
+
+ // Handle special cases where the lower or upper half is UNDEF.
+ if (SDValue V =
+ lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
+ return V;
+
+ // There is a really nice hard cut-over between AVX1 and AVX2 that means we
+ // can check for those subtargets here and avoid much of the subtarget
+ // querying in the per-vector-type lowering routines. With AVX1 we have
+ // essentially *zero* ability to manipulate a 256-bit vector with integer
+ // types. Since we'll use floating point types there eventually, just
+ // immediately cast everything to a float and operate entirely in that domain.
+ if (VT.isInteger() && !Subtarget->hasAVX2()) {
+ int ElementBits = VT.getScalarSizeInBits();
+ if (ElementBits < 32)
+ // No floating point type available, decompose into 128-bit vectors.
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+
+ MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
+ VT.getVectorNumElements());
+ V1 = DAG.getBitcast(FpVT, V1);
+ V2 = DAG.getBitcast(FpVT, V2);
+ return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
+ }
+
+ switch (VT.SimpleTy) {
+ case MVT::v4f64:
+ return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v4i64:
+ return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8f32:
+ return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i32:
+ return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i16:
+ return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v32i8:
+ return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+
+ default:
+ llvm_unreachable("Not a valid 256-bit x86 vector type!");
+ }
+}
+
+/// \brief Try to lower a vector shuffle as a 128-bit shuffles.
+static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask,
+ SDValue V1, SDValue V2,
+ SelectionDAG &DAG) {
+ assert(VT.getScalarSizeInBits() == 64 &&
+ "Unexpected element type size for 128bit shuffle.");
+
+ // To handle 256 bit vector requires VLX and most probably
+ // function lowerV2X128VectorShuffle() is better solution.
+ assert(VT.is512BitVector() && "Unexpected vector size for 128bit shuffle.");
+
+ SmallVector<int, 4> WidenedMask;
+ if (!canWidenShuffleElements(Mask, WidenedMask))
+ return SDValue();
+
+ // Form a 128-bit permutation.
+ // Convert the 64-bit shuffle mask selection values into 128-bit selection
+ // bits defined by a vshuf64x2 instruction's immediate control byte.
+ unsigned PermMask = 0, Imm = 0;
+ unsigned ControlBitsNum = WidenedMask.size() / 2;
+
+ for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) {
+ if (WidenedMask[i] == SM_SentinelZero)
+ return SDValue();
+
+ // Use first element in place of undef mask.
+ Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i];
+ PermMask |= (Imm % WidenedMask.size()) << (i * ControlBitsNum);
+ }
+
+ return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
+ DAG.getConstant(PermMask, DL, MVT::i8));
+}
+
+static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT,
+ ArrayRef<int> Mask, SDValue V1,
+ SDValue V2, SelectionDAG &DAG) {
+
+ assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV");
+
+ MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
+ MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
+
+ SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
+ if (isSingleInputShuffleMask(Mask))
+ return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
+
+ return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
+}
+
+/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
+static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (SDValue Shuf128 =
+ lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG))
+ return Shuf128;
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
+ return Unpck;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
+static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
+ return Unpck;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
+static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
+
+ if (SDValue Shuf128 =
+ lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG))
+ return Shuf128;
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
+ return Unpck;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
+static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
+
+ if (SDValue Unpck =
+ lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
+ return Unpck;
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
+static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
+ assert(Subtarget->hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
+
+ return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
+}
+
+/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
+static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
+ assert(Subtarget->hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
+
+ // FIXME: Implement direct support for this type!
+ return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
+}
+
+/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
+///
+/// This routine either breaks down the specific type of a 512-bit x86 vector
+/// shuffle or splits it into two 256-bit shuffles and fuses the results back
+/// together based on the available instructions.
+static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Subtarget->hasAVX512() &&
+ "Cannot lower 512-bit vectors w/ basic ISA!");
+
+ // Check for being able to broadcast a single element.
+ if (SDValue Broadcast =
+ lowerVectorShuffleAsBroadcast(DL, VT, V1, Mask, Subtarget, DAG))
+ return Broadcast;
+
+ // Dispatch to each element type for lowering. If we don't have supprot for
+ // specific element type shuffles at 512 bits, immediately split them and
+ // lower them. Each lowering routine of a given type is allowed to assume that
+ // the requisite ISA extensions for that element type are available.
+ switch (VT.SimpleTy) {
+ case MVT::v8f64:
+ return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16f32:
+ return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v8i64:
+ return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v16i32:
+ return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ case MVT::v32i16:
+ if (Subtarget->hasBWI())
+ return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ break;
+ case MVT::v64i8:
+ if (Subtarget->hasBWI())
+ return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
+ break;
+
+ default:
+ llvm_unreachable("Not a valid 512-bit x86 vector type!");
+ }
+
+ // Otherwise fall back on splitting.
+ return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
+}
+
+// Lower vXi1 vector shuffles.
+// There is no a dedicated instruction on AVX-512 that shuffles the masks.
+// The only way to shuffle bits is to sign-extend the mask vector to SIMD
+// vector, shuffle and then truncate it back.
+static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
+ MVT VT, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ assert(Subtarget->hasAVX512() &&
+ "Cannot lower 512-bit vectors w/o basic ISA!");
+ MVT ExtVT;
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("Expected a vector of i1 elements");
+ case MVT::v2i1:
+ ExtVT = MVT::v2i64;
+ break;
+ case MVT::v4i1:
+ ExtVT = MVT::v4i32;
+ break;
+ case MVT::v8i1:
+ ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL
+ break;
+ case MVT::v16i1:
+ ExtVT = MVT::v16i32;
+ break;
+ case MVT::v32i1:
+ ExtVT = MVT::v32i16;
+ break;
+ case MVT::v64i1:
+ ExtVT = MVT::v64i8;
+ break;
+ }
+
+ if (ISD::isBuildVectorAllZeros(V1.getNode()))
+ V1 = getZeroVector(ExtVT, Subtarget, DAG, DL);
+ else if (ISD::isBuildVectorAllOnes(V1.getNode()))
+ V1 = getOnesVector(ExtVT, Subtarget, DAG, DL);
+ else
+ V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
+
+ if (V2.isUndef())
+ V2 = DAG.getUNDEF(ExtVT);
+ else if (ISD::isBuildVectorAllZeros(V2.getNode()))
+ V2 = getZeroVector(ExtVT, Subtarget, DAG, DL);
+ else if (ISD::isBuildVectorAllOnes(V2.getNode()))
+ V2 = getOnesVector(ExtVT, Subtarget, DAG, DL);
+ else
+ V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT,
+ DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask));
+}
+/// \brief Top-level lowering for x86 vector shuffles.
+///
+/// This handles decomposition, canonicalization, and lowering of all x86
+/// vector shuffles. Most of the specific lowering strategies are encapsulated
+/// above in helper routines. The canonicalization attempts to widen shuffles
+/// to involve fewer lanes of wider elements, consolidate symmetric patterns
+/// s.t. only one of the two inputs needs to be tested, etc.
+static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ ArrayRef<int> Mask = SVOp->getMask();
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ MVT VT = Op.getSimpleValueType();
+ int NumElements = VT.getVectorNumElements();
+ SDLoc dl(Op);
+ bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
+
+ assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
+ "Can't lower MMX shuffles");
+
+ bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
+ bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+ if (V1IsUndef && V2IsUndef)
+ return DAG.getUNDEF(VT);
+
+ // When we create a shuffle node we put the UNDEF node to second operand,
+ // but in some cases the first operand may be transformed to UNDEF.
+ // In this case we should just commute the node.
+ if (V1IsUndef)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // Check for non-undef masks pointing at an undef vector and make the masks
+ // undef as well. This makes it easier to match the shuffle based solely on
+ // the mask.
+ if (V2IsUndef)
+ for (int M : Mask)
+ if (M >= NumElements) {
+ SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
+ for (int &M : NewMask)
+ if (M >= NumElements)
+ M = -1;
+ return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
+ }
+
+ // We actually see shuffles that are entirely re-arrangements of a set of
+ // zero inputs. This mostly happens while decomposing complex shuffles into
+ // simple ones. Directly lower these as a buildvector of zeros.
+ SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
+ if (Zeroable.all())
+ return getZeroVector(VT, Subtarget, DAG, dl);
+
+ // Try to collapse shuffles into using a vector type with fewer elements but
+ // wider element types. We cap this to not form integers or floating point
+ // elements wider than 64 bits, but it might be interesting to form i128
+ // integers to handle flipping the low and high halves of AVX 256-bit vectors.
+ SmallVector<int, 16> WidenedMask;
+ if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
+ canWidenShuffleElements(Mask, WidenedMask)) {
+ MVT NewEltVT = VT.isFloatingPoint()
+ ? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
+ : MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
+ MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
+ // Make sure that the new vector type is legal. For example, v2f64 isn't
+ // legal on SSE1.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
+ V1 = DAG.getBitcast(NewVT, V1);
+ V2 = DAG.getBitcast(NewVT, V2);
+ return DAG.getBitcast(
+ VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
+ }
+ }
+
+ int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
+ for (int M : SVOp->getMask())
+ if (M < 0)
+ ++NumUndefElements;
+ else if (M < NumElements)
+ ++NumV1Elements;
+ else
+ ++NumV2Elements;
+
+ // Commute the shuffle as needed such that more elements come from V1 than
+ // V2. This allows us to match the shuffle pattern strictly on how many
+ // elements come from V1 without handling the symmetric cases.
+ if (NumV2Elements > NumV1Elements)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+
+ // When the number of V1 and V2 elements are the same, try to minimize the
+ // number of uses of V2 in the low half of the vector. When that is tied,
+ // ensure that the sum of indices for V1 is equal to or lower than the sum
+ // indices for V2. When those are equal, try to ensure that the number of odd
+ // indices for V1 is lower than the number of odd indices for V2.
+ if (NumV1Elements == NumV2Elements) {
+ int LowV1Elements = 0, LowV2Elements = 0;
+ for (int M : SVOp->getMask().slice(0, NumElements / 2))
+ if (M >= NumElements)
+ ++LowV2Elements;
+ else if (M >= 0)
+ ++LowV1Elements;
+ if (LowV2Elements > LowV1Elements) {
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ } else if (LowV2Elements == LowV1Elements) {
+ int SumV1Indices = 0, SumV2Indices = 0;
+ for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
+ if (SVOp->getMask()[i] >= NumElements)
+ SumV2Indices += i;
+ else if (SVOp->getMask()[i] >= 0)
+ SumV1Indices += i;
+ if (SumV2Indices < SumV1Indices) {
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ } else if (SumV2Indices == SumV1Indices) {
+ int NumV1OddIndices = 0, NumV2OddIndices = 0;
+ for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
+ if (SVOp->getMask()[i] >= NumElements)
+ NumV2OddIndices += i % 2;
+ else if (SVOp->getMask()[i] >= 0)
+ NumV1OddIndices += i % 2;
+ if (NumV2OddIndices < NumV1OddIndices)
+ return DAG.getCommutedVectorShuffle(*SVOp);
+ }
+ }
+ }
+
+ // For each vector width, delegate to a specialized lowering routine.
+ if (VT.is128BitVector())
+ return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
+ if (VT.is256BitVector())
+ return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
+ if (VT.is512BitVector())
+ return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+
+ if (Is1BitVector)
+ return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
+ llvm_unreachable("Unimplemented!");
+}
+
+// This function assumes its argument is a BUILD_VECTOR of constants or
+// undef SDNodes. i.e: ISD::isBuildVectorOfConstantSDNodes(BuildVector) is
+// true.
+static bool BUILD_VECTORtoBlendMask(BuildVectorSDNode *BuildVector,
+ unsigned &MaskValue) {
+ MaskValue = 0;
+ unsigned NumElems = BuildVector->getNumOperands();
+
+ // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
+ // We don't handle the >2 lanes case right now.
+ unsigned NumLanes = (NumElems - 1) / 8 + 1;
+ if (NumLanes > 2)
+ return false;
+
+ unsigned NumElemsInLane = NumElems / NumLanes;
+
+ // Blend for v16i16 should be symmetric for the both lanes.
+ for (unsigned i = 0; i < NumElemsInLane; ++i) {
+ SDValue EltCond = BuildVector->getOperand(i);
+ SDValue SndLaneEltCond =
+ (NumLanes == 2) ? BuildVector->getOperand(i + NumElemsInLane) : EltCond;
+
+ int Lane1Cond = -1, Lane2Cond = -1;
+ if (isa<ConstantSDNode>(EltCond))
+ Lane1Cond = !isNullConstant(EltCond);
+ if (isa<ConstantSDNode>(SndLaneEltCond))
+ Lane2Cond = !isNullConstant(SndLaneEltCond);
+
+ unsigned LaneMask = 0;
+ if (Lane1Cond == Lane2Cond || Lane2Cond < 0)
+ // Lane1Cond != 0, means we want the first argument.
+ // Lane1Cond == 0, means we want the second argument.
+ // The encoding of this argument is 0 for the first argument, 1
+ // for the second. Therefore, invert the condition.
+ LaneMask = !Lane1Cond << i;
+ else if (Lane1Cond < 0)
+ LaneMask = !Lane2Cond << i;
+ else
+ return false;
+
+ MaskValue |= LaneMask;
+ if (NumLanes == 2)
+ MaskValue |= LaneMask << NumElemsInLane;
+ }
+ return true;
+}
+
+/// \brief Try to lower a VSELECT instruction to a vector shuffle.
+static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Cond = Op.getOperand(0);
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ return SDValue();
+ auto *CondBV = cast<BuildVectorSDNode>(Cond);
+
+ // Only non-legal VSELECTs reach this lowering, convert those into generic
+ // shuffles and re-use the shuffle lowering path for blends.
+ SmallVector<int, 32> Mask;
+ for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
+ SDValue CondElt = CondBV->getOperand(i);
+ Mask.push_back(
+ isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0)
+ : -1);
+ }
+ return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
+}
+
+SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
+ // A vselect where all conditions and data are constants can be optimized into
+ // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
+ if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
+ return SDValue();
+
+ // Try to lower this to a blend-style vector shuffle. This can handle all
+ // constant condition cases.
+ if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
+ return BlendOp;
+
+ // Variable blends are only legal from SSE4.1 onward.
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ // Only some types will be legal on some subtargets. If we can emit a legal
+ // VSELECT-matching blend, return Op, and but if we need to expand, return
+ // a null value.
+ switch (Op.getSimpleValueType().SimpleTy) {
+ default:
+ // Most of the vector types have blends past SSE4.1.
+ return Op;
+
+ case MVT::v32i8:
+ // The byte blends for AVX vectors were introduced only in AVX2.
+ if (Subtarget->hasAVX2())
+ return Op;
+
+ return SDValue();
+
+ case MVT::v8i16:
+ case MVT::v16i16:
+ // AVX-512 BWI and VLX features support VSELECT with i16 elements.
+ if (Subtarget->hasBWI() && Subtarget->hasVLX())
+ return Op;
+
+ // FIXME: We should custom lower this by fixing the condition and using i8
+ // blends.
+ return SDValue();
+ }
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
+ return SDValue();
+
+ if (VT.getSizeInBits() == 8) {
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT.getSizeInBits() == 16) {
+ // If Idx is 0, it's cheaper to do a move instead of a pextrw.
+ if (isNullConstant(Op.getOperand(1)))
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+ Op.getOperand(1)));
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT == MVT::f32) {
+ // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
+ // the result back to FR32 register. It's only worth matching if the
+ // result has a single use which is a store or a bitcast to i32. And in
+ // the case of a store, it's not worth it if the index is a constant 0,
+ // because a MOVSSmr can be used instead, which is smaller and faster.
+ if (!Op.hasOneUse())
+ return SDValue();
+ SDNode *User = *Op.getNode()->use_begin();
+ if ((User->getOpcode() != ISD::STORE ||
+ isNullConstant(Op.getOperand(1))) &&
+ (User->getOpcode() != ISD::BITCAST ||
+ User->getValueType(0) != MVT::i32))
+ return SDValue();
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
+ Op.getOperand(1));
+ return DAG.getBitcast(MVT::f32, Extract);
+ }
+
+ if (VT == MVT::i32 || VT == MVT::i64) {
+ // ExtractPS/pextrq works with constant index.
+ if (isa<ConstantSDNode>(Op.getOperand(1)))
+ return Op;
+ }
+ return SDValue();
+}
+
+/// Extract one bit from mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+SDValue
+X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Vec = Op.getOperand(0);
+ SDLoc dl(Vec);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+ MVT EltVT = Op.getSimpleValueType();
+
+ assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
+ assert((VecVT.getVectorNumElements() <= 16 || Subtarget->hasBWI()) &&
+ "Unexpected vector type in ExtractBitFromMaskVector");
+
+ // variable index can't be handled in mask registers,
+ // extend vector to VR512
+ if (!isa<ConstantSDNode>(Idx)) {
+ MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
+ SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ ExtVT.getVectorElementType(), Ext, Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ const TargetRegisterClass* rc = getRegClassFor(VecVT);
+ if (!Subtarget->hasDQI() && (VecVT.getVectorNumElements() <= 8))
+ rc = getRegClassFor(MVT::v16i1);
+ unsigned MaxSift = rc->getSize()*8 - 1;
+ Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
+ DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8));
+ Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
+ DAG.getConstant(MaxSift, dl, MVT::i8));
+ return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+SDValue
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+
+ if (Op.getSimpleValueType() == MVT::i1)
+ return ExtractBitFromMaskVector(Op, DAG);
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ if (VecVT.is512BitVector() ||
+ (VecVT.is256BitVector() && Subtarget->hasInt256() &&
+ VecVT.getVectorElementType().getSizeInBits() == 32)) {
+
+ MVT MaskEltVT =
+ MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
+ MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
+ MaskEltVT.getSizeInBits());
+
+ Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
+ getZeroVector(MaskVT, Subtarget, DAG, dl), Idx,
+ DAG.getConstant(0, dl, PtrVT));
+ SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm,
+ DAG.getConstant(0, dl, PtrVT));
+ }
+ return SDValue();
+ }
+
+ // If this is a 256-bit vector result, first extract the 128-bit vector and
+ // then extract the element from the 128-bit vector.
+ if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ // Get the 128-bit vector.
+ Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
+ MVT EltVT = VecVT.getVectorElementType();
+
+ unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
+ assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
+
+ // Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
+ // this can be done with a mask.
+ IdxVal &= ElemsPerChunk - 1;
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
+ DAG.getConstant(IdxVal, dl, MVT::i32));
+ }
+
+ assert(VecVT.is128BitVector() && "Unexpected vector length");
+
+ if (Subtarget->hasSSE41())
+ if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
+ return Res;
+
+ MVT VT = Op.getSimpleValueType();
+ // TODO: handle v16i8.
+ if (VT.getSizeInBits() == 16) {
+ SDValue Vec = Op.getOperand(0);
+ if (isNullConstant(Op.getOperand(1)))
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getBitcast(MVT::v4i32, Vec),
+ Op.getOperand(1)));
+ // Transform it so it match pextrw which produces a 32-bit result.
+ MVT EltVT = MVT::i32;
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ }
+
+ if (VT.getSizeInBits() == 32) {
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return Op;
+
+ // SHUFPS the element to the lowest double word, then movss.
+ int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ if (VT.getSizeInBits() == 64) {
+ // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
+ // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
+ // to match extract_elt for f64.
+ if (isNullConstant(Op.getOperand(1)))
+ return Op;
+
+ // UNPCKHPD the element to the lowest double word, then movsd.
+ // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
+ // to a f64mem, the whole operation is folded into a single MOVHPDmr.
+ int Mask[2] = { 1, -1 };
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ return SDValue();
+}
+
+/// Insert one bit to mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+SDValue
+X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue Elt = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ MVT VecVT = Vec.getSimpleValueType();
+
+ if (!isa<ConstantSDNode>(Idx)) {
+ // Non constant index. Extend source and destination,
+ // insert element and then truncate the result.
+ MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
+ MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
+ SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
+ return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
+ if (IdxVal)
+ EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
+ DAG.getConstant(IdxVal, dl, MVT::i8));
+ if (Vec.getOpcode() == ISD::UNDEF)
+ return EltInVec;
+ return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
+}
+
+SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+
+ if (EltVT == MVT::i1)
+ return InsertBitToMaskVector(Op, DAG);
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(N2))
+ return SDValue();
+ auto *N2C = cast<ConstantSDNode>(N2);
+ unsigned IdxVal = N2C->getZExtValue();
+
+ // If the vector is wider than 128 bits, extract the 128-bit subvector, insert
+ // into that, and then insert the subvector back into the result.
+ if (VT.is256BitVector() || VT.is512BitVector()) {
+ // With a 256-bit vector, we can insert into the zero element efficiently
+ // using a blend if we have AVX or AVX2 and the right data type.
+ if (VT.is256BitVector() && IdxVal == 0) {
+ // TODO: It is worthwhile to cast integer to floating point and back
+ // and incur a domain crossing penalty if that's what we'll end up
+ // doing anyway after extracting to a 128-bit vector.
+ if ((Subtarget->hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
+ (Subtarget->hasAVX2() && EltVT == MVT::i32)) {
+ SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
+ N2 = DAG.getIntPtrConstant(1, dl);
+ return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
+ }
+ }
+
+ // Get the desired 128-bit vector chunk.
+ SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
+
+ // Insert the element into the desired chunk.
+ unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
+ assert(isPowerOf2_32(NumEltsIn128));
+ // Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
+ unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
+
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
+ DAG.getConstant(IdxIn128, dl, MVT::i32));
+
+ // Insert the changed part back into the bigger vector
+ return Insert128BitVector(N0, V, IdxVal, DAG, dl);
+ }
+ assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
+
+ if (Subtarget->hasSSE41()) {
+ if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
+ unsigned Opc;
+ if (VT == MVT::v8i16) {
+ Opc = X86ISD::PINSRW;
+ } else {
+ assert(VT == MVT::v16i8);
+ Opc = X86ISD::PINSRB;
+ }
+
+ // Transform it so it match pinsr{b,w} which expects a GR32 as its second
+ // argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(Opc, dl, VT, N0, N1, N2);
+ }
+
+ if (EltVT == MVT::f32) {
+ // Bits [7:6] of the constant are the source select. This will always be
+ // zero here. The DAG Combiner may combine an extract_elt index into
+ // these bits. For example (insert (extract, 3), 2) could be matched by
+ // putting the '3' into bits [7:6] of X86ISD::INSERTPS.
+ // Bits [5:4] of the constant are the destination select. This is the
+ // value of the incoming immediate.
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // combine either bitwise AND or insert of float 0.0 to set these bits.
+
+ bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
+ if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
+ // If this is an insertion of 32-bits into the low 32-bits of
+ // a vector, we prefer to generate a blend with immediate rather
+ // than an insertps. Blends are simpler operations in hardware and so
+ // will always have equal or better performance than insertps.
+ // But if optimizing for size and there's a load folding opportunity,
+ // generate insertps because blendps does not have a 32-bit memory
+ // operand form.
+ N2 = DAG.getIntPtrConstant(1, dl);
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
+ }
+ N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
+ }
+
+ if (EltVT == MVT::i32 || EltVT == MVT::i64) {
+ // PINSR* works with constant index.
+ return Op;
+ }
+ }
+
+ if (EltVT == MVT::i8)
+ return SDValue();
+
+ if (EltVT.getSizeInBits() == 16) {
+ // Transform it so it match pinsrw which expects a 16-bit value in a GR32
+ // as its second argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(IdxVal, dl);
+ return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
+ }
+ return SDValue();
+}
+
+static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT OpVT = Op.getSimpleValueType();
+
+ // If this is a 256-bit vector result, first insert into a 128-bit
+ // vector and then insert into the 256-bit vector.
+ if (!OpVT.is128BitVector()) {
+ // Insert into a 128-bit vector.
+ unsigned SizeFactor = OpVT.getSizeInBits()/128;
+ MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
+ OpVT.getVectorNumElements() / SizeFactor);
+
+ Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
+
+ // Insert the 128-bit vector.
+ return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
+ }
+
+ if (OpVT == MVT::v1i64 &&
+ Op.getOperand(0).getValueType() == MVT::i64)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
+
+ SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
+ assert(OpVT.is128BitVector() && "Expected an SSE type!");
+ return DAG.getBitcast(
+ OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
+}
+
+// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
+// a simple subregister reference or explicit instructions to grab
+// upper bits of a vector.
+static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ SDValue In = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ MVT ResVT = Op.getSimpleValueType();
+ MVT InVT = In.getSimpleValueType();
+
+ if (Subtarget->hasFp256()) {
+ if (ResVT.is128BitVector() &&
+ (InVT.is256BitVector() || InVT.is512BitVector()) &&
+ isa<ConstantSDNode>(Idx)) {
+ return Extract128BitVector(In, IdxVal, DAG, dl);
+ }
+ if (ResVT.is256BitVector() && InVT.is512BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ return Extract256BitVector(In, IdxVal, DAG, dl);
+ }
+ }
+ return SDValue();
+}
+
+// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
+// simple superregister reference or explicit instructions to insert
+// the upper bits of a vector.
+static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (!Subtarget->hasAVX())
+ return SDValue();
+
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue SubVec = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ MVT OpVT = Op.getSimpleValueType();
+ MVT SubVecVT = SubVec.getSimpleValueType();
+
+ // Fold two 16-byte subvector loads into one 32-byte load:
+ // (insert_subvector (insert_subvector undef, (load addr), 0),
+ // (load addr + 16), Elts/2)
+ // --> load32 addr
+ if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
+ Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ OpVT.is256BitVector() && SubVecVT.is128BitVector()) {
+ auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
+ if (Idx2 && Idx2->getZExtValue() == 0) {
+ SDValue SubVec2 = Vec.getOperand(1);
+ // If needed, look through a bitcast to get to the load.
+ if (SubVec2.getNode() && SubVec2.getOpcode() == ISD::BITCAST)
+ SubVec2 = SubVec2.getOperand(0);
+
+ if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) {
+ bool Fast;
+ unsigned Alignment = FirstLd->getAlignment();
+ unsigned AS = FirstLd->getAddressSpace();
+ const X86TargetLowering *TLI = Subtarget->getTargetLowering();
+ if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
+ OpVT, AS, Alignment, &Fast) && Fast) {
+ SDValue Ops[] = { SubVec2, SubVec };
+ if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
+ return Ld;
+ }
+ }
+ }
+ }
+
+ if ((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
+ SubVecVT.is128BitVector())
+ return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
+
+ if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
+ return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
+
+ if (OpVT.getVectorElementType() == MVT::i1)
+ return Insert1BitVector(Op, DAG);
+
+ return SDValue();
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOV32ri.
+SDValue
+X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetConstantPool(
+ CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
+ SDLoc DL(CP);
+ Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag) {
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+ }
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
+ SDLoc DL(JT);
+ Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag)
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
+ const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel)) {
+ if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
+ OpFlag = X86II::MO_GOTPCREL;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOT;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
+ } else if (Subtarget->isPICStyleStubNoDynamic()) {
+ OpFlag = X86II::MO_DARWIN_NONLAZY;
+ }
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
+
+ SDLoc DL(Op);
+ Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
+ !Subtarget->is64Bit()) {
+ Result =
+ DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
+ }
+
+ // For symbols that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlag))
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ // Create the TargetBlockAddressAddress node.
+ unsigned char OpFlags =
+ Subtarget->ClassifyBlockAddressReference();
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
+ SDLoc dl(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
+ }
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
+ int64_t Offset, SelectionDAG &DAG) const {
+ // Create the TargetGlobalAddress node, folding in the constant
+ // offset if it is legal.
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, DAG.getTarget());
+ CodeModel::Model M = DAG.getTarget().getCodeModel();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result;
+ if (OpFlags == X86II::MO_NO_FLAG &&
+ X86::isOffsetSuitableForCodeModel(Offset, M)) {
+ // A direct static reference to a global.
+ Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
+ Offset = 0;
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
+ }
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
+ }
+
+ // For globals that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlags))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
+ DAG.getConstant(Offset, dl, PtrVT));
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+ return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
+}
+
+static SDValue
+GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
+ SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
+ unsigned char OperandFlags, bool LocalDynamic = false) {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDLoc dl(GA);
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(),
+ OperandFlags);
+
+ X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
+ : X86ISD::TLSADDR;
+
+ if (InFlag) {
+ SDValue Ops[] = { Chain, TGA, *InFlag };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ } else {
+ SDValue Ops[] = { Chain, TGA };
+ Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
+ }
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ MFI->setAdjustsStack(true);
+ MFI->setHasCalls(true);
+
+ SDValue Flag = Chain.getValue(1);
+ return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
+static SDValue
+LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ SDValue InFlag;
+ SDLoc dl(GA); // ? function entry point might be better
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+
+ return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
+static SDValue
+LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
+ X86::RAX, X86II::MO_TLSGD);
+}
+
+static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ const EVT PtrVT,
+ bool is64Bit) {
+ SDLoc dl(GA);
+
+ // Get the start address of the TLS block for this module.
+ X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
+ .getInfo<X86MachineFunctionInfo>();
+ MFI->incNumLocalDynamicTLSAccesses();
+
+ SDValue Base;
+ if (is64Bit) {
+ Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
+ X86II::MO_TLSLD, /*LocalDynamic=*/true);
+ } else {
+ SDValue InFlag;
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+ Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
+ X86II::MO_TLSLDM, /*LocalDynamic=*/true);
+ }
+
+ // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
+ // of Base.
+
+ // Build x@dtpoff.
+ unsigned char OperandFlags = X86II::MO_DTPOFF;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ // Add x@dtpoff with the base.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
+static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT, TLSModel::Model model,
+ bool is64Bit, bool isPIC) {
+ SDLoc dl(GA);
+
+ // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
+ Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
+ is64Bit ? 257 : 256));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
+ MachinePointerInfo(Ptr), false, false, false, 0);
+
+ unsigned char OperandFlags = 0;
+ // Most TLS accesses are not RIP relative, even on x86-64. One exception is
+ // initialexec.
+ unsigned WrapperKind = X86ISD::Wrapper;
+ if (model == TLSModel::LocalExec) {
+ OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
+ } else if (model == TLSModel::InitialExec) {
+ if (is64Bit) {
+ OperandFlags = X86II::MO_GOTTPOFF;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else {
+ OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
+ }
+ } else {
+ llvm_unreachable("Unexpected model");
+ }
+
+ // emit "addl x@ntpoff,%eax" (local exec)
+ // or "addl x@indntpoff,%eax" (initial exec)
+ // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
+ SDValue TGA =
+ DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ if (model == TLSModel::InitialExec) {
+ if (isPIC && !is64Bit) {
+ Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
+ Offset);
+ }
+
+ Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+
+ // Cygwin uses emutls.
+ // FIXME: It may be EmulatedTLS-generic also for X86-Android.
+ if (Subtarget->isTargetWindowsCygwin())
+ return LowerToTLSEmulatedModel(GA, DAG);
+
+ const GlobalValue *GV = GA->getGlobal();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (Subtarget->isTargetELF()) {
+ if (DAG.getTarget().Options.EmulatedTLS)
+ return LowerToTLSEmulatedModel(GA, DAG);
+ TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ if (Subtarget->is64Bit())
+ return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
+ return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
+ case TLSModel::LocalDynamic:
+ return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
+ Subtarget->is64Bit());
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget->is64Bit(),
+ DAG.getTarget().getRelocationModel() ==
+ Reloc::PIC_);
+ }
+ llvm_unreachable("Unknown TLS model.");
+ }
+
+ if (Subtarget->isTargetDarwin()) {
+ // Darwin only has one model of TLS. Lower to that.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
+ X86ISD::WrapperRIP : X86ISD::Wrapper;
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
+ !Subtarget->is64Bit();
+ if (PIC32)
+ OpFlag = X86II::MO_TLVP_PIC_BASE;
+ else
+ OpFlag = X86II::MO_TLVP;
+ SDLoc DL(Op);
+ SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
+ GA->getValueType(0),
+ GA->getOffset(), OpFlag);
+ SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
+
+ // With PIC32, the address is actually $g + Offset.
+ if (PIC32)
+ Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
+ Offset);
+
+ // Lowering the machine isd will make sure everything is in the right
+ // location.
+ SDValue Chain = DAG.getEntryNode();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Args[] = { Chain, Offset };
+ Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
+
+ // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setAdjustsStack(true);
+
+ // And our return value (tls address) is in the standard call return value
+ // location.
+ unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
+ }
+
+ if (Subtarget->isTargetKnownWindowsMSVC() ||
+ Subtarget->isTargetWindowsGNU()) {
+ // Just use the implicit TLS architecture
+ // Need to generate someting similar to:
+ // mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
+ // ; from TEB
+ // mov ecx, dword [rel _tls_index]: Load index (from C runtime)
+ // mov rcx, qword [rdx+rcx*8]
+ // mov eax, .tls$:tlsvar
+ // [rax+rcx] contains the address
+ // Windows 64bit: gs:0x58
+ // Windows 32bit: fs:__tls_array
+
+ SDLoc dl(GA);
+ SDValue Chain = DAG.getEntryNode();
+
+ // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
+ // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
+ // use its literal value of 0x2C.
+ Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
+ ? Type::getInt8PtrTy(*DAG.getContext(),
+ 256)
+ : Type::getInt32PtrTy(*DAG.getContext(),
+ 257));
+
+ SDValue TlsArray = Subtarget->is64Bit()
+ ? DAG.getIntPtrConstant(0x58, dl)
+ : (Subtarget->isTargetWindowsGNU()
+ ? DAG.getIntPtrConstant(0x2C, dl)
+ : DAG.getExternalSymbol("_tls_array", PtrVT));
+
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false,
+ false, false, 0);
+
+ SDValue res;
+ if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
+ res = ThreadPointer;
+ } else {
+ // Load the _tls_index variable
+ SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
+ if (Subtarget->is64Bit())
+ IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
+ MachinePointerInfo(), MVT::i32, false, false,
+ false, 0);
+ else
+ IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false,
+ false, false, 0);
+
+ auto &DL = DAG.getDataLayout();
+ SDValue Scale =
+ DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT);
+ IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
+
+ res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
+ }
+
+ res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false,
+ false, 0);
+
+ // Get the offset of start of .tls section
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
+ GA->getValueType(0),
+ GA->getOffset(), X86II::MO_SECREL);
+ SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
+ }
+
+ llvm_unreachable("TLS not implemented for this target.");
+}
+
+/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
+/// and take a 2 x i32 value to shift plus a shift amount.
+static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ MVT VT = Op.getSimpleValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
+ // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
+ // during isel.
+ SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits - 1, dl, MVT::i8));
+ SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, dl, MVT::i8))
+ : DAG.getConstant(0, dl, VT);
+
+ SDValue Tmp2, Tmp3;
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
+ } else {
+ Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
+ Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
+ }
+
+ // If the shift amount is larger or equal than the width of a part we can't
+ // rely on the results of shld/shrd. Insert a test and select the appropriate
+ // values for large shift amounts.
+ SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits, dl, MVT::i8));
+ SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ AndNode, DAG.getConstant(0, dl, MVT::i8));
+
+ SDValue Hi, Lo;
+ SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
+ SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
+
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ } else {
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
+ }
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+ MVT SrcVT = Src.getSimpleValueType();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (SrcVT.isVector()) {
+ if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
+ return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
+ DAG.getUNDEF(SrcVT)));
+ }
+ if (SrcVT.getVectorElementType() == MVT::i1) {
+ MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
+ }
+ return SDValue();
+ }
+
+ assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
+ "Unknown SINT_TO_FP to lower!");
+
+ // These are really Legal; return the operand so the caller accepts it as
+ // Legal.
+ if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
+ return Op;
+ if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
+ Subtarget->is64Bit()) {
+ return Op;
+ }
+
+ unsigned Size = SrcVT.getSizeInBits()/8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ SDValue Chain = DAG.getStore(
+ DAG.getEntryNode(), dl, Op.getOperand(0), StackSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false,
+ false, 0);
+ return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
+}
+
+SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
+ SDValue StackSlot,
+ SelectionDAG &DAG) const {
+ // Build the FILD
+ SDLoc DL(Op);
+ SDVTList Tys;
+ bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
+ if (useSSE)
+ Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
+ else
+ Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
+
+ unsigned ByteSize = SrcVT.getSizeInBits()/8;
+
+ FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
+ MachineMemOperand *MMO;
+ if (FI) {
+ int SSFI = FI->getIndex();
+ MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOLoad, ByteSize, ByteSize);
+ } else {
+ MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
+ StackSlot = StackSlot.getOperand(1);
+ }
+ SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
+ SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
+ X86ISD::FILD, DL,
+ Tys, Ops, SrcVT, MMO);
+
+ if (useSSE) {
+ Chain = Result.getValue(1);
+ SDValue InFlag = Result.getValue(2);
+
+ // FIXME: Currently the FST is flagged to the FILD_FLAG. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ Tys = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {
+ Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
+ };
+ MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOStore, SSFISize, SSFISize);
+
+ Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
+ Ops, Op.getValueType(), MMO);
+ Result = DAG.getLoad(
+ Op.getValueType(), DL, Chain, StackSlot,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ false, false, false, 0);
+ }
+
+ return Result;
+}
+
+// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
+ SelectionDAG &DAG) const {
+ // This algorithm is not obvious. Here it is what we're trying to output:
+ /*
+ movq %rax, %xmm0
+ punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
+ subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
+ #ifdef __SSE3__
+ haddpd %xmm0, %xmm0
+ #else
+ pshufd $0x4e, %xmm0, %xmm1
+ addpd %xmm1, %xmm0
+ #endif
+ */
+
+ SDLoc dl(Op);
+ LLVMContext *Context = DAG.getContext();
+
+ // Build some magic constants.
+ static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
+ Constant *C0 = ConstantDataVector::get(*Context, CV0);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
+
+ SmallVector<Constant*,2> CV1;
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4330000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
+ APInt(64, 0x4530000000000000ULL))));
+ Constant *C1 = ConstantVector::get(CV1);
+ SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
+
+ // Load the 64-bit value into an XMM register.
+ SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
+ Op.getOperand(0));
+ SDValue CLod0 =
+ DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 16);
+ SDValue Unpck1 =
+ getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
+
+ SDValue CLod1 =
+ DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 16);
+ SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
+ SDValue Result;
+
+ if (Subtarget->hasSSE3()) {
+ // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
+ Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
+ } else {
+ SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
+ SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
+ S2F, 0x4E, DAG);
+ Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
+ DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
+ }
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ // FP constant to bias correct the final result.
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
+ MVT::f64);
+
+ // Load the 32-bit value into an XMM register.
+ SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ Op.getOperand(0));
+
+ // Zero out the upper parts of the register.
+ Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
+
+ Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getBitcast(MVT::v2f64, Load),
+ DAG.getIntPtrConstant(0, dl));
+
+ // Or the load with the bias.
+ SDValue Or = DAG.getNode(
+ ISD::OR, dl, MVT::v2i64,
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
+ DAG.getBitcast(MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
+ Or =
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
+
+ // Subtract the bias.
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
+
+ // Handle final rounding.
+ MVT DestVT = Op.getSimpleValueType();
+
+ if (DestVT.bitsLT(MVT::f64))
+ return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
+ DAG.getIntPtrConstant(0, dl));
+ if (DestVT.bitsGT(MVT::f64))
+ return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
+
+ // Handle final rounding.
+ return Sub;
+}
+
+static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget &Subtarget) {
+ // The algorithm is the following:
+ // #ifdef __SSE4_1__
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ // #else
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ // #endif
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ // return (float4) lo + fhi;
+
+ // We shouldn't use it when unsafe-fp-math is enabled though: we might later
+ // reassociate the two FADDs, and if we do that, the algorithm fails
+ // spectacularly (PR24512).
+ // FIXME: If we ever have some kind of Machine FMF, this should be marked
+ // as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
+ // there's also the MachineCombiner reassociations happening on Machine IR.
+ if (DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ SDLoc DL(Op);
+ SDValue V = Op->getOperand(0);
+ MVT VecIntVT = V.getSimpleValueType();
+ bool Is128 = VecIntVT == MVT::v4i32;
+ MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
+ // If we convert to something else than the supported type, e.g., to v4f64,
+ // abort early.
+ if (VecFloatVT != Op->getSimpleValueType(0))
+ return SDValue();
+
+ unsigned NumElts = VecIntVT.getVectorNumElements();
+ assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
+ "Unsupported custom type");
+ assert(NumElts <= 8 && "The size of the constant array must be fixed");
+
+ // In the #idef/#else code, we have in common:
+ // - The vector of constants:
+ // -- 0x4b000000
+ // -- 0x53000000
+ // - A shift:
+ // -- v >> 16
+
+ // Create the splat vector for 0x4b000000.
+ SDValue CstLow = DAG.getConstant(0x4b000000, DL, MVT::i32);
+ SDValue CstLowArray[] = {CstLow, CstLow, CstLow, CstLow,
+ CstLow, CstLow, CstLow, CstLow};
+ SDValue VecCstLow = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstLowArray[0], NumElts));
+ // Create the splat vector for 0x53000000.
+ SDValue CstHigh = DAG.getConstant(0x53000000, DL, MVT::i32);
+ SDValue CstHighArray[] = {CstHigh, CstHigh, CstHigh, CstHigh,
+ CstHigh, CstHigh, CstHigh, CstHigh};
+ SDValue VecCstHigh = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstHighArray[0], NumElts));
+
+ // Create the right shift.
+ SDValue CstShift = DAG.getConstant(16, DL, MVT::i32);
+ SDValue CstShiftArray[] = {CstShift, CstShift, CstShift, CstShift,
+ CstShift, CstShift, CstShift, CstShift};
+ SDValue VecCstShift = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT,
+ makeArrayRef(&CstShiftArray[0], NumElts));
+ SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
+
+ SDValue Low, High;
+ if (Subtarget.hasSSE41()) {
+ MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
+ // uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
+ SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
+ SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
+ // Low will be bitcasted right away, so do not bother bitcasting back to its
+ // original type.
+ Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
+ VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
+ // uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
+ // (uint4) 0x53000000, 0xaa);
+ SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
+ SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
+ // High will be bitcasted right away, so do not bother bitcasting back to
+ // its original type.
+ High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
+ VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
+ } else {
+ SDValue CstMask = DAG.getConstant(0xffff, DL, MVT::i32);
+ SDValue VecCstMask = DAG.getNode(ISD::BUILD_VECTOR, DL, VecIntVT, CstMask,
+ CstMask, CstMask, CstMask);
+ // uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
+ SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
+ Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
+
+ // uint4 hi = (v >> 16) | (uint4) 0x53000000;
+ High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
+ }
+
+ // Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
+ SDValue CstFAdd = DAG.getConstantFP(
+ APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, MVT::f32);
+ SDValue CstFAddArray[] = {CstFAdd, CstFAdd, CstFAdd, CstFAdd,
+ CstFAdd, CstFAdd, CstFAdd, CstFAdd};
+ SDValue VecCstFAdd = DAG.getNode(ISD::BUILD_VECTOR, DL, VecFloatVT,
+ makeArrayRef(&CstFAddArray[0], NumElts));
+
+ // float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
+ SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue FHigh =
+ DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
+ // return (float4) lo + fhi;
+ SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
+ return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
+}
+
+SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ MVT SVT = N0.getSimpleValueType();
+ SDLoc dl(Op);
+
+ switch (SVT.SimpleTy) {
+ default:
+ llvm_unreachable("Custom UINT_TO_FP is not supported!");
+ case MVT::v4i8:
+ case MVT::v4i16:
+ case MVT::v8i8:
+ case MVT::v8i16: {
+ MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
+ }
+ case MVT::v4i32:
+ case MVT::v8i32:
+ return lowerUINT_TO_FP_vXi32(Op, DAG, *Subtarget);
+ case MVT::v16i8:
+ case MVT::v16i16:
+ assert(Subtarget->hasAVX512());
+ return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
+ DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0));
+ }
+}
+
+SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (Op.getSimpleValueType().isVector())
+ return lowerUINT_TO_FP_vec(Op, DAG);
+
+ // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
+ // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
+ // the optimization here.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
+
+ MVT SrcVT = N0.getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+
+ if (Subtarget->hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
+ (SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget->is64Bit()))) {
+ // Conversions from unsigned i32 to f32/f64 are legal,
+ // using VCVTUSI2SS/SD. Same for i64 in 64-bit mode.
+ return Op;
+ }
+
+ if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i64(Op, DAG);
+ if (SrcVT == MVT::i32 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i32(Op, DAG);
+ if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
+ return SDValue();
+
+ // Make a 64-bit buffer, and use it to build an FILD.
+ SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
+ if (SrcVT == MVT::i32) {
+ SDValue WordOff = DAG.getConstant(4, dl, PtrVT);
+ SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, WordOff);
+ SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, MachinePointerInfo(),
+ false, false, 0);
+ SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
+ OffsetSlot, MachinePointerInfo(),
+ false, false, 0);
+ SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
+ return Fild;
+ }
+
+ assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, MachinePointerInfo(),
+ false, false, 0);
+ // For i64 source, we need to add the appropriate power of 2 if the input
+ // was negative. This is the same as the optimization in
+ // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
+ // we must be careful to do the computation in x87 extended precision, not
+ // in SSE. (The generic code can't know it's OK to do this, or how to.)
+ int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
+ MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
+ MachineMemOperand::MOLoad, 8, 8);
+
+ SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
+ SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
+ SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
+ MVT::i64, MMO);
+
+ APInt FF(32, 0x5F800000ULL);
+
+ // Check whether the sign bit is set.
+ SDValue SignSet = DAG.getSetCC(
+ dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
+ Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
+
+ // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
+ SDValue FudgePtr = DAG.getConstantPool(
+ ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
+
+ // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
+ SDValue Zero = DAG.getIntPtrConstant(0, dl);
+ SDValue Four = DAG.getIntPtrConstant(4, dl);
+ SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
+ Zero, Four);
+ FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
+
+ // Load the value out, extending it from f32 to f80.
+ // FIXME: Avoid the extend by constructing the right constant pool?
+ SDValue Fudge = DAG.getExtLoad(
+ ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
+ false, false, false, 4);
+ // Extend everything to 80 bits to force it to be done on x87.
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
+ return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
+// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
+// just return an <SDValue(), SDValue()> pair.
+// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
+// to i16, i32 or i64, and we lower it to a legal sequence.
+// If lowered to the final integer result we return a <result, SDValue()> pair.
+// Otherwise we lower it to a sequence ending with a FIST, return a
+// <FIST, StackSlot> pair, and the caller is responsible for loading
+// the final integer result from StackSlot.
+std::pair<SDValue,SDValue>
+X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
+ bool IsSigned, bool IsReplace) const {
+ SDLoc DL(Op);
+
+ EVT DstTy = Op.getValueType();
+ EVT TheVT = Op.getOperand(0).getValueType();
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
+ // f16 must be promoted before using the lowering in this routine.
+ // fp128 does not use this lowering.
+ return std::make_pair(SDValue(), SDValue());
+ }
+
+ // If using FIST to compute an unsigned i64, we'll need some fixup
+ // to handle values above the maximum signed i64. A FIST is always
+ // used for the 32-bit subtarget, but also for f80 on a 64-bit target.
+ bool UnsignedFixup = !IsSigned &&
+ DstTy == MVT::i64 &&
+ (!Subtarget->is64Bit() ||
+ !isScalarFPTypeInSSEReg(TheVT));
+
+ if (!IsSigned && DstTy != MVT::i64 && !Subtarget->hasAVX512()) {
+ // Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
+ // The low 32 bits of the fist result will have the correct uint32 result.
+ assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
+ DstTy = MVT::i64;
+ }
+
+ assert(DstTy.getSimpleVT() <= MVT::i64 &&
+ DstTy.getSimpleVT() >= MVT::i16 &&
+ "Unknown FP_TO_INT to lower!");
+
+ // These are really Legal.
+ if (DstTy == MVT::i32 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+ if (Subtarget->is64Bit() &&
+ DstTy == MVT::i64 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+
+ // We lower FP->int64 into FISTP64 followed by a load from a temporary
+ // stack slot.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned MemSize = DstTy.getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+
+ unsigned Opc;
+ switch (DstTy.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
+ case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+ case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+ case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+ }
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue Value = Op.getOperand(0);
+ SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
+
+ if (UnsignedFixup) {
+ //
+ // Conversion to unsigned i64 is implemented with a select,
+ // depending on whether the source value fits in the range
+ // of a signed i64. Let Thresh be the FP equivalent of
+ // 0x8000000000000000ULL.
+ //
+ // Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
+ // FistSrc = (Value < Thresh) ? Value : (Value - Thresh);
+ // Fist-to-mem64 FistSrc
+ // Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
+ // to XOR'ing the high 32 bits with Adjust.
+ //
+ // Being a power of 2, Thresh is exactly representable in all FP formats.
+ // For X87 we'd like to use the smallest FP type for this constant, but
+ // for DAG type consistency we have to match the FP operand type.
+
+ APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000));
+ LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
+ bool LosesInfo = false;
+ if (TheVT == MVT::f64)
+ // The rounding mode is irrelevant as the conversion should be exact.
+ Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
+ &LosesInfo);
+ else if (TheVT == MVT::f80)
+ Status = Thresh.convert(APFloat::x87DoubleExtended,
+ APFloat::rmNearestTiesToEven, &LosesInfo);
+
+ assert(Status == APFloat::opOK && !LosesInfo &&
+ "FP conversion should have been exact");
+
+ SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
+
+ SDValue Cmp = DAG.getSetCC(DL,
+ getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), TheVT),
+ Value, ThreshVal, ISD::SETLT);
+ Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
+ DAG.getConstant(0, DL, MVT::i32),
+ DAG.getConstant(0x80000000, DL, MVT::i32));
+ SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
+ Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
+ *DAG.getContext(), TheVT),
+ Value, ThreshVal, ISD::SETLT);
+ Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
+ }
+
+ // FIXME This causes a redundant load/store if the SSE-class value is already
+ // in memory, such as if it is on the callstack.
+ if (isScalarFPTypeInSSEReg(TheVT)) {
+ assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
+ Chain = DAG.getStore(Chain, DL, Value, StackSlot,
+ MachinePointerInfo::getFixedStack(MF, SSFI), false,
+ false, 0);
+ SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
+ SDValue Ops[] = {
+ Chain, StackSlot, DAG.getValueType(TheVT)
+ };
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOLoad, MemSize, MemSize);
+ Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
+ Chain = Value.getValue(1);
+ SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
+ }
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOStore, MemSize, MemSize);
+
+ if (UnsignedFixup) {
+
+ // Insert the FIST, load its result as two i32's,
+ // and XOR the high i32 with Adjust.
+
+ SDValue FistOps[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+ FistOps, DstTy, MMO);
+
+ SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ SDValue HighAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackSlot,
+ DAG.getConstant(4, DL, PtrVT));
+
+ SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
+
+ if (Subtarget->is64Bit()) {
+ // Join High32 and Low32 into a 64-bit result.
+ // (High32 << 32) | Low32
+ Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
+ High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
+ High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
+ DAG.getConstant(32, DL, MVT::i8));
+ SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
+ return std::make_pair(Result, SDValue());
+ }
+
+ SDValue ResultOps[] = { Low32, High32 };
+
+ SDValue pair = IsReplace
+ ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
+ : DAG.getMergeValues(ResultOps, DL);
+ return std::make_pair(pair, SDValue());
+ } else {
+ // Build the FP_TO_INT*_IN_MEM
+ SDValue Ops[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
+ Ops, DstTy, MMO);
+ return std::make_pair(FIST, StackSlot);
+ }
+}
+
+static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In);
+
+ // Optimize vectors in AVX mode:
+ //
+ // v8i16 -> v8i32
+ // Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
+ // Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
+ // Concat upper and lower parts.
+ //
+ // v4i32 -> v4i64
+ // Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
+ // Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
+ // Concat upper and lower parts.
+ //
+
+ if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
+ ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
+ ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
+ return SDValue();
+
+ if (Subtarget->hasInt256())
+ return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
+
+ SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
+ SDValue Undef = DAG.getUNDEF(InVT);
+ bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
+ SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+ SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
+
+ MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements()/2);
+
+ OpLo = DAG.getBitcast(HVT, OpLo);
+ OpHi = DAG.getBitcast(HVT, OpHi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
+ const X86Subtarget *Subtarget, SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc DL(Op);
+ unsigned int NumElts = VT.getVectorNumElements();
+ if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
+
+ assert(InVT.getVectorElementType() == MVT::i1);
+ MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
+ SDValue One =
+ DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT);
+ SDValue Zero =
+ DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT);
+
+ SDValue V = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero);
+ if (VT.is512BitVector())
+ return V;
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, V);
+}
+
+static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (Subtarget->hasFp256())
+ if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
+ return Res;
+
+ return SDValue();
+}
+
+static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
+ return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG);
+
+ if (Subtarget->hasFp256())
+ if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
+ return Res;
+
+ assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
+ VT.getVectorNumElements() != SVT.getVectorNumElements());
+ return SDValue();
+}
+
+static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+
+ assert(VT.getVectorElementType() == MVT::i1 && "Unexected vector type.");
+
+ // Shift LSB to MSB and use VPMOVB2M - SKX.
+ unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
+ if ((InVT.is512BitVector() && InVT.getScalarSizeInBits() <= 16 &&
+ Subtarget->hasBWI()) || // legal, will go to VPMOVB2M, VPMOVW2M
+ ((InVT.is256BitVector() || InVT.is128BitVector()) &&
+ InVT.getScalarSizeInBits() <= 16 && Subtarget->hasBWI() &&
+ Subtarget->hasVLX())) { // legal, will go to VPMOVB2M, VPMOVW2M
+ // Shift packed bytes not supported natively, bitcast to dword
+ MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
+ SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT,
+ DAG.getBitcast(ExtVT, In),
+ DAG.getConstant(ShiftInx, DL, ExtVT));
+ ShiftNode = DAG.getBitcast(InVT, ShiftNode);
+ return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode);
+ }
+ if ((InVT.is512BitVector() && InVT.getScalarSizeInBits() >= 32 &&
+ Subtarget->hasDQI()) || // legal, will go to VPMOVD2M, VPMOVQ2M
+ ((InVT.is256BitVector() || InVT.is128BitVector()) &&
+ InVT.getScalarSizeInBits() >= 32 && Subtarget->hasDQI() &&
+ Subtarget->hasVLX())) { // legal, will go to VPMOVD2M, VPMOVQ2M
+
+ SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In,
+ DAG.getConstant(ShiftInx, DL, InVT));
+ return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode);
+ }
+
+ // Shift LSB to MSB, extend if necessary and use TESTM.
+ unsigned NumElts = InVT.getVectorNumElements();
+ if (InVT.getSizeInBits() < 512 &&
+ (InVT.getScalarType() == MVT::i8 || InVT.getScalarType() == MVT::i16 ||
+ !Subtarget->hasVLX())) {
+ assert((NumElts == 8 || NumElts == 16) && "Unexected vector type.");
+
+ // TESTD/Q should be used (if BW supported we use CVT2MASK above),
+ // so vector should be extended to packed dword/qword.
+ MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
+ In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
+ InVT = ExtVT;
+ ShiftInx = InVT.getScalarSizeInBits() - 1;
+ }
+
+ SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In,
+ DAG.getConstant(ShiftInx, DL, InVT));
+ return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode);
+}
+
+SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+
+ if (VT == MVT::i1) {
+ assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
+ "Invalid scalar TRUNCATE operation");
+ if (InVT.getSizeInBits() >= 32)
+ return SDValue();
+ In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
+ return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
+ }
+ assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
+ "Invalid TRUNCATE operation");
+
+ if (VT.getVectorElementType() == MVT::i1)
+ return LowerTruncateVecI1(Op, DAG, Subtarget);
+
+ // vpmovqb/w/d, vpmovdb/w, vpmovwb
+ if (Subtarget->hasAVX512()) {
+ // word to byte only under BWI
+ if (InVT == MVT::v16i16 && !Subtarget->hasBWI()) // v16i16 -> v16i8
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT,
+ DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In));
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
+ }
+ if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
+ // On AVX2, v4i64 -> v4i32 becomes VPERMD.
+ if (Subtarget->hasInt256()) {
+ static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
+ In = DAG.getBitcast(MVT::v8i32, In);
+ In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
+ ShufMask);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0, DL));
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(2, DL));
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
+ static const int ShufMask[] = {0, 2, 4, 6};
+ return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
+ }
+
+ if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
+ // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
+ if (Subtarget->hasInt256()) {
+ In = DAG.getBitcast(MVT::v32i8, In);
+
+ SmallVector<SDValue,32> pshufbMask;
+ for (unsigned i = 0; i < 2; ++i) {
+ pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8));
+ for (unsigned j = 0; j < 8; ++j)
+ pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8));
+ }
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8, pshufbMask);
+ In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
+ In = DAG.getBitcast(MVT::v4i64, In);
+
+ static const int ShufMask[] = {0, 2, -1, -1};
+ In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
+ &ShufMask[0]);
+ In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getBitcast(VT, In);
+ }
+
+ SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(0, DL));
+
+ SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(4, DL));
+
+ OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
+ OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
+
+ // The PSHUFB mask:
+ static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+
+ SDValue Undef = DAG.getUNDEF(MVT::v16i8);
+ OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
+ OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
+
+ OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
+ OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
+
+ // The MOVLHPS Mask:
+ static const int ShufMask2[] = {0, 1, 4, 5};
+ SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
+ return DAG.getBitcast(MVT::v8i16, res);
+ }
+
+ // Handle truncation of V256 to V128 using shuffles.
+ if (!VT.is128BitVector() || !InVT.is256BitVector())
+ return SDValue();
+
+ assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
+
+ SmallVector<int, 16> MaskVec(NumElems * 2, -1);
+ // Prepare truncation shuffle mask
+ for (unsigned i = 0; i != NumElems; ++i)
+ MaskVec[i] = i * 2;
+ SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
+ DAG.getUNDEF(NVT), &MaskVec[0]);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
+ DAG.getIntPtrConstant(0, DL));
+}
+
+SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(!Op.getSimpleValueType().isVector());
+
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
+ /*IsSigned=*/ true, /*IsReplace=*/ false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+ if (!FIST.getNode())
+ return Op;
+
+ if (StackSlot.getNode())
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
+ FIST, StackSlot, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // The node is the result.
+ return FIST;
+}
+
+SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
+ /*IsSigned=*/ false, /*IsReplace=*/ false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+ if (!FIST.getNode())
+ return Op;
+
+ if (StackSlot.getNode())
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
+ FIST, StackSlot, MachinePointerInfo(),
+ false, false, false, 0);
+
+ // The node is the result.
+ return FIST;
+}
+
+static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue In = Op.getOperand(0);
+ MVT SVT = In.getSimpleValueType();
+
+ assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
+
+ return DAG.getNode(X86ISD::VFPEXT, DL, VT,
+ DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
+ In, DAG.getUNDEF(SVT)));
+}
+
+/// The only differences between FABS and FNEG are the mask and the logic op.
+/// FNEG also has a folding opportunity for FNEG(FABS(x)).
+static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
+ assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
+ "Wrong opcode for lowering FABS or FNEG.");
+
+ bool IsFABS = (Op.getOpcode() == ISD::FABS);
+
+ // If this is a FABS and it has an FNEG user, bail out to fold the combination
+ // into an FNABS. We'll lower the FABS after that if it is still in use.
+ if (IsFABS)
+ for (SDNode *User : Op->uses())
+ if (User->getOpcode() == ISD::FNEG)
+ return Op;
+
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ bool IsF128 = (VT == MVT::f128);
+
+ // FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
+ // decide if we should generate a 16-byte constant mask when we only need 4 or
+ // 8 bytes for the scalar case.
+
+ MVT LogicVT;
+ MVT EltVT;
+ unsigned NumElts;
+
+ if (VT.isVector()) {
+ LogicVT = VT;
+ EltVT = VT.getVectorElementType();
+ NumElts = VT.getVectorNumElements();
+ } else if (IsF128) {
+ // SSE instructions are used for optimized f128 logical operations.
+ LogicVT = MVT::f128;
+ EltVT = VT;
+ NumElts = 1;
+ } else {
+ // There are no scalar bitwise logical SSE/AVX instructions, so we
+ // generate a 16-byte vector constant and logic op even for the scalar case.
+ // Using a 16-byte mask allows folding the load of the mask with
+ // the logic op, so it can save (~4 bytes) on code size.
+ LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
+ EltVT = VT;
+ NumElts = (VT == MVT::f64) ? 2 : 4;
+ }
+
+ unsigned EltBits = EltVT.getSizeInBits();
+ LLVMContext *Context = DAG.getContext();
+ // For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
+ APInt MaskElt =
+ IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
+ Constant *C = ConstantInt::get(*Context, MaskElt);
+ C = ConstantVector::getSplat(NumElts, C);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
+ unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
+ SDValue Mask =
+ DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, Alignment);
+
+ SDValue Op0 = Op.getOperand(0);
+ bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
+ unsigned LogicOp =
+ IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
+ SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
+
+ if (VT.isVector() || IsF128)
+ return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+
+ // For the scalar case extend to a 128-bit vector, perform the logic op,
+ // and extract the scalar result back out.
+ Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
+ SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ LLVMContext *Context = DAG.getContext();
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT SrcVT = Op1.getSimpleValueType();
+ bool IsF128 = (VT == MVT::f128);
+
+ // If second operand is smaller, extend it first.
+ if (SrcVT.bitsLT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
+ SrcVT = VT;
+ }
+ // And if it is bigger, shrink it first.
+ if (SrcVT.bitsGT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl));
+ SrcVT = VT;
+ }
+
+ // At this point the operands and the result should have the same
+ // type, and that won't be f80 since that is not custom lowered.
+ assert((VT == MVT::f64 || VT == MVT::f32 || IsF128) &&
+ "Unexpected type in LowerFCOPYSIGN");
+
+ const fltSemantics &Sem =
+ VT == MVT::f64 ? APFloat::IEEEdouble :
+ (IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle);
+ const unsigned SizeInBits = VT.getSizeInBits();
+
+ SmallVector<Constant *, 4> CV(
+ VT == MVT::f64 ? 2 : (IsF128 ? 1 : 4),
+ ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
+
+ // First, clear all bits but the sign bit from the second operand (sign).
+ CV[0] = ConstantFP::get(*Context,
+ APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
+ Constant *C = ConstantVector::get(CV);
+ auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+ SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16);
+
+ // Perform all logic operations as 16-byte vectors because there are no
+ // scalar FP logic instructions in SSE. This allows load folding of the
+ // constants into the logic instructions.
+ MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : (IsF128 ? MVT::f128 : MVT::v4f32);
+ SDValue Mask1 =
+ DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 16);
+ if (!IsF128)
+ Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1);
+ SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1);
+
+ // Next, clear the sign bit from the first operand (magnitude).
+ // If it's a constant, we can clear it here.
+ if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
+ APFloat APF = Op0CN->getValueAPF();
+ // If the magnitude is a positive zero, the sign bit alone is enough.
+ if (APF.isPosZero())
+ return IsF128 ? SignBit :
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit,
+ DAG.getIntPtrConstant(0, dl));
+ APF.clearSign();
+ CV[0] = ConstantFP::get(*Context, APF);
+ } else {
+ CV[0] = ConstantFP::get(
+ *Context,
+ APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
+ }
+ C = ConstantVector::get(CV);
+ CPIdx = DAG.getConstantPool(C, PtrVT, 16);
+ SDValue Val =
+ DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 16);
+ // If the magnitude operand wasn't a constant, we need to AND out the sign.
+ if (!isa<ConstantFPSDNode>(Op0)) {
+ if (!IsF128)
+ Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0);
+ Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val);
+ }
+ // OR the magnitude value with the sign bit.
+ Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit);
+ return IsF128 ? Val :
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val,
+ DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
+ SDValue N0 = Op.getOperand(0);
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
+ SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
+ DAG.getConstant(1, dl, VT));
+ return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, dl, VT));
+}
+
+// Check whether an OR'd tree is PTEST-able.
+static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
+
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ if (!Op->hasOneUse())
+ return SDValue();
+
+ SDNode *N = Op.getNode();
+ SDLoc DL(N);
+
+ SmallVector<SDValue, 8> Opnds;
+ DenseMap<SDValue, unsigned> VecInMap;
+ SmallVector<SDValue, 8> VecIns;
+ EVT VT = MVT::Other;
+
+ // Recognize a special case where a vector is casted into wide integer to
+ // test all 0s.
+ Opnds.push_back(N->getOperand(0));
+ Opnds.push_back(N->getOperand(1));
+
+ for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
+ SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
+ // BFS traverse all OR'd operands.
+ if (I->getOpcode() == ISD::OR) {
+ Opnds.push_back(I->getOperand(0));
+ Opnds.push_back(I->getOperand(1));
+ // Re-evaluate the number of nodes to be traversed.
+ e += 2; // 2 more nodes (LHS and RHS) are pushed.
+ continue;
+ }
+
+ // Quit if a non-EXTRACT_VECTOR_ELT
+ if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ // Quit if without a constant index.
+ SDValue Idx = I->getOperand(1);
+ if (!isa<ConstantSDNode>(Idx))
+ return SDValue();
+
+ SDValue ExtractedFromVec = I->getOperand(0);
+ DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
+ if (M == VecInMap.end()) {
+ VT = ExtractedFromVec.getValueType();
+ // Quit if not 128/256-bit vector.
+ if (!VT.is128BitVector() && !VT.is256BitVector())
+ return SDValue();
+ // Quit if not the same type.
+ if (VecInMap.begin() != VecInMap.end() &&
+ VT != VecInMap.begin()->first.getValueType())
+ return SDValue();
+ M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
+ VecIns.push_back(ExtractedFromVec);
+ }
+ M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
+ }
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Not extracted from 128-/256-bit vector.");
+
+ unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
+
+ for (DenseMap<SDValue, unsigned>::const_iterator
+ I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
+ // Quit if not all elements are used.
+ if (I->second != FullMask)
+ return SDValue();
+ }
+
+ MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
+
+ // Cast all vectors into TestVT for PTEST.
+ for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
+ VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
+
+ // If more than one full vectors are evaluated, OR them first before PTEST.
+ for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
+ // Each iteration will OR 2 nodes and append the result until there is only
+ // 1 node left, i.e. the final OR'd value of all vectors.
+ SDValue LHS = VecIns[Slot];
+ SDValue RHS = VecIns[Slot + 1];
+ VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
+ }
+
+ return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
+ VecIns.back(), VecIns.back());
+}
+
+/// \brief return true if \c Op has a use that doesn't just read flags.
+static bool hasNonFlagsUse(SDValue Op) {
+ for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
+ ++UI) {
+ SDNode *User = *UI;
+ unsigned UOpNo = UI.getOperandNo();
+ if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
+ // Look pass truncate.
+ UOpNo = User->use_begin().getOperandNo();
+ User = *User->use_begin();
+ }
+
+ if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
+ !(User->getOpcode() == ISD::SELECT && UOpNo == 0))
+ return true;
+ }
+ return false;
+}
+
+/// Emit nodes that will be selected as "test Op0,Op0", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType() == MVT::i1) {
+ SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
+ DAG.getConstant(0, dl, MVT::i8));
+ }
+ // CF and OF aren't always set the way we want. Determine which
+ // of these we need.
+ bool NeedCF = false;
+ bool NeedOF = false;
+ switch (X86CC) {
+ default: break;
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ NeedCF = true;
+ break;
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO: {
+ // Check if we really need to set the
+ // Overflow flag. If NoSignedWrap is present
+ // that is not actually needed.
+ switch (Op->getOpcode()) {
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::MUL:
+ case ISD::SHL: {
+ const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode());
+ if (BinNode->Flags.hasNoSignedWrap())
+ break;
+ }
+ default:
+ NeedOF = true;
+ break;
+ }
+ break;
+ }
+ }
+ // See if we can use the EFLAGS value from the operand instead of
+ // doing a separate TEST. TEST always sets OF and CF to 0, so unless
+ // we prove that the arithmetic won't overflow, we can't use OF or CF.
+ if (Op.getResNo() != 0 || NeedOF || NeedCF) {
+ // Emit a CMP with 0, which is the TEST pattern.
+ //if (Op.getValueType() == MVT::i1)
+ // return DAG.getNode(X86ISD::CMP, dl, MVT::i1, Op,
+ // DAG.getConstant(0, MVT::i1));
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, dl, Op.getValueType()));
+ }
+ unsigned Opcode = 0;
+ unsigned NumOperands = 0;
+
+ // Truncate operations may prevent the merge of the SETCC instruction
+ // and the arithmetic instruction before it. Attempt to truncate the operands
+ // of the arithmetic instruction and use a reduced bit-width instruction.
+ bool NeedTruncation = false;
+ SDValue ArithOp = Op;
+ if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
+ SDValue Arith = Op->getOperand(0);
+ // Both the trunc and the arithmetic op need to have one user each.
+ if (Arith->hasOneUse())
+ switch (Arith.getOpcode()) {
+ default: break;
+ case ISD::ADD:
+ case ISD::SUB:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR: {
+ NeedTruncation = true;
+ ArithOp = Arith;
+ }
+ }
+ }
+
+ // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
+ // which may be the result of a CAST. We use the variable 'Op', which is the
+ // non-casted variable when we check for possible users.
+ switch (ArithOp.getOpcode()) {
+ case ISD::ADD:
+ // Due to an isel shortcoming, be conservative if this add is likely to be
+ // selected as part of a load-modify-store instruction. When the root node
+ // in a match is a store, isel doesn't know how to remap non-chain non-flag
+ // uses of other nodes in the match, such as the ADD in this case. This
+ // leads to the ADD being left around and reselected, with the result being
+ // two adds in the output. Alas, even if none our users are stores, that
+ // doesn't prove we're O.K. Ergo, if we have any parents that aren't
+ // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
+ // climbing the DAG back to the root, and it doesn't seem to be worth the
+ // effort.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::CopyToReg &&
+ UI->getOpcode() != ISD::SETCC &&
+ UI->getOpcode() != ISD::STORE)
+ goto default_case;
+
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
+ // An add of one will be selected as an INC.
+ if (C->isOne() && !Subtarget->slowIncDec()) {
+ Opcode = X86ISD::INC;
+ NumOperands = 1;
+ break;
+ }
+
+ // An add of negative one (subtract of one) will be selected as a DEC.
+ if (C->isAllOnesValue() && !Subtarget->slowIncDec()) {
+ Opcode = X86ISD::DEC;
+ NumOperands = 1;
+ break;
+ }
+ }
+
+ // Otherwise use a regular EFLAGS-setting add.
+ Opcode = X86ISD::ADD;
+ NumOperands = 2;
+ break;
+ case ISD::SHL:
+ case ISD::SRL:
+ // If we have a constant logical shift that's only used in a comparison
+ // against zero turn it into an equivalent AND. This allows turning it into
+ // a TEST instruction later.
+ if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
+ isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
+ EVT VT = Op.getValueType();
+ unsigned BitWidth = VT.getSizeInBits();
+ unsigned ShAmt = Op->getConstantOperandVal(1);
+ if (ShAmt >= BitWidth) // Avoid undefined shifts.
+ break;
+ APInt Mask = ArithOp.getOpcode() == ISD::SRL
+ ? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
+ : APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
+ if (!Mask.isSignedIntN(32)) // Avoid large immediates.
+ break;
+ SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
+ DAG.getConstant(Mask, dl, VT));
+ DAG.ReplaceAllUsesWith(Op, New);
+ Op = New;
+ }
+ break;
+
+ case ISD::AND:
+ // If the primary and result isn't used, don't bother using X86ISD::AND,
+ // because a TEST instruction will be better.
+ if (!hasNonFlagsUse(Op))
+ break;
+ // FALL THROUGH
+ case ISD::SUB:
+ case ISD::OR:
+ case ISD::XOR:
+ // Due to the ISEL shortcoming noted above, be conservative if this op is
+ // likely to be selected as part of a load-modify-store instruction.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() == ISD::STORE)
+ goto default_case;
+
+ // Otherwise use a regular EFLAGS-setting instruction.
+ switch (ArithOp.getOpcode()) {
+ default: llvm_unreachable("unexpected operator!");
+ case ISD::SUB: Opcode = X86ISD::SUB; break;
+ case ISD::XOR: Opcode = X86ISD::XOR; break;
+ case ISD::AND: Opcode = X86ISD::AND; break;
+ case ISD::OR: {
+ if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
+ SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
+ if (EFLAGS.getNode())
+ return EFLAGS;
+ }
+ Opcode = X86ISD::OR;
+ break;
+ }
+ }
+
+ NumOperands = 2;
+ break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ return SDValue(Op.getNode(), 1);
+ default:
+ default_case:
+ break;
+ }
+
+ // If we found that truncation is beneficial, perform the truncation and
+ // update 'Op'.
+ if (NeedTruncation) {
+ EVT VT = Op.getValueType();
+ SDValue WideVal = Op->getOperand(0);
+ EVT WideVT = WideVal.getValueType();
+ unsigned ConvertedOp = 0;
+ // Use a target machine opcode to prevent further DAGCombine
+ // optimizations that may separate the arithmetic operations
+ // from the setcc node.
+ switch (WideVal.getOpcode()) {
+ default: break;
+ case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
+ case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
+ case ISD::AND: ConvertedOp = X86ISD::AND; break;
+ case ISD::OR: ConvertedOp = X86ISD::OR; break;
+ case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
+ }
+
+ if (ConvertedOp) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
+ SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
+ SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
+ Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
+ }
+ }
+ }
+
+ if (Opcode == 0)
+ // Emit a CMP with 0, which is the TEST pattern.
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, dl, Op.getValueType()));
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
+
+ SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
+ DAG.ReplaceAllUsesWith(Op, New);
+ return SDValue(New.getNode(), 1);
+}
+
+/// Emit nodes that will be selected as "cmp Op0,Op1", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
+ SDLoc dl, SelectionDAG &DAG) const {
+ if (isNullConstant(Op1))
+ return EmitTest(Op0, X86CC, dl, DAG);
+
+ assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
+ "Unexpected comparison operation for MVT::i1 operands");
+
+ if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
+ Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
+ // Do the comparison at i32 if it's smaller, besides the Atom case.
+ // This avoids subregister aliasing issues. Keep the smaller reference
+ // if we're optimizing for size, however, as that'll allow better folding
+ // of memory operations.
+ if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
+ !DAG.getMachineFunction().getFunction()->optForMinSize() &&
+ !Subtarget->isAtom()) {
+ unsigned ExtendOp =
+ isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
+ Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
+ Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
+ }
+ // Use SUB instead of CMP to enable CSE between SUB and CMP.
+ SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
+ SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
+ Op0, Op1);
+ return SDValue(Sub.getNode(), 1);
+ }
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
+}
+
+/// Convert a comparison if required by the subtarget.
+SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
+ SelectionDAG &DAG) const {
+ // If the subtarget does not support the FUCOMI instruction, floating-point
+ // comparisons have to be converted.
+ if (Subtarget->hasCMov() ||
+ Cmp.getOpcode() != X86ISD::CMP ||
+ !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
+ !Cmp.getOperand(1).getValueType().isFloatingPoint())
+ return Cmp;
+
+ // The instruction selector will select an FUCOM instruction instead of
+ // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
+ // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
+ // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
+ SDLoc dl(Cmp);
+ SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
+ SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
+ SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
+ DAG.getConstant(8, dl, MVT::i8));
+ SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
+
+ // Some 64-bit targets lack SAHF support, but they do support FCOMI.
+ assert(Subtarget->hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
+ return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
+}
+
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const {
+ EVT VT = Op.getValueType();
+ const char *RecipOp;
+
+ // SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // rsqrt estimate with refinement on x86 prior to FMA requires at least 16
+ // instructions: convert to single, rsqrtss, convert back to double, refine
+ // (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+ if (VT == MVT::f32 && Subtarget->hasSSE1())
+ RecipOp = "sqrtf";
+ else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+ (VT == MVT::v8f32 && Subtarget->hasAVX()))
+ RecipOp = "vec-sqrtf";
+ else
+ return SDValue();
+
+ TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+ if (!Recips.isEnabled(RecipOp))
+ return SDValue();
+
+ RefinementSteps = Recips.getRefinementSteps(RecipOp);
+ UseOneConstNR = false;
+ return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
+}
+
+/// The minimum architected relative accuracy is 2^-12. We need one
+/// Newton-Raphson step to have a good float result (24 bits of precision).
+SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const {
+ EVT VT = Op.getValueType();
+ const char *RecipOp;
+
+ // SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
+ // TODO: Add support for AVX512 (v16f32).
+ // It is likely not profitable to do this for f64 because a double-precision
+ // reciprocal estimate with refinement on x86 prior to FMA requires
+ // 15 instructions: convert to single, rcpss, convert back to double, refine
+ // (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
+ // along with FMA, this could be a throughput win.
+ if (VT == MVT::f32 && Subtarget->hasSSE1())
+ RecipOp = "divf";
+ else if ((VT == MVT::v4f32 && Subtarget->hasSSE1()) ||
+ (VT == MVT::v8f32 && Subtarget->hasAVX()))
+ RecipOp = "vec-divf";
+ else
+ return SDValue();
+
+ TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
+ if (!Recips.isEnabled(RecipOp))
+ return SDValue();
+
+ RefinementSteps = Recips.getRefinementSteps(RecipOp);
+ return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
+}
+
+/// If we have at least two divisions that use the same divisor, convert to
+/// multplication by a reciprocal. This may need to be adjusted for a given
+/// CPU if a division's cost is not at least twice the cost of a multiplication.
+/// This is because we still need one division to calculate the reciprocal and
+/// then we need two multiplies by that reciprocal as replacements for the
+/// original divisions.
+unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
+ return 2;
+}
+
+/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
+/// if it's possible.
+SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
+ SDLoc dl, SelectionDAG &DAG) const {
+ SDValue Op0 = And.getOperand(0);
+ SDValue Op1 = And.getOperand(1);
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::TRUNCATE)
+ Op1 = Op1.getOperand(0);
+
+ SDValue LHS, RHS;
+ if (Op1.getOpcode() == ISD::SHL)
+ std::swap(Op0, Op1);
+ if (Op0.getOpcode() == ISD::SHL) {
+ if (isOneConstant(Op0.getOperand(0))) {
+ // If we looked past a truncate, check that it's only truncating away
+ // known zeros.
+ unsigned BitWidth = Op0.getValueSizeInBits();
+ unsigned AndBitWidth = And.getValueSizeInBits();
+ if (BitWidth > AndBitWidth) {
+ APInt Zeros, Ones;
+ DAG.computeKnownBits(Op0, Zeros, Ones);
+ if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
+ return SDValue();
+ }
+ LHS = Op1;
+ RHS = Op0.getOperand(1);
+ }
+ } else if (Op1.getOpcode() == ISD::Constant) {
+ ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
+ uint64_t AndRHSVal = AndRHS->getZExtValue();
+ SDValue AndLHS = Op0;
+
+ if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
+ LHS = AndLHS.getOperand(0);
+ RHS = AndLHS.getOperand(1);
+ }
+
+ // Use BT if the immediate can't be encoded in a TEST instruction.
+ if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
+ LHS = AndLHS;
+ RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
+ }
+ }
+
+ if (LHS.getNode()) {
+ // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
+ // instruction. Since the shift amount is in-range-or-undefined, we know
+ // that doing a bittest on the i32 value is ok. We extend to i32 because
+ // the encoding for the i16 version is larger than the i32 version.
+ // Also promote i16 to i32 for performance / code size reason.
+ if (LHS.getValueType() == MVT::i8 ||
+ LHS.getValueType() == MVT::i16)
+ LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
+
+ // If the operand types disagree, extend the shift amount to match. Since
+ // BT ignores high bits (like shifts) we can use anyextend.
+ if (LHS.getValueType() != RHS.getValueType())
+ RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
+
+ SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
+ X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(Cond, dl, MVT::i8), BT);
+ }
+
+ return SDValue();
+}
+
+/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
+/// mask CMPs.
+static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
+ SDValue &Op1) {
+ unsigned SSECC;
+ bool Swap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETOGT:
+ case ISD::SETGT: Swap = true; // Fallthrough
+ case ISD::SETLT:
+ case ISD::SETOLT: SSECC = 1; break;
+ case ISD::SETOGE:
+ case ISD::SETGE: Swap = true; // Fallthrough
+ case ISD::SETLE:
+ case ISD::SETOLE: SSECC = 2; break;
+ case ISD::SETUO: SSECC = 3; break;
+ case ISD::SETUNE:
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETULE: Swap = true; // Fallthrough
+ case ISD::SETUGE: SSECC = 5; break;
+ case ISD::SETULT: Swap = true; // Fallthrough
+ case ISD::SETUGT: SSECC = 6; break;
+ case ISD::SETO: SSECC = 7; break;
+ case ISD::SETUEQ:
+ case ISD::SETONE: SSECC = 8; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ return SSECC;
+}
+
+// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
+// ones, and then concatenate the result back.
+static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+ SDValue CC = Op.getOperand(2);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
+
+ // Issue the operation on the smaller types and concatenate the result back
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
+}
+
+static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 &&
+ "Unexpected type for boolean compare operation");
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
+ DAG.getConstant(-1, dl, VT));
+ SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
+ DAG.getConstant(-1, dl, VT));
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETEQ:
+ // (x == y) -> ~(x ^ y)
+ return DAG.getNode(ISD::XOR, dl, VT,
+ DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
+ DAG.getConstant(-1, dl, VT));
+ case ISD::SETNE:
+ // (x != y) -> (x ^ y)
+ return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
+ case ISD::SETUGT:
+ case ISD::SETGT:
+ // (x > y) -> (x & ~y)
+ return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
+ case ISD::SETULT:
+ case ISD::SETLT:
+ // (x < y) -> (~x & y)
+ return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
+ case ISD::SETULE:
+ case ISD::SETLE:
+ // (x <= y) -> (~x | y)
+ return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
+ case ISD::SETUGE:
+ case ISD::SETGE:
+ // (x >=y) -> (x | ~y)
+ return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
+ }
+}
+
+static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert(Op0.getSimpleValueType().getVectorElementType().getSizeInBits() >= 8 &&
+ Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
+ "Cannot set masked compare for this operation");
+
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ unsigned Opc = 0;
+ bool Unsigned = false;
+ bool Swap = false;
+ unsigned SSECC;
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
+ case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
+ case ISD::SETLT: Swap = true; //fall-through
+ case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
+ case ISD::SETULT: SSECC = 1; Unsigned = true; break;
+ case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
+ case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
+ case ISD::SETULE: Unsigned = true; //fall-through
+ case ISD::SETLE: SSECC = 2; break;
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+ if (Opc)
+ return DAG.getNode(Opc, dl, VT, Op0, Op1);
+ Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, dl, MVT::i8));
+}
+
+/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
+/// operand \p Op1. If non-trivial (for example because it's not constant)
+/// return an empty value.
+static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
+{
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
+ if (!BV)
+ return SDValue();
+
+ MVT VT = Op1.getSimpleValueType();
+ MVT EVT = VT.getVectorElementType();
+ unsigned n = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> ULTOp1;
+
+ for (unsigned i = 0; i < n; ++i) {
+ ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
+ if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
+ return SDValue();
+
+ // Avoid underflow.
+ APInt Val = Elt->getAPIntValue();
+ if (Val == 0)
+ return SDValue();
+
+ ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, ULTOp1);
+}
+
+static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
+ SDLoc dl(Op);
+
+ if (isFP) {
+#ifndef NDEBUG
+ MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
+ assert(EltVT == MVT::f32 || EltVT == MVT::f64);
+#endif
+
+ unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
+ unsigned Opc = X86ISD::CMPP;
+ if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
+ assert(VT.getVectorNumElements() <= 16);
+ Opc = X86ISD::CMPM;
+ }
+ // In the two special cases we can't handle, emit two comparisons.
+ if (SSECC == 8) {
+ unsigned CC0, CC1;
+ unsigned CombineOpc;
+ if (SetCCOpcode == ISD::SETUEQ) {
+ CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
+ } else {
+ assert(SetCCOpcode == ISD::SETONE);
+ CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
+ }
+
+ SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC0, dl, MVT::i8));
+ SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CC1, dl, MVT::i8));
+ return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
+ }
+ // Handle all other FP comparisons here.
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, dl, MVT::i8));
+ }
+
+ MVT VTOp0 = Op0.getSimpleValueType();
+ assert(VTOp0 == Op1.getSimpleValueType() &&
+ "Expected operands with same type!");
+ assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
+ "Invalid number of packed elements for source and destination!");
+
+ if (VT.is128BitVector() && VTOp0.is256BitVector()) {
+ // On non-AVX512 targets, a vector of MVT::i1 is promoted by the type
+ // legalizer to a wider vector type. In the case of 'vsetcc' nodes, the
+ // legalizer firstly checks if the first operand in input to the setcc has
+ // a legal type. If so, then it promotes the return type to that same type.
+ // Otherwise, the return type is promoted to the 'next legal type' which,
+ // for a vector of MVT::i1 is always a 128-bit integer vector type.
+ //
+ // We reach this code only if the following two conditions are met:
+ // 1. Both return type and operand type have been promoted to wider types
+ // by the type legalizer.
+ // 2. The original operand type has been promoted to a 256-bit vector.
+ //
+ // Note that condition 2. only applies for AVX targets.
+ SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode);
+ return DAG.getZExtOrTrunc(NewOp, dl, VT);
+ }
+
+ // The non-AVX512 code below works under the assumption that source and
+ // destination types are the same.
+ assert((Subtarget->hasAVX512() || (VT == VTOp0)) &&
+ "Value types for source and destination must be the same!");
+
+ // Break 256-bit integer vector compare into smaller ones.
+ if (VT.is256BitVector() && !Subtarget->hasInt256())
+ return Lower256IntVSETCC(Op, DAG);
+
+ MVT OpVT = Op1.getSimpleValueType();
+ if (OpVT.getVectorElementType() == MVT::i1)
+ return LowerBoolVSETCC_AVX512(Op, DAG);
+
+ bool MaskResult = (VT.getVectorElementType() == MVT::i1);
+ if (Subtarget->hasAVX512()) {
+ if (Op1.getSimpleValueType().is512BitVector() ||
+ (Subtarget->hasBWI() && Subtarget->hasVLX()) ||
+ (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
+ return LowerIntVSETCC_AVX512(Op, DAG, Subtarget);
+
+ // In AVX-512 architecture setcc returns mask with i1 elements,
+ // But there is no compare instruction for i8 and i16 elements in KNL.
+ // We are not talking about 512-bit operands in this case, these
+ // types are illegal.
+ if (MaskResult &&
+ (OpVT.getVectorElementType().getSizeInBits() < 32 &&
+ OpVT.getVectorElementType().getSizeInBits() >= 8))
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
+ }
+
+ // Lower using XOP integer comparisons.
+ if ((VT == MVT::v16i8 || VT == MVT::v8i16 ||
+ VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget->hasXOP()) {
+ // Translate compare code to XOP PCOM compare mode.
+ unsigned CmpMode = 0;
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETULT:
+ case ISD::SETLT: CmpMode = 0x00; break;
+ case ISD::SETULE:
+ case ISD::SETLE: CmpMode = 0x01; break;
+ case ISD::SETUGT:
+ case ISD::SETGT: CmpMode = 0x02; break;
+ case ISD::SETUGE:
+ case ISD::SETGE: CmpMode = 0x03; break;
+ case ISD::SETEQ: CmpMode = 0x04; break;
+ case ISD::SETNE: CmpMode = 0x05; break;
+ }
+
+ // Are we comparing unsigned or signed integers?
+ unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode)
+ ? X86ISD::VPCOMU : X86ISD::VPCOM;
+
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(CmpMode, dl, MVT::i8));
+ }
+
+ // We are handling one of the integer comparisons here. Since SSE only has
+ // GT and EQ comparisons for integer, swapping operands and multiple
+ // operations may be required for some comparisons.
+ unsigned Opc;
+ bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
+ bool Subus = false;
+
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
+ case ISD::SETGE: Swap = true;
+ case ISD::SETLE: Opc = X86ISD::PCMPGT;
+ Invert = true; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = X86ISD::PCMPGT;
+ FlipSigns = true; break;
+ case ISD::SETUGE: Swap = true;
+ case ISD::SETULE: Opc = X86ISD::PCMPGT;
+ FlipSigns = true; Invert = true; break;
+ }
+
+ // Special case: Use min/max operations for SETULE/SETUGE
+ MVT VET = VT.getVectorElementType();
+ bool hasMinMax =
+ (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
+ || (Subtarget->hasSSE2() && (VET == MVT::i8));
+
+ if (hasMinMax) {
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break;
+ case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break;
+ }
+
+ if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
+ }
+
+ bool hasSubus = Subtarget->hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
+ if (!MinMax && hasSubus) {
+ // As another special case, use PSUBUS[BW] when it's profitable. E.g. for
+ // Op0 u<= Op1:
+ // t = psubus Op0, Op1
+ // pcmpeq t, <0..0>
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETULT: {
+ // If the comparison is against a constant we can turn this into a
+ // setule. With psubus, setule does not require a swap. This is
+ // beneficial because the constant in the register is no longer
+ // destructed as the destination so it can be hoisted out of a loop.
+ // Only do this pre-AVX since vpcmp* is no longer destructive.
+ if (Subtarget->hasAVX())
+ break;
+ SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG);
+ if (ULEOp1.getNode()) {
+ Op1 = ULEOp1;
+ Subus = true; Invert = false; Swap = false;
+ }
+ break;
+ }
+ // Psubus is better than flip-sign because it requires no inversion.
+ case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
+ case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
+ }
+
+ if (Subus) {
+ Opc = X86ISD::SUBUS;
+ FlipSigns = false;
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // Check that the operation in question is available (most are plain SSE2,
+ // but PCMPGTQ and PCMPEQQ have different requirements).
+ if (VT == MVT::v2i64) {
+ if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
+ assert(Subtarget->hasSSE2() && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations. The lower
+ // compare is always unsigned.
+ SDValue SB;
+ if (FlipSigns) {
+ SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
+ } else {
+ SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
+ SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
+ SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
+ Sign, Zero, Sign, Zero);
+ }
+ Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
+ Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
+
+ // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
+ SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
+ SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
+
+ // Create masks for only the low parts/high parts of the 64 bit integers.
+ static const int MaskHi[] = { 1, 1, 3, 3 };
+ static const int MaskLo[] = { 0, 0, 2, 2 };
+ SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
+ SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
+ SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
+
+ SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
+ Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getBitcast(VT, Result);
+ }
+
+ if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
+ // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
+ // pcmpeqd + pshufd + pand.
+ assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
+
+ // First cast everything to the right type.
+ Op0 = DAG.getBitcast(MVT::v4i32, Op0);
+ Op1 = DAG.getBitcast(MVT::v4i32, Op1);
+
+ // Do the compare.
+ SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
+
+ // Make sure the lower and upper halves are both all-ones.
+ static const int Mask[] = { 1, 0, 3, 2 };
+ SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
+ Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, MVT::v4i32);
+
+ return DAG.getBitcast(VT, Result);
+ }
+ }
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations.
+ if (FlipSigns) {
+ MVT EltVT = VT.getVectorElementType();
+ SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl,
+ VT);
+ Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
+ Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
+ }
+
+ SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+
+ // If the logical-not of the result is required, perform that now.
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ if (MinMax)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
+
+ if (Subus)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
+ getZeroVector(VT, Subtarget, DAG, dl));
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
+
+ assert(((!Subtarget->hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
+ && "SetCC type must be 8-bit or 1-bit integer");
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ // Optimize to BT if possible.
+ // Lower (X & (1 << N)) == 0 to BT(X, N).
+ // Lower ((X >>u N) & 1) != 0 to BT(X, N).
+ // Lower ((X >>s N) & 1) != 0 to BT(X, N).
+ if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
+ isNullConstant(Op1) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) {
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
+ return NewSetCC;
+ }
+ }
+
+ // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
+ // these.
+ if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+
+ // If the input is a setcc, then reuse the input setcc or use a new one with
+ // the inverted condition.
+ if (Op0.getOpcode() == X86ISD::SETCC) {
+ X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
+ bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
+ if (!Invert)
+ return Op0;
+
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(CCode, dl, MVT::i8),
+ Op0.getOperand(1));
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
+ return SetCC;
+ }
+ }
+ if ((Op0.getValueType() == MVT::i1) && isOneConstant(Op1) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+
+ ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
+ return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC);
+ }
+
+ bool isFP = Op1.getSimpleValueType().isFloatingPoint();
+ unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG);
+ if (X86CC == X86::COND_INVALID)
+ return SDValue();
+
+ SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
+ EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS);
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
+ return SetCC;
+}
+
+SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Carry = Op.getOperand(2);
+ SDValue Cond = Op.getOperand(3);
+ SDLoc DL(Op);
+
+ assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
+ X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
+
+ assert(Carry.getOpcode() != ISD::CARRY_FALSE);
+ SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+ SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry);
+ return DAG.getNode(X86ISD::SETCC, DL, Op.getValueType(),
+ DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
+}
+
+// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
+static bool isX86LogicalCmp(SDValue Op) {
+ unsigned Opc = Op.getNode()->getOpcode();
+ if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
+ Opc == X86ISD::SAHF)
+ return true;
+ if (Op.getResNo() == 1 &&
+ (Opc == X86ISD::ADD ||
+ Opc == X86ISD::SUB ||
+ Opc == X86ISD::ADC ||
+ Opc == X86ISD::SBB ||
+ Opc == X86ISD::SMUL ||
+ Opc == X86ISD::UMUL ||
+ Opc == X86ISD::INC ||
+ Opc == X86ISD::DEC ||
+ Opc == X86ISD::OR ||
+ Opc == X86ISD::XOR ||
+ Opc == X86ISD::AND))
+ return true;
+
+ if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
+ return true;
+
+ return false;
+}
+
+static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
+ if (V.getOpcode() != ISD::TRUNCATE)
+ return false;
+
+ SDValue VOp0 = V.getOperand(0);
+ unsigned InBits = VOp0.getValueSizeInBits();
+ unsigned Bits = V.getValueSizeInBits();
+ return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
+}
+
+SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Cond = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ SDLoc DL(Op);
+ MVT VT = Op1.getSimpleValueType();
+ SDValue CC;
+
+ // Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
+ // are available or VBLENDV if AVX is available.
+ // Otherwise FP cmovs get lowered into a less efficient branch sequence later.
+ if (Cond.getOpcode() == ISD::SETCC &&
+ ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
+ (Subtarget->hasSSE1() && VT == MVT::f32)) &&
+ VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
+ SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
+ int SSECC = translateX86FSETCC(
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
+
+ if (SSECC != 8) {
+ if (Subtarget->hasAVX512()) {
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, DL, MVT::i8));
+ return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
+ }
+
+ SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, DL, MVT::i8));
+
+ // If we have AVX, we can use a variable vector select (VBLENDV) instead
+ // of 3 logic instructions for size savings and potentially speed.
+ // Unfortunately, there is no scalar form of VBLENDV.
+
+ // If either operand is a constant, don't try this. We can expect to
+ // optimize away at least one of the logic instructions later in that
+ // case, so that sequence would be faster than a variable blend.
+
+ // BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
+ // uses XMM0 as the selection register. That may need just as many
+ // instructions as the AND/ANDN/OR sequence due to register moves, so
+ // don't bother.
+
+ if (Subtarget->hasAVX() &&
+ !isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
+
+ // Convert to vectors, do a VSELECT, and convert back to scalar.
+ // All of the conversions should be optimized away.
+
+ MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
+ SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
+ SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
+ SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
+
+ MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
+ VCmp = DAG.getBitcast(VCmpVT, VCmp);
+
+ SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
+
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
+ VSel, DAG.getIntPtrConstant(0, DL));
+ }
+ SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
+ SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
+ return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
+ }
+ }
+
+ if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
+ SDValue Op1Scalar;
+ if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
+ Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
+ else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
+ Op1Scalar = Op1.getOperand(0);
+ SDValue Op2Scalar;
+ if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
+ Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
+ else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
+ Op2Scalar = Op2.getOperand(0);
+ if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
+ SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
+ Op1Scalar.getValueType(),
+ Cond, Op1Scalar, Op2Scalar);
+ if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
+ return DAG.getBitcast(VT, newSelect);
+ SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ }
+
+ if (VT == MVT::v4i1 || VT == MVT::v2i1) {
+ SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
+ Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+ DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
+ Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
+ DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
+ SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1,
+ Cond, Op1, Op2);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
+ }
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+
+ // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
+ // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
+ // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
+ // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
+ if (Cond.getOpcode() == X86ISD::SETCC &&
+ Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
+ isNullConstant(Cond.getOperand(1).getOperand(1))) {
+ SDValue Cmp = Cond.getOperand(1);
+
+ unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
+
+ if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
+ (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
+ SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
+
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ // Apply further optimizations for special cases
+ // (select (x != 0), -1, 0) -> neg & sbb
+ // (select (x == 0), 0, -1) -> neg & sbb
+ if (isNullConstant(Y) &&
+ (isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
+ SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
+ DAG.getConstant(0, DL,
+ CmpOp0.getValueType()),
+ CmpOp0);
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ SDValue(Neg.getNode(), 1));
+ return Res;
+ }
+
+ Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
+ CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+
+ SDValue Res = // Res = 0 or -1.
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
+
+ if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
+ Res = DAG.getNOT(DL, Res, Res.getValueType());
+
+ if (!isNullConstant(Op2))
+ Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
+ return Res;
+ }
+ }
+
+ // Look past (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
+ isOneConstant(Cond.getOperand(1)))
+ Cond = Cond.getOperand(0);
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ MVT VT = Op.getSimpleValueType();
+
+ bool IllegalFPCMov = false;
+ if (VT.isFloatingPoint() && !VT.isVector() &&
+ !isScalarFPTypeInSSEReg(VT)) // FPStack?
+ IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
+
+ if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
+ Opc == X86ISD::BT) { // FIXME
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, DL, MVT::i8);
+ addTest = false;
+ }
+
+ if (addTest) {
+ // Look past the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
+ Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
+ }
+
+ // a < b ? -1 : 0 -> RES = ~setcc_carry
+ // a < b ? 0 : -1 -> RES = setcc_carry
+ // a >= b ? -1 : 0 -> RES = setcc_carry
+ // a >= b ? 0 : -1 -> RES = ~setcc_carry
+ if (Cond.getOpcode() == X86ISD::SUB) {
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
+
+ if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
+ (isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
+ (isNullConstant(Op1) || isNullConstant(Op2))) {
+ SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ Cond);
+ if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
+ return DAG.getNOT(DL, Res, Res.getValueType());
+ return Res;
+ }
+ }
+
+ // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
+ // widen the cmov and push the truncate through. This avoids introducing a new
+ // branch during isel and doesn't add any extensions.
+ if (Op.getValueType() == MVT::i8 &&
+ Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
+ SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
+ if (T1.getValueType() == T2.getValueType() &&
+ // Blacklist CopyFromReg to avoid partial register stalls.
+ T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
+ SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
+ SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
+ return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
+ }
+ }
+
+ // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
+ // condition is true.
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
+ SDValue Ops[] = { Op2, Op1, CC, Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
+}
+
+static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ MVT VTElt = VT.getVectorElementType();
+ MVT InVTElt = InVT.getVectorElementType();
+ SDLoc dl(Op);
+
+ // SKX processor
+ if ((InVTElt == MVT::i1) &&
+ (((Subtarget->hasBWI() && Subtarget->hasVLX() &&
+ VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
+
+ ((Subtarget->hasBWI() && VT.is512BitVector() &&
+ VTElt.getSizeInBits() <= 16)) ||
+
+ ((Subtarget->hasDQI() && Subtarget->hasVLX() &&
+ VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
+
+ ((Subtarget->hasDQI() && VT.is512BitVector() &&
+ VTElt.getSizeInBits() >= 32))))
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ unsigned int NumElts = VT.getVectorNumElements();
+
+ if (NumElts != 8 && NumElts != 16 && !Subtarget->hasBWI())
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
+ if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
+ return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+ }
+
+ assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+ MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
+ SDValue NegOne =
+ DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl,
+ ExtVT);
+ SDValue Zero =
+ DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT);
+
+ SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero);
+ if (VT.is512BitVector())
+ return V;
+ return DAG.getNode(X86ISD::VTRUNC, dl, VT, V);
+}
+
+static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue In = Op->getOperand(0);
+ MVT VT = Op->getSimpleValueType(0);
+ MVT InVT = In.getSimpleValueType();
+ assert(VT.getSizeInBits() == InVT.getSizeInBits());
+
+ MVT InSVT = InVT.getVectorElementType();
+ assert(VT.getVectorElementType().getSizeInBits() > InSVT.getSizeInBits());
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
+ return SDValue();
+ if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
+ return SDValue();
+
+ SDLoc dl(Op);
+
+ // SSE41 targets can use the pmovsx* instructions directly.
+ if (Subtarget->hasSSE41())
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ // pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
+ SDValue Curr = In;
+ MVT CurrVT = InVT;
+
+ // As SRAI is only available on i16/i32 types, we expand only up to i32
+ // and handle i64 separately.
+ while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
+ Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
+ MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
+ CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
+ Curr = DAG.getBitcast(CurrVT, Curr);
+ }
+
+ SDValue SignExt = Curr;
+ if (CurrVT != InVT) {
+ unsigned SignExtShift =
+ CurrVT.getVectorElementType().getSizeInBits() - InSVT.getSizeInBits();
+ SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+ DAG.getConstant(SignExtShift, dl, MVT::i8));
+ }
+
+ if (CurrVT == VT)
+ return SignExt;
+
+ if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
+ SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
+ DAG.getConstant(31, dl, MVT::i8));
+ SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
+ return DAG.getBitcast(VT, Ext);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
+ return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
+
+ if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
+ (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i16 || InVT != MVT::v16i8))
+ return SDValue();
+
+ if (Subtarget->hasInt256())
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ // Optimize vectors in AVX mode
+ // Sign extend v8i16 to v8i32 and
+ // v4i32 to v4i64
+ //
+ // Divide input vector into two parts
+ // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
+ // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
+ // concat the vectors to original VT
+
+ unsigned NumElems = InVT.getVectorNumElements();
+ SDValue Undef = DAG.getUNDEF(InVT);
+
+ SmallVector<int,8> ShufMask1(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask1[i] = i;
+
+ SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
+
+ SmallVector<int,8> ShufMask2(NumElems, -1);
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ ShufMask2[i] = i + NumElems/2;
+
+ SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
+
+ MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
+ VT.getVectorNumElements()/2);
+
+ OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
+ OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
+}
+
+// Lower vector extended loads using a shuffle. If SSSE3 is not available we
+// may emit an illegal shuffle but the expansion is still better than scalar
+// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
+// we'll emit a shuffle and a arithmetic shift.
+// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
+// TODO: It is possible to support ZExt by zeroing the undef values during
+// the shuffle phase or after the shuffle.
+static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT RegVT = Op.getSimpleValueType();
+ assert(RegVT.isVector() && "We only custom lower vector sext loads.");
+ assert(RegVT.isInteger() &&
+ "We only custom lower integer vector sext loads.");
+
+ // Nothing useful we can do without SSE2 shuffles.
+ assert(Subtarget->hasSSE2() && "We only custom lower sext loads with SSE2.");
+
+ LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
+ SDLoc dl(Ld);
+ EVT MemVT = Ld->getMemoryVT();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned RegSz = RegVT.getSizeInBits();
+
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+
+ assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
+ && "Only anyext and sext are currently implemented.");
+ assert(MemVT != RegVT && "Cannot extend to the same type");
+ assert(MemVT.isVector() && "Must load a vector from memory");
+
+ unsigned NumElems = RegVT.getVectorNumElements();
+ unsigned MemSz = MemVT.getSizeInBits();
+ assert(RegSz > MemSz && "Register size must be greater than the mem size");
+
+ if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256()) {
+ // The only way in which we have a legal 256-bit vector result but not the
+ // integer 256-bit operations needed to directly lower a sextload is if we
+ // have AVX1 but not AVX2. In that case, we can always emit a sextload to
+ // a 128-bit vector and a normal sign_extend to 256-bits that should get
+ // correctly legalized. We do this late to allow the canonical form of
+ // sextload to persist throughout the rest of the DAG combiner -- it wants
+ // to fold together any extensions it can, and so will fuse a sign_extend
+ // of an sextload into a sextload targeting a wider value.
+ SDValue Load;
+ if (MemSz == 128) {
+ // Just switch this to a normal load.
+ assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
+ "it must be a legal 128-bit vector "
+ "type!");
+ Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+ } else {
+ assert(MemSz < 128 &&
+ "Can't extend a type wider than 128 bits to a 256 bit vector!");
+ // Do an sext load to a 128-bit vector type. We want to use the same
+ // number of elements, but elements half as wide. This will end up being
+ // recursively lowered by this routine, but will succeed as we definitely
+ // have all the necessary features if we're using AVX1.
+ EVT HalfEltVT =
+ EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
+ EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
+ Load =
+ DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ }
+
+ // Replace chain users with the new chain.
+ assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
+
+ // Finally, do a normal sign-extend to the desired register.
+ return DAG.getSExtOrTrunc(Load, dl, RegVT);
+ }
+
+ // All sizes must be a power of two.
+ assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
+ "Non-power-of-two elements are not custom lowered!");
+
+ // Attempt to load the original value using scalar loads.
+ // Find the largest scalar type that divides the total loaded size.
+ MVT SclrLoadTy = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
+ SclrLoadTy = Tp;
+ }
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
+ (64 <= MemSz))
+ SclrLoadTy = MVT::f64;
+
+ // Calculate the number of scalar loads that we need to perform
+ // in order to load our vector from memory.
+ unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
+
+ assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
+ "Can only lower sext loads with a single scalar load!");
+
+ unsigned loadRegZize = RegSz;
+ if (Ext == ISD::SEXTLOAD && RegSz >= 256)
+ loadRegZize = 128;
+
+ // Represent our vector as a sequence of elements which are the
+ // largest scalar that we can load.
+ EVT LoadUnitVecVT = EVT::getVectorVT(
+ *DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
+
+ // Represent the data using the same element type that is stored in
+ // memory. In practice, we ''widen'' MemVT.
+ EVT WideVecVT =
+ EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ loadRegZize / MemVT.getScalarSizeInBits());
+
+ assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
+ "Invalid vector type");
+
+ // We can't shuffle using an illegal type.
+ assert(TLI.isTypeLegal(WideVecVT) &&
+ "We only lower types that form legal widened vector types");
+
+ SmallVector<SDValue, 8> Chains;
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
+ TLI.getPointerTy(DAG.getDataLayout()));
+ SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
+
+ for (unsigned i = 0; i < NumLoads; ++i) {
+ // Perform a single load.
+ SDValue ScalarLoad =
+ DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ Chains.push_back(ScalarLoad.getValue(1));
+ // Create the first element type using SCALAR_TO_VECTOR in order to avoid
+ // another round of DAGCombining.
+ if (i == 0)
+ Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
+ else
+ Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
+ ScalarLoad, DAG.getIntPtrConstant(i, dl));
+
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ }
+
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+
+ // Bitcast the loaded value to a vector of the original element type, in
+ // the size of the target vector type.
+ SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
+ unsigned SizeRatio = RegSz / MemSz;
+
+ if (Ext == ISD::SEXTLOAD) {
+ // If we have SSE4.1, we can directly emit a VSEXT node.
+ if (Subtarget->hasSSE41()) {
+ SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Sext;
+ }
+
+ // Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
+ // lanes.
+ assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
+ "We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
+
+ SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+ }
+
+ // Redistribute the loaded elements into the different locations.
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i * SizeRatio] = i;
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
+ DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+
+ // Bitcast to the requested type.
+ Shuff = DAG.getBitcast(RegVT, Shuff);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
+ return Shuff;
+}
+
+// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
+// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
+// from the AND / OR.
+static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
+ Opc = Op.getOpcode();
+ if (Opc != ISD::OR && Opc != ISD::AND)
+ return false;
+ return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse() &&
+ Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(1).hasOneUse());
+}
+
+// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
+// 1 and that the SETCC node has a single use.
+static bool isXor1OfSetCC(SDValue Op) {
+ if (Op.getOpcode() != ISD::XOR)
+ return false;
+ if (isOneConstant(Op.getOperand(1)))
+ return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse();
+ return false;
+}
+
+SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Chain = Op.getOperand(0);
+ SDValue Cond = Op.getOperand(1);
+ SDValue Dest = Op.getOperand(2);
+ SDLoc dl(Op);
+ SDValue CC;
+ bool Inverted = false;
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ // Check for setcc([su]{add,sub,mul}o == 0).
+ if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
+ isNullConstant(Cond.getOperand(1)) &&
+ Cond.getOperand(0).getResNo() == 1 &&
+ (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::UADDO ||
+ Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::USUBO ||
+ Cond.getOperand(0).getOpcode() == ISD::SMULO ||
+ Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
+ Inverted = true;
+ Cond = Cond.getOperand(0);
+ } else {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+ }
+#if 0
+ // FIXME: LowerXALUO doesn't handle these!!
+ else if (Cond.getOpcode() == X86ISD::ADD ||
+ Cond.getOpcode() == X86ISD::SUB ||
+ Cond.getOpcode() == X86ISD::SMUL ||
+ Cond.getOpcode() == X86ISD::UMUL)
+ Cond = LowerXALUO(Cond, DAG);
+#endif
+
+ // Look pass (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
+ isOneConstant(Cond.getOperand(1)))
+ Cond = Cond.getOperand(0);
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ unsigned CondOpcode = Cond.getOpcode();
+ if (CondOpcode == X86ISD::SETCC ||
+ CondOpcode == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
+ if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
+ Cond = Cmp;
+ addTest = false;
+ } else {
+ switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
+ default: break;
+ case X86::COND_O:
+ case X86::COND_B:
+ // These can only come from an arithmetic instruction with overflow,
+ // e.g. SADDO, UADDO.
+ Cond = Cond.getNode()->getOperand(1);
+ addTest = false;
+ break;
+ }
+ }
+ }
+ CondOpcode = Cond.getOpcode();
+ if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
+ CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
+ ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
+ Cond.getOperand(0).getValueType() != MVT::i8)) {
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ unsigned X86Opcode;
+ unsigned X86Cond;
+ SDVTList VTs;
+ // Keep this in sync with LowerXALUO, otherwise we might create redundant
+ // instructions that can't be removed afterwards (i.e. X86ISD::ADD and
+ // X86ISD::INC).
+ switch (CondOpcode) {
+ case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
+ case ISD::SADDO:
+ if (isOneConstant(RHS)) {
+ X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
+ case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
+ case ISD::SSUBO:
+ if (isOneConstant(RHS)) {
+ X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
+ break;
+ }
+ X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
+ case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
+ case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
+ default: llvm_unreachable("unexpected overflowing operator");
+ }
+ if (Inverted)
+ X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
+ if (CondOpcode == ISD::UMULO)
+ VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
+ MVT::i32);
+ else
+ VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
+
+ SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
+
+ if (CondOpcode == ISD::UMULO)
+ Cond = X86Op.getValue(2);
+ else
+ Cond = X86Op.getValue(1);
+
+ CC = DAG.getConstant(X86Cond, dl, MVT::i8);
+ addTest = false;
+ } else {
+ unsigned CondOpc;
+ if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
+ SDValue Cmp = Cond.getOperand(0).getOperand(1);
+ if (CondOpc == ISD::OR) {
+ // Also, recognize the pattern generated by an FCMP_UNE. We can emit
+ // two branches instead of an explicit OR instruction with a
+ // separate test.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp)) {
+ CC = Cond.getOperand(0).getOperand(0);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = Cond.getOperand(1).getOperand(0);
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else { // ISD::AND
+ // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp) &&
+ Op.getNode()->hasOneUse()) {
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ }
+ } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
+ // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
+ // It should be transformed during dag combiner except when the condition
+ // is set by a arithmetics with overflow node.
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, dl, MVT::i8);
+ Cond = Cond.getOperand(0).getOperand(1);
+ addTest = false;
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
+ // For FCMP_OEQ, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+ Dest = FalseBB;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ } else if (Cond.getOpcode() == ISD::SETCC &&
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
+ // For FCMP_UNE, we can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Op.getNode()->hasOneUse()) {
+ SDNode *User = *Op.getNode()->use_begin();
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_UNE.
+ if (User->getOpcode() == ISD::BR) {
+ SDValue FalseBB = User->getOperand(1);
+ SDNode *NewBR =
+ DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
+ assert(NewBR == User);
+ (void)NewBR;
+
+ SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ Cond.getOperand(0), Cond.getOperand(1));
+ Cmp = ConvertCmpIfNecessary(Cmp, DAG);
+ CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ Dest = FalseBB;
+ }
+ }
+ }
+ }
+
+ if (addTest) {
+ // Look pass the truncate if the high bits are known zero.
+ if (isTruncWithZeroHighBitsInput(Cond, DAG))
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
+ CC = DAG.getConstant(X86Cond, dl, MVT::i8);
+ Cond = EmitTest(Cond, X86Cond, dl, DAG);
+ }
+ Cond = ConvertCmpIfNecessary(Cond, DAG);
+ return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cond);
+}
+
+// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
+// Calls to _alloca are needed to probe the stack when allocating more than 4k
+// bytes in one go. Touching the stack at 4K increments is necessary to ensure
+// that the guard pages used by the OS virtual memory manager are allocated in
+// correct sequence.
+SDValue
+X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool SplitStack = MF.shouldSplitStack();
+ bool Lower = (Subtarget->isOSWindows() && !Subtarget->isTargetMachO()) ||
+ SplitStack;
+ SDLoc dl(Op);
+
+ // Get the inputs.
+ SDNode *Node = Op.getNode();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ EVT VT = Node->getValueType(0);
+
+ // Chain the dynamic stack allocation so that it doesn't modify the stack
+ // pointer when other instructions are using the stack.
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
+
+ bool Is64Bit = Subtarget->is64Bit();
+ MVT SPTy = getPointerTy(DAG.getDataLayout());
+
+ SDValue Result;
+ if (!Lower) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
+ assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
+ " not tell us which reg is the stack pointer!");
+ EVT VT = Node->getValueType(0);
+ SDValue Tmp3 = Node->getOperand(2);
+
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
+ Chain = SP.getValue(1);
+ unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
+ const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
+ unsigned StackAlign = TFI.getStackAlignment();
+ Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
+ if (Align > StackAlign)
+ Result = DAG.getNode(ISD::AND, dl, VT, Result,
+ DAG.getConstant(-(uint64_t)Align, dl, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
+ } else if (SplitStack) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ if (Is64Bit) {
+ // The 64 bit implementation of segmented stacks needs to clobber both r10
+ // r11. This makes it impossible to use it along with nested parameters.
+ const Function *F = MF.getFunction();
+
+ for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
+ I != E; ++I)
+ if (I->hasNestAttr())
+ report_fatal_error("Cannot use segmented stacks with functions that "
+ "have nested arguments.");
+ }
+
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
+ unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
+ Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
+ Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
+ DAG.getRegister(Vreg, SPTy));
+ } else {
+ SDValue Flag;
+ const unsigned Reg = (Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX);
+
+ Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
+ Flag = Chain.getValue(1);
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+
+ Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
+
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ unsigned SPReg = RegInfo->getStackRegister();
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
+ Chain = SP.getValue(1);
+
+ if (Align) {
+ SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
+ DAG.getConstant(-(uint64_t)Align, dl, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
+ }
+
+ Result = SP;
+ }
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
+
+ SDValue Ops[2] = {Result, Chain};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ SDLoc DL(Op);
+
+ if (!Subtarget->is64Bit() ||
+ Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv())) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+ }
+
+ // __va_list_tag:
+ // gp_offset (0 - 6 * 8)
+ // fp_offset (48 - 48 + 8 * 16)
+ // overflow_arg_area (point to parameters coming in memory).
+ // reg_save_area
+ SmallVector<SDValue, 8> MemOps;
+ SDValue FIN = Op.getOperand(1);
+ // Store gp_offset
+ SDValue Store = DAG.getStore(Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
+ DL, MVT::i32),
+ FIN, MachinePointerInfo(SV), false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store fp_offset
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
+ Store = DAG.getStore(Op.getOperand(0), DL,
+ DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL,
+ MVT::i32),
+ FIN, MachinePointerInfo(SV, 4), false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to overflow_arg_area
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
+ SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
+ MachinePointerInfo(SV, 8),
+ false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to reg_save_area.
+ FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
+ Subtarget->isTarget64BitLP64() ? 8 : 4, DL));
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
+ Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo(
+ SV, Subtarget->isTarget64BitLP64() ? 16 : 12), false, false, 0);
+ MemOps.push_back(Store);
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
+}
+
+SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->is64Bit() &&
+ "LowerVAARG only handles 64-bit va_arg!");
+ assert(Op.getNode()->getNumOperands() == 4);
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (Subtarget->isCallingConvWin64(MF.getFunction()->getCallingConv()))
+ // The Win64 ABI uses char* instead of a structure.
+ return DAG.expandVAArg(Op.getNode());
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue SrcPtr = Op.getOperand(1);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ unsigned Align = Op.getConstantOperandVal(3);
+ SDLoc dl(Op);
+
+ EVT ArgVT = Op.getNode()->getValueType(0);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
+ uint8_t ArgMode;
+
+ // Decide which area this value should be read from.
+ // TODO: Implement the AMD64 ABI in its entirety. This simple
+ // selection mechanism works only for the basic types.
+ if (ArgVT == MVT::f80) {
+ llvm_unreachable("va_arg for f80 not yet implemented");
+ } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
+ ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
+ } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
+ ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
+ } else {
+ llvm_unreachable("Unhandled argument type in LowerVAARG");
+ }
+
+ if (ArgMode == 2) {
+ // Sanity Check: Make sure using fp_offset makes sense.
+ assert(!Subtarget->useSoftFloat() &&
+ !(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) &&
+ Subtarget->hasSSE1());
+ }
+
+ // Insert VAARG_64 node into the DAG
+ // VAARG_64 returns two values: Variable Argument Address, Chain
+ SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
+ DAG.getConstant(ArgMode, dl, MVT::i8),
+ DAG.getConstant(Align, dl, MVT::i32)};
+ SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
+ SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
+ VTs, InstOps, MVT::i64,
+ MachinePointerInfo(SV),
+ /*Align=*/0,
+ /*Volatile=*/false,
+ /*ReadMem=*/true,
+ /*WriteMem=*/true);
+ Chain = VAARG.getValue(1);
+
+ // Load the next argument and return it
+ return DAG.getLoad(ArgVT, dl,
+ Chain,
+ VAARG,
+ MachinePointerInfo(),
+ false, false, false, 0);
+}
+
+static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ // X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
+ // where a va_list is still an i8*.
+ assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
+ if (Subtarget->isCallingConvWin64(
+ DAG.getMachineFunction().getFunction()->getCallingConv()))
+ // Probably a Win64 va_copy.
+ return DAG.expandVACopy(Op.getNode());
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ SDLoc DL(Op);
+
+ return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
+ DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
+ false, false,
+ MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
+}
+
+// getTargetVShiftByConstNode - Handle vector element shifts where the shift
+// amount is a constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue SrcOp, uint64_t ShiftAmt,
+ SelectionDAG &DAG) {
+ MVT ElementType = VT.getVectorElementType();
+
+ // Fold this packed shift into its first operand if ShiftAmt is 0.
+ if (ShiftAmt == 0)
+ return SrcOp;
+
+ // Check for ShiftAmt >= element width
+ if (ShiftAmt >= ElementType.getSizeInBits()) {
+ if (Opc == X86ISD::VSRAI)
+ ShiftAmt = ElementType.getSizeInBits() - 1;
+ else
+ return DAG.getConstant(0, dl, VT);
+ }
+
+ assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
+ && "Unknown target vector shift-by-constant node");
+
+ // Fold this packed vector shift into a build vector if SrcOp is a
+ // vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
+ if (VT == SrcOp.getSimpleValueType() &&
+ ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ unsigned NumElts = SrcOp->getNumOperands();
+ ConstantSDNode *ND;
+
+ switch(Opc) {
+ default: llvm_unreachable(nullptr);
+ case X86ISD::VSHLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
+ }
+ break;
+ case X86ISD::VSRLI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
+ }
+ break;
+ case X86ISD::VSRAI:
+ for (unsigned i=0; i!=NumElts; ++i) {
+ SDValue CurrentOp = SrcOp->getOperand(i);
+ if (CurrentOp->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(CurrentOp);
+ continue;
+ }
+ ND = cast<ConstantSDNode>(CurrentOp);
+ const APInt &C = ND->getAPIntValue();
+ Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
+ }
+ break;
+ }
+
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
+ }
+
+ return DAG.getNode(Opc, dl, VT, SrcOp,
+ DAG.getConstant(ShiftAmt, dl, MVT::i8));
+}
+
+// getTargetVShiftNode - Handle vector element shifts where the shift amount
+// may or may not be a constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
+ SDValue SrcOp, SDValue ShAmt,
+ SelectionDAG &DAG) {
+ MVT SVT = ShAmt.getSimpleValueType();
+ assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
+
+ // Catch shift-by-constant.
+ if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
+ return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
+ CShAmt->getZExtValue(), DAG);
+
+ // Change opcode to non-immediate version
+ switch (Opc) {
+ default: llvm_unreachable("Unknown target vector shift node");
+ case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
+ case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
+ case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
+ }
+
+ const X86Subtarget &Subtarget =
+ static_cast<const X86Subtarget &>(DAG.getSubtarget());
+ if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
+ ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
+ // Let the shuffle legalizer expand this shift amount node.
+ SDValue Op0 = ShAmt.getOperand(0);
+ Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
+ ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, &Subtarget, DAG);
+ } else {
+ // Need to build a vector containing shift amount.
+ // SSE/AVX packed shifts only use the lower 64-bit of the shift count.
+ SmallVector<SDValue, 4> ShOps;
+ ShOps.push_back(ShAmt);
+ if (SVT == MVT::i32) {
+ ShOps.push_back(DAG.getConstant(0, dl, SVT));
+ ShOps.push_back(DAG.getUNDEF(SVT));
+ }
+ ShOps.push_back(DAG.getUNDEF(SVT));
+
+ MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, BVT, ShOps);
+ }
+
+ // The return type has to be a 128-bit type with the same element
+ // type as the input type.
+ MVT EltVT = VT.getVectorElementType();
+ MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
+
+ ShAmt = DAG.getBitcast(ShVT, ShAmt);
+ return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
+}
+
+/// \brief Return Mask with the necessary casting or extending
+/// for \p Mask according to \p MaskVT when lowering masking intrinsics
+static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG, SDLoc dl) {
+
+ if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
+ // Mask should be extended
+ Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
+ MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
+ }
+
+ if (Mask.getSimpleValueType() == MVT::i64 && Subtarget->is32Bit()) {
+ if (MaskVT == MVT::v64i1) {
+ assert(Subtarget->hasBWI() && "Expected AVX512BW target!");
+ // In case 32bit mode, bitcast i64 is illegal, extend/split it.
+ SDValue Lo, Hi;
+ Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
+ DAG.getConstant(0, dl, MVT::i32));
+ Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
+ DAG.getConstant(1, dl, MVT::i32));
+
+ Lo = DAG.getBitcast(MVT::v32i1, Lo);
+ Hi = DAG.getBitcast(MVT::v32i1, Hi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
+ } else {
+ // MaskVT require < 64bit. Truncate mask (should succeed in any case),
+ // and bitcast.
+ MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits());
+ return DAG.getBitcast(MaskVT,
+ DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask));
+ }
+
+ } else {
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
+ }
+}
+
+/// \brief Return (and \p Op, \p Mask) for compare instructions or
+/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
+/// necessary casting or extending for \p Mask when lowering masking intrinsics
+static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ unsigned OpcodeSelect = ISD::VSELECT;
+ SDLoc dl(Op);
+
+ if (isAllOnesConstant(Mask))
+ return Op;
+
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+
+ switch (Op.getOpcode()) {
+ default: break;
+ case X86ISD::PCMPEQM:
+ case X86ISD::PCMPGTM:
+ case X86ISD::CMPM:
+ case X86ISD::CMPMU:
+ return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
+ case X86ISD::VFPCLASS:
+ case X86ISD::VFPCLASSS:
+ return DAG.getNode(ISD::OR, dl, VT, Op, VMask);
+ case X86ISD::VTRUNC:
+ case X86ISD::VTRUNCS:
+ case X86ISD::VTRUNCUS:
+ // We can't use ISD::VSELECT here because it is not always "Legal"
+ // for the destination type. For example vpmovqb require only AVX512
+ // and vselect that can operate on byte element type require BWI
+ OpcodeSelect = X86ISD::SELECT;
+ break;
+ }
+ if (PreservedSrc.getOpcode() == ISD::UNDEF)
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
+}
+
+/// \brief Creates an SDNode for a predicated scalar operation.
+/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
+/// The mask is coming as MVT::i8 and it should be truncated
+/// to MVT::i1 while lowering masking intrinsics.
+/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
+/// "X86select" instead of "vselect". We just can't create the "vselect" node
+/// for a scalar instruction.
+static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
+ SDValue PreservedSrc,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ if (isAllOnesConstant(Mask))
+ return Op;
+
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ // The mask should be of type MVT::i1
+ SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
+
+ if (Op.getOpcode() == X86ISD::FSETCC)
+ return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
+ if (Op.getOpcode() == X86ISD::VFPCLASS ||
+ Op.getOpcode() == X86ISD::VFPCLASSS)
+ return DAG.getNode(ISD::OR, dl, VT, Op, IMask);
+
+ if (PreservedSrc.getOpcode() == ISD::UNDEF)
+ PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
+}
+
+static int getSEHRegistrationNodeSize(const Function *Fn) {
+ if (!Fn->hasPersonalityFn())
+ report_fatal_error(
+ "querying registration node size for function without personality");
+ // The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
+ // WinEHStatePass for the full struct definition.
+ switch (classifyEHPersonality(Fn->getPersonalityFn())) {
+ case EHPersonality::MSVC_X86SEH: return 24;
+ case EHPersonality::MSVC_CXX: return 16;
+ default: break;
+ }
+ report_fatal_error(
+ "can only recover FP for 32-bit MSVC EH personality functions");
+}
+
+/// When the MSVC runtime transfers control to us, either to an outlined
+/// function or when returning to a parent frame after catching an exception, we
+/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
+/// Here's the math:
+/// RegNodeBase = EntryEBP - RegNodeSize
+/// ParentFP = RegNodeBase - ParentFrameOffset
+/// Subtracting RegNodeSize takes us to the offset of the registration node, and
+/// subtracting the offset (negative on x86) takes us back to the parent FP.
+static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
+ SDValue EntryEBP) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDLoc dl;
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+
+ // It's possible that the parent function no longer has a personality function
+ // if the exceptional code was optimized away, in which case we just return
+ // the incoming EBP.
+ if (!Fn->hasPersonalityFn())
+ return EntryEBP;
+
+ // Get an MCSymbol that will ultimately resolve to the frame offset of the EH
+ // registration, or the .set_setframe offset.
+ MCSymbol *OffsetSym =
+ MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
+ GlobalValue::getRealLinkageName(Fn->getName()));
+ SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
+ SDValue ParentFrameOffset =
+ DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
+
+ // Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
+ // prologue to RBP in the parent function.
+ const X86Subtarget &Subtarget =
+ static_cast<const X86Subtarget &>(DAG.getSubtarget());
+ if (Subtarget.is64Bit())
+ return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
+
+ int RegNodeSize = getSEHRegistrationNodeSize(Fn);
+ // RegNodeBase = EntryEBP - RegNodeSize
+ // ParentFP = RegNodeBase - ParentFrameOffset
+ SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
+ DAG.getConstant(RegNodeSize, dl, PtrVT));
+ return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
+}
+
+static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ MVT VT = Op.getSimpleValueType();
+ const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
+ if (IntrData) {
+ switch(IntrData->Type) {
+ case INTR_TYPE_1OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
+ case INTR_TYPE_2OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2));
+ case INTR_TYPE_2OP_IMM8:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2)));
+ case INTR_TYPE_3OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3));
+ case INTR_TYPE_4OP:
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
+ Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
+ case INTR_TYPE_1OP_MASK_RM: {
+ SDValue Src = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue RoundingMode;
+ // We allways add rounding mode to the Node.
+ // If the rounding mode is not specified, we add the
+ // "current direction" mode.
+ if (Op.getNumOperands() == 4)
+ RoundingMode =
+ DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ else
+ RoundingMode = Op.getOperand(4);
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0)
+ if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() !=
+ X86::STATIC_ROUNDING::CUR_DIRECTION)
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(), Src, RoundingMode),
+ Mask, PassThru, Subtarget, DAG);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
+ RoundingMode),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_1OP_MASK: {
+ SDValue Src = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ // We add rounding mode to the Node when
+ // - RM Opcode is specified and
+ // - RM is not "current direction".
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(4);
+ unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+ if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_SCALAR_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue passThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2),
+ Mask, passThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_SCALAR_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src0 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ // There are 2 kinds of intrinsics in this group:
+ // (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
+ // (2) With rounding mode and sae - 7 operands.
+ if (Op.getNumOperands() == 6) {
+ SDValue Sae = Op.getOperand(5);
+ unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0;
+ return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2,
+ Sae),
+ Mask, Src0, Subtarget, DAG);
+ }
+ assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
+ SDValue RoundingMode = Op.getOperand(5);
+ SDValue Sae = Op.getOperand(6);
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
+ RoundingMode, Sae),
+ Mask, Src0, Subtarget, DAG);
+ }
+ case INTR_TYPE_2OP_MASK:
+ case INTR_TYPE_2OP_IMM8_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+
+ if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK)
+ Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+ if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ // TODO: Intrinsics should have fast-math-flags to propagate.
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_2OP_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ // We specify 2 possible modes for intrinsics, with/without rounding
+ // modes.
+ // First, we check if the intrinsic have rounding mode (6 operands),
+ // if not, we set rounding mode to "current".
+ SDValue Rnd;
+ if (Op.getNumOperands() == 6)
+ Rnd = Op.getOperand(5);
+ else
+ Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_SCALAR_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Sae = Op.getOperand(6);
+
+ return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
+ Src2, Src3, Sae),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_MASK_RM: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Imm = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ // We specify 2 possible modes for intrinsics, with/without rounding
+ // modes.
+ // First, we check if the intrinsic have rounding mode (7 operands),
+ // if not, we set rounding mode to "current".
+ SDValue Rnd;
+ if (Op.getNumOperands() == 7)
+ Rnd = Op.getOperand(6);
+ else
+ Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Imm, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case INTR_TYPE_3OP_IMM8_MASK:
+ case INTR_TYPE_3OP_MASK:
+ case INSERT_SUBVEC: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue PassThru = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+
+ if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
+ Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
+ else if (IntrData->Type == INSERT_SUBVEC) {
+ // imm should be adapted to ISD::INSERT_SUBVECTOR behavior
+ assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!");
+ unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue();
+ Imm *= Src2.getSimpleValueType().getVectorNumElements();
+ Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32);
+ }
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(6);
+ unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
+ if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case VPERM_3OP_MASKZ:
+ case VPERM_3OP_MASK:{
+ // Src2 is the PassThru
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = SDValue();
+
+ // set PassThru element
+ if (IntrData->Type == VPERM_3OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+ else
+ PassThru = DAG.getBitcast(VT, Src2);
+
+ // Swap Src1 and Src2 in the node creation
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Src2, Src1, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case FMA_OP_MASK3:
+ case FMA_OP_MASKZ:
+ case FMA_OP_MASK: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Mask = Op.getOperand(4);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = SDValue();
+
+ // set PassThru element
+ if (IntrData->Type == FMA_OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+ else if (IntrData->Type == FMA_OP_MASK3)
+ PassThru = Src3;
+ else
+ PassThru = Src1;
+
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
+ if (IntrWithRoundingModeOpcode != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
+ X86::STATIC_ROUNDING::CUR_DIRECTION)
+ return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3, Rnd),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
+ dl, Op.getValueType(),
+ Src1, Src2, Src3),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case TERLOG_OP_MASK:
+ case TERLOG_OP_MASKZ: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue Src3 = Op.getOperand(3);
+ SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4));
+ SDValue Mask = Op.getOperand(5);
+ MVT VT = Op.getSimpleValueType();
+ SDValue PassThru = Src1;
+ // Set PassThru element.
+ if (IntrData->Type == TERLOG_OP_MASKZ)
+ PassThru = getZeroVector(VT, Subtarget, DAG, dl);
+
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ Src1, Src2, Src3, Src4),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case FPCLASS: {
+ // FPclass intrinsics with mask
+ SDValue Src1 = Op.getOperand(1);
+ MVT VT = Src1.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue Imm = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
+ SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask,
+ DAG.getTargetConstant(0, dl, MaskVT),
+ Subtarget, DAG);
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), FPclassMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case FPCLASSS: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Imm = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm);
+ SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask,
+ DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG);
+ return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i8, FPclassMask);
+ }
+ case CMP_MASK:
+ case CMP_MASK_CC: {
+ // Comparison intrinsics with masks.
+ // Example of transformation:
+ // (i8 (int_x86_avx512_mask_pcmpeq_q_128
+ // (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
+ // (i8 (bitcast
+ // (v8i1 (insert_subvector undef,
+ // (v2i1 (and (PCMPEQM %a, %b),
+ // (extract_subvector
+ // (v8i1 (bitcast %mask)), 0))), 0))))
+ MVT VT = Op.getOperand(1).getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ SDValue Cmp;
+ if (IntrData->Type == CMP_MASK_CC) {
+ SDValue CC = Op.getOperand(3);
+ CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
+ // We specify 2 possible opcodes for intrinsics with rounding modes.
+ // First, we check if the intrinsic may have non-default rounding mode,
+ // (IntrData->Opc1 != 0), then we check the rounding mode operand.
+ if (IntrData->Opc1 != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
+ X86::STATIC_ROUNDING::CUR_DIRECTION)
+ Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2), CC, Rnd);
+ }
+ //default rounding mode
+ if(!Cmp.getNode())
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2), CC);
+
+ } else {
+ assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
+ Op.getOperand(2));
+ }
+ SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
+ DAG.getTargetConstant(0, dl,
+ MaskVT),
+ Subtarget, DAG);
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), CmpMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case CMP_MASK_SCALAR_CC: {
+ SDValue Src1 = Op.getOperand(1);
+ SDValue Src2 = Op.getOperand(2);
+ SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
+ SDValue Mask = Op.getOperand(4);
+
+ SDValue Cmp;
+ if (IntrData->Opc1 != 0) {
+ SDValue Rnd = Op.getOperand(5);
+ if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
+ X86::STATIC_ROUNDING::CUR_DIRECTION)
+ Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd);
+ }
+ //default rounding mode
+ if(!Cmp.getNode())
+ Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC);
+
+ SDValue CmpMask = getScalarMaskingNode(Cmp, Mask,
+ DAG.getTargetConstant(0, dl,
+ MVT::i1),
+ Subtarget, DAG);
+
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i8,
+ DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, CmpMask),
+ DAG.getValueType(MVT::i1));
+ }
+ case COMI: { // Comparison intrinsics
+ ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned X86CC = TranslateX86CC(CC, dl, true, LHS, RHS, DAG);
+ assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
+ SDValue Cond = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, dl, MVT::i8), Cond);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case COMI_RM: { // Comparison intrinsics with Sae
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDValue CC = Op.getOperand(3);
+ SDValue Sae = Op.getOperand(4);
+ auto ComiType = TranslateX86ConstCondToX86CC(CC);
+ // choose between ordered and unordered (comi/ucomi)
+ unsigned comiOp = std::get<0>(ComiType) ? IntrData->Opc0 : IntrData->Opc1;
+ SDValue Cond;
+ if (cast<ConstantSDNode>(Sae)->getZExtValue() !=
+ X86::STATIC_ROUNDING::CUR_DIRECTION)
+ Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS, Sae);
+ else
+ Cond = DAG.getNode(comiOp, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(std::get<1>(ComiType), dl, MVT::i8), Cond);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case VSHIFT:
+ return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
+ Op.getOperand(1), Op.getOperand(2), DAG);
+ case VSHIFT_MASK:
+ return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
+ Op.getSimpleValueType(),
+ Op.getOperand(1),
+ Op.getOperand(2), DAG),
+ Op.getOperand(4), Op.getOperand(3), Subtarget,
+ DAG);
+ case COMPRESS_EXPAND_IN_REG: {
+ SDValue Mask = Op.getOperand(3);
+ SDValue DataToCompress = Op.getOperand(1);
+ SDValue PassThru = Op.getOperand(2);
+ if (isAllOnesConstant(Mask)) // return data as is
+ return Op.getOperand(1);
+
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ DataToCompress),
+ Mask, PassThru, Subtarget, DAG);
+ }
+ case BROADCASTM: {
+ SDValue Mask = Op.getOperand(1);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ Mask = DAG.getBitcast(MaskVT, Mask);
+ return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask);
+ }
+ case BLEND: {
+ SDValue Mask = Op.getOperand(3);
+ MVT VT = Op.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
+ Op.getOperand(2));
+ }
+ case KUNPCK: {
+ MVT VT = Op.getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2);
+
+ SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl);
+ SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl);
+ // Arguments should be swapped.
+ SDValue Res = DAG.getNode(IntrData->Opc0, dl,
+ MVT::getVectorVT(MVT::i1, VT.getSizeInBits()),
+ Src2, Src1);
+ return DAG.getBitcast(VT, Res);
+ }
+ case CONVERT_TO_MASK: {
+ MVT SrcVT = Op.getOperand(1).getSimpleValueType();
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits());
+
+ SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT,
+ Op.getOperand(1));
+ SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
+ DAG.getUNDEF(BitcastVT), CvtMask,
+ DAG.getIntPtrConstant(0, dl));
+ return DAG.getBitcast(Op.getValueType(), Res);
+ }
+ case CONVERT_MASK_TO_VEC: {
+ SDValue Mask = Op.getOperand(1);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
+ return DAG.getNode(IntrData->Opc0, dl, VT, VMask);
+ }
+ case BRCST_SUBVEC_TO_VEC: {
+ SDValue Src = Op.getOperand(1);
+ SDValue Passthru = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ EVT resVT = Passthru.getValueType();
+ SDValue subVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, resVT,
+ DAG.getUNDEF(resVT), Src,
+ DAG.getIntPtrConstant(0, dl));
+ SDValue immVal;
+ if (Src.getSimpleValueType().is256BitVector() && resVT.is512BitVector())
+ immVal = DAG.getConstant(0x44, dl, MVT::i8);
+ else
+ immVal = DAG.getConstant(0, dl, MVT::i8);
+ return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
+ subVec, subVec, immVal),
+ Mask, Passthru, Subtarget, DAG);
+ }
+ default:
+ break;
+ }
+ }
+
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps:
+ // Operands intentionally swapped. Mask is last operand to intrinsic,
+ // but second operand for node/instruction.
+ return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
+ Op.getOperand(2), Op.getOperand(1));
+
+ // ptest and testp intrinsics. The intrinsic these come from are designed to
+ // return an integer value, not just an instruction so lower it to the ptest
+ // or testp pattern and a setcc for the result.
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestz_256:
+ case Intrinsic::x86_avx_ptestc_256:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256: {
+ bool IsTestPacked = false;
+ unsigned X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
+ case Intrinsic::x86_avx_vtestz_ps:
+ case Intrinsic::x86_avx_vtestz_pd:
+ case Intrinsic::x86_avx_vtestz_ps_256:
+ case Intrinsic::x86_avx_vtestz_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_avx_ptestz_256:
+ // ZF = 1
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_avx_vtestc_ps:
+ case Intrinsic::x86_avx_vtestc_pd:
+ case Intrinsic::x86_avx_vtestc_ps_256:
+ case Intrinsic::x86_avx_vtestc_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_avx_ptestc_256:
+ // CF = 1
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_avx_vtestnzc_ps:
+ case Intrinsic::x86_avx_vtestnzc_pd:
+ case Intrinsic::x86_avx_vtestnzc_ps_256:
+ case Intrinsic::x86_avx_vtestnzc_pd_256:
+ IsTestPacked = true; // Fallthrough
+ case Intrinsic::x86_sse41_ptestnzc:
+ case Intrinsic::x86_avx_ptestnzc_256:
+ // ZF and CF = 0
+ X86CC = X86::COND_A;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
+ SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
+ SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ case Intrinsic::x86_avx512_kortestz_w:
+ case Intrinsic::x86_avx512_kortestc_w: {
+ unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
+ SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
+ SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
+ SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistria128:
+ case Intrinsic::x86_sse42_pcmpestria128:
+ case Intrinsic::x86_sse42_pcmpistric128:
+ case Intrinsic::x86_sse42_pcmpestric128:
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ case Intrinsic::x86_sse42_pcmpistris128:
+ case Intrinsic::x86_sse42_pcmpestris128:
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ case Intrinsic::x86_sse42_pcmpestriz128: {
+ unsigned Opcode;
+ unsigned X86CC;
+ switch (IntNo) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse42_pcmpistria128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpestria128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_A;
+ break;
+ case Intrinsic::x86_sse42_pcmpistric128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpestric128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse42_pcmpistrio128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpestrio128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_O;
+ break;
+ case Intrinsic::x86_sse42_pcmpistris128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpestris128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_S;
+ break;
+ case Intrinsic::x86_sse42_pcmpistriz128:
+ Opcode = X86ISD::PCMPISTRI;
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_sse42_pcmpestriz128:
+ Opcode = X86ISD::PCMPESTRI;
+ X86CC = X86::COND_E;
+ break;
+ }
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, dl, MVT::i8),
+ SDValue(PCMP.getNode(), 1));
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ case Intrinsic::x86_sse42_pcmpistri128:
+ case Intrinsic::x86_sse42_pcmpestri128: {
+ unsigned Opcode;
+ if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
+ Opcode = X86ISD::PCMPISTRI;
+ else
+ Opcode = X86ISD::PCMPESTRI;
+
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(Opcode, dl, VTs, NewOps);
+ }
+
+ case Intrinsic::x86_seh_lsda: {
+ // Compute the symbol for the LSDA. We know it'll get emitted later.
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Op1 = Op.getOperand(1);
+ auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
+ MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
+ GlobalValue::getRealLinkageName(Fn->getName()));
+
+ // Generate a simple absolute symbol reference. This intrinsic is only
+ // supported on 32-bit Windows, which isn't PIC.
+ SDValue Result = DAG.getMCSymbol(LSDASym, VT);
+ return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
+ }
+
+ case Intrinsic::x86_seh_recoverfp: {
+ SDValue FnOp = Op.getOperand(1);
+ SDValue IncomingFPOp = Op.getOperand(2);
+ GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
+ auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
+ if (!Fn)
+ report_fatal_error(
+ "llvm.x86.seh.recoverfp must take a function as the first argument");
+ return recoverFramePointer(DAG, Fn, IncomingFPOp);
+ }
+
+ case Intrinsic::localaddress: {
+ // Returns one of the stack, base, or frame pointer registers, depending on
+ // which is used to reference local variables.
+ MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ unsigned Reg;
+ if (RegInfo->hasBasePointer(MF))
+ Reg = RegInfo->getBaseRegister();
+ else // This function handles the SP or FP case.
+ Reg = RegInfo->getPtrSizedFrameRegister(MF);
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+ }
+ }
+}
+
+static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget * Subtarget) {
+ SDLoc dl(Op);
+ auto *C = cast<ConstantSDNode>(ScaleOp);
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
+ else {
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
+ }
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ if (Src.getOpcode() == ISD::UNDEF)
+ Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
+ SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, dl);
+}
+
+static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ auto *C = cast<ConstantSDNode>(ScaleOp);
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ MVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
+ else {
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ MaskInReg = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
+ }
+ SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
+ SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ return SDValue(Res, 1);
+}
+
+static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Mask, SDValue Base, SDValue Index,
+ SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ auto *C = cast<ConstantSDNode>(ScaleOp);
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ MVT MaskVT =
+ MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
+ SDValue MaskInReg;
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(Mask);
+ if (MaskC)
+ MaskInReg = DAG.getTargetConstant(MaskC->getSExtValue(), dl, MaskVT);
+ else
+ MaskInReg = DAG.getBitcast(MaskVT, Mask);
+ //SDVTList VTs = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+}
+
+// getReadPerformanceCounter - Handles the lowering of builtin intrinsics that
+// read performance monitor counters (x86_rdpmc).
+static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue LO, HI;
+
+ // The ECX register is used to select the index of the performance counter
+ // to read.
+ SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
+ N->getOperand(2));
+ SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
+
+ // Reads the content of a 64-bit performance counter and returns it in the
+ // registers EDX:EAX.
+ if (Subtarget->is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ Chain = HI.getValue(1);
+
+ if (Subtarget->is64Bit()) {
+ // The EAX register is loaded with the low-order 32 bits. The EDX register
+ // is loaded with the supported high-order bits of the counter.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, DL, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+// getReadTimeStampCounter - Handles the lowering of builtin intrinsics that
+// read the time stamp counter (x86_rdtsc and x86_rdtscp). This function is
+// also used to custom lower READCYCLECOUNTER nodes.
+static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget,
+ SmallVectorImpl<SDValue> &Results) {
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
+ SDValue LO, HI;
+
+ // The processor's time-stamp counter (a 64-bit MSR) is stored into the
+ // EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
+ // and the EAX register is loaded with the low-order 32 bits.
+ if (Subtarget->is64Bit()) {
+ LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
+ LO.getValue(2));
+ } else {
+ LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
+ HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
+ LO.getValue(2));
+ }
+ SDValue Chain = HI.getValue(1);
+
+ if (Opcode == X86ISD::RDTSCP_DAG) {
+ assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
+
+ // Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
+ // the ECX register. Add 'ecx' explicitly to the chain.
+ SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
+ HI.getValue(2));
+ // Explicitly store the content of ECX at the location passed in input
+ // to the 'rdtscp' intrinsic.
+ Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
+ MachinePointerInfo(), false, false, 0);
+ }
+
+ if (Subtarget->is64Bit()) {
+ // The EDX register is loaded with the high-order 32 bits of the MSR, and
+ // the EAX register is loaded with the low-order 32 bits.
+ SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
+ DAG.getConstant(32, DL, MVT::i8));
+ Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
+ Results.push_back(Chain);
+ return;
+ }
+
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { LO, HI };
+ SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
+ Results.push_back(Pair);
+ Results.push_back(Chain);
+}
+
+static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SmallVector<SDValue, 2> Results;
+ SDLoc DL(Op);
+ getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ return DAG.getMergeValues(Results, DL);
+}
+
+static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue RegNode = Op.getOperand(2);
+ WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
+ if (!EHInfo)
+ report_fatal_error("EH registrations only live in functions using WinEH");
+
+ // Cast the operand to an alloca, and remember the frame index.
+ auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
+ if (!FINode)
+ report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
+ EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
+
+ // Return the chain operand without making any DAG nodes.
+ return Chain;
+}
+
+/// \brief Lower intrinsics for TRUNCATE_TO_MEM case
+/// return truncate Store/MaskedStore Node
+static SDValue LowerINTRINSIC_TRUNCATE_TO_MEM(const SDValue & Op,
+ SelectionDAG &DAG,
+ MVT ElementType) {
+ SDLoc dl(Op);
+ SDValue Mask = Op.getOperand(4);
+ SDValue DataToTruncate = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+
+ MVT VT = DataToTruncate.getSimpleValueType();
+ MVT SVT = MVT::getVectorVT(ElementType, VT.getVectorNumElements());
+
+ if (isAllOnesConstant(Mask)) // return just a truncate store
+ return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr,
+ MachinePointerInfo(), SVT, false, false,
+ SVT.getScalarSizeInBits()/8);
+
+ MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
+ MVT BitcastVT = MVT::getVectorVT(MVT::i1,
+ Mask.getSimpleValueType().getSizeInBits());
+ // In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
+ // are extracted by EXTRACT_SUBVECTOR.
+ SDValue VMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
+ DAG.getBitcast(BitcastVT, Mask),
+ DAG.getIntPtrConstant(0, dl));
+
+ MachineMemOperand *MMO = DAG.getMachineFunction().
+ getMachineMemOperand(MachinePointerInfo(),
+ MachineMemOperand::MOStore, SVT.getStoreSize(),
+ SVT.getScalarSizeInBits()/8);
+
+ return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr,
+ VMask, SVT, MMO, true);
+}
+
+static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+
+ const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
+ if (!IntrData) {
+ if (IntNo == llvm::Intrinsic::x86_seh_ehregnode)
+ return MarkEHRegistrationNode(Op, DAG);
+ return SDValue();
+ }
+
+ SDLoc dl(Op);
+ switch(IntrData->Type) {
+ default: llvm_unreachable("Unknown Intrinsic Type");
+ case RDSEED:
+ case RDRAND: {
+ // Emit the node with the right value type.
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
+ SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
+
+ // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
+ // Otherwise return the value from Rand, which is always 0, casted to i32.
+ SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
+ DAG.getConstant(1, dl, Op->getValueType(1)),
+ DAG.getConstant(X86::COND_B, dl, MVT::i32),
+ SDValue(Result.getNode(), 1) };
+ SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
+ DAG.getVTList(Op->getValueType(1), MVT::Glue),
+ Ops);
+
+ // Return { result, isValid, chain }.
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
+ SDValue(Result.getNode(), 2));
+ }
+ case GATHER: {
+ //gather(v1, mask, index, base, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Src = Op.getOperand(2);
+ SDValue Base = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Mask = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
+ Chain, Subtarget);
+ }
+ case SCATTER: {
+ //scatter(base, mask, index, v1, scale);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Base = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Src = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
+ Scale, Chain);
+ }
+ case PREFETCH: {
+ SDValue Hint = Op.getOperand(6);
+ unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
+ assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
+ unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
+ SDValue Chain = Op.getOperand(0);
+ SDValue Mask = Op.getOperand(2);
+ SDValue Index = Op.getOperand(3);
+ SDValue Base = Op.getOperand(4);
+ SDValue Scale = Op.getOperand(5);
+ return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain);
+ }
+ // Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
+ case RDTSC: {
+ SmallVector<SDValue, 2> Results;
+ getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
+ Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // Read Performance Monitoring Counters.
+ case RDPMC: {
+ SmallVector<SDValue, 2> Results;
+ getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
+ return DAG.getMergeValues(Results, dl);
+ }
+ // XTEST intrinsics.
+ case XTEST: {
+ SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
+ SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_NE, dl, MVT::i8),
+ InTrans);
+ SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
+ Ret, SDValue(InTrans.getNode(), 1));
+ }
+ // ADC/ADCX/SBB
+ case ADX: {
+ SmallVector<SDValue, 2> Results;
+ SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
+ SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
+ SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
+ DAG.getConstant(-1, dl, MVT::i8));
+ SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
+ Op.getOperand(4), GenCF.getValue(1));
+ SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
+ Op.getOperand(5), MachinePointerInfo(),
+ false, false, 0);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_B, dl, MVT::i8),
+ Res.getValue(1));
+ Results.push_back(SetCC);
+ Results.push_back(Store);
+ return DAG.getMergeValues(Results, dl);
+ }
+ case COMPRESS_TO_MEM: {
+ SDLoc dl(Op);
+ SDValue Mask = Op.getOperand(4);
+ SDValue DataToCompress = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+
+ MVT VT = DataToCompress.getSimpleValueType();
+ if (isAllOnesConstant(Mask)) // return just a store
+ return DAG.getStore(Chain, dl, DataToCompress, Addr,
+ MachinePointerInfo(), false, false,
+ VT.getScalarSizeInBits()/8);
+
+ SDValue Compressed =
+ getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress),
+ Mask, DAG.getUNDEF(VT), Subtarget, DAG);
+ return DAG.getStore(Chain, dl, Compressed, Addr,
+ MachinePointerInfo(), false, false,
+ VT.getScalarSizeInBits()/8);
+ }
+ case TRUNCATE_TO_MEM_VI8:
+ return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i8);
+ case TRUNCATE_TO_MEM_VI16:
+ return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i16);
+ case TRUNCATE_TO_MEM_VI32:
+ return LowerINTRINSIC_TRUNCATE_TO_MEM(Op, DAG, MVT::i32);
+ case EXPAND_FROM_MEM: {
+ SDLoc dl(Op);
+ SDValue Mask = Op.getOperand(4);
+ SDValue PassThru = Op.getOperand(3);
+ SDValue Addr = Op.getOperand(2);
+ SDValue Chain = Op.getOperand(0);
+ MVT VT = Op.getSimpleValueType();
+
+ if (isAllOnesConstant(Mask)) // return just a load
+ return DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(), false, false,
+ false, VT.getScalarSizeInBits()/8);
+
+ SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr, MachinePointerInfo(),
+ false, false, false,
+ VT.getScalarSizeInBits()/8);
+
+ SDValue Results[] = {
+ getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand),
+ Mask, PassThru, Subtarget, DAG), Chain};
+ return DAG.getMergeValues(Results, dl);
+ }
+ }
+}
+
+SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, PtrVT,
+ FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Just load the return address.
+ SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
+ return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
+ RetAddrFI, MachinePointerInfo(), false, false, false, 0);
+}
+
+SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ EVT VT = Op.getValueType();
+
+ MFI->setFrameAddressIsTaken(true);
+
+ if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
+ // Depth > 0 makes no sense on targets which use Windows unwind codes. It
+ // is not possible to crawl up the stack without looking at the unwind codes
+ // simultaneously.
+ int FrameAddrIndex = FuncInfo->getFAIndex();
+ if (!FrameAddrIndex) {
+ // Set up a frame object for the return address.
+ unsigned SlotSize = RegInfo->getSlotSize();
+ FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
+ SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
+ FuncInfo->setFAIndex(FrameAddrIndex);
+ }
+ return DAG.getFrameIndex(FrameAddrIndex, VT);
+ }
+
+ unsigned FrameReg =
+ RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
+ (FrameReg == X86::EBP && VT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
+ const MachineFunction &MF = DAG.getMachineFunction();
+
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("esp", X86::ESP)
+ .Case("rsp", X86::RSP)
+ .Case("ebp", X86::EBP)
+ .Case("rbp", X86::RBP)
+ .Default(0);
+
+ if (Reg == X86::EBP || Reg == X86::RBP) {
+ if (!TFI.hasFP(MF))
+ report_fatal_error("register " + StringRef(RegName) +
+ " is allocatable: function has no frame pointer");
+#ifndef NDEBUG
+ else {
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ unsigned FrameReg =
+ RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
+ assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
+ "Invalid Frame Register!");
+ }
+#endif
+ }
+
+ if (Reg)
+ return Reg;
+
+ report_fatal_error("Invalid register name global variable");
+}
+
+SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
+ SelectionDAG &DAG) const {
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
+}
+
+unsigned X86TargetLowering::getExceptionPointerRegister(
+ const Constant *PersonalityFn) const {
+ if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
+ return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX;
+
+ return Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
+}
+
+unsigned X86TargetLowering::getExceptionSelectorRegister(
+ const Constant *PersonalityFn) const {
+ // Funclet personalities don't use selectors (the runtime does the selection).
+ assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
+ return Subtarget->isTarget64BitLP64() ? X86::RDX : X86::EDX;
+}
+
+SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl (Op);
+
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
+ assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
+ (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
+ "Invalid Frame Register!");
+ SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
+ unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
+
+ SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
+ DAG.getIntPtrConstant(RegInfo->getSlotSize(),
+ dl));
+ StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
+ false, false, 0);
+ Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
+
+ return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
+ DAG.getRegister(StoreAddrReg, PtrVT));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
+ DAG.getVTList(MVT::i32, MVT::Other),
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
+ Op.getOperand(0), Op.getOperand(1));
+}
+
+static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
+ return Op.getOperand(0);
+}
+
+SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Root = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ SDLoc dl (Op);
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
+
+ if (Subtarget->is64Bit()) {
+ SDValue OutChains[6];
+
+ // Large code-model.
+ const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
+ const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
+
+ const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
+ const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
+
+ const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
+
+ // Load the pointer to the nested function into R11.
+ unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
+ SDValue Addr = Trmp;
+ OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(2, dl, MVT::i64));
+ OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
+ MachinePointerInfo(TrmpAddr, 2),
+ false, false, 2);
+
+ // Load the 'nest' parameter value into R10.
+ // R10 is specified in X86CallingConv.td
+ OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(10, dl, MVT::i64));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 10),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(12, dl, MVT::i64));
+ OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 12),
+ false, false, 2);
+
+ // Jump to the nested function.
+ OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(20, dl, MVT::i64));
+ OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
+ Addr, MachinePointerInfo(TrmpAddr, 20),
+ false, false, 0);
+
+ unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(22, dl, MVT::i64));
+ OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
+ Addr, MachinePointerInfo(TrmpAddr, 22),
+ false, false, 0);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ } else {
+ const Function *Func =
+ cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
+ CallingConv::ID CC = Func->getCallingConv();
+ unsigned NestReg;
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::X86_StdCall: {
+ // Pass 'nest' parameter in ECX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::ECX;
+
+ // Check that ECX wasn't needed by an 'inreg' parameter.
+ FunctionType *FTy = Func->getFunctionType();
+ const AttributeSet &Attrs = Func->getAttributes();
+
+ if (!Attrs.isEmpty() && !Func->isVarArg()) {
+ unsigned InRegCount = 0;
+ unsigned Idx = 1;
+
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I, ++Idx)
+ if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
+ auto &DL = DAG.getDataLayout();
+ // FIXME: should only count parameters that are lowered to integers.
+ InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
+ }
+
+ if (InRegCount > 2) {
+ report_fatal_error("Nest register in use - reduce number of inreg"
+ " parameters!");
+ }
+ }
+ break;
+ }
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::Fast:
+ // Pass 'nest' parameter in EAX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::EAX;
+ break;
+ }
+
+ SDValue OutChains[4];
+ SDValue Addr, Disp;
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(10, dl, MVT::i32));
+ Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
+
+ // This is storing the opcode for MOV32ri.
+ const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
+ const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
+ OutChains[0] = DAG.getStore(Root, dl,
+ DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8),
+ Trmp, MachinePointerInfo(TrmpAddr),
+ false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(1, dl, MVT::i32));
+ OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
+ MachinePointerInfo(TrmpAddr, 1),
+ false, false, 1);
+
+ const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(5, dl, MVT::i32));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
+ Addr, MachinePointerInfo(TrmpAddr, 5),
+ false, false, 1);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(6, dl, MVT::i32));
+ OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
+ MachinePointerInfo(TrmpAddr, 6),
+ false, false, 1);
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
+ }
+}
+
+SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ /*
+ The rounding mode is in bits 11:10 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to -inf
+ 10 Round to +inf
+ 11 Round to 0
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetFrameLowering &TFI = *Subtarget->getFrameLowering();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+
+ // Save FP Control Word to stack slot
+ int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
+ SDValue StackSlot =
+ DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
+
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
+ MachineMemOperand::MOStore, 2, 2);
+
+ SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
+ SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
+ DAG.getVTList(MVT::Other),
+ Ops, MVT::i16, MMO);
+
+ // Load FP Control Word from stack slot
+ SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
+ MachinePointerInfo(), false, false, false, 0);
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x800, DL, MVT::i16)),
+ DAG.getConstant(11, DL, MVT::i8));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, DL, MVT::i16,
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ CWD, DAG.getConstant(0x400, DL, MVT::i16)),
+ DAG.getConstant(9, DL, MVT::i8));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::AND, DL, MVT::i16,
+ DAG.getNode(ISD::ADD, DL, MVT::i16,
+ DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
+ DAG.getConstant(1, DL, MVT::i16)),
+ DAG.getConstant(3, DL, MVT::i16));
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
+}
+
+/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction.
+//
+// 1. i32/i64 128/256-bit vector (native support require VLX) are expended
+// to 512-bit vector.
+// 2. i8/i16 vector implemented using dword LZCNT vector instruction
+// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
+// split the vector, perform operation on it's Lo a Hi part and
+// concatenate the results.
+static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (EltVT == MVT::i64 || EltVT == MVT::i32) {
+ // Extend to 512 bit vector.
+ assert((VT.is256BitVector() || VT.is128BitVector()) &&
+ "Unsupported value type for operation");
+
+ MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits());
+ SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
+ DAG.getUNDEF(NewVT),
+ Op.getOperand(0),
+ DAG.getIntPtrConstant(0, dl));
+ SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512);
+
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ "Unsupported element type");
+
+ if (16 < NumElems) {
+ // Split vector, it's Lo and Hi parts will be handled in next iteration.
+ SDValue Lo, Hi;
+ std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
+ MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ Lo = DAG.getNode(Op.getOpcode(), dl, OutVT, Lo);
+ Hi = DAG.getNode(Op.getOpcode(), dl, OutVT, Hi);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
+ }
+
+ MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
+
+ assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
+ "Unsupported value type for operation");
+
+ // Use native supported vector instruction vplzcntd.
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
+ SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
+ SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
+ SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
+
+ return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
+}
+
+static SDValue LowerCTLZ(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+
+ if (VT.isVector() && Subtarget->hasAVX512())
+ return LowerVectorCTLZ_AVX512(Op, DAG);
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ // If src is zero (i.e. bsr sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
+ DAG.getConstant(X86::COND_E, dl, MVT::i8),
+ Op.getValue(1)
+ };
+ Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
+
+ // Finally xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
+ DAG.getConstant(NumBits - 1, dl, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ EVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse).
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ // And xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
+ DAG.getConstant(NumBits - 1, dl, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ unsigned NumBits = VT.getScalarSizeInBits();
+ SDLoc dl(Op);
+
+ if (VT.isVector()) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ SDValue N0 = Op.getOperand(0);
+ SDValue Zero = DAG.getConstant(0, dl, VT);
+
+ // lsb(x) = (x & -x)
+ SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
+ DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
+
+ // cttz_undef(x) = (width - 1) - ctlz(lsb)
+ if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
+ TLI.isOperationLegal(ISD::CTLZ, VT)) {
+ SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
+ return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
+ DAG.getNode(ISD::CTLZ, dl, VT, LSB));
+ }
+
+ // cttz(x) = ctpop(lsb - 1)
+ SDValue One = DAG.getConstant(1, dl, VT);
+ return DAG.getNode(ISD::CTPOP, dl, VT,
+ DAG.getNode(ISD::SUB, dl, VT, LSB, One));
+ }
+
+ assert(Op.getOpcode() == ISD::CTTZ &&
+ "Only scalar CTTZ requires custom lowering");
+
+ // Issue a bsf (scan bits forward) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
+
+ // If src is zero (i.e. bsf sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits, dl, VT),
+ DAG.getConstant(X86::COND_E, dl, MVT::i8),
+ Op.getValue(1)
+ };
+ return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
+}
+
+// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
+// ones, and then concatenate the result back.
+static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+
+ assert(VT.is256BitVector() && VT.isInteger() &&
+ "Unsupported value type for operation");
+
+ unsigned NumElems = VT.getVectorNumElements();
+ SDLoc dl(Op);
+
+ // Extract the LHS vectors
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
+
+ // Extract the RHS vectors
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
+
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
+ DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
+}
+
+static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
+ if (Op.getValueType() == MVT::i1)
+ return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(0), Op.getOperand(1));
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
+ if (Op.getValueType() == MVT::i1)
+ return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(0), Op.getOperand(1));
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().is256BitVector() &&
+ Op.getSimpleValueType().isInteger() &&
+ "Only handle AVX 256-bit vector integer operation");
+ return Lower256IntArith(Op, DAG);
+}
+
+static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+
+ if (VT == MVT::i1)
+ return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
+
+ // Decompose 256-bit ops into smaller 128-bit ops.
+ if (VT.is256BitVector() && !Subtarget->hasInt256())
+ return Lower256IntArith(Op, DAG);
+
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ // Lower v16i8/v32i8 mul as promotion to v8i16/v16i16 vector
+ // pairs, multiply and truncate.
+ if (VT == MVT::v16i8 || VT == MVT::v32i8) {
+ if (Subtarget->hasInt256()) {
+ if (VT == MVT::v32i8) {
+ MVT SubVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() / 2);
+ SDValue Lo = DAG.getIntPtrConstant(0, dl);
+ SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl);
+ SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Lo);
+ SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Lo);
+ SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, A, Hi);
+ SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, B, Hi);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
+ DAG.getNode(ISD::MUL, dl, SubVT, ALo, BLo),
+ DAG.getNode(ISD::MUL, dl, SubVT, AHi, BHi));
+ }
+
+ MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
+ return DAG.getNode(
+ ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::MUL, dl, ExVT,
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
+ DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
+ }
+
+ assert(VT == MVT::v16i8 &&
+ "Pre-AVX2 support only supports v16i8 multiplication");
+ MVT ExVT = MVT::v8i16;
+
+ // Extract the lo parts and sign extend to i16
+ SDValue ALo, BLo;
+ if (Subtarget->hasSSE41()) {
+ ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A);
+ BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B);
+ } else {
+ const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
+ -1, 4, -1, 5, -1, 6, -1, 7};
+ ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ ALo = DAG.getBitcast(ExVT, ALo);
+ BLo = DAG.getBitcast(ExVT, BLo);
+ ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
+ BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Extract the hi parts and sign extend to i16
+ SDValue AHi, BHi;
+ if (Subtarget->hasSSE41()) {
+ const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
+ -1, -1, -1, -1, -1, -1, -1, -1};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi);
+ BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi);
+ } else {
+ const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
+ -1, 12, -1, 13, -1, 14, -1, 15};
+ AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
+ BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
+ AHi = DAG.getBitcast(ExVT, AHi);
+ BHi = DAG.getBitcast(ExVT, BHi);
+ AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
+ BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
+ }
+
+ // Multiply, mask the lower 8bits of the lo/hi results and pack
+ SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
+ SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
+ RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
+ RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+ }
+
+ // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
+ if (VT == MVT::v4i32) {
+ assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
+ "Should not custom lower when pmuldq is available!");
+
+ // Extract the odd parts.
+ static const int UnpackMask[] = { 1, -1, 3, -1 };
+ SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
+ SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
+
+ // Multiply the even parts.
+ SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
+ // Now multiply odd parts.
+ SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
+
+ Evens = DAG.getBitcast(VT, Evens);
+ Odds = DAG.getBitcast(VT, Odds);
+
+ // Merge the two vectors back together with a shuffle. This expands into 2
+ // shuffles.
+ static const int ShufMask[] = { 0, 4, 2, 6 };
+ return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
+ }
+
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
+ "Only know how to lower V2I64/V4I64/V8I64 multiply");
+
+ // Ahi = psrlqi(a, 32);
+ // Bhi = psrlqi(b, 32);
+ //
+ // AloBlo = pmuludq(a, b);
+ // AloBhi = pmuludq(a, Bhi);
+ // AhiBlo = pmuludq(Ahi, b);
+
+ // AloBhi = psllqi(AloBhi, 32);
+ // AhiBlo = psllqi(AhiBlo, 32);
+ // return AloBlo + AloBhi + AhiBlo;
+
+ SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
+ SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
+
+ SDValue AhiBlo = Ahi;
+ SDValue AloBhi = Bhi;
+ // Bit cast to 32-bit vectors for MULUDQ
+ MVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
+ (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
+ A = DAG.getBitcast(MulVT, A);
+ B = DAG.getBitcast(MulVT, B);
+ Ahi = DAG.getBitcast(MulVT, Ahi);
+ Bhi = DAG.getBitcast(MulVT, Bhi);
+
+ SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
+ // After shifting right const values the result may be all-zero.
+ if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) {
+ AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
+ AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
+ }
+ if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) {
+ AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
+ AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
+ }
+
+ SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
+ return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
+}
+
+SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWin64() && "Unexpected target");
+ EVT VT = Op.getValueType();
+ assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
+ "Unexpected return type for lowering");
+
+ RTLIB::Libcall LC;
+ bool isSigned;
+ switch (Op->getOpcode()) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
+ case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
+ case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
+ case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
+ case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
+ case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
+ }
+
+ SDLoc dl(Op);
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = Op->getOperand(i).getValueType();
+ assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
+ "Unexpected argument type for lowering");
+ SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
+ Entry.Node = StackPtr;
+ InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
+ false, false, 16);
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ Entry.Ty = PointerType::get(ArgTy,0);
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+ }
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(InChain)
+ .setCallee(getLibcallCallingConv(LC),
+ static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
+ Callee, std::move(Args), 0)
+ .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return DAG.getBitcast(VT, CallInfo.first);
+}
+
+static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
+ MVT VT = Op0.getSimpleValueType();
+ SDLoc dl(Op);
+
+ assert((VT == MVT::v4i32 && Subtarget->hasSSE2()) ||
+ (VT == MVT::v8i32 && Subtarget->hasInt256()));
+
+ // PMULxD operations multiply each even value (starting at 0) of LHS with
+ // the related value of RHS and produce a widen result.
+ // E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ //
+ // In other word, to have all the results, we need to perform two PMULxD:
+ // 1. one with the even values.
+ // 2. one with the odd values.
+ // To achieve #2, with need to place the odd values at an even position.
+ //
+ // Place the odd value at an even position (basically, shift all values 1
+ // step to the left):
+ const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
+ // <a|b|c|d> => <b|undef|d|undef>
+ SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
+ // <e|f|g|h> => <f|undef|h|undef>
+ SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
+
+ // Emit two multiplies, one for the lower 2 ints and one for the higher 2
+ // ints.
+ MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
+ bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
+ unsigned Opcode =
+ (!IsSigned || !Subtarget->hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
+ // PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
+ // => <2 x i64> <ae|cg>
+ SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
+ // PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
+ // => <2 x i64> <bf|dh>
+ SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
+
+ // Shuffle it back into the right order.
+ SDValue Highs, Lows;
+ if (VT == MVT::v8i32) {
+ const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
+ Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
+ const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
+ Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
+ } else {
+ const int HighMask[] = {1, 5, 3, 7};
+ Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
+ const int LowMask[] = {0, 4, 2, 6};
+ Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
+ }
+
+ // If we have a signed multiply but no PMULDQ fix up the high parts of a
+ // unsigned multiply.
+ if (IsSigned && !Subtarget->hasSSE41()) {
+ SDValue ShAmt = DAG.getConstant(
+ 31, dl,
+ DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
+ SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
+ SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
+
+ SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
+ Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
+ }
+
+ // The first result of MUL_LOHI is actually the low value, followed by the
+ // high value.
+ SDValue Ops[] = {Lows, Highs};
+ return DAG.getMergeValues(Ops, dl);
+}
+
+// Return true if the required (according to Opcode) shift-imm form is natively
+// supported by the Subtarget
+static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget *Subtarget,
+ unsigned Opcode) {
+ if (VT.getScalarSizeInBits() < 16)
+ return false;
+
+ if (VT.is512BitVector() &&
+ (VT.getScalarSizeInBits() > 16 || Subtarget->hasBWI()))
+ return true;
+
+ bool LShift = VT.is128BitVector() ||
+ (VT.is256BitVector() && Subtarget->hasInt256());
+
+ bool AShift = LShift && (Subtarget->hasVLX() ||
+ (VT != MVT::v2i64 && VT != MVT::v4i64));
+ return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
+// The shift amount is a variable, but it is the same for all vector lanes.
+// These instructions are defined together with shift-immediate.
+static
+bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget *Subtarget,
+ unsigned Opcode) {
+ return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
+}
+
+// Return true if the required (according to Opcode) variable-shift form is
+// natively supported by the Subtarget
+static bool SupportedVectorVarShift(MVT VT, const X86Subtarget *Subtarget,
+ unsigned Opcode) {
+
+ if (!Subtarget->hasInt256() || VT.getScalarSizeInBits() < 16)
+ return false;
+
+ // vXi16 supported only on AVX-512, BWI
+ if (VT.getScalarSizeInBits() == 16 && !Subtarget->hasBWI())
+ return false;
+
+ if (VT.is512BitVector() || Subtarget->hasVLX())
+ return true;
+
+ bool LShift = VT.is128BitVector() || VT.is256BitVector();
+ bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64;
+ return (Opcode == ISD::SRA) ? AShift : LShift;
+}
+
+static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
+ auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
+ MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
+ SDValue Ex = DAG.getBitcast(ExVT, R);
+
+ if (ShiftAmt >= 32) {
+ // Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
+ SDValue Upper =
+ getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
+ SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
+ ShiftAmt - 32, DAG);
+ if (VT == MVT::v2i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
+ if (VT == MVT::v4i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
+ {9, 1, 11, 3, 13, 5, 15, 7});
+ } else {
+ // SRA upper i32, SHL whole i64 and select lower i32.
+ SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
+ ShiftAmt, DAG);
+ SDValue Lower =
+ getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
+ Lower = DAG.getBitcast(ExVT, Lower);
+ if (VT == MVT::v2i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
+ if (VT == MVT::v4i64)
+ Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
+ {8, 1, 10, 3, 12, 5, 14, 7});
+ }
+ return DAG.getBitcast(VT, Ex);
+ };
+
+ // Optimize shl/srl/sra with constant shift amount.
+ if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
+ if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
+ uint64_t ShiftAmt = ShiftConst->getZExtValue();
+
+ if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
+ return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
+
+ // i64 SRA needs to be performed as partial shifts.
+ if ((VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
+ Op.getOpcode() == ISD::SRA && !Subtarget->hasXOP())
+ return ArithmeticShiftRight64(ShiftAmt);
+
+ if (VT == MVT::v16i8 ||
+ (Subtarget->hasInt256() && VT == MVT::v32i8) ||
+ VT == MVT::v64i8) {
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
+
+ // Simple i8 add case
+ if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
+ return DAG.getNode(ISD::ADD, dl, VT, R, R);
+
+ // ashr(R, 7) === cmp_slt(R, 0)
+ if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
+ }
+
+ // XOP can shift v16i8 directly instead of as shift v8i16 + mask.
+ if (VT == MVT::v16i8 && Subtarget->hasXOP())
+ return SDValue();
+
+ if (Op.getOpcode() == ISD::SHL) {
+ // Make a large shift.
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
+ R, ShiftAmt, DAG);
+ SHL = DAG.getBitcast(VT, SHL);
+ // Zero out the rightmost bits.
+ return DAG.getNode(ISD::AND, dl, VT, SHL,
+ DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT));
+ }
+ if (Op.getOpcode() == ISD::SRL) {
+ // Make a large shift.
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
+ R, ShiftAmt, DAG);
+ SRL = DAG.getBitcast(VT, SRL);
+ // Zero out the leftmost bits.
+ return DAG.getNode(ISD::AND, dl, VT, SRL,
+ DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
+ }
+ if (Op.getOpcode() == ISD::SRA) {
+ // ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
+ SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+
+ SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
+ Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
+ Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
+ return Res;
+ }
+ llvm_unreachable("Unknown shift opcode.");
+ }
+ }
+ }
+
+ // Special case in 32-bit mode, where i64 is expanded into high and low parts.
+ if (!Subtarget->is64Bit() && !Subtarget->hasXOP() &&
+ (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64))) {
+
+ // Peek through any splat that was introduced for i64 shift vectorization.
+ int SplatIndex = -1;
+ if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
+ if (SVN->isSplat()) {
+ SplatIndex = SVN->getSplatIndex();
+ Amt = Amt.getOperand(0);
+ assert(SplatIndex < (int)VT.getVectorNumElements() &&
+ "Splat shuffle referencing second operand");
+ }
+
+ if (Amt.getOpcode() != ISD::BITCAST ||
+ Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ VT.getVectorNumElements();
+ unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
+ uint64_t ShiftAmt = 0;
+ unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
+ for (unsigned i = 0; i != Ratio; ++i) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
+ }
+
+ // Check remaining shift amounts (if not a splat).
+ if (SplatIndex < 0) {
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ uint64_t ShAmt = 0;
+ for (unsigned j = 0; j != Ratio; ++j) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
+ if (!C)
+ return SDValue();
+ // 6 == Log2(64)
+ ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
+ }
+ if (ShAmt != ShiftAmt)
+ return SDValue();
+ }
+ }
+
+ if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
+ return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
+
+ if (Op.getOpcode() == ISD::SRA)
+ return ArithmeticShiftRight64(ShiftAmt);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
+
+ unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
+ (Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
+
+ if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
+ SDValue BaseShAmt;
+ MVT EltVT = VT.getVectorElementType();
+
+ if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
+ // Check if this build_vector node is doing a splat.
+ // If so, then set BaseShAmt equal to the splat value.
+ BaseShAmt = BV->getSplatValue();
+ if (BaseShAmt && BaseShAmt.getOpcode() == ISD::UNDEF)
+ BaseShAmt = SDValue();
+ } else {
+ if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
+ Amt = Amt.getOperand(0);
+
+ ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
+ if (SVN && SVN->isSplat()) {
+ unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
+ SDValue InVec = Amt.getOperand(0);
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) &&
+ "Unexpected shuffle index found!");
+ BaseShAmt = InVec.getOperand(SplatIdx);
+ } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
+ if (C->getZExtValue() == SplatIdx)
+ BaseShAmt = InVec.getOperand(1);
+ }
+ }
+
+ if (!BaseShAmt)
+ // Avoid introducing an extract element from a shuffle.
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
+ DAG.getIntPtrConstant(SplatIdx, dl));
+ }
+ }
+
+ if (BaseShAmt.getNode()) {
+ assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
+ if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
+ else if (EltVT.bitsLT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
+
+ return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG);
+ }
+ }
+
+ // Special case in 32-bit mode, where i64 is expanded into high and low parts.
+ if (!Subtarget->is64Bit() && VT == MVT::v2i64 &&
+ Amt.getOpcode() == ISD::BITCAST &&
+ Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
+ Amt = Amt.getOperand(0);
+ unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
+ VT.getVectorNumElements();
+ std::vector<SDValue> Vals(Ratio);
+ for (unsigned i = 0; i != Ratio; ++i)
+ Vals[i] = Amt.getOperand(i);
+ for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
+ for (unsigned j = 0; j != Ratio; ++j)
+ if (Vals[j] != Amt.getOperand(i + j))
+ return SDValue();
+ }
+
+ if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
+ return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
+ }
+ return SDValue();
+}
+
+static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ assert(VT.isVector() && "Custom lowering only for vector shifts!");
+ assert(Subtarget->hasSSE2() && "Only custom lower when we have SSE2!");
+
+ if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
+ return V;
+
+ if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
+ return V;
+
+ if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
+ return Op;
+
+ // XOP has 128-bit variable logical/arithmetic shifts.
+ // +ve/-ve Amt = shift left/right.
+ if (Subtarget->hasXOP() &&
+ (VT == MVT::v2i64 || VT == MVT::v4i32 ||
+ VT == MVT::v8i16 || VT == MVT::v16i8)) {
+ if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
+ SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
+ Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
+ }
+ if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
+ return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
+ if (Op.getOpcode() == ISD::SRA)
+ return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
+ }
+
+ // 2i64 vector logical shifts can efficiently avoid scalarization - do the
+ // shifts per-lane and then shuffle the partial results back together.
+ if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
+ // Splat the shift amounts so the scalar shifts above will catch it.
+ SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
+ SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
+ SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
+ SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
+ return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
+ }
+
+ // i64 vector arithmetic shift can be emulated with the transform:
+ // M = lshr(SIGN_BIT, Amt)
+ // ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
+ if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget->hasInt256())) &&
+ Op.getOpcode() == ISD::SRA) {
+ SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT);
+ SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
+ R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
+ R = DAG.getNode(ISD::XOR, dl, VT, R, M);
+ R = DAG.getNode(ISD::SUB, dl, VT, R, M);
+ return R;
+ }
+
+ // If possible, lower this packed shift into a vector multiply instead of
+ // expanding it into a sequence of scalar shifts.
+ // Do this only if the vector shift count is a constant build_vector.
+ if (Op.getOpcode() == ISD::SHL &&
+ (VT == MVT::v8i16 || VT == MVT::v4i32 ||
+ (Subtarget->hasInt256() && VT == MVT::v16i16)) &&
+ ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+ SmallVector<SDValue, 8> Elts;
+ MVT SVT = VT.getVectorElementType();
+ unsigned SVTBits = SVT.getSizeInBits();
+ APInt One(SVTBits, 1);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ for (unsigned i=0; i !=NumElems; ++i) {
+ SDValue Op = Amt->getOperand(i);
+ if (Op->getOpcode() == ISD::UNDEF) {
+ Elts.push_back(Op);
+ continue;
+ }
+
+ ConstantSDNode *ND = cast<ConstantSDNode>(Op);
+ APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
+ uint64_t ShAmt = C.getZExtValue();
+ if (ShAmt >= SVTBits) {
+ Elts.push_back(DAG.getUNDEF(SVT));
+ continue;
+ }
+ Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
+ }
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Elts);
+ return DAG.getNode(ISD::MUL, dl, VT, R, BV);
+ }
+
+ // Lower SHL with variable shift amount.
+ if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
+ Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
+
+ Op = DAG.getNode(ISD::ADD, dl, VT, Op,
+ DAG.getConstant(0x3f800000U, dl, VT));
+ Op = DAG.getBitcast(MVT::v4f32, Op);
+ Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
+ return DAG.getNode(ISD::MUL, dl, VT, Op, R);
+ }
+
+ // If possible, lower this shift as a sequence of two shifts by
+ // constant plus a MOVSS/MOVSD instead of scalarizing it.
+ // Example:
+ // (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
+ //
+ // Could be rewritten as:
+ // (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
+ //
+ // The advantage is that the two shifts from the example would be
+ // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
+ // the vector shift into four scalar shifts plus four pairs of vector
+ // insert/extract.
+ if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
+ ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+ unsigned TargetOpcode = X86ISD::MOVSS;
+ bool CanBeSimplified;
+ // The splat value for the first packed shift (the 'X' from the example).
+ SDValue Amt1 = Amt->getOperand(0);
+ // The splat value for the second packed shift (the 'Y' from the example).
+ SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
+ Amt->getOperand(2);
+
+ // See if it is possible to replace this node with a sequence of
+ // two shifts followed by a MOVSS/MOVSD
+ if (VT == MVT::v4i32) {
+ // Check if it is legal to use a MOVSS.
+ CanBeSimplified = Amt2 == Amt->getOperand(2) &&
+ Amt2 == Amt->getOperand(3);
+ if (!CanBeSimplified) {
+ // Otherwise, check if we can still simplify this node using a MOVSD.
+ CanBeSimplified = Amt1 == Amt->getOperand(1) &&
+ Amt->getOperand(2) == Amt->getOperand(3);
+ TargetOpcode = X86ISD::MOVSD;
+ Amt2 = Amt->getOperand(2);
+ }
+ } else {
+ // Do similar checks for the case where the machine value type
+ // is MVT::v8i16.
+ CanBeSimplified = Amt1 == Amt->getOperand(1);
+ for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt2 == Amt->getOperand(i);
+
+ if (!CanBeSimplified) {
+ TargetOpcode = X86ISD::MOVSD;
+ CanBeSimplified = true;
+ Amt2 = Amt->getOperand(4);
+ for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
+ CanBeSimplified = Amt1 == Amt->getOperand(i);
+ for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
+ CanBeSimplified = Amt2 == Amt->getOperand(j);
+ }
+ }
+
+ if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
+ isa<ConstantSDNode>(Amt2)) {
+ // Replace this node with two shifts followed by a MOVSS/MOVSD.
+ MVT CastVT = MVT::v4i32;
+ SDValue Splat1 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
+ SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
+ SDValue Splat2 =
+ DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
+ SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
+ if (TargetOpcode == X86ISD::MOVSD)
+ CastVT = MVT::v2i64;
+ SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
+ SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
+ SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
+ BitCast1, DAG);
+ return DAG.getBitcast(VT, Result);
+ }
+ }
+
+ // v4i32 Non Uniform Shifts.
+ // If the shift amount is constant we can shift each lane using the SSE2
+ // immediate shifts, else we need to zero-extend each lane to the lower i64
+ // and shift using the SSE2 variable shifts.
+ // The separate results can then be blended together.
+ if (VT == MVT::v4i32) {
+ unsigned Opc = Op.getOpcode();
+ SDValue Amt0, Amt1, Amt2, Amt3;
+ if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+ Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
+ Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
+ Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
+ Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
+ } else {
+ // ISD::SHL is handled above but we include it here for completeness.
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unknown target vector shift node");
+ case ISD::SHL:
+ Opc = X86ISD::VSHL;
+ break;
+ case ISD::SRL:
+ Opc = X86ISD::VSRL;
+ break;
+ case ISD::SRA:
+ Opc = X86ISD::VSRA;
+ break;
+ }
+ // The SSE2 shifts use the lower i64 as the same shift amount for
+ // all lanes and the upper i64 is ignored. These shuffle masks
+ // optimally zero-extend each lanes on SSE2/SSE41/AVX targets.
+ SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
+ Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
+ Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
+ Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
+ Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
+ }
+
+ SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
+ SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
+ SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2);
+ SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3);
+ SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
+ SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
+ return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
+ }
+
+ if (VT == MVT::v16i8 ||
+ (VT == MVT::v32i8 && Subtarget->hasInt256() && !Subtarget->hasXOP())) {
+ MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
+ unsigned ShiftOpcode = Op->getOpcode();
+
+ auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
+ // On SSE41 targets we make use of the fact that VSELECT lowers
+ // to PBLENDVB which selects bytes based just on the sign bit.
+ if (Subtarget->hasSSE41()) {
+ V0 = DAG.getBitcast(VT, V0);
+ V1 = DAG.getBitcast(VT, V1);
+ Sel = DAG.getBitcast(VT, Sel);
+ return DAG.getBitcast(SelVT,
+ DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1));
+ }
+ // On pre-SSE41 targets we test for the sign bit by comparing to
+ // zero - a negative value will set all bits of the lanes to true
+ // and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
+ SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
+ SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
+ return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1);
+ };
+
+ // Turn 'a' into a mask suitable for VSELECT: a = a << 5;
+ // We can safely do this using i16 shifts as we're only interested in
+ // the 3 lower bits of each byte.
+ Amt = DAG.getBitcast(ExtVT, Amt);
+ Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
+ Amt = DAG.getBitcast(VT, Amt);
+
+ if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
+ // r = VSELECT(r, shift(r, 4), a);
+ SDValue M =
+ DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // return VSELECT(r, shift(r, 1), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+ R = SignBitSelect(VT, Amt, M, R);
+ return R;
+ }
+
+ if (Op->getOpcode() == ISD::SRA) {
+ // For SRA we need to unpack each byte to the higher byte of a i16 vector
+ // so we can correctly sign extend. We don't care what happens to the
+ // lower byte.
+ SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
+ SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
+ SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
+ SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
+ ALo = DAG.getBitcast(ExtVT, ALo);
+ AHi = DAG.getBitcast(ExtVT, AHi);
+ RLo = DAG.getBitcast(ExtVT, RLo);
+ RHi = DAG.getBitcast(ExtVT, RHi);
+
+ // r = VSELECT(r, shift(r, 4), a);
+ SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(4, dl, ExtVT));
+ SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(4, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // a += a
+ ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+ AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(2, dl, ExtVT));
+ MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(2, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // a += a
+ ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
+ AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
+
+ // r = VSELECT(r, shift(r, 1), a);
+ MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
+ DAG.getConstant(1, dl, ExtVT));
+ MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
+ DAG.getConstant(1, dl, ExtVT));
+ RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
+ RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
+
+ // Logical shift the result back to the lower byte, leaving a zero upper
+ // byte
+ // meaning that we can safely pack with PACKUSWB.
+ RLo =
+ DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
+ RHi =
+ DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
+ }
+ }
+
+ // It's worth extending once and using the v8i32 shifts for 16-bit types, but
+ // the extra overheads to get from v16i8 to v8i32 make the existing SSE
+ // solution better.
+ if (Subtarget->hasInt256() && VT == MVT::v8i16) {
+ MVT ExtVT = MVT::v8i32;
+ unsigned ExtOpc =
+ Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
+ R = DAG.getNode(ExtOpc, dl, ExtVT, R);
+ Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt);
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
+ }
+
+ if (Subtarget->hasInt256() && !Subtarget->hasXOP() && VT == MVT::v16i16) {
+ MVT ExtVT = MVT::v8i32;
+ SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
+ SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
+ SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
+ SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R);
+ SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R);
+ ALo = DAG.getBitcast(ExtVT, ALo);
+ AHi = DAG.getBitcast(ExtVT, AHi);
+ RLo = DAG.getBitcast(ExtVT, RLo);
+ RHi = DAG.getBitcast(ExtVT, RHi);
+ SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
+ SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
+ Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
+ Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
+ return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
+ }
+
+ if (VT == MVT::v8i16) {
+ unsigned ShiftOpcode = Op->getOpcode();
+
+ auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
+ // On SSE41 targets we make use of the fact that VSELECT lowers
+ // to PBLENDVB which selects bytes based just on the sign bit.
+ if (Subtarget->hasSSE41()) {
+ MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
+ V0 = DAG.getBitcast(ExtVT, V0);
+ V1 = DAG.getBitcast(ExtVT, V1);
+ Sel = DAG.getBitcast(ExtVT, Sel);
+ return DAG.getBitcast(
+ VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1));
+ }
+ // On pre-SSE41 targets we splat the sign bit - a negative value will
+ // set all bits of the lanes to true and VSELECT uses that in
+ // its OR(AND(V0,C),AND(V1,~C)) lowering.
+ SDValue C =
+ DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
+ return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1);
+ };
+
+ // Turn 'a' into a mask suitable for VSELECT: a = a << 12;
+ if (Subtarget->hasSSE41()) {
+ // On SSE41 targets we need to replicate the shift mask in both
+ // bytes for PBLENDVB.
+ Amt = DAG.getNode(
+ ISD::OR, dl, VT,
+ DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
+ DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
+ } else {
+ Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
+ }
+
+ // r = VSELECT(r, shift(r, 8), a);
+ SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 4), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // r = VSELECT(r, shift(r, 2), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+
+ // a += a
+ Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
+
+ // return VSELECT(r, shift(r, 1), a);
+ M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
+ R = SignBitSelect(Amt, M, R);
+ return R;
+ }
+
+ // Decompose 256-bit shifts into smaller 128-bit shifts.
+ if (VT.is256BitVector()) {
+ unsigned NumElems = VT.getVectorNumElements();
+ MVT EltVT = VT.getVectorElementType();
+ MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
+
+ // Extract the two vectors
+ SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
+ SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
+
+ // Recreate the shift amount vectors
+ SDValue Amt1, Amt2;
+ if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
+ // Constant shift amount
+ SmallVector<SDValue, 8> Ops(Amt->op_begin(), Amt->op_begin() + NumElems);
+ ArrayRef<SDValue> Amt1Csts = makeArrayRef(Ops).slice(0, NumElems / 2);
+ ArrayRef<SDValue> Amt2Csts = makeArrayRef(Ops).slice(NumElems / 2);
+
+ Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt1Csts);
+ Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Amt2Csts);
+ } else {
+ // Variable shift amount
+ Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
+ Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
+ }
+
+ // Issue new vector shifts for the smaller types
+ V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
+ V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
+
+ // Concatenate the result back
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerRotate(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ SDValue R = Op.getOperand(0);
+ SDValue Amt = Op.getOperand(1);
+
+ assert(VT.isVector() && "Custom lowering only for vector rotates!");
+ assert(Subtarget->hasXOP() && "XOP support required for vector rotates!");
+ assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported");
+
+ // XOP has 128-bit vector variable + immediate rotates.
+ // +ve/-ve Amt = rotate left/right.
+
+ // Split 256-bit integers.
+ if (VT.is256BitVector())
+ return Lower256IntArith(Op, DAG);
+
+ assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
+
+ // Attempt to rotate by immediate.
+ if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
+ if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
+ uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
+ assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range");
+ return DAG.getNode(X86ISD::VPROTI, DL, VT, R,
+ DAG.getConstant(RotateAmt, DL, MVT::i8));
+ }
+ }
+
+ // Use general rotate by variable (per-element).
+ return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt);
+}
+
+static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
+ // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
+ // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
+ // looks for this combo and may remove the "setcc" instruction if the "setcc"
+ // has only one use.
+ SDNode *N = Op.getNode();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ unsigned BaseOp = 0;
+ unsigned Cond = 0;
+ SDLoc DL(Op);
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unknown ovf instruction!");
+ case ISD::SADDO:
+ // A subtract of one will be selected as a INC. Note that INC doesn't
+ // set CF, so we can't do this for UADDO.
+ if (isOneConstant(RHS)) {
+ BaseOp = X86ISD::INC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UADDO:
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SSUBO:
+ // A subtract of one will be selected as a DEC. Note that DEC doesn't
+ // set CF, so we can't do this for USUBO.
+ if (isOneConstant(RHS)) {
+ BaseOp = X86ISD::DEC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_O;
+ break;
+ case ISD::USUBO:
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SMULO:
+ BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
+ if (N->getValueType(0) == MVT::i8) {
+ BaseOp = X86ISD::UMUL8;
+ Cond = X86::COND_O;
+ break;
+ }
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
+ MVT::i32);
+ SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
+
+ SDValue SetCC =
+ DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(X86::COND_O, DL, MVT::i32),
+ SDValue(Sum.getNode(), 2));
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+ }
+ }
+
+ // Also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
+ SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
+
+ SDValue SetCC =
+ DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
+ DAG.getConstant(Cond, DL, MVT::i32),
+ SDValue(Sum.getNode(), 1));
+
+ return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
+}
+
+/// Returns true if the operand type is exactly twice the native width, and
+/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
+/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
+/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
+bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
+ unsigned OpWidth = MemType->getPrimitiveSizeInBits();
+
+ if (OpWidth == 64)
+ return !Subtarget->is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
+ else if (OpWidth == 128)
+ return Subtarget->hasCmpxchg16b();
+ else
+ return false;
+}
+
+bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ return needsCmpXchgNb(SI->getValueOperand()->getType());
+}
+
+// Note: this turns large loads into lock cmpxchg8b/16b.
+// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
+TargetLowering::AtomicExpansionKind
+X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
+ return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+}
+
+TargetLowering::AtomicExpansionKind
+X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
+ Type *MemType = AI->getType();
+
+ // If the operand is too big, we must see if cmpxchg8/16b is available
+ // and default to library calls otherwise.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
+ return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+ }
+
+ AtomicRMWInst::BinOp Op = AI->getOperation();
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown atomic operation");
+ case AtomicRMWInst::Xchg:
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ // It's better to use xadd, xsub or xchg for these in all cases.
+ return AtomicExpansionKind::None;
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Xor:
+ // If the atomicrmw's result isn't actually used, we can just add a "lock"
+ // prefix to a normal instruction for these operations.
+ return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
+ : AtomicExpansionKind::None;
+ case AtomicRMWInst::Nand:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These always require a non-trivial set of data operations on x86. We must
+ // use a cmpxchg loop.
+ return AtomicExpansionKind::CmpXChg;
+ }
+}
+
+static bool hasMFENCE(const X86Subtarget& Subtarget) {
+ // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
+ // no-sse2). There isn't any reason to disable it if the target processor
+ // supports it.
+ return Subtarget.hasSSE2() || Subtarget.is64Bit();
+}
+
+LoadInst *
+X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
+ unsigned NativeWidth = Subtarget->is64Bit() ? 64 : 32;
+ Type *MemType = AI->getType();
+ // Accesses larger than the native width are turned into cmpxchg/libcalls, so
+ // there is no benefit in turning such RMWs into loads, and it is actually
+ // harmful as it introduces a mfence.
+ if (MemType->getPrimitiveSizeInBits() > NativeWidth)
+ return nullptr;
+
+ auto Builder = IRBuilder<>(AI);
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ auto SynchScope = AI->getSynchScope();
+ // We must restrict the ordering to avoid generating loads with Release or
+ // ReleaseAcquire orderings.
+ auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
+ auto Ptr = AI->getPointerOperand();
+
+ // Before the load we need a fence. Here is an example lifted from
+ // http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
+ // is required:
+ // Thread 0:
+ // x.store(1, relaxed);
+ // r1 = y.fetch_add(0, release);
+ // Thread 1:
+ // y.fetch_add(42, acquire);
+ // r2 = x.load(relaxed);
+ // r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
+ // lowered to just a load without a fence. A mfence flushes the store buffer,
+ // making the optimization clearly correct.
+ // FIXME: it is required if isAtLeastRelease(Order) but it is not clear
+ // otherwise, we might be able to be more aggressive on relaxed idempotent
+ // rmw. In practice, they do not look useful, so we don't try to be
+ // especially clever.
+ if (SynchScope == SingleThread)
+ // FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
+ // the IR level, so we must wrap it in an intrinsic.
+ return nullptr;
+
+ if (!hasMFENCE(*Subtarget))
+ // FIXME: it might make sense to use a locked operation here but on a
+ // different cache-line to prevent cache-line bouncing. In practice it
+ // is probably a small win, and x86 processors without mfence are rare
+ // enough that we do not bother.
+ return nullptr;
+
+ Function *MFence =
+ llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
+ Builder.CreateCall(MFence, {});
+
+ // Finally we can emit the atomic load.
+ LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
+ AI->getType()->getPrimitiveSizeInBits());
+ Loaded->setAtomic(Order, SynchScope);
+ AI->replaceAllUsesWith(Loaded);
+ AI->eraseFromParent();
+ return Loaded;
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
+ AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
+ cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
+ SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
+ cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
+
+ // The only fence that needs an instruction is a sequentially-consistent
+ // cross-thread fence.
+ if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
+ if (hasMFENCE(*Subtarget))
+ return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
+
+ SDValue Chain = Op.getOperand(0);
+ SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
+ SDValue Ops[] = {
+ DAG.getRegister(X86::ESP, MVT::i32), // Base
+ DAG.getTargetConstant(1, dl, MVT::i8), // Scale
+ DAG.getRegister(0, MVT::i32), // Index
+ DAG.getTargetConstant(0, dl, MVT::i32), // Disp
+ DAG.getRegister(0, MVT::i32), // Segment.
+ Zero,
+ Chain
+ };
+ SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
+ return SDValue(Res, 0);
+ }
+
+ // MEMBARRIER is a compiler barrier; it codegens to a no-op.
+ return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
+static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT T = Op.getSimpleValueType();
+ SDLoc DL(Op);
+ unsigned Reg = 0;
+ unsigned size = 0;
+ switch(T.SimpleTy) {
+ default: llvm_unreachable("Invalid value type!");
+ case MVT::i8: Reg = X86::AL; size = 1; break;
+ case MVT::i16: Reg = X86::AX; size = 2; break;
+ case MVT::i32: Reg = X86::EAX; size = 4; break;
+ case MVT::i64:
+ assert(Subtarget->is64Bit() && "Node not type legal!");
+ Reg = X86::RAX; size = 8;
+ break;
+ }
+ SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
+ Op.getOperand(2), SDValue());
+ SDValue Ops[] = { cpIn.getValue(0),
+ Op.getOperand(1),
+ Op.getOperand(3),
+ DAG.getTargetConstant(size, DL, MVT::i8),
+ cpIn.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
+ SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
+ Ops, T, MMO);
+
+ SDValue cpOut =
+ DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
+ MVT::i32, cpOut.getValue(2));
+ SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
+ DAG.getConstant(X86::COND_E, DL, MVT::i8),
+ EFLAGS);
+
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
+ DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
+ return SDValue();
+}
+
+static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
+
+ if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ if (DstVT != MVT::f64)
+ // This conversion needs to be expanded.
+ return SDValue();
+
+ SDValue InVec = Op->getOperand(0);
+ SDLoc dl(Op);
+ unsigned NumElts = SrcVT.getVectorNumElements();
+ MVT SVT = SrcVT.getVectorElementType();
+
+ // Widen the vector in input in the case of MVT::v2i32.
+ // Example: from MVT::v2i32 to MVT::v4i32.
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, InVec,
+ DAG.getIntPtrConstant(i, dl)));
+
+ // Explicitly mark the extra elements as Undef.
+ Elts.append(NumElts, DAG.getUNDEF(SVT));
+
+ EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT, Elts);
+ SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
+ DAG.getIntPtrConstant(0, dl));
+ }
+
+ assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
+ Subtarget->hasMMX() && "Unexpected custom BITCAST");
+ assert((DstVT == MVT::i64 ||
+ (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
+ "Unexpected custom BITCAST");
+ // i64 <=> MMX conversions are Legal.
+ if (SrcVT==MVT::i64 && DstVT.isVector())
+ return Op;
+ if (DstVT==MVT::i64 && SrcVT.isVector())
+ return Op;
+ // MMX <=> MMX conversions are Legal.
+ if (SrcVT.isVector() && DstVT.isVector())
+ return Op;
+ // All other conversions need to be expanded.
+ return SDValue();
+}
+
+/// Compute the horizontal sum of bytes in V for the elements of VT.
+///
+/// Requires V to be a byte vector and VT to be an integer vector type with
+/// wider elements than V's type. The width of the elements of VT determines
+/// how many bytes of V are summed horizontally to produce each element of the
+/// result.
+static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(V);
+ MVT ByteVecVT = V.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ int NumElts = VT.getVectorNumElements();
+ assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
+ "Expected value to have byte element type.");
+ assert(EltVT != MVT::i8 &&
+ "Horizontal byte sum only makes sense for wider elements!");
+ unsigned VecSize = VT.getSizeInBits();
+ assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
+
+ // PSADBW instruction horizontally add all bytes and leave the result in i64
+ // chunks, thus directly computes the pop count for v2i64 and v4i64.
+ if (EltVT == MVT::i64) {
+ SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
+ V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
+ return DAG.getBitcast(VT, V);
+ }
+
+ if (EltVT == MVT::i32) {
+ // We unpack the low half and high half into i32s interleaved with zeros so
+ // that we can use PSADBW to horizontally sum them. The most useful part of
+ // this is that it lines up the results of two PSADBW instructions to be
+ // two v2i64 vectors which concatenated are the 4 population counts. We can
+ // then use PACKUSWB to shrink and concatenate them into a v4i32 again.
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
+ SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros);
+ SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros);
+
+ // Do the horizontal sums into two v2i64s.
+ Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
+ MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
+ Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
+ DAG.getBitcast(ByteVecVT, Low), Zeros);
+ High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
+ DAG.getBitcast(ByteVecVT, High), Zeros);
+
+ // Merge them together.
+ MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
+ V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
+ DAG.getBitcast(ShortVecVT, Low),
+ DAG.getBitcast(ShortVecVT, High));
+
+ return DAG.getBitcast(VT, V);
+ }
+
+ // The only element type left is i16.
+ assert(EltVT == MVT::i16 && "Unknown how to handle type");
+
+ // To obtain pop count for each i16 element starting from the pop count for
+ // i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
+ // right by 8. It is important to shift as i16s as i8 vector shift isn't
+ // directly supported.
+ SmallVector<SDValue, 16> Shifters(NumElts, DAG.getConstant(8, DL, EltVT));
+ SDValue Shifter = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters);
+ SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+ V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
+ DAG.getBitcast(ByteVecVT, V));
+ return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), Shifter);
+}
+
+static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ MVT EltVT = VT.getVectorElementType();
+ unsigned VecSize = VT.getSizeInBits();
+
+ // Implement a lookup table in register by using an algorithm based on:
+ // http://wm.ite.pl/articles/sse-popcount.html
+ //
+ // The general idea is that every lower byte nibble in the input vector is an
+ // index into a in-register pre-computed pop count table. We then split up the
+ // input vector in two new ones: (1) a vector with only the shifted-right
+ // higher nibbles for each byte and (2) a vector with the lower nibbles (and
+ // masked out higher ones) for each byte. PSHUB is used separately with both
+ // to index the in-register table. Next, both are added and the result is a
+ // i8 vector where each element contains the pop count for input byte.
+ //
+ // To obtain the pop count for elements != i8, we follow up with the same
+ // approach and use additional tricks as described below.
+ //
+ const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
+ /* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
+ /* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
+ /* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
+
+ int NumByteElts = VecSize / 8;
+ MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
+ SDValue In = DAG.getBitcast(ByteVecVT, Op);
+ SmallVector<SDValue, 16> LUTVec;
+ for (int i = 0; i < NumByteElts; ++i)
+ LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
+ SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, LUTVec);
+ SmallVector<SDValue, 16> Mask0F(NumByteElts,
+ DAG.getConstant(0x0F, DL, MVT::i8));
+ SDValue M0F = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Mask0F);
+
+ // High nibbles
+ SmallVector<SDValue, 16> Four(NumByteElts, DAG.getConstant(4, DL, MVT::i8));
+ SDValue FourV = DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVecVT, Four);
+ SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
+
+ // Low nibbles
+ SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
+
+ // The input vector is used as the shuffle mask that index elements into the
+ // LUT. After counting low and high nibbles, add the vector to obtain the
+ // final pop count per i8 element.
+ SDValue HighPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
+ SDValue LowPopCnt =
+ DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
+ SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
+
+ if (EltVT == MVT::i8)
+ return PopCnt;
+
+ return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
+}
+
+static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL,
+ const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ assert(VT.is128BitVector() &&
+ "Only 128-bit vector bitmath lowering supported.");
+
+ int VecSize = VT.getSizeInBits();
+ MVT EltVT = VT.getVectorElementType();
+ int Len = EltVT.getSizeInBits();
+
+ // This is the vectorized version of the "best" algorithm from
+ // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ // with a minor tweak to use a series of adds + shifts instead of vector
+ // multiplications. Implemented for all integer vector types. We only use
+ // this when we don't have SSSE3 which allows a LUT-based lowering that is
+ // much faster, even faster than using native popcnt instructions.
+
+ auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
+ MVT VT = V.getSimpleValueType();
+ SmallVector<SDValue, 32> Shifters(
+ VT.getVectorNumElements(),
+ DAG.getConstant(Shifter, DL, VT.getVectorElementType()));
+ return DAG.getNode(OpCode, DL, VT, V,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Shifters));
+ };
+ auto GetMask = [&](SDValue V, APInt Mask) {
+ MVT VT = V.getSimpleValueType();
+ SmallVector<SDValue, 32> Masks(
+ VT.getVectorNumElements(),
+ DAG.getConstant(Mask, DL, VT.getVectorElementType()));
+ return DAG.getNode(ISD::AND, DL, VT, V,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Masks));
+ };
+
+ // We don't want to incur the implicit masks required to SRL vNi8 vectors on
+ // x86, so set the SRL type to have elements at least i16 wide. This is
+ // correct because all of our SRLs are followed immediately by a mask anyways
+ // that handles any bits that sneak into the high bits of the byte elements.
+ MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
+
+ SDValue V = Op;
+
+ // v = v - ((v >> 1) & 0x55555555...)
+ SDValue Srl =
+ DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
+ SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
+ V = DAG.getNode(ISD::SUB, DL, VT, V, And);
+
+ // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
+ SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
+ SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
+ V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
+
+ // v = (v + (v >> 4)) & 0x0F0F0F0F...
+ Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
+ SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
+ V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
+
+ // At this point, V contains the byte-wise population count, and we are
+ // merely doing a horizontal sum if necessary to get the wider element
+ // counts.
+ if (EltVT == MVT::i8)
+ return V;
+
+ return LowerHorizontalByteSum(
+ DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
+ DAG);
+}
+
+static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
+ // FIXME: Need to add AVX-512 support here!
+ assert((VT.is256BitVector() || VT.is128BitVector()) &&
+ "Unknown CTPOP type to handle");
+ SDLoc DL(Op.getNode());
+ SDValue Op0 = Op.getOperand(0);
+
+ if (!Subtarget->hasSSSE3()) {
+ // We can't use the fast LUT approach, so fall back on vectorized bitmath.
+ assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
+ return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
+ }
+
+ if (VT.is256BitVector() && !Subtarget->hasInt256()) {
+ unsigned NumElems = VT.getVectorNumElements();
+
+ // Extract each 128-bit vector, compute pop count and concat the result.
+ SDValue LHS = Extract128BitVector(Op0, 0, DAG, DL);
+ SDValue RHS = Extract128BitVector(Op0, NumElems/2, DAG, DL);
+
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
+ LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
+ LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
+ }
+
+ return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
+}
+
+static SDValue LowerCTPOP(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Op.getSimpleValueType().isVector() &&
+ "We only do custom lowering for vector population count.");
+ return LowerVectorCTPOP(Op, Subtarget, DAG);
+}
+
+static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ EVT T = Node->getValueType(0);
+ SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
+ DAG.getConstant(0, dl, T), Node->getOperand(2));
+ return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), negOp,
+ cast<AtomicSDNode>(Node)->getMemOperand(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getSynchScope());
+}
+
+static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
+ SDNode *Node = Op.getNode();
+ SDLoc dl(Node);
+ EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
+
+ // Convert seq_cst store -> xchg
+ // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
+ // FIXME: On 32-bit, store -> fist or movq would be more efficient
+ // (The only way to get a 16-byte store is cmpxchg16b)
+ // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
+ if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
+ !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), Node->getOperand(2),
+ cast<AtomicSDNode>(Node)->getMemOperand(),
+ cast<AtomicSDNode>(Node)->getOrdering(),
+ cast<AtomicSDNode>(Node)->getSynchScope());
+ return Swap.getValue(1);
+ }
+ // Other atomic stores have a simple pattern.
+ return Op;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getNode()->getSimpleValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid code");
+ case ISD::ADDC: Opc = X86ISD::ADD; break;
+ case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
+ case ISD::SUBC: Opc = X86ISD::SUB; break;
+ case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1), Op.getOperand(2));
+}
+
+static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
+
+ // For MacOSX, we want to call an alternative entry point: __sincos_stret,
+ // which returns the values as { float, float } (in XMM0) or
+ // { double, double } (which is returned in XMM0, XMM1).
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ bool isF64 = ArgVT == MVT::f64;
+ // Only optimize x86_64 for now. i386 is a bit messy. For f32,
+ // the small struct {f32, f32} is returned in (eax, edx). For f64,
+ // the results are returned via SRet in memory.
+ const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Callee =
+ DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = isF64
+ ? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
+ : (Type*)VectorType::get(ArgTy, 4);
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
+ .setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
+
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
+
+ if (isF64)
+ // Returned in xmm0 and xmm1.
+ return CallResult.first;
+
+ // Returned in bits 0:31 and 32:64 xmm0.
+ SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(0, dl));
+ SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
+ CallResult.first, DAG.getIntPtrConstant(1, dl));
+ SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
+}
+
+/// Widen a vector input to a vector of NVT. The
+/// input vector must have the same element type as NVT.
+static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
+ bool FillWithZeroes = false) {
+ // Check if InOp already has the right width.
+ MVT InVT = InOp.getSimpleValueType();
+ if (InVT == NVT)
+ return InOp;
+
+ if (InOp.isUndef())
+ return DAG.getUNDEF(NVT);
+
+ assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
+ "input and widen element type must match");
+
+ unsigned InNumElts = InVT.getVectorNumElements();
+ unsigned WidenNumElts = NVT.getVectorNumElements();
+ assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
+ "Unexpected request for vector widening");
+
+ EVT EltVT = NVT.getVectorElementType();
+
+ SDLoc dl(InOp);
+ if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
+ InOp.getNumOperands() == 2) {
+ SDValue N1 = InOp.getOperand(1);
+ if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
+ N1.isUndef()) {
+ InOp = InOp.getOperand(0);
+ InVT = InOp.getSimpleValueType();
+ InNumElts = InVT.getVectorNumElements();
+ }
+ }
+ if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
+ ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
+ SmallVector<SDValue, 16> Ops;
+ for (unsigned i = 0; i < InNumElts; ++i)
+ Ops.push_back(InOp.getOperand(i));
+
+ SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
+ DAG.getUNDEF(EltVT);
+ for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
+ Ops.push_back(FillVal);
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, Ops);
+ }
+ SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
+ DAG.getUNDEF(NVT);
+ return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
+ InOp, DAG.getIntPtrConstant(0, dl));
+}
+
+static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget->hasAVX512() &&
+ "MGATHER/MSCATTER are supported on AVX-512 arch only");
+
+ // X86 scatter kills mask register, so its type should be added to
+ // the list of return values.
+ // If the "scatter" has 2 return values, it is already handled.
+ if (Op.getNode()->getNumValues() == 2)
+ return Op;
+
+ MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
+ SDValue Src = N->getValue();
+ MVT VT = Src.getSimpleValueType();
+ assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
+ SDLoc dl(Op);
+
+ SDValue NewScatter;
+ SDValue Index = N->getIndex();
+ SDValue Mask = N->getMask();
+ SDValue Chain = N->getChain();
+ SDValue BasePtr = N->getBasePtr();
+ MVT MemVT = N->getMemoryVT().getSimpleVT();
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT MaskVT = Mask.getSimpleValueType();
+
+ if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) {
+ // The v2i32 value was promoted to v2i64.
+ // Now we "redo" the type legalizer's work and widen the original
+ // v2i32 value to v4i32. The original v2i32 is retrieved from v2i64
+ // with a shuffle.
+ assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) &&
+ "Unexpected memory type");
+ int ShuffleMask[] = {0, 2, -1, -1};
+ Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src),
+ DAG.getUNDEF(MVT::v4i32), ShuffleMask);
+ // Now we have 4 elements instead of 2.
+ // Expand the index.
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4);
+ Index = ExtendToType(Index, NewIndexVT, DAG);
+
+ // Expand the mask with zeroes
+ // Mask may be <2 x i64> or <2 x i1> at this moment
+ assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) &&
+ "Unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4);
+ Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
+ VT = MVT::v4i32;
+ }
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
+ !Index.getSimpleValueType().is512BitVector()) {
+ // AVX512F supports only 512-bit vectors. Or data or index should
+ // be 512 bit wide. If now the both index and data are 256-bit, but
+ // the vector contains 8 elements, we just sign-extend the index
+ if (IndexVT == MVT::v8i32)
+ // Just extend index
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+ else {
+ // The minimal number of elts in scatter is 8
+ NumElts = 8;
+ // Index
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
+ // Use original index here, do not modify the index twice
+ Index = ExtendToType(N->getIndex(), NewIndexVT, DAG);
+ if (IndexVT.getScalarType() == MVT::i32)
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+
+ // Mask
+ // At this point we have promoted mask operand
+ assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
+ // Use the original mask here, do not modify the mask twice
+ Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true);
+
+ // The value that should be stored
+ MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
+ Src = ExtendToType(Src, NewVT, DAG);
+ }
+ }
+ // If the mask is "wide" at this point - truncate it to i1 vector
+ MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts);
+ Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask);
+
+ // The mask is killed by scatter, add it to the values
+ SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other);
+ SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index};
+ NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops,
+ N->getMemOperand());
+ DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
+ return SDValue(NewScatter.getNode(), 0);
+}
+
+static SDValue LowerMLOAD(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+
+ MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
+ MVT VT = Op.getSimpleValueType();
+ SDValue Mask = N->getMask();
+ SDLoc dl(Op);
+
+ if (Subtarget->hasAVX512() && !Subtarget->hasVLX() &&
+ !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) {
+ // This operation is legal for targets with VLX, but without
+ // VLX the vector should be widened to 512 bit
+ unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
+ MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec);
+ MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
+ SDValue Src0 = N->getSrc0();
+ Src0 = ExtendToType(Src0, WideDataVT, DAG);
+ Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
+ SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
+ N->getBasePtr(), Mask, Src0,
+ N->getMemoryVT(), N->getMemOperand(),
+ N->getExtensionType());
+
+ SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ NewLoad.getValue(0),
+ DAG.getIntPtrConstant(0, dl));
+ SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
+ return DAG.getMergeValues(RetOps, dl);
+ }
+ return Op;
+}
+
+static SDValue LowerMSTORE(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
+ SDValue DataToStore = N->getValue();
+ MVT VT = DataToStore.getSimpleValueType();
+ SDValue Mask = N->getMask();
+ SDLoc dl(Op);
+
+ if (Subtarget->hasAVX512() && !Subtarget->hasVLX() &&
+ !VT.is512BitVector() && Mask.getValueType() == MVT::v8i1) {
+ // This operation is legal for targets with VLX, but without
+ // VLX the vector should be widened to 512 bit
+ unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
+ MVT WideDataVT = MVT::getVectorVT(VT.getScalarType(), NumEltsInWideVec);
+ MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
+ DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
+ Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
+ return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
+ Mask, N->getMemoryVT(), N->getMemOperand(),
+ N->isTruncatingStore());
+ }
+ return Op;
+}
+
+static SDValue LowerMGATHER(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ assert(Subtarget->hasAVX512() &&
+ "MGATHER/MSCATTER are supported on AVX-512 arch only");
+
+ MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ SDValue Index = N->getIndex();
+ SDValue Mask = N->getMask();
+ SDValue Src0 = N->getValue();
+ MVT IndexVT = Index.getSimpleValueType();
+ MVT MaskVT = Mask.getSimpleValueType();
+
+ unsigned NumElts = VT.getVectorNumElements();
+ assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
+
+ if (!Subtarget->hasVLX() && !VT.is512BitVector() &&
+ !Index.getSimpleValueType().is512BitVector()) {
+ // AVX512F supports only 512-bit vectors. Or data or index should
+ // be 512 bit wide. If now the both index and data are 256-bit, but
+ // the vector contains 8 elements, we just sign-extend the index
+ if (NumElts == 8) {
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+ SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
+ N->getOperand(3), Index };
+ DAG.UpdateNodeOperands(N, Ops);
+ return Op;
+ }
+
+ // Minimal number of elements in Gather
+ NumElts = 8;
+ // Index
+ MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
+ Index = ExtendToType(Index, NewIndexVT, DAG);
+ if (IndexVT.getScalarType() == MVT::i32)
+ Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
+
+ // Mask
+ MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts);
+ // At this point we have promoted mask operand
+ assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
+ MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
+ Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
+ Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask);
+
+ // The pass-thru value
+ MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
+ Src0 = ExtendToType(Src0, NewVT, DAG);
+
+ SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
+ SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other),
+ N->getMemoryVT(), dl, Ops,
+ N->getMemOperand());
+ SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
+ NewGather.getValue(0),
+ DAG.getIntPtrConstant(0, dl));
+ SDValue RetOps[] = {Exract, NewGather.getValue(1)};
+ return DAG.getMergeValues(RetOps, dl);
+ }
+ return Op;
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
+ SelectionDAG &DAG) const {
+ // TODO: Eventually, the lowering of these nodes should be informed by or
+ // deferred to the GC strategy for the function in which they appear. For
+ // now, however, they must be lowered to something. Since they are logically
+ // no-ops in the case of a null GC strategy (or a GC strategy which does not
+ // require special handling for these nodes), lower them as literal NOOPs for
+ // the time being.
+ SmallVector<SDValue, 2> Ops;
+
+ Ops.push_back(Op.getOperand(0));
+ if (Op->getGluedNode())
+ Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+ SDLoc OpDL(Op);
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+ return NOOP;
+}
+
+SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
+ SelectionDAG &DAG) const {
+ // TODO: Eventually, the lowering of these nodes should be informed by or
+ // deferred to the GC strategy for the function in which they appear. For
+ // now, however, they must be lowered to something. Since they are logically
+ // no-ops in the case of a null GC strategy (or a GC strategy which does not
+ // require special handling for these nodes), lower them as literal NOOPs for
+ // the time being.
+ SmallVector<SDValue, 2> Ops;
+
+ Ops.push_back(Op.getOperand(0));
+ if (Op->getGluedNode())
+ Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
+
+ SDLoc OpDL(Op);
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
+
+ return NOOP;
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
+ return LowerCMP_SWAP(Op, Subtarget, DAG);
+ case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
+ case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
+ case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
+ case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG);
+ case ISD::VSELECT: return LowerVSELECT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
+ case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::SHL_PARTS:
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
+ case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
+ case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
+ case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
+ case ISD::SIGN_EXTEND_VECTOR_INREG:
+ return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+ case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
+ case ISD::FABS:
+ case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::SETCCE: return LowerSETCCE(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
+ case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::CTLZ: return LowerCTLZ(Op, Subtarget, DAG);
+ case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ_ZERO_UNDEF(Op, Subtarget, DAG);
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
+ case ISD::UMUL_LOHI:
+ case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
+ case ISD::ROTL: return LowerRotate(Op, Subtarget, DAG);
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO: return LowerXALUO(Op, DAG);
+ case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
+ case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::ADD: return LowerADD(Op, DAG);
+ case ISD::SUB: return LowerSUB(Op, DAG);
+ case ISD::SMAX:
+ case ISD::SMIN:
+ case ISD::UMAX:
+ case ISD::UMIN: return LowerMINMAX(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
+ case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG);
+ case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG);
+ case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG);
+ case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG);
+ case ISD::GC_TRANSITION_START:
+ return LowerGC_TRANSITION_START(Op, DAG);
+ case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG);
+ }
+}
+
+/// ReplaceNodeResults - Replace a node with an illegal result type
+/// with a new node built out of custom code.
+void X86TargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ SDLoc dl(N);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Do not know how to custom type legalize this operation!");
+ case X86ISD::AVG: {
+ // Legalize types for X86ISD::AVG by expanding vectors.
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+
+ auto InVT = N->getValueType(0);
+ auto InVTSize = InVT.getSizeInBits();
+ const unsigned RegSize =
+ (InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128;
+ assert((!Subtarget->hasAVX512() || RegSize < 512) &&
+ "512-bit vector requires AVX512");
+ assert((!Subtarget->hasAVX2() || RegSize < 256) &&
+ "256-bit vector requires AVX2");
+
+ auto ElemVT = InVT.getVectorElementType();
+ auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
+ RegSize / ElemVT.getSizeInBits());
+ assert(RegSize % InVT.getSizeInBits() == 0);
+ unsigned NumConcat = RegSize / InVT.getSizeInBits();
+
+ SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
+ Ops[0] = N->getOperand(0);
+ SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
+ Ops[0] = N->getOperand(1);
+ SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
+
+ SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
+ Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
+ DAG.getIntPtrConstant(0, dl)));
+ return;
+ }
+ // We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
+ case X86ISD::FMINC:
+ case X86ISD::FMIN:
+ case X86ISD::FMAXC:
+ case X86ISD::FMAX: {
+ EVT VT = N->getValueType(0);
+ assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
+ SDValue UNDEF = DAG.getUNDEF(VT);
+ SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(0), UNDEF);
+ SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
+ N->getOperand(1), UNDEF);
+ Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
+ return;
+ }
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE:
+ // We don't want to expand or promote these.
+ return;
+ case ISD::SDIV:
+ case ISD::UDIV:
+ case ISD::SREM:
+ case ISD::UREM:
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: {
+ SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
+ Results.push_back(V);
+ return;
+ }
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: {
+ bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
+
+ std::pair<SDValue,SDValue> Vals =
+ FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ if (FIST.getNode()) {
+ EVT VT = N->getValueType(0);
+ // Return a load from the stack slot.
+ if (StackSlot.getNode())
+ Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
+ MachinePointerInfo(),
+ false, false, false, 0));
+ else
+ Results.push_back(FIST);
+ }
+ return;
+ }
+ case ISD::UINT_TO_FP: {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ if (N->getOperand(0).getValueType() != MVT::v2i32 ||
+ N->getValueType(0) != MVT::v2f32)
+ return;
+ SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
+ N->getOperand(0));
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
+ MVT::f64);
+ SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
+ DAG.getBitcast(MVT::v2i64, VBias));
+ Or = DAG.getBitcast(MVT::v2f64, Or);
+ // TODO: Are there any fast-math-flags to propagate here?
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
+ Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
+ return;
+ }
+ case ISD::FP_ROUND: {
+ if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
+ return;
+ SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
+ Results.push_back(V);
+ return;
+ }
+ case ISD::FP_EXTEND: {
+ // Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
+ // No other ValueType for FP_EXTEND should reach this point.
+ assert(N->getValueType(0) == MVT::v2f32 &&
+ "Do not know how to legalize this Node");
+ return;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default : llvm_unreachable("Do not know how to custom type "
+ "legalize this intrinsic operation!");
+ case Intrinsic::x86_rdtsc:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdtscp:
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
+ Results);
+ case Intrinsic::x86_rdpmc:
+ return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
+ }
+ }
+ case ISD::INTRINSIC_WO_CHAIN: {
+ if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG))
+ Results.push_back(V);
+ return;
+ }
+ case ISD::READCYCLECOUNTER: {
+ return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
+ Results);
+ }
+ case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
+ EVT T = N->getValueType(0);
+ assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
+ bool Regs64bit = T == MVT::i128;
+ MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
+ SDValue cpInL, cpInH;
+ cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(0, dl, HalfT));
+ cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
+ DAG.getConstant(1, dl, HalfT));
+ cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ cpInL, SDValue());
+ cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ cpInH, cpInL.getValue(1));
+ SDValue swapInL, swapInH;
+ swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(0, dl, HalfT));
+ swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
+ DAG.getConstant(1, dl, HalfT));
+ swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
+ Regs64bit ? X86::RBX : X86::EBX,
+ swapInL, cpInH.getValue(1));
+ swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
+ Regs64bit ? X86::RCX : X86::ECX,
+ swapInH, swapInL.getValue(1));
+ SDValue Ops[] = { swapInH.getValue(0),
+ N->getOperand(1),
+ swapInH.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
+ MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
+ unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
+ X86ISD::LCMPXCHG8_DAG;
+ SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
+ SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
+ Regs64bit ? X86::RAX : X86::EAX,
+ HalfT, Result.getValue(1));
+ SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
+ Regs64bit ? X86::RDX : X86::EDX,
+ HalfT, cpOutL.getValue(2));
+ SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
+
+ SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
+ MVT::i32, cpOutH.getValue(2));
+ SDValue Success =
+ DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS);
+ Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
+ Results.push_back(Success);
+ Results.push_back(EFLAGS.getValue(1));
+ return;
+ }
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ case ISD::ATOMIC_LOAD: {
+ // Delegate to generic TypeLegalization. Situations we can really handle
+ // should have already been dealt with by AtomicExpandPass.cpp.
+ break;
+ }
+ case ISD::BITCAST: {
+ assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
+ EVT DstVT = N->getValueType(0);
+ EVT SrcVT = N->getOperand(0)->getValueType(0);
+
+ if (SrcVT != MVT::f64 ||
+ (DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
+ return;
+
+ unsigned NumElts = DstVT.getVectorNumElements();
+ EVT SVT = DstVT.getVectorElementType();
+ EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
+ SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, N->getOperand(0));
+ SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
+
+ if (ExperimentalVectorWideningLegalization) {
+ // If we are legalizing vectors by widening, we already have the desired
+ // legal vector type, just return it.
+ Results.push_back(ToVecInt);
+ return;
+ }
+
+ SmallVector<SDValue, 8> Elts;
+ for (unsigned i = 0, e = NumElts; i != e; ++i)
+ Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
+ ToVecInt, DAG.getIntPtrConstant(i, dl)));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_VECTOR, dl, DstVT, Elts));
+ }
+ }
+}
+
+const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((X86ISD::NodeType)Opcode) {
+ case X86ISD::FIRST_NUMBER: break;
+ case X86ISD::BSF: return "X86ISD::BSF";
+ case X86ISD::BSR: return "X86ISD::BSR";
+ case X86ISD::SHLD: return "X86ISD::SHLD";
+ case X86ISD::SHRD: return "X86ISD::SHRD";
+ case X86ISD::FAND: return "X86ISD::FAND";
+ case X86ISD::FANDN: return "X86ISD::FANDN";
+ case X86ISD::FOR: return "X86ISD::FOR";
+ case X86ISD::FXOR: return "X86ISD::FXOR";
+ case X86ISD::FILD: return "X86ISD::FILD";
+ case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
+ case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
+ case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
+ case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
+ case X86ISD::FLD: return "X86ISD::FLD";
+ case X86ISD::FST: return "X86ISD::FST";
+ case X86ISD::CALL: return "X86ISD::CALL";
+ case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
+ case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
+ case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
+ case X86ISD::BT: return "X86ISD::BT";
+ case X86ISD::CMP: return "X86ISD::CMP";
+ case X86ISD::COMI: return "X86ISD::COMI";
+ case X86ISD::UCOMI: return "X86ISD::UCOMI";
+ case X86ISD::CMPM: return "X86ISD::CMPM";
+ case X86ISD::CMPMU: return "X86ISD::CMPMU";
+ case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND";
+ case X86ISD::SETCC: return "X86ISD::SETCC";
+ case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
+ case X86ISD::FSETCC: return "X86ISD::FSETCC";
+ case X86ISD::FGETSIGNx86: return "X86ISD::FGETSIGNx86";
+ case X86ISD::CMOV: return "X86ISD::CMOV";
+ case X86ISD::BRCOND: return "X86ISD::BRCOND";
+ case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
+ case X86ISD::IRET: return "X86ISD::IRET";
+ case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
+ case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
+ case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
+ case X86ISD::Wrapper: return "X86ISD::Wrapper";
+ case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
+ case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q";
+ case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W";
+ case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D";
+ case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
+ case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
+ case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
+ case X86ISD::PINSRB: return "X86ISD::PINSRB";
+ case X86ISD::PINSRW: return "X86ISD::PINSRW";
+ case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW";
+ case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
+ case X86ISD::ANDNP: return "X86ISD::ANDNP";
+ case X86ISD::PSIGN: return "X86ISD::PSIGN";
+ case X86ISD::BLENDI: return "X86ISD::BLENDI";
+ case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
+ case X86ISD::ADDUS: return "X86ISD::ADDUS";
+ case X86ISD::SUBUS: return "X86ISD::SUBUS";
+ case X86ISD::HADD: return "X86ISD::HADD";
+ case X86ISD::HSUB: return "X86ISD::HSUB";
+ case X86ISD::FHADD: return "X86ISD::FHADD";
+ case X86ISD::FHSUB: return "X86ISD::FHSUB";
+ case X86ISD::ABS: return "X86ISD::ABS";
+ case X86ISD::CONFLICT: return "X86ISD::CONFLICT";
+ case X86ISD::FMAX: return "X86ISD::FMAX";
+ case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND";
+ case X86ISD::FMIN: return "X86ISD::FMIN";
+ case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND";
+ case X86ISD::FMAXC: return "X86ISD::FMAXC";
+ case X86ISD::FMINC: return "X86ISD::FMINC";
+ case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
+ case X86ISD::FRCP: return "X86ISD::FRCP";
+ case X86ISD::EXTRQI: return "X86ISD::EXTRQI";
+ case X86ISD::INSERTQI: return "X86ISD::INSERTQI";
+ case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
+ case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
+ case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
+ case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
+ case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
+ case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
+ case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
+ case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
+ case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
+ case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
+ case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
+ case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
+ case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
+ case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
+ case X86ISD::VZEXT: return "X86ISD::VZEXT";
+ case X86ISD::VSEXT: return "X86ISD::VSEXT";
+ case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
+ case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS";
+ case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS";
+ case X86ISD::VINSERT: return "X86ISD::VINSERT";
+ case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
+ case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
+ case X86ISD::CVTDQ2PD: return "X86ISD::CVTDQ2PD";
+ case X86ISD::CVTUDQ2PD: return "X86ISD::CVTUDQ2PD";
+ case X86ISD::CVT2MASK: return "X86ISD::CVT2MASK";
+ case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
+ case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
+ case X86ISD::VSHL: return "X86ISD::VSHL";
+ case X86ISD::VSRL: return "X86ISD::VSRL";
+ case X86ISD::VSRA: return "X86ISD::VSRA";
+ case X86ISD::VSHLI: return "X86ISD::VSHLI";
+ case X86ISD::VSRLI: return "X86ISD::VSRLI";
+ case X86ISD::VSRAI: return "X86ISD::VSRAI";
+ case X86ISD::CMPP: return "X86ISD::CMPP";
+ case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
+ case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
+ case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
+ case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
+ case X86ISD::ADD: return "X86ISD::ADD";
+ case X86ISD::SUB: return "X86ISD::SUB";
+ case X86ISD::ADC: return "X86ISD::ADC";
+ case X86ISD::SBB: return "X86ISD::SBB";
+ case X86ISD::SMUL: return "X86ISD::SMUL";
+ case X86ISD::UMUL: return "X86ISD::UMUL";
+ case X86ISD::SMUL8: return "X86ISD::SMUL8";
+ case X86ISD::UMUL8: return "X86ISD::UMUL8";
+ case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
+ case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
+ case X86ISD::INC: return "X86ISD::INC";
+ case X86ISD::DEC: return "X86ISD::DEC";
+ case X86ISD::OR: return "X86ISD::OR";
+ case X86ISD::XOR: return "X86ISD::XOR";
+ case X86ISD::AND: return "X86ISD::AND";
+ case X86ISD::BEXTR: return "X86ISD::BEXTR";
+ case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
+ case X86ISD::PTEST: return "X86ISD::PTEST";
+ case X86ISD::TESTP: return "X86ISD::TESTP";
+ case X86ISD::TESTM: return "X86ISD::TESTM";
+ case X86ISD::TESTNM: return "X86ISD::TESTNM";
+ case X86ISD::KORTEST: return "X86ISD::KORTEST";
+ case X86ISD::KTEST: return "X86ISD::KTEST";
+ case X86ISD::PACKSS: return "X86ISD::PACKSS";
+ case X86ISD::PACKUS: return "X86ISD::PACKUS";
+ case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
+ case X86ISD::VALIGN: return "X86ISD::VALIGN";
+ case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
+ case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
+ case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
+ case X86ISD::SHUFP: return "X86ISD::SHUFP";
+ case X86ISD::SHUF128: return "X86ISD::SHUF128";
+ case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
+ case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
+ case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
+ case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
+ case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
+ case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
+ case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
+ case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
+ case X86ISD::MOVSD: return "X86ISD::MOVSD";
+ case X86ISD::MOVSS: return "X86ISD::MOVSS";
+ case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
+ case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
+ case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
+ case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
+ case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST";
+ case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
+ case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV";
+ case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
+ case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
+ case X86ISD::VPERMV: return "X86ISD::VPERMV";
+ case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
+ case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
+ case X86ISD::VPERMI: return "X86ISD::VPERMI";
+ case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG";
+ case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
+ case X86ISD::VRANGE: return "X86ISD::VRANGE";
+ case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
+ case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
+ case X86ISD::PSADBW: return "X86ISD::PSADBW";
+ case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW";
+ case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
+ case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
+ case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
+ case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
+ case X86ISD::MFENCE: return "X86ISD::MFENCE";
+ case X86ISD::SFENCE: return "X86ISD::SFENCE";
+ case X86ISD::LFENCE: return "X86ISD::LFENCE";
+ case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
+ case X86ISD::SAHF: return "X86ISD::SAHF";
+ case X86ISD::RDRAND: return "X86ISD::RDRAND";
+ case X86ISD::RDSEED: return "X86ISD::RDSEED";
+ case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW";
+ case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD";
+ case X86ISD::VPROT: return "X86ISD::VPROT";
+ case X86ISD::VPROTI: return "X86ISD::VPROTI";
+ case X86ISD::VPSHA: return "X86ISD::VPSHA";
+ case X86ISD::VPSHL: return "X86ISD::VPSHL";
+ case X86ISD::VPCOM: return "X86ISD::VPCOM";
+ case X86ISD::VPCOMU: return "X86ISD::VPCOMU";
+ case X86ISD::FMADD: return "X86ISD::FMADD";
+ case X86ISD::FMSUB: return "X86ISD::FMSUB";
+ case X86ISD::FNMADD: return "X86ISD::FNMADD";
+ case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
+ case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
+ case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
+ case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND";
+ case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND";
+ case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND";
+ case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND";
+ case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND";
+ case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND";
+ case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE";
+ case X86ISD::VREDUCE: return "X86ISD::VREDUCE";
+ case X86ISD::VGETMANT: return "X86ISD::VGETMANT";
+ case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
+ case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
+ case X86ISD::XTEST: return "X86ISD::XTEST";
+ case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
+ case X86ISD::EXPAND: return "X86ISD::EXPAND";
+ case X86ISD::SELECT: return "X86ISD::SELECT";
+ case X86ISD::ADDSUB: return "X86ISD::ADDSUB";
+ case X86ISD::RCP28: return "X86ISD::RCP28";
+ case X86ISD::EXP2: return "X86ISD::EXP2";
+ case X86ISD::RSQRT28: return "X86ISD::RSQRT28";
+ case X86ISD::FADD_RND: return "X86ISD::FADD_RND";
+ case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
+ case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
+ case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
+ case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
+ case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND";
+ case X86ISD::SCALEF: return "X86ISD::SCALEF";
+ case X86ISD::ADDS: return "X86ISD::ADDS";
+ case X86ISD::SUBS: return "X86ISD::SUBS";
+ case X86ISD::AVG: return "X86ISD::AVG";
+ case X86ISD::MULHRS: return "X86ISD::MULHRS";
+ case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND";
+ case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND";
+ case X86ISD::FP_TO_SINT_RND: return "X86ISD::FP_TO_SINT_RND";
+ case X86ISD::FP_TO_UINT_RND: return "X86ISD::FP_TO_UINT_RND";
+ case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS";
+ case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS";
+ }
+ return nullptr;
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ // X86 supports extremely general addressing modes.
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+ Reloc::Model R = getTargetMachine().getRelocationModel();
+
+ // X86 allows a sign-extended 32-bit immediate field as a displacement.
+ if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
+ return false;
+
+ if (AM.BaseGV) {
+ unsigned GVFlags =
+ Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
+
+ // If a reference to this global requires an extra load, we can't fold it.
+ if (isGlobalStubReference(GVFlags))
+ return false;
+
+ // If BaseGV requires a register for the PIC base, we cannot also have a
+ // BaseReg specified.
+ if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
+ return false;
+
+ // If lower 4G is not available, then we must use rip-relative addressing.
+ if ((M != CodeModel::Small || R != Reloc::Static) &&
+ Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
+ return false;
+ }
+
+ switch (AM.Scale) {
+ case 0:
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ // These scales always work.
+ break;
+ case 3:
+ case 5:
+ case 9:
+ // These scales are formed with basereg+scalereg. Only accept if there is
+ // no basereg yet.
+ if (AM.HasBaseReg)
+ return false;
+ break;
+ default: // Other stuff never works.
+ return false;
+ }
+
+ return true;
+}
+
+bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
+ unsigned Bits = Ty->getScalarSizeInBits();
+
+ // 8-bit shifts are always expensive, but versions with a scalar amount aren't
+ // particularly cheaper than those without.
+ if (Bits == 8)
+ return false;
+
+ // On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
+ // variable shifts just as cheap as scalar ones.
+ if (Subtarget->hasInt256() && (Bits == 32 || Bits == 64))
+ return false;
+
+ // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
+ // fully general vector.
+ return true;
+}
+
+bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
+bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Can also use sub to handle negated immediates.
+ return isInt<32>(Imm);
+}
+
+bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ return NumBits1 > NumBits2;
+}
+
+bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ EVT VT1 = Val.getValueType();
+ if (isZExtFree(VT1, VT2))
+ return true;
+
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // X86 has 8, 16, and 32-bit zero-extending loads.
+ return true;
+ }
+
+ return false;
+}
+
+bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
+
+bool
+X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ if (!Subtarget->hasAnyFMA())
+ return false;
+
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
+bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
+ // i16 instructions are longer (0x66 prefix) and potentially slower.
+ return !(VT1 == MVT::i32 && VT2 == MVT::i16);
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (!VT.isSimple())
+ return false;
+
+ // Not for i1 vectors
+ if (VT.getSimpleVT().getScalarType() == MVT::i1)
+ return false;
+
+ // Very little shuffling can be done for 64-bit vectors right now.
+ if (VT.getSimpleVT().getSizeInBits() == 64)
+ return false;
+
+ // We only care that the types being shuffled are legal. The lowering can
+ // handle any possible shuffle mask that results.
+ return isTypeLegal(VT.getSimpleVT());
+}
+
+bool
+X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const {
+ // Just delegate to the generic legality, clear masks aren't special.
+ return isShuffleMaskLegal(Mask, VT);
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+/// Utility function to emit xbegin specifying the start of an RTM region.
+static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
+ const TargetInstrInfo *TII) {
+ DebugLoc DL = MI->getDebugLoc();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = ++MBB->getIterator();
+
+ // For the v = xbegin(), we generate
+ //
+ // thisMBB:
+ // xbegin sinkMBB
+ //
+ // mainMBB:
+ // eax = -1
+ //
+ // sinkMBB:
+ // v = eax
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineFunction *MF = MBB->getParent();
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // thisMBB:
+ // xbegin sinkMBB
+ // # fallthrough to mainMBB
+ // # abortion to sinkMBB
+ BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(sinkMBB);
+
+ // mainMBB:
+ // EAX = -1
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // EAX is live into the sinkMBB
+ sinkMBB->addLiveIn(X86::EAX);
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::EAX);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
+// or XMM0_V32I8 in AVX all of this code can be replaced with that
+// in the .td file.
+static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
+ case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
+ case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
+ case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
+ case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
+ case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
+ case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
+ case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
+ }
+
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI->getNumOperands();
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+ if (MI->hasOneMemOperand())
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ BuildMI(*BB, MI, dl,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::XMM0);
+
+ MI->eraseFromParent();
+ return BB;
+}
+
+// FIXME: Custom handling because TableGen doesn't support multiple implicit
+// defs in an instruction pattern
+static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
+ const TargetInstrInfo *TII) {
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
+ case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
+ case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
+ case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
+ case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
+ case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
+ case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
+ case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
+ }
+
+ DebugLoc dl = MI->getDebugLoc();
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
+
+ unsigned NumArgs = MI->getNumOperands(); // remove the results
+ for (unsigned i = 1; i < NumArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+ if (MI->hasOneMemOperand())
+ MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+
+ BuildMI(*BB, MI, dl,
+ TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
+ .addReg(X86::ECX);
+
+ MI->eraseFromParent();
+ return BB;
+}
+
+static MachineBasicBlock *EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
+ const X86Subtarget *Subtarget) {
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ // Address into RAX/EAX, other two args into ECX, EDX.
+ unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
+ unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
+ for (int i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.addOperand(MI->getOperand(i));
+
+ unsigned ValOps = X86::AddrNumOperands;
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
+ .addReg(MI->getOperand(ValOps).getReg());
+ BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
+ .addReg(MI->getOperand(ValOps+1).getReg());
+
+ // The instruction doesn't actually take any operands though.
+ BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
+
+ MI->eraseFromParent(); // The pseudo is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit va_arg instruction on X86-64.
+
+ // Operands to this pseudo-instruction:
+ // 0 ) Output : destination address (reg)
+ // 1-5) Input : va_list address (addr, i64mem)
+ // 6 ) ArgSize : Size (in bytes) of vararg type
+ // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
+ // 8 ) Align : Alignment of type
+ // 9 ) EFLAGS (implicit-def)
+
+ assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
+ static_assert(X86::AddrNumOperands == 5,
+ "VAARG_64 assumes 5 address operands");
+
+ unsigned DestReg = MI->getOperand(0).getReg();
+ MachineOperand &Base = MI->getOperand(1);
+ MachineOperand &Scale = MI->getOperand(2);
+ MachineOperand &Index = MI->getOperand(3);
+ MachineOperand &Disp = MI->getOperand(4);
+ MachineOperand &Segment = MI->getOperand(5);
+ unsigned ArgSize = MI->getOperand(6).getImm();
+ unsigned ArgMode = MI->getOperand(7).getImm();
+ unsigned Align = MI->getOperand(8).getImm();
+
+ // Memory Reference
+ assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ // Machine Information
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
+ const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
+ DebugLoc DL = MI->getDebugLoc();
+
+ // struct va_list {
+ // i32 gp_offset
+ // i32 fp_offset
+ // i64 overflow_area (address)
+ // i64 reg_save_area (address)
+ // }
+ // sizeof(va_list) = 24
+ // alignment(va_list) = 8
+
+ unsigned TotalNumIntRegs = 6;
+ unsigned TotalNumXMMRegs = 8;
+ bool UseGPOffset = (ArgMode == 1);
+ bool UseFPOffset = (ArgMode == 2);
+ unsigned MaxOffset = TotalNumIntRegs * 8 +
+ (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
+
+ /* Align ArgSize to a multiple of 8 */
+ unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
+ bool NeedsAlign = (Align > 8);
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *overflowMBB;
+ MachineBasicBlock *offsetMBB;
+ MachineBasicBlock *endMBB;
+
+ unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
+ unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
+ unsigned OffsetReg = 0;
+
+ if (!UseGPOffset && !UseFPOffset) {
+ // If we only pull from the overflow region, we don't create a branch.
+ // We don't need to alter control flow.
+ OffsetDestReg = 0; // unused
+ OverflowDestReg = DestReg;
+
+ offsetMBB = nullptr;
+ overflowMBB = thisMBB;
+ endMBB = thisMBB;
+ } else {
+ // First emit code to check if gp_offset (or fp_offset) is below the bound.
+ // If so, pull the argument from reg_save_area. (branch to offsetMBB)
+ // If not, pull from overflow_area. (branch to overflowMBB)
+ //
+ // thisMBB
+ // | .
+ // | .
+ // offsetMBB overflowMBB
+ // | .
+ // | .
+ // endMBB
+
+ // Registers for the PHI in endMBB
+ OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
+ OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
+
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *MF = MBB->getParent();
+ overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineFunction::iterator MBBIter = ++MBB->getIterator();
+
+ // Insert the new basic blocks
+ MF->insert(MBBIter, offsetMBB);
+ MF->insert(MBBIter, overflowMBB);
+ MF->insert(MBBIter, endMBB);
+
+ // Transfer the remainder of MBB and its successor edges to endMBB.
+ endMBB->splice(endMBB->begin(), thisMBB,
+ std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
+ endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
+
+ // Make offsetMBB and overflowMBB successors of thisMBB
+ thisMBB->addSuccessor(offsetMBB);
+ thisMBB->addSuccessor(overflowMBB);
+
+ // endMBB is a successor of both offsetMBB and overflowMBB
+ offsetMBB->addSuccessor(endMBB);
+ overflowMBB->addSuccessor(endMBB);
+
+ // Load the offset value into a register
+ OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Check if there is enough room left to pull this argument.
+ BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
+ .addReg(OffsetReg)
+ .addImm(MaxOffset + 8 - ArgSizeA8);
+
+ // Branch to "overflowMBB" if offset >= max
+ // Fall through to "offsetMBB" otherwise
+ BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
+ .addMBB(overflowMBB);
+ }
+
+ // In offsetMBB, emit code to use the reg_save_area.
+ if (offsetMBB) {
+ assert(OffsetReg != 0);
+
+ // Read the reg_save_area address.
+ unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 16)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Zero-extend the offset
+ unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
+ .addImm(0)
+ .addReg(OffsetReg)
+ .addImm(X86::sub_32bit);
+
+ // Add the offset to the reg_save_area to get the final address.
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
+ .addReg(OffsetReg64)
+ .addReg(RegSaveReg);
+
+ // Compute the offset for the next argument
+ unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
+ BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
+ .addReg(OffsetReg)
+ .addImm(UseFPOffset ? 16 : 8);
+
+ // Store it back into the va_list.
+ BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, UseFPOffset ? 4 : 0)
+ .addOperand(Segment)
+ .addReg(NextOffsetReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // Jump to endMBB
+ BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
+ .addMBB(endMBB);
+ }
+
+ //
+ // Emit code to use overflow area
+ //
+
+ // Load the overflow_area address into a register.
+ unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 8)
+ .addOperand(Segment)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we need to align it, do so. Otherwise, just copy the address
+ // to OverflowDestReg.
+ if (NeedsAlign) {
+ // Align the overflow address
+ assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
+ unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
+
+ // aligned_addr = (addr + (align-1)) & ~(align-1)
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
+ .addReg(OverflowAddrReg)
+ .addImm(Align-1);
+
+ BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
+ .addReg(TmpReg)
+ .addImm(~(uint64_t)(Align-1));
+ } else {
+ BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
+ .addReg(OverflowAddrReg);
+ }
+
+ // Compute the next overflow address after this argument.
+ // (the overflow address should be kept 8-byte aligned)
+ unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
+ BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
+ .addReg(OverflowDestReg)
+ .addImm(ArgSizeA8);
+
+ // Store the new overflow address.
+ BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
+ .addOperand(Base)
+ .addOperand(Scale)
+ .addOperand(Index)
+ .addDisp(Disp, 8)
+ .addOperand(Segment)
+ .addReg(NextAddrReg)
+ .setMemRefs(MMOBegin, MMOEnd);
+
+ // If we branched, emit the PHI to the front of endMBB.
+ if (offsetMBB) {
+ BuildMI(*endMBB, endMBB->begin(), DL,
+ TII->get(X86::PHI), DestReg)
+ .addReg(OffsetDestReg).addMBB(offsetMBB)
+ .addReg(OverflowDestReg).addMBB(overflowMBB);
+ }
+
+ // Erase the pseudo instruction
+ MI->eraseFromParent();
+
+ return endMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit code to save XMM registers to the stack. The ABI says that the
+ // number of registers to save is given in %al, so it's theoretically
+ // possible to do an indirect jump trick to avoid saving all of them,
+ // however this code takes a simpler approach and just executes all
+ // of the stores if %al is non-zero. It's less code, and it's probably
+ // easier on the hardware branch predictor, and stores aren't all that
+ // expensive anyway.
+
+ // Create the new basic blocks. One block contains all the XMM stores,
+ // and one block is the final destination regardless of whether any
+ // stores were performed.
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *F = MBB->getParent();
+ MachineFunction::iterator MBBIter = ++MBB->getIterator();
+ MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, XMMSaveMBB);
+ F->insert(MBBIter, EndMBB);
+
+ // Transfer the remainder of MBB and its successor edges to EndMBB.
+ EndMBB->splice(EndMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // The original block will now fall through to the XMM save block.
+ MBB->addSuccessor(XMMSaveMBB);
+ // The XMMSaveMBB will fall through to the end block.
+ XMMSaveMBB->addSuccessor(EndMBB);
+
+ // Now add the instructions.
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned CountReg = MI->getOperand(0).getReg();
+ int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
+ int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
+
+ if (!Subtarget->isCallingConvWin64(F->getFunction()->getCallingConv())) {
+ // If %al is 0, branch around the XMM save block.
+ BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
+ BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ }
+
+ // Make sure the last operand is EFLAGS, which gets clobbered by the branch
+ // that was just emitted, but clearly shouldn't be "saved".
+ assert((MI->getNumOperands() <= 3 ||
+ !MI->getOperand(MI->getNumOperands() - 1).isReg() ||
+ MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
+ && "Expected last argument to be EFLAGS");
+ unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
+ // In the XMM save block, save all the XMM argument registers.
+ for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
+ int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
+ MachineMemOperand *MMO = F->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
+ MachineMemOperand::MOStore,
+ /*Size=*/16, /*Align=*/16);
+ BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
+ .addFrameIndex(RegSaveFrameIndex)
+ .addImm(/*Scale=*/1)
+ .addReg(/*IndexReg=*/0)
+ .addImm(/*Disp=*/Offset)
+ .addReg(/*Segment=*/0)
+ .addReg(MI->getOperand(i).getReg())
+ .addMemOperand(MMO);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+
+ return EndMBB;
+}
+
+// The EFLAGS operand of SelectItr might be missing a kill marker
+// because there were multiple uses of EFLAGS, and ISel didn't know
+// which to mark. Figure out whether SelectItr should have had a
+// kill marker, and set it if it should. Returns the correct kill
+// marker value.
+static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
+ MachineBasicBlock* BB,
+ const TargetRegisterInfo* TRI) {
+ // Scan forward through BB for a use/def of EFLAGS.
+ MachineBasicBlock::iterator miI(std::next(SelectItr));
+ for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
+ const MachineInstr& mi = *miI;
+ if (mi.readsRegister(X86::EFLAGS))
+ return false;
+ if (mi.definesRegister(X86::EFLAGS))
+ break; // Should have kill-flag - update below.
+ }
+
+ // If we hit the end of the block, check whether EFLAGS is live into a
+ // successor.
+ if (miI == BB->end()) {
+ for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
+ sEnd = BB->succ_end();
+ sItr != sEnd; ++sItr) {
+ MachineBasicBlock* succ = *sItr;
+ if (succ->isLiveIn(X86::EFLAGS))
+ return false;
+ }
+ }
+
+ // We found a def, or hit the end of the basic block and EFLAGS wasn't live
+ // out. SelectMI should have a kill flag on EFLAGS.
+ SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
+ return true;
+}
+
+// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
+// together with other CMOV pseudo-opcodes into a single basic-block with
+// conditional jump around it.
+static bool isCMOVPseudo(MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_GR8:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V4F64:
+ case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
+ case X86::CMOV_V8I1:
+ case X86::CMOV_V16I1:
+ case X86::CMOV_V32I1:
+ case X86::CMOV_V64I1:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+
+ // This code lowers all pseudo-CMOV instructions. Generally it lowers these
+ // as described above, by inserting a BB, and then making a PHI at the join
+ // point to select the true and false operands of the CMOV in the PHI.
+ //
+ // The code also handles two different cases of multiple CMOV opcodes
+ // in a row.
+ //
+ // Case 1:
+ // In this case, there are multiple CMOVs in a row, all which are based on
+ // the same condition setting (or the exact opposite condition setting).
+ // In this case we can lower all the CMOVs using a single inserted BB, and
+ // then make a number of PHIs at the join point to model the CMOVs. The only
+ // trickiness here, is that in a case like:
+ //
+ // t2 = CMOV cond1 t1, f1
+ // t3 = CMOV cond1 t2, f2
+ //
+ // when rewriting this into PHIs, we have to perform some renaming on the
+ // temps since you cannot have a PHI operand refer to a PHI result earlier
+ // in the same block. The "simple" but wrong lowering would be:
+ //
+ // t2 = PHI t1(BB1), f1(BB2)
+ // t3 = PHI t2(BB1), f2(BB2)
+ //
+ // but clearly t2 is not defined in BB1, so that is incorrect. The proper
+ // renaming is to note that on the path through BB1, t2 is really just a
+ // copy of t1, and do that renaming, properly generating:
+ //
+ // t2 = PHI t1(BB1), f1(BB2)
+ // t3 = PHI t1(BB1), f2(BB2)
+ //
+ // Case 2, we lower cascaded CMOVs such as
+ //
+ // (CMOV (CMOV F, T, cc1), T, cc2)
+ //
+ // to two successives branches. For that, we look for another CMOV as the
+ // following instruction.
+ //
+ // Without this, we would add a PHI between the two jumps, which ends up
+ // creating a few copies all around. For instance, for
+ //
+ // (sitofp (zext (fcmp une)))
+ //
+ // we would generate:
+ //
+ // ucomiss %xmm1, %xmm0
+ // movss <1.0f>, %xmm0
+ // movaps %xmm0, %xmm1
+ // jne .LBB5_2
+ // xorps %xmm1, %xmm1
+ // .LBB5_2:
+ // jp .LBB5_4
+ // movaps %xmm1, %xmm0
+ // .LBB5_4:
+ // retq
+ //
+ // because this custom-inserter would have generated:
+ //
+ // A
+ // | \
+ // | B
+ // | /
+ // C
+ // | \
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // B: empty
+ // C: Z = PHI [X, A], [Y, B]
+ // D: empty
+ // E: PHI [X, C], [Z, D]
+ //
+ // If we lower both CMOVs in a single step, we can instead generate:
+ //
+ // A
+ // | \
+ // | C
+ // | /|
+ // |/ |
+ // | |
+ // | D
+ // | /
+ // E
+ //
+ // A: X = ...; Y = ...
+ // D: empty
+ // E: PHI [X, A], [X, C], [Y, D]
+ //
+ // Which, in our sitofp/fcmp example, gives us something like:
+ //
+ // ucomiss %xmm1, %xmm0
+ // movss <1.0f>, %xmm0
+ // jne .LBB5_4
+ // jp .LBB5_4
+ // xorps %xmm0, %xmm0
+ // .LBB5_4:
+ // retq
+ //
+ MachineInstr *CascadedCMOV = nullptr;
+ MachineInstr *LastCMOV = MI;
+ X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm());
+ X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
+ MachineBasicBlock::iterator NextMIIt =
+ std::next(MachineBasicBlock::iterator(MI));
+
+ // Check for case 1, where there are multiple CMOVs with the same condition
+ // first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
+ // number of jumps the most.
+
+ if (isCMOVPseudo(MI)) {
+ // See if we have a string of CMOVS with the same condition.
+ while (NextMIIt != BB->end() &&
+ isCMOVPseudo(NextMIIt) &&
+ (NextMIIt->getOperand(3).getImm() == CC ||
+ NextMIIt->getOperand(3).getImm() == OppCC)) {
+ LastCMOV = &*NextMIIt;
+ ++NextMIIt;
+ }
+ }
+
+ // This checks for case 2, but only do this if we didn't already find
+ // case 1, as indicated by LastCMOV == MI.
+ if (LastCMOV == MI &&
+ NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
+ NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
+ NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg()) {
+ CascadedCMOV = &*NextMIIt;
+ }
+
+ MachineBasicBlock *jcc1MBB = nullptr;
+
+ // If we have a cascaded CMOV, we lower it to two successive branches to
+ // the same block. EFLAGS is used by both, so mark it as live in the second.
+ if (CascadedCMOV) {
+ jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, jcc1MBB);
+ jcc1MBB->addLiveIn(X86::EFLAGS);
+ }
+
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // If the EFLAGS register isn't dead in the terminator, then claim that it's
+ // live into the sink and copy blocks.
+ const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
+
+ MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
+ if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
+ !checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
+ copy0MBB->addLiveIn(X86::EFLAGS);
+ sinkMBB->addLiveIn(X86::EFLAGS);
+ }
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add the true and fallthrough blocks as its successors.
+ if (CascadedCMOV) {
+ // The fallthrough block may be jcc1MBB, if we have a cascaded CMOV.
+ BB->addSuccessor(jcc1MBB);
+
+ // In that case, jcc1MBB will itself fallthrough the copy0MBB, and
+ // jump to the sinkMBB.
+ jcc1MBB->addSuccessor(copy0MBB);
+ jcc1MBB->addSuccessor(sinkMBB);
+ } else {
+ BB->addSuccessor(copy0MBB);
+ }
+
+ // The true block target of the first (or only) branch is always sinkMBB.
+ BB->addSuccessor(sinkMBB);
+
+ // Create the conditional branch instruction.
+ unsigned Opc = X86::GetCondBranchFromCond(CC);
+ BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
+
+ if (CascadedCMOV) {
+ unsigned Opc2 = X86::GetCondBranchFromCond(
+ (X86::CondCode)CascadedCMOV->getOperand(3).getImm());
+ BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
+ }
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ copy0MBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
+ MachineBasicBlock::iterator MIItEnd =
+ std::next(MachineBasicBlock::iterator(LastCMOV));
+ MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin();
+ DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
+ MachineInstrBuilder MIB;
+
+ // As we are creating the PHIs, we have to be careful if there is more than
+ // one. Later CMOVs may reference the results of earlier CMOVs, but later
+ // PHIs have to reference the individual true/false inputs from earlier PHIs.
+ // That also means that PHI construction must work forward from earlier to
+ // later, and that the code must maintain a mapping from earlier PHI's
+ // destination registers, and the registers that went into the PHI.
+
+ for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
+ unsigned DestReg = MIIt->getOperand(0).getReg();
+ unsigned Op1Reg = MIIt->getOperand(1).getReg();
+ unsigned Op2Reg = MIIt->getOperand(2).getReg();
+
+ // If this CMOV we are generating is the opposite condition from
+ // the jump we generated, then we have to swap the operands for the
+ // PHI that is going to be generated.
+ if (MIIt->getOperand(3).getImm() == OppCC)
+ std::swap(Op1Reg, Op2Reg);
+
+ if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
+ Op1Reg = RegRewriteTable[Op1Reg].first;
+
+ if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
+ Op2Reg = RegRewriteTable[Op2Reg].second;
+
+ MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL,
+ TII->get(X86::PHI), DestReg)
+ .addReg(Op1Reg).addMBB(copy0MBB)
+ .addReg(Op2Reg).addMBB(thisMBB);
+
+ // Add this PHI to the rewrite table.
+ RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
+ }
+
+ // If we have a cascaded CMOV, the second Jcc provides the same incoming
+ // value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
+ if (CascadedCMOV) {
+ MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
+ // Copy the PHI result to the register defined by the second CMOV.
+ BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
+ DL, TII->get(TargetOpcode::COPY),
+ CascadedCMOV->getOperand(0).getReg())
+ .addReg(MI->getOperand(0).getReg());
+ CascadedCMOV->eraseFromParent();
+ }
+
+ // Now remove the CMOV(s).
+ for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; )
+ (MIIt++)->eraseFromParent();
+
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ // Combine the following atomic floating-point modification pattern:
+ // a.store(reg OP a.load(acquire), release)
+ // Transform them into:
+ // OPss (%gpr), %xmm
+ // movss %xmm, (%gpr)
+ // Or sd equivalent for 64-bit operations.
+ unsigned MOp, FOp;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
+ case X86::RELEASE_FADD32mr: MOp = X86::MOVSSmr; FOp = X86::ADDSSrm; break;
+ case X86::RELEASE_FADD64mr: MOp = X86::MOVSDmr; FOp = X86::ADDSDrm; break;
+ }
+ const X86InstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
+ MachineOperand MSrc = MI->getOperand(0);
+ unsigned VSrc = MI->getOperand(5).getReg();
+ const MachineOperand &Disp = MI->getOperand(3);
+ MachineOperand ZeroDisp = MachineOperand::CreateImm(0);
+ bool hasDisp = Disp.isGlobal() || Disp.isImm();
+ if (hasDisp && MSrc.isReg())
+ MSrc.setIsKill(false);
+ MachineInstrBuilder MIM = BuildMI(*BB, MI, DL, TII->get(MOp))
+ .addOperand(/*Base=*/MSrc)
+ .addImm(/*Scale=*/1)
+ .addReg(/*Index=*/0)
+ .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0)
+ .addReg(0);
+ MachineInstr *MIO = BuildMI(*BB, (MachineInstr *)MIM, DL, TII->get(FOp),
+ MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
+ .addReg(VSrc)
+ .addOperand(/*Base=*/MSrc)
+ .addImm(/*Scale=*/1)
+ .addReg(/*Index=*/0)
+ .addDisp(hasDisp ? Disp : ZeroDisp, /*off=*/0)
+ .addReg(/*Segment=*/0);
+ MIM.addReg(MIO->getOperand(0).getReg(), RegState::Kill);
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+
+ assert(MF->shouldSplitStack());
+
+ const bool Is64Bit = Subtarget->is64Bit();
+ const bool IsLP64 = Subtarget->isTarget64BitLP64();
+
+ const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
+ const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
+
+ // BB:
+ // ... [Till the alloca]
+ // If stacklet is not large enough, jump to mallocMBB
+ //
+ // bumpMBB:
+ // Allocate by subtracting from RSP
+ // Jump to continueMBB
+ //
+ // mallocMBB:
+ // Allocate by call to runtime
+ //
+ // continueMBB:
+ // ...
+ // [rest of original BB]
+ //
+
+ MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetRegisterClass *AddrRegClass =
+ getRegClassFor(getPointerTy(MF->getDataLayout()));
+
+ unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
+ tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
+ SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
+ sizeVReg = MI->getOperand(1).getReg(),
+ physSPReg = IsLP64 || Subtarget->isTargetNaCl64() ? X86::RSP : X86::ESP;
+
+ MachineFunction::iterator MBBIter = ++BB->getIterator();
+
+ MF->insert(MBBIter, bumpMBB);
+ MF->insert(MBBIter, mallocMBB);
+ MF->insert(MBBIter, continueMBB);
+
+ continueMBB->splice(continueMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ continueMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Add code to the main basic block to check if the stack limit has been hit,
+ // and if so, jump to mallocMBB otherwise to bumpMBB.
+ BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
+ .addReg(tmpSPVReg).addReg(sizeVReg);
+ BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
+ .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
+ .addReg(SPLimitVReg);
+ BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
+
+ // bumpMBB simply decreases the stack pointer, since we know the current
+ // stacklet has enough space.
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
+ .addReg(SPLimitVReg);
+ BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
+
+ // Calls into a routine in libgcc to allocate more space from the heap.
+ const uint32_t *RegMask =
+ Subtarget->getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
+ if (IsLP64) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::RDI, RegState::Implicit)
+ .addReg(X86::RAX, RegState::ImplicitDefine);
+ } else if (Is64Bit) {
+ BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
+ .addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EDI, RegState::Implicit)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
+ } else {
+ BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
+ .addImm(12);
+ BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
+ BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
+ .addExternalSymbol("__morestack_allocate_stack_space")
+ .addRegMask(RegMask)
+ .addReg(X86::EAX, RegState::ImplicitDefine);
+ }
+
+ if (!Is64Bit)
+ BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
+ .addImm(16);
+
+ BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
+ .addReg(IsLP64 ? X86::RAX : X86::EAX);
+ BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
+
+ // Set up the CFG correctly.
+ BB->addSuccessor(bumpMBB);
+ BB->addSuccessor(mallocMBB);
+ mallocMBB->addSuccessor(continueMBB);
+ bumpMBB->addSuccessor(continueMBB);
+
+ // Take care of the PHI nodes.
+ BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
+ MI->getOperand(0).getReg())
+ .addReg(mallocPtrVReg).addMBB(mallocMBB)
+ .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
+
+ // Delete the original pseudo instruction.
+ MI->eraseFromParent();
+
+ // And we're done.
+ return continueMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ assert(!Subtarget->isTargetMachO());
+ DebugLoc DL = MI->getDebugLoc();
+ MachineInstr *ResumeMI = Subtarget->getFrameLowering()->emitStackProbe(
+ *BB->getParent(), *BB, MI, DL, false);
+ MachineBasicBlock *ResumeBB = ResumeMI->getParent();
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return ResumeBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredCatchRet(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
+ MachineBasicBlock *TargetMBB = MI->getOperand(0).getMBB();
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(!isAsynchronousEHPersonality(
+ classifyEHPersonality(MF->getFunction()->getPersonalityFn())) &&
+ "SEH does not use catchret!");
+
+ // Only 32-bit EH needs to worry about manually restoring stack pointers.
+ if (!Subtarget->is32Bit())
+ return BB;
+
+ // C++ EH creates a new target block to hold the restore code, and wires up
+ // the new block to the return destination with a normal JMP_4.
+ MachineBasicBlock *RestoreMBB =
+ MF->CreateMachineBasicBlock(BB->getBasicBlock());
+ assert(BB->succ_size() == 1);
+ MF->insert(std::next(BB->getIterator()), RestoreMBB);
+ RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
+ BB->addSuccessor(RestoreMBB);
+ MI->getOperand(0).setMBB(RestoreMBB);
+
+ auto RestoreMBBI = RestoreMBB->begin();
+ BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
+ BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredCatchPad(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ MachineFunction *MF = BB->getParent();
+ const Constant *PerFn = MF->getFunction()->getPersonalityFn();
+ bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
+ // Only 32-bit SEH requires special handling for catchpad.
+ if (IsSEH && Subtarget->is32Bit()) {
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
+ }
+ MI->eraseFromParent();
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ // This is pretty easy. We're taking the value that we received from
+ // our load from the relocation, sticking it in either RDI (x86-64)
+ // or EAX and doing an indirect call. The return value will then
+ // be in the normal return register.
+ MachineFunction *F = BB->getParent();
+ const X86InstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
+ assert(MI->getOperand(3).isGlobal() && "This should be a global");
+
+ // Get a register mask for the lowered call.
+ // FIXME: The 32-bit calls have non-standard calling conventions. Use a
+ // proper register mask.
+ const uint32_t *RegMask =
+ Subtarget->is64Bit() ?
+ Subtarget->getRegisterInfo()->getDarwinTLSCallPreservedMask() :
+ Subtarget->getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
+ if (Subtarget->is64Bit()) {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV64rm), X86::RDI)
+ .addReg(X86::RIP)
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
+ addDirectMem(MIB, X86::RDI);
+ MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(0)
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
+ TII->get(X86::MOV32rm), X86::EAX)
+ .addReg(TII->getGlobalBaseReg(F))
+ .addImm(0).addReg(0)
+ .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
+ MI->getOperand(3).getTargetFlags())
+ .addReg(0);
+ MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
+ addDirectMem(MIB, X86::EAX);
+ MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
+ }
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ const BasicBlock *BB = MBB->getBasicBlock();
+ MachineFunction::iterator I = ++MBB->getIterator();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ unsigned DstReg;
+ unsigned MemOpndSlot = 0;
+
+ unsigned CurOp = 0;
+
+ DstReg = MI->getOperand(CurOp++).getReg();
+ const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
+ assert(RC->hasType(MVT::i32) && "Invalid destination!");
+ unsigned mainDstReg = MRI.createVirtualRegister(RC);
+ unsigned restoreDstReg = MRI.createVirtualRegister(RC);
+
+ MemOpndSlot = CurOp;
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ // For v = setjmp(buf), we generate
+ //
+ // thisMBB:
+ // buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
+ // SjLjSetup restoreMBB
+ //
+ // mainMBB:
+ // v_main = 0
+ //
+ // sinkMBB:
+ // v = phi(main, restore)
+ //
+ // restoreMBB:
+ // if base pointer being used, load it from frame
+ // v_restore = 1
+
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
+ MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
+ MF->insert(I, mainMBB);
+ MF->insert(I, sinkMBB);
+ MF->push_back(restoreMBB);
+ restoreMBB->setHasAddressTaken();
+
+ MachineInstrBuilder MIB;
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
+
+ // thisMBB:
+ unsigned PtrStoreOpc = 0;
+ unsigned LabelReg = 0;
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ Reloc::Model RM = MF->getTarget().getRelocationModel();
+ bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
+ (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
+
+ // Prepare IP either in reg or imm.
+ if (!UseImmLabel) {
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
+ const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
+ LabelReg = MRI.createVirtualRegister(PtrRC);
+ if (Subtarget->is64Bit()) {
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
+ .addReg(X86::RIP)
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB)
+ .addReg(0);
+ } else {
+ const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
+ .addReg(XII->getGlobalBaseReg(MF))
+ .addImm(0)
+ .addReg(0)
+ .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
+ .addReg(0);
+ }
+ } else
+ PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
+ // Store IP
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
+ else
+ MIB.addOperand(MI->getOperand(MemOpndSlot + i));
+ }
+ if (!UseImmLabel)
+ MIB.addReg(LabelReg);
+ else
+ MIB.addMBB(restoreMBB);
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Setup
+ MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
+ .addMBB(restoreMBB);
+
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ MIB.addRegMask(RegInfo->getNoPreservedMask());
+ thisMBB->addSuccessor(mainMBB);
+ thisMBB->addSuccessor(restoreMBB);
+
+ // mainMBB:
+ // EAX = 0
+ BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
+ mainMBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ BuildMI(*sinkMBB, sinkMBB->begin(), DL,
+ TII->get(X86::PHI), DstReg)
+ .addReg(mainDstReg).addMBB(mainMBB)
+ .addReg(restoreDstReg).addMBB(restoreMBB);
+
+ // restoreMBB:
+ if (RegInfo->hasBasePointer(*MF)) {
+ const bool Uses64BitFramePtr =
+ Subtarget->isTarget64BitLP64() || Subtarget->isTargetNaCl64();
+ X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
+ X86FI->setRestoreBasePointer(MF);
+ unsigned FramePtr = RegInfo->getFrameRegister(*MF);
+ unsigned BasePtr = RegInfo->getBaseRegister();
+ unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
+ addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
+ FramePtr, true, X86FI->getRestoreBasePointerOffset())
+ .setMIFlag(MachineInstr::FrameSetup);
+ }
+ BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
+ BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
+ restoreMBB->addSuccessor(sinkMBB);
+
+ MI->eraseFromParent();
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ // Memory Reference
+ MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
+ MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
+
+ MVT PVT = getPointerTy(MF->getDataLayout());
+ assert((PVT == MVT::i64 || PVT == MVT::i32) &&
+ "Invalid Pointer Size!");
+
+ const TargetRegisterClass *RC =
+ (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
+ unsigned Tmp = MRI.createVirtualRegister(RC);
+ // Since FP is only updated here but NOT referenced, it's treated as GPR.
+ const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
+ unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
+ unsigned SP = RegInfo->getStackRegister();
+
+ MachineInstrBuilder MIB;
+
+ const int64_t LabelOffset = 1 * PVT.getStoreSize();
+ const int64_t SPOffset = 2 * PVT.getStoreSize();
+
+ unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
+ unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
+
+ // Reload FP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
+ MIB.addOperand(MI->getOperand(i));
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload IP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(i), LabelOffset);
+ else
+ MIB.addOperand(MI->getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Reload SP
+ MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
+ for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
+ if (i == X86::AddrDisp)
+ MIB.addDisp(MI->getOperand(i), SPOffset);
+ else
+ MIB.addOperand(MI->getOperand(i));
+ }
+ MIB.setMemRefs(MMOBegin, MMOEnd);
+ // Jump
+ BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+// Replace 213-type (isel default) FMA3 instructions with 231-type for
+// accumulator loops. Writing back to the accumulator allows the coalescer
+// to remove extra copies in the loop.
+// FIXME: Do this on AVX512. We don't support 231 variants yet (PR23937).
+MachineBasicBlock *
+X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ MachineOperand &AddendOp = MI->getOperand(3);
+
+ // Bail out early if the addend isn't a register - we can't switch these.
+ if (!AddendOp.isReg())
+ return MBB;
+
+ MachineFunction &MF = *MBB->getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Check whether the addend is defined by a PHI:
+ assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
+ MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
+ if (!AddendDef.isPHI())
+ return MBB;
+
+ // Look for the following pattern:
+ // loop:
+ // %addend = phi [%entry, 0], [%loop, %result]
+ // ...
+ // %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
+
+ // Replace with:
+ // loop:
+ // %addend = phi [%entry, 0], [%loop, %result]
+ // ...
+ // %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
+
+ for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
+ assert(AddendDef.getOperand(i).isReg());
+ MachineOperand PHISrcOp = AddendDef.getOperand(i);
+ MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
+ if (&PHISrcInst == MI) {
+ // Found a matching instruction.
+ unsigned NewFMAOpc = 0;
+ switch (MI->getOpcode()) {
+ case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
+ case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
+ case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
+ case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
+ case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
+ case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
+ case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
+ case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
+ case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
+ case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
+ case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
+ case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
+ case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
+ case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
+ case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
+ case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
+ case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
+ case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
+ case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
+ case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
+
+ case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
+ case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
+ case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
+ case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
+ case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
+ case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
+ case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
+ case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
+ case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
+ case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
+ case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
+ case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
+ default: llvm_unreachable("Unrecognized FMA variant.");
+ }
+
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
+ MachineInstrBuilder MIB =
+ BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
+ .addOperand(MI->getOperand(0))
+ .addOperand(MI->getOperand(3))
+ .addOperand(MI->getOperand(2))
+ .addOperand(MI->getOperand(1));
+ MBB->insert(MachineBasicBlock::iterator(MI), MIB);
+ MI->eraseFromParent();
+ }
+ }
+
+ return MBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unexpected instr type to insert");
+ case X86::TAILJMPd64:
+ case X86::TAILJMPr64:
+ case X86::TAILJMPm64:
+ case X86::TAILJMPd64_REX:
+ case X86::TAILJMPr64_REX:
+ case X86::TAILJMPm64_REX:
+ llvm_unreachable("TAILJMP64 would not be touched here.");
+ case X86::TCRETURNdi64:
+ case X86::TCRETURNri64:
+ case X86::TCRETURNmi64:
+ return BB;
+ case X86::WIN_ALLOCA:
+ return EmitLoweredWinAlloca(MI, BB);
+ case X86::CATCHRET:
+ return EmitLoweredCatchRet(MI, BB);
+ case X86::CATCHPAD:
+ return EmitLoweredCatchPad(MI, BB);
+ case X86::SEG_ALLOCA_32:
+ case X86::SEG_ALLOCA_64:
+ return EmitLoweredSegAlloca(MI, BB);
+ case X86::TLSCall_32:
+ case X86::TLSCall_64:
+ return EmitLoweredTLSCall(MI, BB);
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_FR128:
+ case X86::CMOV_GR8:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V4F64:
+ case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
+ case X86::CMOV_V8I1:
+ case X86::CMOV_V16I1:
+ case X86::CMOV_V32I1:
+ case X86::CMOV_V64I1:
+ return EmitLoweredSelect(MI, BB);
+
+ case X86::RELEASE_FADD32mr:
+ case X86::RELEASE_FADD64mr:
+ return EmitLoweredAtomicFP(MI, BB);
+
+ case X86::FP32_TO_INT16_IN_MEM:
+ case X86::FP32_TO_INT32_IN_MEM:
+ case X86::FP32_TO_INT64_IN_MEM:
+ case X86::FP64_TO_INT16_IN_MEM:
+ case X86::FP64_TO_INT32_IN_MEM:
+ case X86::FP64_TO_INT64_IN_MEM:
+ case X86::FP80_TO_INT16_IN_MEM:
+ case X86::FP80_TO_INT32_IN_MEM:
+ case X86::FP80_TO_INT64_IN_MEM: {
+ MachineFunction *F = BB->getParent();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Change the floating point control register to use "round towards zero"
+ // mode when truncating to an integer value.
+ int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FNSTCW16m)), CWFrameIdx);
+
+ // Load the old value of the high byte of the control word...
+ unsigned OldCW =
+ F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
+ CWFrameIdx);
+
+ // Set the high part to be round to zero...
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
+ .addImm(0xC7F);
+
+ // Reload the modified control word now...
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ // Restore the memory image of control word to original value
+ addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
+ .addReg(OldCW);
+
+ // Get the X86 opcode to use.
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
+ case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
+ case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
+ case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
+ case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
+ case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
+ case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
+ case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
+ case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
+ }
+
+ X86AddressMode AM;
+ MachineOperand &Op = MI->getOperand(0);
+ if (Op.isReg()) {
+ AM.BaseType = X86AddressMode::RegBase;
+ AM.Base.Reg = Op.getReg();
+ } else {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = Op.getIndex();
+ }
+ Op = MI->getOperand(1);
+ if (Op.isImm())
+ AM.Scale = Op.getImm();
+ Op = MI->getOperand(2);
+ if (Op.isImm())
+ AM.IndexReg = Op.getImm();
+ Op = MI->getOperand(3);
+ if (Op.isGlobal()) {
+ AM.GV = Op.getGlobal();
+ } else {
+ AM.Disp = Op.getImm();
+ }
+ addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
+ .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
+
+ // Reload the original control word now.
+ addFrameReference(BuildMI(*BB, MI, DL,
+ TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+ // String/text processing lowering.
+ case X86::PCMPISTRM128REG:
+ case X86::VPCMPISTRM128REG:
+ case X86::PCMPISTRM128MEM:
+ case X86::VPCMPISTRM128MEM:
+ case X86::PCMPESTRM128REG:
+ case X86::VPCMPESTRM128REG:
+ case X86::PCMPESTRM128MEM:
+ case X86::VPCMPESTRM128MEM:
+ assert(Subtarget->hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return EmitPCMPSTRM(MI, BB, Subtarget->getInstrInfo());
+
+ // String/text processing lowering.
+ case X86::PCMPISTRIREG:
+ case X86::VPCMPISTRIREG:
+ case X86::PCMPISTRIMEM:
+ case X86::VPCMPISTRIMEM:
+ case X86::PCMPESTRIREG:
+ case X86::VPCMPESTRIREG:
+ case X86::PCMPESTRIMEM:
+ case X86::VPCMPESTRIMEM:
+ assert(Subtarget->hasSSE42() &&
+ "Target must have SSE4.2 or AVX features enabled");
+ return EmitPCMPSTRI(MI, BB, Subtarget->getInstrInfo());
+
+ // Thread synchronization.
+ case X86::MONITOR:
+ return EmitMonitor(MI, BB, Subtarget);
+
+ // xbegin
+ case X86::XBEGIN:
+ return EmitXBegin(MI, BB, Subtarget->getInstrInfo());
+
+ case X86::VASTART_SAVE_XMM_REGS:
+ return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
+
+ case X86::VAARG_64:
+ return EmitVAARG64WithCustomInserter(MI, BB);
+
+ case X86::EH_SjLj_SetJmp32:
+ case X86::EH_SjLj_SetJmp64:
+ return emitEHSjLjSetJmp(MI, BB);
+
+ case X86::EH_SjLj_LongJmp32:
+ case X86::EH_SjLj_LongJmp64:
+ return emitEHSjLjLongJmp(MI, BB);
+
+ case TargetOpcode::STATEPOINT:
+ // As an implementation detail, STATEPOINT shares the STACKMAP format at
+ // this point in the process. We diverge later.
+ return emitPatchPoint(MI, BB);
+
+ case TargetOpcode::STACKMAP:
+ case TargetOpcode::PATCHPOINT:
+ return emitPatchPoint(MI, BB);
+
+ case X86::VFMADDPDr213r:
+ case X86::VFMADDPSr213r:
+ case X86::VFMADDSDr213r:
+ case X86::VFMADDSSr213r:
+ case X86::VFMSUBPDr213r:
+ case X86::VFMSUBPSr213r:
+ case X86::VFMSUBSDr213r:
+ case X86::VFMSUBSSr213r:
+ case X86::VFNMADDPDr213r:
+ case X86::VFNMADDPSr213r:
+ case X86::VFNMADDSDr213r:
+ case X86::VFNMADDSSr213r:
+ case X86::VFNMSUBPDr213r:
+ case X86::VFNMSUBPSr213r:
+ case X86::VFNMSUBSDr213r:
+ case X86::VFNMSUBSSr213r:
+ case X86::VFMADDSUBPDr213r:
+ case X86::VFMADDSUBPSr213r:
+ case X86::VFMSUBADDPDr213r:
+ case X86::VFMSUBADDPSr213r:
+ case X86::VFMADDPDr213rY:
+ case X86::VFMADDPSr213rY:
+ case X86::VFMSUBPDr213rY:
+ case X86::VFMSUBPSr213rY:
+ case X86::VFNMADDPDr213rY:
+ case X86::VFNMADDPSr213rY:
+ case X86::VFNMSUBPDr213rY:
+ case X86::VFNMSUBPSr213rY:
+ case X86::VFMADDSUBPDr213rY:
+ case X86::VFMADDSUBPSr213rY:
+ case X86::VFMSUBADDPDr213rY:
+ case X86::VFMSUBADDPSr213rY:
+ return emitFMA3Instr(MI, BB);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = KnownZero.getBitWidth();
+ unsigned Opc = Op.getOpcode();
+ assert((Opc >= ISD::BUILTIN_OP_END ||
+ Opc == ISD::INTRINSIC_WO_CHAIN ||
+ Opc == ISD::INTRINSIC_W_CHAIN ||
+ Opc == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+
+ KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
+ switch (Opc) {
+ default: break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::ADC:
+ case X86ISD::SBB:
+ case X86ISD::SMUL:
+ case X86ISD::UMUL:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ // These nodes' second result is a boolean.
+ if (Op.getResNo() == 0)
+ break;
+ // Fallthrough
+ case X86ISD::SETCC:
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned NumLoBits = 0;
+ switch (IntId) {
+ default: break;
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx2_pmovmskb: {
+ // High bits of movmskp{s|d}, pmovmskb are known zero.
+ switch (IntId) {
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
+ case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
+ case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
+ case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
+ case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
+ case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
+ case Intrinsic::x86_avx2_pmovmskb: NumLoBits = 32; break;
+ }
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
+ break;
+ }
+ }
+ break;
+ }
+ }
+}
+
+unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op,
+ const SelectionDAG &,
+ unsigned Depth) const {
+ // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
+ if (Op.getOpcode() == X86ISD::SETCC_CARRY)
+ return Op.getValueType().getScalarSizeInBits();
+
+ // Fallback case.
+ return 1;
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + offset.
+bool X86TargetLowering::isGAPlusOffset(SDNode *N,
+ const GlobalValue* &GA,
+ int64_t &Offset) const {
+ if (N->getOpcode() == X86ISD::Wrapper) {
+ if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
+ GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
+ Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
+ return true;
+ }
+ }
+ return TargetLowering::isGAPlusOffset(N, GA, Offset);
+}
+
+/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
+/// FIXME: This could be expanded to support 512 bit vectors as well.
+static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget* Subtarget) {
+ SDLoc dl(N);
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ MVT VT = SVOp->getSimpleValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
+ V2.getOpcode() == ISD::CONCAT_VECTORS) {
+ //
+ // 0,0,0,...
+ // |
+ // V UNDEF BUILD_VECTOR UNDEF
+ // \ / \ /
+ // CONCAT_VECTOR CONCAT_VECTOR
+ // \ /
+ // \ /
+ // RESULT: V + zero extended
+ //
+ if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
+ V2.getOperand(1).getOpcode() != ISD::UNDEF ||
+ V1.getOperand(1).getOpcode() != ISD::UNDEF)
+ return SDValue();
+
+ if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
+ return SDValue();
+
+ // To match the shuffle mask, the first half of the mask should
+ // be exactly the first vector, and all the rest a splat with the
+ // first element of the second one.
+ for (unsigned i = 0; i != NumElems/2; ++i)
+ if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
+ !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
+ return SDValue();
+
+ // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
+ if (Ld->hasNUsesOfValue(1, 0)) {
+ SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
+ SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
+ SDValue ResNode =
+ DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
+ Ld->getMemoryVT(),
+ Ld->getPointerInfo(),
+ Ld->getAlignment(),
+ false/*isVolatile*/, true/*ReadMem*/,
+ false/*WriteMem*/);
+
+ // Make sure the newly-created LOAD is in the same position as Ld in
+ // terms of dependency. We create a TokenFactor for Ld and ResNode,
+ // and update uses of Ld's output chain to use the TokenFactor.
+ if (Ld->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
+ SDValue(ResNode.getNode(), 1));
+ }
+
+ return DAG.getBitcast(VT, ResNode);
+ }
+ }
+
+ // Emit a zeroed vector and insert the desired subvector on its
+ // first half.
+ SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
+ SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
+ return DCI.CombineTo(N, InsV);
+ }
+
+ return SDValue();
+}
+
+/// \brief Combine an arbitrary chain of shuffles into a single instruction if
+/// possible.
+///
+/// This is the leaf of the recursive combinine below. When we have found some
+/// chain of single-use x86 shuffle instructions and accumulated the combined
+/// shuffle mask represented by them, this will try to pattern match that mask
+/// into either a single instruction if there is a special purpose instruction
+/// for this operation, or into a PSHUFB instruction which is a fully general
+/// instruction but should only be used to replace chains over a certain depth.
+static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
+ int Depth, bool HasPSHUFB, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
+
+ // Find the operand that enters the chain. Note that multiple uses are OK
+ // here, we're not going to remove the operand we find.
+ SDValue Input = Op.getOperand(0);
+ while (Input.getOpcode() == ISD::BITCAST)
+ Input = Input.getOperand(0);
+
+ MVT VT = Input.getSimpleValueType();
+ MVT RootVT = Root.getSimpleValueType();
+ SDLoc DL(Root);
+
+ if (Mask.size() == 1) {
+ int Index = Mask[0];
+ assert((Index >= 0 || Index == SM_SentinelUndef ||
+ Index == SM_SentinelZero) &&
+ "Invalid shuffle index found!");
+
+ // We may end up with an accumulated mask of size 1 as a result of
+ // widening of shuffle operands (see function canWidenShuffleElements).
+ // If the only shuffle index is equal to SM_SentinelZero then propagate
+ // a zero vector. Otherwise, the combine shuffle mask is a no-op shuffle
+ // mask, and therefore the entire chain of shuffles can be folded away.
+ if (Index == SM_SentinelZero)
+ DCI.CombineTo(Root.getNode(), getZeroVector(RootVT, Subtarget, DAG, DL));
+ else
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Use the float domain if the operand type is a floating point type.
+ bool FloatDomain = VT.isFloatingPoint();
+
+ // For floating point shuffles, we don't have free copies in the shuffle
+ // instructions or the ability to load as part of the instruction, so
+ // canonicalize their shuffles to UNPCK or MOV variants.
+ //
+ // Note that even with AVX we prefer the PSHUFD form of shuffle for integer
+ // vectors because it can have a load folded into it that UNPCK cannot. This
+ // doesn't preclude something switching to the shorter encoding post-RA.
+ //
+ // FIXME: Should teach these routines about AVX vector widths.
+ if (FloatDomain && VT.is128BitVector()) {
+ if (Mask.equals({0, 0}) || Mask.equals({1, 1})) {
+ bool Lo = Mask.equals({0, 0});
+ unsigned Shuffle;
+ MVT ShuffleVT;
+ // Check if we have SSE3 which will let us use MOVDDUP. That instruction
+ // is no slower than UNPCKLPD but has the option to fold the input operand
+ // into even an unaligned memory load.
+ if (Lo && Subtarget->hasSSE3()) {
+ Shuffle = X86ISD::MOVDDUP;
+ ShuffleVT = MVT::v2f64;
+ } else {
+ // We have MOVLHPS and MOVHLPS throughout SSE and they encode smaller
+ // than the UNPCK variants.
+ Shuffle = Lo ? X86ISD::MOVLHPS : X86ISD::MOVHLPS;
+ ShuffleVT = MVT::v4f32;
+ }
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getBitcast(ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ if (Shuffle == X86ISD::MOVDDUP)
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
+ else
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ if (Subtarget->hasSSE3() &&
+ (Mask.equals({0, 0, 2, 2}) || Mask.equals({1, 1, 3, 3}))) {
+ bool Lo = Mask.equals({0, 0, 2, 2});
+ unsigned Shuffle = Lo ? X86ISD::MOVSLDUP : X86ISD::MOVSHDUP;
+ MVT ShuffleVT = MVT::v4f32;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getBitcast(ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ if (Mask.equals({0, 0, 1, 1}) || Mask.equals({2, 2, 3, 3})) {
+ bool Lo = Mask.equals({0, 0, 1, 1});
+ unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
+ MVT ShuffleVT = MVT::v4f32;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ Op = DAG.getBitcast(ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+ }
+
+ // We always canonicalize the 8 x i16 and 16 x i8 shuffles into their UNPCK
+ // variants as none of these have single-instruction variants that are
+ // superior to the UNPCK formulation.
+ if (!FloatDomain && VT.is128BitVector() &&
+ (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
+ Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
+ Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}) ||
+ Mask.equals(
+ {8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15}))) {
+ bool Lo = Mask[0] == 0;
+ unsigned Shuffle = Lo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
+ if (Depth == 1 && Root->getOpcode() == Shuffle)
+ return false; // Nothing to do!
+ MVT ShuffleVT;
+ switch (Mask.size()) {
+ case 8:
+ ShuffleVT = MVT::v8i16;
+ break;
+ case 16:
+ ShuffleVT = MVT::v16i8;
+ break;
+ default:
+ llvm_unreachable("Impossible mask size!");
+ };
+ Op = DAG.getBitcast(ShuffleVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ Op = DAG.getNode(Shuffle, DL, ShuffleVT, Op, Op);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Don't try to re-form single instruction chains under any circumstances now
+ // that we've done encoding canonicalization for them.
+ if (Depth < 2)
+ return false;
+
+ // If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
+ // can replace them with a single PSHUFB instruction profitably. Intel's
+ // manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
+ // in practice PSHUFB tends to be *very* fast so we're more aggressive.
+ if ((Depth >= 3 || HasPSHUFB) && Subtarget->hasSSSE3()) {
+ SmallVector<SDValue, 16> PSHUFBMask;
+ int NumBytes = VT.getSizeInBits() / 8;
+ int Ratio = NumBytes / Mask.size();
+ for (int i = 0; i < NumBytes; ++i) {
+ if (Mask[i / Ratio] == SM_SentinelUndef) {
+ PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
+ continue;
+ }
+ int M = Mask[i / Ratio] != SM_SentinelZero
+ ? Ratio * Mask[i / Ratio] + i % Ratio
+ : 255;
+ PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
+ }
+ MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
+ Op = DAG.getBitcast(ByteVT, Input);
+ DCI.AddToWorklist(Op.getNode());
+ SDValue PSHUFBMaskOp =
+ DAG.getNode(ISD::BUILD_VECTOR, DL, ByteVT, PSHUFBMask);
+ DCI.AddToWorklist(PSHUFBMaskOp.getNode());
+ Op = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Op, PSHUFBMaskOp);
+ DCI.AddToWorklist(Op.getNode());
+ DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Op),
+ /*AddTo*/ true);
+ return true;
+ }
+
+ // Failed to find any combines.
+ return false;
+}
+
+/// \brief Fully generic combining of x86 shuffle instructions.
+///
+/// This should be the last combine run over the x86 shuffle instructions. Once
+/// they have been fully optimized, this will recursively consider all chains
+/// of single-use shuffle instructions, build a generic model of the cumulative
+/// shuffle operation, and check for simpler instructions which implement this
+/// operation. We use this primarily for two purposes:
+///
+/// 1) Collapse generic shuffles to specialized single instructions when
+/// equivalent. In most cases, this is just an encoding size win, but
+/// sometimes we will collapse multiple generic shuffles into a single
+/// special-purpose shuffle.
+/// 2) Look for sequences of shuffle instructions with 3 or more total
+/// instructions, and replace them with the slightly more expensive SSSE3
+/// PSHUFB instruction if available. We do this as the last combining step
+/// to ensure we avoid using PSHUFB if we can implement the shuffle with
+/// a suitable short sequence of other instructions. The PHUFB will either
+/// use a register or have to read from memory and so is slightly (but only
+/// slightly) more expensive than the other shuffle instructions.
+///
+/// Because this is inherently a quadratic operation (for each shuffle in
+/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
+/// This should never be an issue in practice as the shuffle lowering doesn't
+/// produce sequences of more than 8 instructions.
+///
+/// FIXME: We will currently miss some cases where the redundant shuffling
+/// would simplify under the threshold for PSHUFB formation because of
+/// combine-ordering. To fix this, we should do the redundant instruction
+/// combining in this recursive walk.
+static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
+ ArrayRef<int> RootMask,
+ int Depth, bool HasPSHUFB,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ // Bound the depth of our recursive combine because this is ultimately
+ // quadratic in nature.
+ if (Depth > 8)
+ return false;
+
+ // Directly rip through bitcasts to find the underlying operand.
+ while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
+ Op = Op.getOperand(0);
+
+ MVT VT = Op.getSimpleValueType();
+ if (!VT.isVector())
+ return false; // Bail if we hit a non-vector.
+
+ assert(Root.getSimpleValueType().isVector() &&
+ "Shuffles operate on vector types!");
+ assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
+ "Can only combine shuffles of the same vector register size.");
+
+ if (!isTargetShuffle(Op.getOpcode()))
+ return false;
+ SmallVector<int, 16> OpMask;
+ bool IsUnary;
+ bool HaveMask = getTargetShuffleMask(Op.getNode(), VT, OpMask, IsUnary);
+ // We only can combine unary shuffles which we can decode the mask for.
+ if (!HaveMask || !IsUnary)
+ return false;
+
+ assert(VT.getVectorNumElements() == OpMask.size() &&
+ "Different mask size from vector size!");
+ assert(((RootMask.size() > OpMask.size() &&
+ RootMask.size() % OpMask.size() == 0) ||
+ (OpMask.size() > RootMask.size() &&
+ OpMask.size() % RootMask.size() == 0) ||
+ OpMask.size() == RootMask.size()) &&
+ "The smaller number of elements must divide the larger.");
+ int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
+ int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
+ assert(((RootRatio == 1 && OpRatio == 1) ||
+ (RootRatio == 1) != (OpRatio == 1)) &&
+ "Must not have a ratio for both incoming and op masks!");
+
+ SmallVector<int, 16> Mask;
+ Mask.reserve(std::max(OpMask.size(), RootMask.size()));
+
+ // Merge this shuffle operation's mask into our accumulated mask. Note that
+ // this shuffle's mask will be the first applied to the input, followed by the
+ // root mask to get us all the way to the root value arrangement. The reason
+ // for this order is that we are recursing up the operation chain.
+ for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
+ int RootIdx = i / RootRatio;
+ if (RootMask[RootIdx] < 0) {
+ // This is a zero or undef lane, we're done.
+ Mask.push_back(RootMask[RootIdx]);
+ continue;
+ }
+
+ int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
+ int OpIdx = RootMaskedIdx / OpRatio;
+ if (OpMask[OpIdx] < 0) {
+ // The incoming lanes are zero or undef, it doesn't matter which ones we
+ // are using.
+ Mask.push_back(OpMask[OpIdx]);
+ continue;
+ }
+
+ // Ok, we have non-zero lanes, map them through.
+ Mask.push_back(OpMask[OpIdx] * OpRatio +
+ RootMaskedIdx % OpRatio);
+ }
+
+ // See if we can recurse into the operand to combine more things.
+ switch (Op.getOpcode()) {
+ case X86ISD::PSHUFB:
+ HasPSHUFB = true;
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ if (Op.getOperand(0).hasOneUse() &&
+ combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
+ HasPSHUFB, DAG, DCI, Subtarget))
+ return true;
+ break;
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ assert(Op.getOperand(0) == Op.getOperand(1) &&
+ "We only combine unary shuffles!");
+ // We can't check for single use, we have to check that this shuffle is the
+ // only user.
+ if (Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
+ combineX86ShufflesRecursively(Op.getOperand(0), Root, Mask, Depth + 1,
+ HasPSHUFB, DAG, DCI, Subtarget))
+ return true;
+ break;
+ }
+
+ // Minor canonicalization of the accumulated shuffle mask to make it easier
+ // to match below. All this does is detect masks with squential pairs of
+ // elements, and shrink them to the half-width mask. It does this in a loop
+ // so it will reduce the size of the mask to the minimal width mask which
+ // performs an equivalent shuffle.
+ SmallVector<int, 16> WidenedMask;
+ while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
+ Mask = std::move(WidenedMask);
+ WidenedMask.clear();
+ }
+
+ return combineX86ShuffleChain(Op, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
+ Subtarget);
+}
+
+/// \brief Get the PSHUF-style mask from PSHUF node.
+///
+/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
+/// PSHUF-style masks that can be reused with such instructions.
+static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
+ MVT VT = N.getSimpleValueType();
+ SmallVector<int, 4> Mask;
+ bool IsUnary;
+ bool HaveMask = getTargetShuffleMask(N.getNode(), VT, Mask, IsUnary);
+ (void)HaveMask;
+ assert(HaveMask);
+
+ // If we have more than 128-bits, only the low 128-bits of shuffle mask
+ // matter. Check that the upper masks are repeats and remove them.
+ if (VT.getSizeInBits() > 128) {
+ int LaneElts = 128 / VT.getScalarSizeInBits();
+#ifndef NDEBUG
+ for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
+ for (int j = 0; j < LaneElts; ++j)
+ assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
+ "Mask doesn't repeat in high 128-bit lanes!");
+#endif
+ Mask.resize(LaneElts);
+ }
+
+ switch (N.getOpcode()) {
+ case X86ISD::PSHUFD:
+ return Mask;
+ case X86ISD::PSHUFLW:
+ Mask.resize(4);
+ return Mask;
+ case X86ISD::PSHUFHW:
+ Mask.erase(Mask.begin(), Mask.begin() + 4);
+ for (int &M : Mask)
+ M -= 4;
+ return Mask;
+ default:
+ llvm_unreachable("No valid shuffle instruction found!");
+ }
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshufd.
+///
+/// We walk up the chain and look for a combinable shuffle, skipping over
+/// shuffles that we could hoist this shuffle's transformation past without
+/// altering anything.
+static SDValue
+combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ assert(N.getOpcode() == X86ISD::PSHUFD &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+
+ // Walk up a single-use chain looking for a combinable shuffle. Keep a stack
+ // of the shuffles in the chain so that we can form a fresh chain to replace
+ // this one.
+ SmallVector<SDValue, 8> Chain;
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return SDValue(); // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFD:
+ // Found another dword shuffle.
+ break;
+
+ case X86ISD::PSHUFLW:
+ // Check that the low words (being shuffled) are the identity in the
+ // dword shuffle, and the high words are self-contained.
+ if (Mask[0] != 0 || Mask[1] != 1 ||
+ !(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
+ return SDValue();
+
+ Chain.push_back(V);
+ continue;
+
+ case X86ISD::PSHUFHW:
+ // Check that the high words (being shuffled) are the identity in the
+ // dword shuffle, and the low words are self-contained.
+ if (Mask[2] != 2 || Mask[3] != 3 ||
+ !(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
+ return SDValue();
+
+ Chain.push_back(V);
+ continue;
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ // For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
+ // shuffle into a preceding word shuffle.
+ if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
+ V.getSimpleValueType().getVectorElementType() != MVT::i16)
+ return SDValue();
+
+ // Search for a half-shuffle which we can combine with.
+ unsigned CombineOp =
+ V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
+ if (V.getOperand(0) != V.getOperand(1) ||
+ !V->isOnlyUserOf(V.getOperand(0).getNode()))
+ return SDValue();
+ Chain.push_back(V);
+ V = V.getOperand(0);
+ do {
+ switch (V.getOpcode()) {
+ default:
+ return SDValue(); // Nothing to combine.
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOp)
+ break;
+
+ Chain.push_back(V);
+
+ // Fallthrough!
+ case ISD::BITCAST:
+ V = V.getOperand(0);
+ continue;
+ }
+ break;
+ } while (V.hasOneUse());
+ break;
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return SDValue();
+
+ // Merge this node's mask and our incoming mask.
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Rebuild the chain around this new shuffle.
+ while (!Chain.empty()) {
+ SDValue W = Chain.pop_back_val();
+
+ if (V.getValueType() != W.getOperand(0).getValueType())
+ V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
+
+ switch (W.getOpcode()) {
+ default:
+ llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
+
+ case X86ISD::UNPCKL:
+ case X86ISD::UNPCKH:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
+ break;
+
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
+ break;
+ }
+ }
+ if (V.getValueType() != N.getValueType())
+ V = DAG.getBitcast(N.getValueType(), V);
+
+ // Return the new chain to replace N.
+ return V;
+}
+
+/// \brief Search for a combinable shuffle across a chain ending in pshuflw or
+/// pshufhw.
+///
+/// We walk up the chain, skipping shuffles of the other half and looking
+/// through shuffles which switch halves trying to find a shuffle of the same
+/// pair of dwords.
+static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ assert(
+ (N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
+ "Called with something other than an x86 128-bit half shuffle!");
+ SDLoc DL(N);
+ unsigned CombineOpcode = N.getOpcode();
+
+ // Walk up a single-use chain looking for a combinable shuffle.
+ SDValue V = N.getOperand(0);
+ for (; V.hasOneUse(); V = V.getOperand(0)) {
+ switch (V.getOpcode()) {
+ default:
+ return false; // Nothing combined!
+
+ case ISD::BITCAST:
+ // Skip bitcasts as we always know the type for the target specific
+ // instructions.
+ continue;
+
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ if (V.getOpcode() == CombineOpcode)
+ break;
+
+ // Other-half shuffles are no-ops.
+ continue;
+ }
+ // Break out of the loop if we break out of the switch.
+ break;
+ }
+
+ if (!V.hasOneUse())
+ // We fell out of the loop without finding a viable combining instruction.
+ return false;
+
+ // Combine away the bottom node as its shuffle will be accumulated into
+ // a preceding shuffle.
+ DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Record the old value.
+ SDValue Old = V;
+
+ // Merge this node's mask and our incoming mask (adjusted to account for all
+ // the pshufd instructions encountered).
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ for (int &M : Mask)
+ M = VMask[M];
+ V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
+ getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
+
+ // Check that the shuffles didn't cancel each other out. If not, we need to
+ // combine to the new one.
+ if (Old != V)
+ // Replace the combinable shuffle with the combined one, updating all users
+ // so that we re-evaluate the chain here.
+ DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
+
+ return true;
+}
+
+/// \brief Try to combine x86 target specific shuffles.
+static SDValue PerformTargetShuffleCombine(SDValue N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ MVT VT = N.getSimpleValueType();
+ SmallVector<int, 4> Mask;
+
+ switch (N.getOpcode()) {
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ Mask = getPSHUFShuffleMask(N);
+ assert(Mask.size() == 4);
+ break;
+ case X86ISD::UNPCKL: {
+ // Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
+ // which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
+ // moves upper half elements into the lower half part. For example:
+ //
+ // t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
+ // undef:v16i8
+ // t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
+ //
+ // will be combined to:
+ //
+ // t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
+
+ // This is only for 128-bit vectors. From SSE4.1 onward this combine may not
+ // happen due to advanced instructions.
+ if (!VT.is128BitVector())
+ return SDValue();
+
+ auto Op0 = N.getOperand(0);
+ auto Op1 = N.getOperand(1);
+ if (Op0.getOpcode() == ISD::UNDEF &&
+ Op1.getNode()->getOpcode() == ISD::VECTOR_SHUFFLE) {
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
+
+ unsigned NumElts = VT.getVectorNumElements();
+ SmallVector<int, 8> ExpectedMask(NumElts, -1);
+ std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
+ NumElts / 2);
+
+ auto ShufOp = Op1.getOperand(0);
+ if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
+ return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
+ }
+ return SDValue();
+ }
+ default:
+ return SDValue();
+ }
+
+ // Nuke no-op shuffles that show up after combining.
+ if (isNoopShuffleMask(Mask))
+ return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
+
+ // Look for simplifications involving one or two shuffle instructions.
+ SDValue V = N.getOperand(0);
+ switch (N.getOpcode()) {
+ default:
+ break;
+ case X86ISD::PSHUFLW:
+ case X86ISD::PSHUFHW:
+ assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
+
+ if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
+ return SDValue(); // We combined away this shuffle, so we're done.
+
+ // See if this reduces to a PSHUFD which is no more expensive and can
+ // combine with more operations. Note that it has to at least flip the
+ // dwords as otherwise it would have been removed as a no-op.
+ if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
+ int DMask[] = {0, 1, 2, 3};
+ int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
+ DMask[DOffset + 0] = DOffset + 1;
+ DMask[DOffset + 1] = DOffset + 0;
+ MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
+ V = DAG.getBitcast(DVT, V);
+ DCI.AddToWorklist(V.getNode());
+ V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
+ getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getBitcast(VT, V);
+ }
+
+ // Look for shuffle patterns which can be implemented as a single unpack.
+ // FIXME: This doesn't handle the location of the PSHUFD generically, and
+ // only works when we have a PSHUFD followed by two half-shuffles.
+ if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
+ (V.getOpcode() == X86ISD::PSHUFLW ||
+ V.getOpcode() == X86ISD::PSHUFHW) &&
+ V.getOpcode() != N.getOpcode() &&
+ V.hasOneUse()) {
+ SDValue D = V.getOperand(0);
+ while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
+ D = D.getOperand(0);
+ if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
+ SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
+ SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
+ int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
+ int WordMask[8];
+ for (int i = 0; i < 4; ++i) {
+ WordMask[i + NOffset] = Mask[i] + NOffset;
+ WordMask[i + VOffset] = VMask[i] + VOffset;
+ }
+ // Map the word mask through the DWord mask.
+ int MappedMask[8];
+ for (int i = 0; i < 8; ++i)
+ MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
+ if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
+ makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
+ // We can replace all three shuffles with an unpack.
+ V = DAG.getBitcast(VT, D.getOperand(0));
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
+ : X86ISD::UNPCKH,
+ DL, VT, V, V);
+ }
+ }
+ }
+
+ break;
+
+ case X86ISD::PSHUFD:
+ if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
+ return NewN;
+
+ break;
+ }
+
+ return SDValue();
+}
+
+/// \brief Try to combine a shuffle into a target-specific add-sub node.
+///
+/// We combine this directly on the abstract vector shuffle nodes so it is
+/// easier to generically match. We also insert dummy vector shuffle nodes for
+/// the operands which explicitly discard the lanes which are unused by this
+/// operation to try to flow through the rest of the combiner the fact that
+/// they're unused.
+static SDValue combineShuffleToAddSub(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ // We only handle target-independent shuffles.
+ // FIXME: It would be easy and harmless to use the target shuffle mask
+ // extraction tool to support more.
+ if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
+ return SDValue();
+
+ auto *SVN = cast<ShuffleVectorSDNode>(N);
+ SmallVector<int, 8> Mask;
+ for (int M : SVN->getMask())
+ Mask.push_back(M);
+
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+
+ // We require the first shuffle operand to be the FSUB node, and the second to
+ // be the FADD node.
+ if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) {
+ ShuffleVectorSDNode::commuteMask(Mask);
+ std::swap(V1, V2);
+ } else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD)
+ return SDValue();
+
+ // If there are other uses of these operations we can't fold them.
+ if (!V1->hasOneUse() || !V2->hasOneUse())
+ return SDValue();
+
+ // Ensure that both operations have the same operands. Note that we can
+ // commute the FADD operands.
+ SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
+ if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
+ (V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
+ return SDValue();
+
+ // We're looking for blends between FADD and FSUB nodes. We insist on these
+ // nodes being lined up in a specific expected pattern.
+ if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
+ isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
+ isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
+ return SDValue();
+
+ // Only specific types are legal at this point, assert so we notice if and
+ // when these change.
+ assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v8f32 ||
+ VT == MVT::v4f64) &&
+ "Unknown vector type encountered!");
+
+ return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
+}
+
+/// PerformShuffleCombine - Performs several different shuffle combines.
+static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // Don't create instructions with illegal types after legalize types has run.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
+ return SDValue();
+
+ // If we have legalized the vector types, look for blends of FADD and FSUB
+ // nodes that we can fuse into an ADDSUB node.
+ if (TLI.isTypeLegal(VT) && Subtarget->hasSSE3())
+ if (SDValue AddSub = combineShuffleToAddSub(N, DAG))
+ return AddSub;
+
+ // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
+ if (TLI.isTypeLegal(VT) && Subtarget->hasFp256() && VT.is256BitVector() &&
+ N->getOpcode() == ISD::VECTOR_SHUFFLE)
+ return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
+
+ // During Type Legalization, when promoting illegal vector types,
+ // the backend might introduce new shuffle dag nodes and bitcasts.
+ //
+ // This code performs the following transformation:
+ // fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
+ // (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
+ //
+ // We do this only if both the bitcast and the BINOP dag nodes have
+ // one use. Also, perform this transformation only if the new binary
+ // operation is legal. This is to avoid introducing dag nodes that
+ // potentially need to be further expanded (or custom lowered) into a
+ // less optimal sequence of dag nodes.
+ if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
+ N1.getOpcode() == ISD::UNDEF && N0.hasOneUse() &&
+ N0.getOpcode() == ISD::BITCAST) {
+ SDValue BC0 = N0.getOperand(0);
+ EVT SVT = BC0.getValueType();
+ unsigned Opcode = BC0.getOpcode();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ if (BC0.hasOneUse() && SVT.isVector() &&
+ SVT.getVectorNumElements() * 2 == NumElts &&
+ TLI.isOperationLegal(Opcode, VT)) {
+ bool CanFold = false;
+ switch (Opcode) {
+ default : break;
+ case ISD::ADD :
+ case ISD::FADD :
+ case ISD::SUB :
+ case ISD::FSUB :
+ case ISD::MUL :
+ case ISD::FMUL :
+ CanFold = true;
+ }
+
+ unsigned SVTNumElts = SVT.getVectorNumElements();
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
+ for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
+ CanFold = SVOp->getMaskElt(i) < 0;
+
+ if (CanFold) {
+ SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
+ SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
+ SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
+ return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
+ }
+ }
+ }
+
+ // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
+ // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
+ // consecutive, non-overlapping, and in the right order.
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
+ Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
+
+ if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true))
+ return LD;
+
+ if (isTargetShuffle(N->getOpcode())) {
+ SDValue Shuffle =
+ PerformTargetShuffleCombine(SDValue(N, 0), DAG, DCI, Subtarget);
+ if (Shuffle.getNode())
+ return Shuffle;
+
+ // Try recursively combining arbitrary sequences of x86 shuffle
+ // instructions into higher-order shuffles. We do this after combining
+ // specific PSHUF instruction sequences into their minimal form so that we
+ // can evaluate how many specialized shuffle instructions are involved in
+ // a particular chain.
+ SmallVector<int, 1> NonceMask; // Just a placeholder.
+ NonceMask.push_back(0);
+ if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
+ /*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
+ DCI, Subtarget))
+ return SDValue(); // This routine will use CombineTo to replace N.
+ }
+
+ return SDValue();
+}
+
+/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
+/// specific shuffle of a load can be folded into a single element load.
+/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
+/// shuffles have been custom lowered so we need to handle those here.
+static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ SDValue InVec = N->getOperand(0);
+ SDValue EltNo = N->getOperand(1);
+
+ if (!isa<ConstantSDNode>(EltNo))
+ return SDValue();
+
+ EVT OriginalVT = InVec.getValueType();
+
+ if (InVec.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+ EVT BCVT = InVec.getOperand(0).getValueType();
+ if (!BCVT.isVector() ||
+ BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
+ return SDValue();
+ InVec = InVec.getOperand(0);
+ }
+
+ EVT CurrentVT = InVec.getValueType();
+
+ if (!isTargetShuffle(InVec.getOpcode()))
+ return SDValue();
+
+ // Don't duplicate a load with other uses.
+ if (!InVec.hasOneUse())
+ return SDValue();
+
+ SmallVector<int, 16> ShuffleMask;
+ bool UnaryShuffle;
+ if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(),
+ ShuffleMask, UnaryShuffle))
+ return SDValue();
+
+ // Select the input vector, guarding against out of range extract vector.
+ unsigned NumElems = CurrentVT.getVectorNumElements();
+ int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
+ int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
+ SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
+ : InVec.getOperand(1);
+
+ // If inputs to shuffle are the same for both ops, then allow 2 uses
+ unsigned AllowedUses = InVec.getNumOperands() > 1 &&
+ InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
+
+ if (LdNode.getOpcode() == ISD::BITCAST) {
+ // Don't duplicate a load with other uses.
+ if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
+ return SDValue();
+
+ AllowedUses = 1; // only allow 1 load use if we have a bitcast
+ LdNode = LdNode.getOperand(0);
+ }
+
+ if (!ISD::isNormalLoad(LdNode.getNode()))
+ return SDValue();
+
+ LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
+
+ if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
+ return SDValue();
+
+ EVT EltVT = N->getValueType(0);
+ // If there's a bitcast before the shuffle, check if the load type and
+ // alignment is valid.
+ unsigned Align = LN0->getAlignment();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
+ EltVT.getTypeForEVT(*DAG.getContext()));
+
+ if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
+ return SDValue();
+
+ // All checks match so transform back to vector_shuffle so that DAG combiner
+ // can finish the job
+ SDLoc dl(N);
+
+ // Create shuffle node taking into account the case that its a unary shuffle
+ SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT)
+ : InVec.getOperand(1);
+ Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
+ InVec.getOperand(0), Shuffle,
+ &ShuffleMask[0]);
+ Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
+ EltNo);
+}
+
+static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ // Detect bitcasts between i32 to x86mmx low word. Since MMX types are
+ // special and don't usually play with other vector types, it's better to
+ // handle them early to be sure we emit efficient code by avoiding
+ // store-load conversions.
+ if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR &&
+ N0.getValueType() == MVT::v2i32 &&
+ isNullConstant(N0.getOperand(1))) {
+ SDValue N00 = N0->getOperand(0);
+ if (N00.getValueType() == MVT::i32)
+ return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00);
+ }
+
+ // Convert a bitcasted integer logic operation that has one bitcasted
+ // floating-point operand and one constant operand into a floating-point
+ // logic operation. This may create a load of the constant, but that is
+ // cheaper than materializing the constant in an integer register and
+ // transferring it to an SSE register or transferring the SSE operand to
+ // integer register and back.
+ unsigned FPOpcode;
+ switch (N0.getOpcode()) {
+ case ISD::AND: FPOpcode = X86ISD::FAND; break;
+ case ISD::OR: FPOpcode = X86ISD::FOR; break;
+ case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
+ default: return SDValue();
+ }
+ if (((Subtarget->hasSSE1() && VT == MVT::f32) ||
+ (Subtarget->hasSSE2() && VT == MVT::f64)) &&
+ isa<ConstantSDNode>(N0.getOperand(1)) &&
+ N0.getOperand(0).getOpcode() == ISD::BITCAST &&
+ N0.getOperand(0).getOperand(0).getValueType() == VT) {
+ SDValue N000 = N0.getOperand(0).getOperand(0);
+ SDValue FPConst = DAG.getBitcast(VT, N0.getOperand(1));
+ return DAG.getNode(FPOpcode, SDLoc(N0), VT, N000, FPConst);
+ }
+
+ return SDValue();
+}
+
+/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
+/// generation and convert it from being a bunch of shuffles and extracts
+/// into a somewhat faster sequence. For i686, the best sequence is apparently
+/// storing the value and loading scalars back, while for x64 we should
+/// use 64-bit extracts and shifts.
+static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
+ return NewOp;
+
+ SDValue InputVector = N->getOperand(0);
+ SDLoc dl(InputVector);
+ // Detect mmx to i32 conversion through a v2i32 elt extract.
+ if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
+ N->getValueType(0) == MVT::i32 &&
+ InputVector.getValueType() == MVT::v2i32) {
+
+ // The bitcast source is a direct mmx result.
+ SDValue MMXSrc = InputVector.getNode()->getOperand(0);
+ if (MMXSrc.getValueType() == MVT::x86mmx)
+ return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
+ N->getValueType(0),
+ InputVector.getNode()->getOperand(0));
+
+ // The mmx is indirect: (i64 extract_elt (v1i64 bitcast (x86mmx ...))).
+ if (MMXSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT && MMXSrc.hasOneUse() &&
+ MMXSrc.getValueType() == MVT::i64) {
+ SDValue MMXSrcOp = MMXSrc.getOperand(0);
+ if (MMXSrcOp.hasOneUse() && MMXSrcOp.getOpcode() == ISD::BITCAST &&
+ MMXSrcOp.getValueType() == MVT::v1i64 &&
+ MMXSrcOp.getOperand(0).getValueType() == MVT::x86mmx)
+ return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
+ N->getValueType(0), MMXSrcOp.getOperand(0));
+ }
+ }
+
+ EVT VT = N->getValueType(0);
+
+ if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) &&
+ InputVector.getOpcode() == ISD::BITCAST &&
+ isa<ConstantSDNode>(InputVector.getOperand(0))) {
+ uint64_t ExtractedElt =
+ cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ uint64_t InputValue =
+ cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue();
+ uint64_t Res = (InputValue >> ExtractedElt) & 1;
+ return DAG.getConstant(Res, dl, MVT::i1);
+ }
+ // Only operate on vectors of 4 elements, where the alternative shuffling
+ // gets to be more expensive.
+ if (InputVector.getValueType() != MVT::v4i32)
+ return SDValue();
+
+ // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
+ // single use which is a sign-extend or zero-extend, and all elements are
+ // used.
+ SmallVector<SDNode *, 4> Uses;
+ unsigned ExtractedElements = 0;
+ for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
+ UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI.getUse().getResNo() != InputVector.getResNo())
+ return SDValue();
+
+ SDNode *Extract = *UI;
+ if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ if (Extract->getValueType(0) != MVT::i32)
+ return SDValue();
+ if (!Extract->hasOneUse())
+ return SDValue();
+ if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
+ Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
+ return SDValue();
+ if (!isa<ConstantSDNode>(Extract->getOperand(1)))
+ return SDValue();
+
+ // Record which element was extracted.
+ ExtractedElements |=
+ 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
+
+ Uses.push_back(Extract);
+ }
+
+ // If not all the elements were used, this may not be worthwhile.
+ if (ExtractedElements != 15)
+ return SDValue();
+
+ // Ok, we've now decided to do the transformation.
+ // If 64-bit shifts are legal, use the extract-shift sequence,
+ // otherwise bounce the vector off the cache.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Vals[4];
+
+ if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
+ SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
+ auto &DL = DAG.getDataLayout();
+ EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL);
+ SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(0, dl, VecIdxTy));
+ SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
+ DAG.getConstant(1, dl, VecIdxTy));
+
+ SDValue ShAmt = DAG.getConstant(
+ 32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL));
+ Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
+ Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
+ Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
+ Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
+ DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
+ } else {
+ // Store the value to a temporary stack slot.
+ SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
+ MachinePointerInfo(), false, false, 0);
+
+ EVT ElementType = InputVector.getValueType().getVectorElementType();
+ unsigned EltSize = ElementType.getSizeInBits() / 8;
+
+ // Replace each use (extract) with a load of the appropriate element.
+ for (unsigned i = 0; i < 4; ++i) {
+ uint64_t Offset = EltSize * i;
+ auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
+ SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT);
+
+ SDValue ScalarAddr =
+ DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal);
+
+ // Load the scalar.
+ Vals[i] = DAG.getLoad(ElementType, dl, Ch,
+ ScalarAddr, MachinePointerInfo(),
+ false, false, false, 0);
+
+ }
+ }
+
+ // Replace the extracts
+ for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
+ UE = Uses.end(); UI != UE; ++UI) {
+ SDNode *Extract = *UI;
+
+ SDValue Idx = Extract->getOperand(1);
+ uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
+ }
+
+ // The replacement was made in place; don't return anything.
+ return SDValue();
+}
+
+static SDValue
+transformVSELECTtoBlendVECTOR_SHUFFLE(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDLoc dl(N);
+ SDValue Cond = N->getOperand(0);
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+
+ if (Cond.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue CondSrc = Cond->getOperand(0);
+ if (CondSrc->getOpcode() == ISD::SIGN_EXTEND_INREG)
+ Cond = CondSrc->getOperand(0);
+ }
+
+ if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
+ return SDValue();
+
+ // A vselect where all conditions and data are constants can be optimized into
+ // a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
+ if (ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
+ ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
+ return SDValue();
+
+ unsigned MaskValue = 0;
+ if (!BUILD_VECTORtoBlendMask(cast<BuildVectorSDNode>(Cond), MaskValue))
+ return SDValue();
+
+ MVT VT = N->getSimpleValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> ShuffleMask(NumElems, -1);
+ for (unsigned i = 0; i < NumElems; ++i) {
+ // Be sure we emit undef where we can.
+ if (Cond.getOperand(i)->getOpcode() == ISD::UNDEF)
+ ShuffleMask[i] = -1;
+ else
+ ShuffleMask[i] = i + NumElems * ((MaskValue >> i) & 1);
+ }
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isShuffleMaskLegal(ShuffleMask, VT))
+ return SDValue();
+ return DAG.getVectorShuffle(VT, dl, LHS, RHS, &ShuffleMask[0]);
+}
+
+/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
+/// nodes.
+static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ SDValue Cond = N->getOperand(0);
+ // Get the LHS/RHS of the select.
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+ EVT VT = LHS.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we have SSE[12] support, try to form min/max nodes. SSE min/max
+ // instructions match the semantics of the common C idiom x<y?x:y but not
+ // x<=y?x:y, because of how they handle negative zero (which can be
+ // ignored in unsafe-math mode).
+ // We also try to create v2f32 min/max nodes, which we later widen to v4f32.
+ if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
+ VT != MVT::f80 && VT != MVT::f128 &&
+ (TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
+ (Subtarget->hasSSE2() ||
+ (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ unsigned Opcode = 0;
+ // Check for x CC y ? x : y.
+ if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ // Converting this to a min would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETULE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETOGE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a max would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
+ } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(0))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETOGE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a min would handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETULT:
+ // Converting this to a max would handle NaNs incorrectly.
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!DAG.getTarget().Options.UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
+ if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETULE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ }
+
+ if (Opcode)
+ return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
+ }
+
+ EVT CondVT = Cond.getValueType();
+ if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
+ CondVT.getVectorElementType() == MVT::i1) {
+ // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
+ // lowering on KNL. In this case we convert it to
+ // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
+ // The same situation for all 128 and 256-bit vectors of i8 and i16.
+ // Since SKX these selects have a proper lowering.
+ EVT OpVT = LHS.getValueType();
+ if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
+ (OpVT.getVectorElementType() == MVT::i8 ||
+ OpVT.getVectorElementType() == MVT::i16) &&
+ !(Subtarget->hasBWI() && Subtarget->hasVLX())) {
+ Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
+ DCI.AddToWorklist(Cond.getNode());
+ return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
+ }
+ }
+ // If this is a select between two integer constants, try to do some
+ // optimizations.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
+ // Don't do this for crazy integer types.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
+ // If this is efficiently invertible, canonicalize the LHSC/RHSC values
+ // so that TrueC (the true value) is larger than FalseC.
+ bool NeedsCondInvert = false;
+
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
+ // Efficiently invertible.
+ (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
+ (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
+ isa<ConstantSDNode>(Cond.getOperand(1))))) {
+ NeedsCondInvert = true;
+ std::swap(TrueC, FalseC);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
+ if (FalseC->getAPIntValue() == 0 &&
+ TrueC->getAPIntValue().isPowerOf2()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, DL, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
+ DAG.getConstant(ShAmt, DL, MVT::i8));
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, DL, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, DL, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, DL,
+ Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ return Cond;
+ }
+ }
+ }
+ }
+
+ // Canonicalize max and min:
+ // (x > y) ? x : y -> (x >= y) ? x : y
+ // (x < y) ? x : y -> (x <= y) ? x : y
+ // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
+ // the need for an extra compare
+ // against zero. e.g.
+ // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
+ // subl %esi, %edi
+ // testl %edi, %edi
+ // movl $0, %eax
+ // cmovgl %edi, %eax
+ // =>
+ // xorl %eax, %eax
+ // subl %esi, $edi
+ // cmovsl %eax, %edi
+ if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
+ DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGT: {
+ ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
+ Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
+ Cond.getOperand(0), Cond.getOperand(1), NewCC);
+ return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
+ }
+ }
+ }
+
+ // Early exit check
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
+ // Match VSELECTs into subs with unsigned saturation.
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
+ ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
+ (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ // Check if one of the arms of the VSELECT is a zero vector. If it's on the
+ // left side invert the predicate to simplify logic below.
+ SDValue Other;
+ if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
+ Other = RHS;
+ CC = ISD::getSetCCInverse(CC, true);
+ } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
+ Other = LHS;
+ }
+
+ if (Other.getNode() && Other->getNumOperands() == 2 &&
+ DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
+ SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
+ SDValue CondRHS = Cond->getOperand(1);
+
+ // Look for a general sub with unsigned saturation first.
+ // x >= y ? x-y : 0 --> subus x, y
+ // x > y ? x-y : 0 --> subus x, y
+ if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
+ Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
+ return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
+
+ if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
+ if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
+ if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
+ if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
+ // If the RHS is a constant we have to reverse the const
+ // canonicalization.
+ // x > C-1 ? x+-C : 0 --> subus x, C
+ if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
+ CondRHSConst->getAPIntValue() ==
+ (-OpRHSConst->getAPIntValue() - 1))
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
+
+ // Another special case: If C was a sign bit, the sub has been
+ // canonicalized into a xor.
+ // FIXME: Would it be better to use computeKnownBits to determine
+ // whether it's safe to decanonicalize the xor?
+ // x s< 0 ? x^C : 0 --> subus x, C
+ if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
+ ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
+ OpRHSConst->getAPIntValue().isSignBit())
+ // Note that we have to rebuild the RHS constant here to ensure we
+ // don't rely on particular values of undef lanes.
+ return DAG.getNode(
+ X86ISD::SUBUS, DL, VT, OpLHS,
+ DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
+ }
+ }
+ }
+
+ // Simplify vector selection if condition value type matches vselect
+ // operand type
+ if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
+ assert(Cond.getValueType().isVector() &&
+ "vector select expects a vector selector!");
+
+ bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
+ bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ // Try invert the condition if true value is not all 1s and false value
+ // is not all 0s.
+ if (!TValIsAllOnes && !FValIsAllZeros &&
+ // Check if the selector will be produced by CMPP*/PCMP*
+ Cond.getOpcode() == ISD::SETCC &&
+ // Check if SETCC has already been promoted
+ TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
+ CondVT) {
+ bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
+ bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
+
+ if (TValIsAllZeros || FValIsAllOnes) {
+ SDValue CC = Cond.getOperand(2);
+ ISD::CondCode NewCC =
+ ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
+ Cond.getOperand(0).getValueType().isInteger());
+ Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
+ std::swap(LHS, RHS);
+ TValIsAllOnes = FValIsAllOnes;
+ FValIsAllZeros = TValIsAllZeros;
+ }
+ }
+
+ if (TValIsAllOnes || FValIsAllZeros) {
+ SDValue Ret;
+
+ if (TValIsAllOnes && FValIsAllZeros)
+ Ret = Cond;
+ else if (TValIsAllOnes)
+ Ret =
+ DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
+ else if (FValIsAllZeros)
+ Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
+ DAG.getBitcast(CondVT, LHS));
+
+ return DAG.getBitcast(VT, Ret);
+ }
+ }
+
+ // We should generate an X86ISD::BLENDI from a vselect if its argument
+ // is a sign_extend_inreg of an any_extend of a BUILD_VECTOR of
+ // constants. This specific pattern gets generated when we split a
+ // selector for a 512 bit vector in a machine without AVX512 (but with
+ // 256-bit vectors), during legalization:
+ //
+ // (vselect (sign_extend (any_extend (BUILD_VECTOR)) i1) LHS RHS)
+ //
+ // Iff we find this pattern and the build_vectors are built from
+ // constants, we translate the vselect into a shuffle_vector that we
+ // know will be matched by LowerVECTOR_SHUFFLEtoBlend.
+ if ((N->getOpcode() == ISD::VSELECT ||
+ N->getOpcode() == X86ISD::SHRUNKBLEND) &&
+ !DCI.isBeforeLegalize() && !VT.is512BitVector()) {
+ SDValue Shuffle = transformVSELECTtoBlendVECTOR_SHUFFLE(N, DAG, Subtarget);
+ if (Shuffle.getNode())
+ return Shuffle;
+ }
+
+ // If this is a *dynamic* select (non-constant condition) and we can match
+ // this node with one of the variable blend instructions, restructure the
+ // condition so that the blends can use the high bit of each element and use
+ // SimplifyDemandedBits to simplify the condition operand.
+ if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
+ !DCI.isBeforeLegalize() &&
+ !ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
+ unsigned BitWidth = Cond.getValueType().getScalarSizeInBits();
+
+ // Don't optimize vector selects that map to mask-registers.
+ if (BitWidth == 1)
+ return SDValue();
+
+ // We can only handle the cases where VSELECT is directly legal on the
+ // subtarget. We custom lower VSELECT nodes with constant conditions and
+ // this makes it hard to see whether a dynamic VSELECT will correctly
+ // lower, so we both check the operation's status and explicitly handle the
+ // cases where a *dynamic* blend will fail even though a constant-condition
+ // blend could be custom lowered.
+ // FIXME: We should find a better way to handle this class of problems.
+ // Potentially, we should combine constant-condition vselect nodes
+ // pre-legalization into shuffles and not mark as many types as custom
+ // lowered.
+ if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
+ return SDValue();
+ // FIXME: We don't support i16-element blends currently. We could and
+ // should support them by making *all* the bits in the condition be set
+ // rather than just the high bit and using an i8-element blend.
+ if (VT.getVectorElementType() == MVT::i16)
+ return SDValue();
+ // Dynamic blending was only available from SSE4.1 onward.
+ if (VT.is128BitVector() && !Subtarget->hasSSE41())
+ return SDValue();
+ // Byte blends are only available in AVX2
+ if (VT == MVT::v32i8 && !Subtarget->hasAVX2())
+ return SDValue();
+
+ assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
+ APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
+ DCI.isBeforeLegalizeOps());
+ if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
+ TLO)) {
+ // If we changed the computation somewhere in the DAG, this change
+ // will affect all users of Cond.
+ // Make sure it is fine and update all the nodes so that we do not
+ // use the generic VSELECT anymore. Otherwise, we may perform
+ // wrong optimizations as we messed up with the actual expectation
+ // for the vector boolean values.
+ if (Cond != TLO.Old) {
+ // Check all uses of that condition operand to check whether it will be
+ // consumed by non-BLEND instructions, which may depend on all bits are
+ // set properly.
+ for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
+ I != E; ++I)
+ if (I->getOpcode() != ISD::VSELECT)
+ // TODO: Add other opcodes eventually lowered into BLEND.
+ return SDValue();
+
+ // Update all the users of the condition, before committing the change,
+ // so that the VSELECT optimizations that expect the correct vector
+ // boolean value will not be triggered.
+ for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
+ I != E; ++I)
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(*I, 0),
+ DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
+ Cond, I->getOperand(1), I->getOperand(2)));
+ DCI.CommitTargetLoweringOpt(TLO);
+ return SDValue();
+ }
+ // At this point, only Cond is changed. Change the condition
+ // just for N to keep the opportunity to optimize all other
+ // users their own way.
+ DAG.ReplaceAllUsesOfValueWith(
+ SDValue(N, 0),
+ DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
+ TLO.New, N->getOperand(1), N->getOperand(2)));
+ return SDValue();
+ }
+ }
+
+ return SDValue();
+}
+
+// Check whether a boolean test is testing a boolean value generated by
+// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
+// code.
+//
+// Simplify the following patterns:
+// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
+// to (Op EFLAGS Cond)
+//
+// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
+// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
+// to (Op EFLAGS !Cond)
+//
+// where Op could be BRCOND or CMOV.
+//
+static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
+ // Quit if not CMP and SUB with its value result used.
+ if (Cmp.getOpcode() != X86ISD::CMP &&
+ (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
+ return SDValue();
+
+ // Quit if not used as a boolean value.
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ // Check CMP operands. One of them should be 0 or 1 and the other should be
+ // an SetCC or extended from it.
+ SDValue Op1 = Cmp.getOperand(0);
+ SDValue Op2 = Cmp.getOperand(1);
+
+ SDValue SetCC;
+ const ConstantSDNode* C = nullptr;
+ bool needOppositeCond = (CC == X86::COND_E);
+ bool checkAgainstTrue = false; // Is it a comparison against 1?
+
+ if ((C = dyn_cast<ConstantSDNode>(Op1)))
+ SetCC = Op2;
+ else if ((C = dyn_cast<ConstantSDNode>(Op2)))
+ SetCC = Op1;
+ else // Quit if all operands are not constants.
+ return SDValue();
+
+ if (C->getZExtValue() == 1) {
+ needOppositeCond = !needOppositeCond;
+ checkAgainstTrue = true;
+ } else if (C->getZExtValue() != 0)
+ // Quit if the constant is neither 0 or 1.
+ return SDValue();
+
+ bool truncatedToBoolWithAnd = false;
+ // Skip (zext $x), (trunc $x), or (and $x, 1) node.
+ while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
+ SetCC.getOpcode() == ISD::TRUNCATE ||
+ SetCC.getOpcode() == ISD::AND) {
+ if (SetCC.getOpcode() == ISD::AND) {
+ int OpIdx = -1;
+ if (isOneConstant(SetCC.getOperand(0)))
+ OpIdx = 1;
+ if (isOneConstant(SetCC.getOperand(1)))
+ OpIdx = 0;
+ if (OpIdx == -1)
+ break;
+ SetCC = SetCC.getOperand(OpIdx);
+ truncatedToBoolWithAnd = true;
+ } else
+ SetCC = SetCC.getOperand(0);
+ }
+
+ switch (SetCC.getOpcode()) {
+ case X86ISD::SETCC_CARRY:
+ // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
+ // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
+ // i.e. it's a comparison against true but the result of SETCC_CARRY is not
+ // truncated to i1 using 'and'.
+ if (checkAgainstTrue && !truncatedToBoolWithAnd)
+ break;
+ assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
+ "Invalid use of SETCC_CARRY!");
+ // FALL THROUGH
+ case X86ISD::SETCC:
+ // Set the condition code or opposite one if necessary.
+ CC = X86::CondCode(SetCC.getConstantOperandVal(0));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(1);
+ case X86ISD::CMOV: {
+ // Check whether false/true value has canonical one, i.e. 0 or 1.
+ ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
+ ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
+ // Quit if true value is not a constant.
+ if (!TVal)
+ return SDValue();
+ // Quit if false value is not a constant.
+ if (!FVal) {
+ SDValue Op = SetCC.getOperand(0);
+ // Skip 'zext' or 'trunc' node.
+ if (Op.getOpcode() == ISD::ZERO_EXTEND ||
+ Op.getOpcode() == ISD::TRUNCATE)
+ Op = Op.getOperand(0);
+ // A special case for rdrand/rdseed, where 0 is set if false cond is
+ // found.
+ if ((Op.getOpcode() != X86ISD::RDRAND &&
+ Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
+ return SDValue();
+ }
+ // Quit if false value is not the constant 0 or 1.
+ bool FValIsFalse = true;
+ if (FVal && FVal->getZExtValue() != 0) {
+ if (FVal->getZExtValue() != 1)
+ return SDValue();
+ // If FVal is 1, opposite cond is needed.
+ needOppositeCond = !needOppositeCond;
+ FValIsFalse = false;
+ }
+ // Quit if TVal is not the constant opposite of FVal.
+ if (FValIsFalse && TVal->getZExtValue() != 1)
+ return SDValue();
+ if (!FValIsFalse && TVal->getZExtValue() != 0)
+ return SDValue();
+ CC = X86::CondCode(SetCC.getConstantOperandVal(2));
+ if (needOppositeCond)
+ CC = X86::GetOppositeBranchCondition(CC);
+ return SetCC.getOperand(3);
+ }
+ }
+
+ return SDValue();
+}
+
+/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
+/// Match:
+/// (X86or (X86setcc) (X86setcc))
+/// (X86cmp (and (X86setcc) (X86setcc)), 0)
+static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
+ X86::CondCode &CC1, SDValue &Flags,
+ bool &isAnd) {
+ if (Cond->getOpcode() == X86ISD::CMP) {
+ if (!isNullConstant(Cond->getOperand(1)))
+ return false;
+
+ Cond = Cond->getOperand(0);
+ }
+
+ isAnd = false;
+
+ SDValue SetCC0, SetCC1;
+ switch (Cond->getOpcode()) {
+ default: return false;
+ case ISD::AND:
+ case X86ISD::AND:
+ isAnd = true;
+ // fallthru
+ case ISD::OR:
+ case X86ISD::OR:
+ SetCC0 = Cond->getOperand(0);
+ SetCC1 = Cond->getOperand(1);
+ break;
+ };
+
+ // Make sure we have SETCC nodes, using the same flags value.
+ if (SetCC0.getOpcode() != X86ISD::SETCC ||
+ SetCC1.getOpcode() != X86ISD::SETCC ||
+ SetCC0->getOperand(1) != SetCC1->getOperand(1))
+ return false;
+
+ CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
+ CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
+ Flags = SetCC0->getOperand(1);
+ return true;
+}
+
+/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
+static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+
+ // If the flag operand isn't dead, don't touch this CMOV.
+ if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
+ return SDValue();
+
+ SDValue FalseOp = N->getOperand(0);
+ SDValue TrueOp = N->getOperand(1);
+ X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
+ SDValue Cond = N->getOperand(3);
+
+ if (CC == X86::COND_E || CC == X86::COND_NE) {
+ switch (Cond.getOpcode()) {
+ default: break;
+ case X86ISD::BSR:
+ case X86ISD::BSF:
+ // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
+ if (DAG.isKnownNeverZero(Cond.getOperand(0)))
+ return (CC == X86::COND_E) ? FalseOp : TrueOp;
+ }
+ }
+
+ SDValue Flags;
+
+ Flags = checkBoolTestSetCCCombine(Cond, CC);
+ if (Flags.getNode() &&
+ // Extra check as FCMOV only supports a subset of X86 cond.
+ (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
+ SDValue Ops[] = { FalseOp, TrueOp,
+ DAG.getConstant(CC, DL, MVT::i8), Flags };
+ return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
+ }
+
+ // If this is a select between two integer constants, try to do some
+ // optimizations. Note that the operands are ordered the opposite of SELECT
+ // operands.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
+ // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
+ // larger than FalseC (the false value).
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueC, FalseC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
+ // This is efficient for any integer data type (including i8/i16) and
+ // shift amount.
+ if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, DL, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(ShAmt, DL, MVT::i8));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
+ // for any integer data type, including i8/i16.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, DL, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, DL, MVT::i8), Cond);
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, DL, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+ }
+ }
+ }
+
+ // Handle these cases:
+ // (select (x != c), e, c) -> select (x != c), e, x),
+ // (select (x == c), c, e) -> select (x == c), x, e)
+ // where the c is an integer constant, and the "select" is the combination
+ // of CMOV and CMP.
+ //
+ // The rationale for this change is that the conditional-move from a constant
+ // needs two instructions, however, conditional-move from a register needs
+ // only one instruction.
+ //
+ // CAVEAT: By replacing a constant with a symbolic value, it may obscure
+ // some instruction-combining opportunities. This opt needs to be
+ // postponed as late as possible.
+ //
+ if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
+ // the DCI.xxxx conditions are provided to postpone the optimization as
+ // late as possible.
+
+ ConstantSDNode *CmpAgainst = nullptr;
+ if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
+ (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
+ !isa<ConstantSDNode>(Cond.getOperand(0))) {
+
+ if (CC == X86::COND_NE &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueOp, FalseOp);
+ }
+
+ if (CC == X86::COND_E &&
+ CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
+ SDValue Ops[] = { FalseOp, Cond.getOperand(0),
+ DAG.getConstant(CC, DL, MVT::i8), Cond };
+ return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
+ }
+ }
+ }
+
+ // Fold and/or of setcc's to double CMOV:
+ // (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
+ // (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
+ //
+ // This combine lets us generate:
+ // cmovcc1 (jcc1 if we don't have CMOV)
+ // cmovcc2 (same)
+ // instead of:
+ // setcc1
+ // setcc2
+ // and/or
+ // cmovne (jne if we don't have CMOV)
+ // When we can't use the CMOV instruction, it might increase branch
+ // mispredicts.
+ // When we can use CMOV, or when there is no mispredict, this improves
+ // throughput and reduces register pressure.
+ //
+ if (CC == X86::COND_NE) {
+ SDValue Flags;
+ X86::CondCode CC0, CC1;
+ bool isAndSetCC;
+ if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
+ if (isAndSetCC) {
+ std::swap(FalseOp, TrueOp);
+ CC0 = X86::GetOppositeBranchCondition(CC0);
+ CC1 = X86::GetOppositeBranchCondition(CC1);
+ }
+
+ SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
+ Flags};
+ SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
+ SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
+ SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
+ return CMOV;
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformMulCombine - Optimize a single multiply with constant into two
+/// in order to implement it with two cheaper instructions, e.g.
+/// LEA + SHL, LEA + LEA.
+static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // An imul is usually smaller than the alternative sequence.
+ if (DAG.getMachineFunction().getFunction()->optForMinSize())
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64 && VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+ uint64_t MulAmt = C->getZExtValue();
+ if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
+ return SDValue();
+
+ uint64_t MulAmt1 = 0;
+ uint64_t MulAmt2 = 0;
+ if ((MulAmt % 9) == 0) {
+ MulAmt1 = 9;
+ MulAmt2 = MulAmt / 9;
+ } else if ((MulAmt % 5) == 0) {
+ MulAmt1 = 5;
+ MulAmt2 = MulAmt / 5;
+ } else if ((MulAmt % 3) == 0) {
+ MulAmt1 = 3;
+ MulAmt2 = MulAmt / 3;
+ }
+
+ SDLoc DL(N);
+ SDValue NewMul;
+ if (MulAmt2 &&
+ (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
+
+ if (isPowerOf2_64(MulAmt2) &&
+ !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
+ // If second multiplifer is pow2, issue it first. We want the multiply by
+ // 3, 5, or 9 to be folded into the addressing mode unless the lone use
+ // is an add.
+ std::swap(MulAmt1, MulAmt2);
+
+ if (isPowerOf2_64(MulAmt1))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(MulAmt1, DL, VT));
+
+ if (isPowerOf2_64(MulAmt2))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
+ DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
+ DAG.getConstant(MulAmt2, DL, VT));
+ }
+
+ if (!NewMul) {
+ assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX)
+ && "Both cases that could cause potential overflows should have "
+ "already been handled.");
+ if (isPowerOf2_64(MulAmt - 1))
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
+ DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt - 1), DL,
+ MVT::i8)));
+
+ else if (isPowerOf2_64(MulAmt + 1))
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT,
+ N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt + 1),
+ DL, MVT::i8)), N->getOperand(0));
+ }
+
+ if (NewMul)
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, NewMul, false);
+
+ return SDValue();
+}
+
+static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
+ // since the result of setcc_c is all zero's or all ones.
+ if (VT.isInteger() && !VT.isVector() &&
+ N1C && N0.getOpcode() == ISD::AND &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue N00 = N0.getOperand(0);
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ APInt ShAmt = N1C->getAPIntValue();
+ Mask = Mask.shl(ShAmt);
+ bool MaskOK = false;
+ // We can handle cases concerning bit-widening nodes containing setcc_c if
+ // we carefully interrogate the mask to make sure we are semantics
+ // preserving.
+ // The transform is not safe if the result of C1 << C2 exceeds the bitwidth
+ // of the underlying setcc_c operation if the setcc_c was zero extended.
+ // Consider the following example:
+ // zext(setcc_c) -> i32 0x0000FFFF
+ // c1 -> i32 0x0000FFFF
+ // c2 -> i32 0x00000001
+ // (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
+ // (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = true;
+ } else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = true;
+ } else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
+ N00.getOpcode() == ISD::ANY_EXTEND) &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
+ }
+ if (MaskOK && Mask != 0) {
+ SDLoc DL(N);
+ return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
+ }
+ }
+
+ // Hardware support for vector shifts is sparse which makes us scalarize the
+ // vector operations in many cases. Also, on sandybridge ADD is faster than
+ // shl.
+ // (shl V, 1) -> add V,V
+ if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
+ if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
+ assert(N0.getValueType().isVector() && "Invalid vector shift type");
+ // We shift all of the values by one. In many cases we do not have
+ // hardware support for this operation. This is better expressed as an ADD
+ // of two values.
+ if (N1SplatC->getAPIntValue() == 1)
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformSRACombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N0.getValueType();
+ unsigned Size = VT.getSizeInBits();
+
+ // fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
+ // into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
+ // into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
+ // depending on sign of (SarConst - [56,48,32,24,16])
+
+ // sexts in X86 are MOVs. The MOVs have the same code size
+ // as above SHIFTs (only SHIFT on 1 has lower code size).
+ // However the MOVs have 2 advantages to a SHIFT:
+ // 1. MOVs can write to a register that differs from source
+ // 2. MOVs accept memory operands
+
+ if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant ||
+ N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
+ N0.getOperand(1).getOpcode() != ISD::Constant)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+ SDValue N01 = N0.getOperand(1);
+ APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
+ APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
+ EVT CVT = N1.getValueType();
+
+ if (SarConst.isNegative())
+ return SDValue();
+
+ for (MVT SVT : MVT::integer_valuetypes()) {
+ unsigned ShiftSize = SVT.getSizeInBits();
+ // skipping types without corresponding sext/zext and
+ // ShlConst that is not one of [56,48,32,24,16]
+ if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize)
+ continue;
+ SDLoc DL(N);
+ SDValue NN =
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
+ SarConst = SarConst - (Size - ShiftSize);
+ if (SarConst == 0)
+ return NN;
+ else if (SarConst.isNegative())
+ return DAG.getNode(ISD::SHL, DL, VT, NN,
+ DAG.getConstant(-SarConst, DL, CVT));
+ else
+ return DAG.getNode(ISD::SRA, DL, VT, NN,
+ DAG.getConstant(SarConst, DL, CVT));
+ }
+ return SDValue();
+}
+
+/// \brief Returns a vector of 0s if the node in input is a vector logical
+/// shift by a constant amount which is known to be bigger than or equal
+/// to the vector element size in bits.
+static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
+ (!Subtarget->hasInt256() ||
+ (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
+ return SDValue();
+
+ SDValue Amt = N->getOperand(1);
+ SDLoc DL(N);
+ if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
+ if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
+ APInt ShiftAmt = AmtSplat->getAPIntValue();
+ unsigned MaxAmount =
+ VT.getSimpleVT().getVectorElementType().getSizeInBits();
+
+ // SSE2/AVX2 logical shifts always return a vector of 0s
+ // if the shift amount is bigger than or equal to
+ // the element size. The constant shift amount will be
+ // encoded as a 8-bit immediate.
+ if (ShiftAmt.trunc(8).uge(MaxAmount))
+ return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL);
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Combine shifts.
+static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (N->getOpcode() == ISD::SHL)
+ if (SDValue V = PerformSHLCombine(N, DAG))
+ return V;
+
+ if (N->getOpcode() == ISD::SRA)
+ if (SDValue V = PerformSRACombine(N, DAG))
+ return V;
+
+ // Try to fold this logical shift into a zero vector.
+ if (N->getOpcode() != ISD::SRA)
+ if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget))
+ return V;
+
+ return SDValue();
+}
+
+// CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
+// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
+// and friends. Likewise for OR -> CMPNEQSS.
+static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ unsigned opcode;
+
+ // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
+ // we're requiring SSE2 for both.
+ if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue CMP0 = N0->getOperand(1);
+ SDValue CMP1 = N1->getOperand(1);
+ SDLoc DL(N);
+
+ // The SETCCs should both refer to the same CMP.
+ if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
+ return SDValue();
+
+ SDValue CMP00 = CMP0->getOperand(0);
+ SDValue CMP01 = CMP0->getOperand(1);
+ EVT VT = CMP00.getValueType();
+
+ if (VT == MVT::f32 || VT == MVT::f64) {
+ bool ExpectingFlags = false;
+ // Check for any users that want flags:
+ for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
+ !ExpectingFlags && UI != UE; ++UI)
+ switch (UI->getOpcode()) {
+ default:
+ case ISD::BR_CC:
+ case ISD::BRCOND:
+ case ISD::SELECT:
+ ExpectingFlags = true;
+ break;
+ case ISD::CopyToReg:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ break;
+ }
+
+ if (!ExpectingFlags) {
+ enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
+ enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
+
+ if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
+ X86::CondCode tmp = cc0;
+ cc0 = cc1;
+ cc1 = tmp;
+ }
+
+ if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
+ (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
+ // FIXME: need symbolic constants for these magic numbers.
+ // See X86ATTInstPrinter.cpp:printSSECC().
+ unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
+ if (Subtarget->hasAVX512()) {
+ SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
+ CMP01,
+ DAG.getConstant(x86cc, DL, MVT::i8));
+ if (N->getValueType(0) != MVT::i1)
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
+ FSetCC);
+ return FSetCC;
+ }
+ SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
+ CMP00.getValueType(), CMP00, CMP01,
+ DAG.getConstant(x86cc, DL,
+ MVT::i8));
+
+ bool is64BitFP = (CMP00.getValueType() == MVT::f64);
+ MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
+
+ if (is64BitFP && !Subtarget->is64Bit()) {
+ // On a 32-bit target, we cannot bitcast the 64-bit float to a
+ // 64-bit integer, since that's not a legal type. Since
+ // OnesOrZeroesF is all ones of all zeroes, we don't need all the
+ // bits, but can do this little dance to extract the lowest 32 bits
+ // and work with those going forward.
+ SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
+ OnesOrZeroesF);
+ SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
+ OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
+ Vector32, DAG.getIntPtrConstant(0, DL));
+ IntVT = MVT::i32;
+ }
+
+ SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
+ SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
+ DAG.getConstant(1, DL, IntVT));
+ SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
+ ANDed);
+ return OneBitOfTruth;
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
+/// so it can be folded inside ANDNP.
+static bool CanFoldXORWithAllOnes(const SDNode *N) {
+ EVT VT = N->getValueType(0);
+
+ // Match direct AllOnes for 128 and 256-bit vectors
+ if (ISD::isBuildVectorAllOnes(N))
+ return true;
+
+ // Look through a bit convert.
+ if (N->getOpcode() == ISD::BITCAST)
+ N = N->getOperand(0).getNode();
+
+ // Sometimes the operand may come from a insert_subvector building a 256-bit
+ // allones vector
+ if (VT.is256BitVector() &&
+ N->getOpcode() == ISD::INSERT_SUBVECTOR) {
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+
+ if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
+ V1.getOperand(0).getOpcode() == ISD::UNDEF &&
+ ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
+ ISD::isBuildVectorAllOnes(V2.getNode()))
+ return true;
+ }
+
+ return false;
+}
+
+// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
+// register. In most cases we actually compare or select YMM-sized registers
+// and mixing the two types creates horrible code. This method optimizes
+// some of the transition sequences.
+static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.is256BitVector())
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::ANY_EXTEND ||
+ N->getOpcode() == ISD::ZERO_EXTEND ||
+ N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
+
+ SDValue Narrow = N->getOperand(0);
+ EVT NarrowVT = Narrow->getValueType(0);
+ if (!NarrowVT.is128BitVector())
+ return SDValue();
+
+ if (Narrow->getOpcode() != ISD::XOR &&
+ Narrow->getOpcode() != ISD::AND &&
+ Narrow->getOpcode() != ISD::OR)
+ return SDValue();
+
+ SDValue N0 = Narrow->getOperand(0);
+ SDValue N1 = Narrow->getOperand(1);
+ SDLoc DL(Narrow);
+
+ // The Left side has to be a trunc.
+ if (N0.getOpcode() != ISD::TRUNCATE)
+ return SDValue();
+
+ // The type of the truncated inputs.
+ EVT WideVT = N0->getOperand(0)->getValueType(0);
+ if (WideVT != VT)
+ return SDValue();
+
+ // The right side has to be a 'trunc' or a constant vector.
+ bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
+ ConstantSDNode *RHSConstSplat = nullptr;
+ if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
+ RHSConstSplat = RHSBV->getConstantSplatNode();
+ if (!RHSTrunc && !RHSConstSplat)
+ return SDValue();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
+ return SDValue();
+
+ // Set N0 and N1 to hold the inputs to the new wide operation.
+ N0 = N0->getOperand(0);
+ if (RHSConstSplat) {
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(),
+ SDValue(RHSConstSplat, 0));
+ SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, C);
+ } else if (RHSTrunc) {
+ N1 = N1->getOperand(0);
+ }
+
+ // Generate the wide operation.
+ SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
+ unsigned Opcode = N->getOpcode();
+ switch (Opcode) {
+ case ISD::ANY_EXTEND:
+ return Op;
+ case ISD::ZERO_EXTEND: {
+ unsigned InBits = NarrowVT.getScalarSizeInBits();
+ APInt Mask = APInt::getAllOnesValue(InBits);
+ Mask = Mask.zext(VT.getScalarSizeInBits());
+ return DAG.getNode(ISD::AND, DL, VT,
+ Op, DAG.getConstant(Mask, DL, VT));
+ }
+ case ISD::SIGN_EXTEND:
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
+ Op, DAG.getValueType(NarrowVT));
+ default:
+ llvm_unreachable("Unexpected opcode");
+ }
+}
+
+static SDValue VectorZextCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // A vector zext_in_reg may be represented as a shuffle,
+ // feeding into a bitcast (this represents anyext) feeding into
+ // an and with a mask.
+ // We'd like to try to combine that into a shuffle with zero
+ // plus a bitcast, removing the and.
+ if (N0.getOpcode() != ISD::BITCAST ||
+ N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
+ return SDValue();
+
+ // The other side of the AND should be a splat of 2^C, where C
+ // is the number of bits in the source type.
+ if (N1.getOpcode() == ISD::BITCAST)
+ N1 = N1.getOperand(0);
+ if (N1.getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+ BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1);
+
+ ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0));
+ EVT SrcType = Shuffle->getValueType(0);
+
+ // We expect a single-source shuffle
+ if (Shuffle->getOperand(1)->getOpcode() != ISD::UNDEF)
+ return SDValue();
+
+ unsigned SrcSize = SrcType.getScalarSizeInBits();
+
+ APInt SplatValue, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (!Vector->isConstantSplat(SplatValue, SplatUndef,
+ SplatBitSize, HasAnyUndefs))
+ return SDValue();
+
+ unsigned ResSize = N1.getValueType().getScalarSizeInBits();
+ // Make sure the splat matches the mask we expect
+ if (SplatBitSize > ResSize ||
+ (SplatValue + 1).exactLogBase2() != (int)SrcSize)
+ return SDValue();
+
+ // Make sure the input and output size make sense
+ if (SrcSize >= ResSize || ResSize % SrcSize)
+ return SDValue();
+
+ // We expect a shuffle of the form <0, u, u, u, 1, u, u, u...>
+ // The number of u's between each two values depends on the ratio between
+ // the source and dest type.
+ unsigned ZextRatio = ResSize / SrcSize;
+ bool IsZext = true;
+ for (unsigned i = 0; i < SrcType.getVectorNumElements(); ++i) {
+ if (i % ZextRatio) {
+ if (Shuffle->getMaskElt(i) > 0) {
+ // Expected undef
+ IsZext = false;
+ break;
+ }
+ } else {
+ if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) {
+ // Expected element number
+ IsZext = false;
+ break;
+ }
+ }
+ }
+
+ if (!IsZext)
+ return SDValue();
+
+ // Ok, perform the transformation - replace the shuffle with
+ // a shuffle of the form <0, k, k, k, 1, k, k, k> with zero
+ // (instead of undef) where the k elements come from the zero vector.
+ SmallVector<int, 8> Mask;
+ unsigned NumElems = SrcType.getVectorNumElements();
+ for (unsigned i = 0; i < NumElems; ++i)
+ if (i % ZextRatio)
+ Mask.push_back(NumElems);
+ else
+ Mask.push_back(i / ZextRatio);
+
+ SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
+ Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask);
+ return DAG.getBitcast(N0.getValueType(), NewShuffle);
+}
+
+/// If both input operands of a logic op are being cast from floating point
+/// types, try to convert this into a floating point logic node to avoid
+/// unnecessary moves from SSE to integer registers.
+static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ unsigned FPOpcode = ISD::DELETED_NODE;
+ if (N->getOpcode() == ISD::AND)
+ FPOpcode = X86ISD::FAND;
+ else if (N->getOpcode() == ISD::OR)
+ FPOpcode = X86ISD::FOR;
+ else if (N->getOpcode() == ISD::XOR)
+ FPOpcode = X86ISD::FXOR;
+
+ assert(FPOpcode != ISD::DELETED_NODE &&
+ "Unexpected input node for FP logic conversion");
+
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+ if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
+ ((Subtarget->hasSSE1() && VT == MVT::i32) ||
+ (Subtarget->hasSSE2() && VT == MVT::i64))) {
+ SDValue N00 = N0.getOperand(0);
+ SDValue N10 = N1.getOperand(0);
+ EVT N00Type = N00.getValueType();
+ EVT N10Type = N10.getValueType();
+ if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
+ SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
+ return DAG.getBitcast(VT, FPLogic);
+ }
+ }
+ return SDValue();
+}
+
+static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue Zext = VectorZextCombine(N, DAG, DCI, Subtarget))
+ return Zext;
+
+ if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ EVT VT = N->getValueType(0);
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Create BEXTR instructions
+ // BEXTR is ((X >> imm) & (2**size-1))
+ if (VT == MVT::i32 || VT == MVT::i64) {
+ // Check for BEXTR.
+ if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
+ (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
+ ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (MaskNode && ShiftNode) {
+ uint64_t Mask = MaskNode->getZExtValue();
+ uint64_t Shift = ShiftNode->getZExtValue();
+ if (isMask_64(Mask)) {
+ uint64_t MaskSize = countPopulation(Mask);
+ if (Shift + MaskSize <= VT.getSizeInBits())
+ return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Shift | (MaskSize << 8), DL,
+ VT));
+ }
+ }
+ } // BEXTR
+
+ return SDValue();
+ }
+
+ // Want to form ANDNP nodes:
+ // 1) In the hopes of then easily combining them with OR and AND nodes
+ // to form PBLEND/PSIGN.
+ // 2) To match ANDN packed intrinsics
+ if (VT != MVT::v2i64 && VT != MVT::v4i64)
+ return SDValue();
+
+ // Check LHS for vnot
+ if (N0.getOpcode() == ISD::XOR &&
+ //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
+ CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
+
+ // Check RHS for vnot
+ if (N1.getOpcode() == ISD::XOR &&
+ //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
+ CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
+ return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
+
+ return SDValue();
+}
+
+static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+
+ // look for psign/blend
+ if (VT == MVT::v2i64 || VT == MVT::v4i64) {
+ if (!Subtarget->hasSSSE3() ||
+ (VT == MVT::v4i64 && !Subtarget->hasInt256()))
+ return SDValue();
+
+ // Canonicalize pandn to RHS
+ if (N0.getOpcode() == X86ISD::ANDNP)
+ std::swap(N0, N1);
+ // or (and (m, y), (pandn m, x))
+ if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
+ SDValue Mask = N1.getOperand(0);
+ SDValue X = N1.getOperand(1);
+ SDValue Y;
+ if (N0.getOperand(0) == Mask)
+ Y = N0.getOperand(1);
+ if (N0.getOperand(1) == Mask)
+ Y = N0.getOperand(0);
+
+ // Check to see if the mask appeared in both the AND and ANDNP and
+ if (!Y.getNode())
+ return SDValue();
+
+ // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
+ // Look through mask bitcast.
+ if (Mask.getOpcode() == ISD::BITCAST)
+ Mask = Mask.getOperand(0);
+ if (X.getOpcode() == ISD::BITCAST)
+ X = X.getOperand(0);
+ if (Y.getOpcode() == ISD::BITCAST)
+ Y = Y.getOperand(0);
+
+ EVT MaskVT = Mask.getValueType();
+
+ // Validate that the Mask operand is a vector sra node.
+ // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
+ // there is no psrai.b
+ unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
+ unsigned SraAmt = ~0;
+ if (Mask.getOpcode() == ISD::SRA) {
+ if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
+ if (auto *AmtConst = AmtBV->getConstantSplatNode())
+ SraAmt = AmtConst->getZExtValue();
+ } else if (Mask.getOpcode() == X86ISD::VSRAI) {
+ SDValue SraC = Mask.getOperand(1);
+ SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
+ }
+ if ((SraAmt + 1) != EltBits)
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Now we know we at least have a plendvb with the mask val. See if
+ // we can form a psignb/w/d.
+ // psign = x.type == y.type == mask.type && y = sub(0, x);
+ if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
+ ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
+ X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
+ assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
+ "Unsupported VT for PSIGN");
+ Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
+ return DAG.getBitcast(VT, Mask);
+ }
+ // PBLENDVB only available on SSE 4.1
+ if (!Subtarget->hasSSE41())
+ return SDValue();
+
+ MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
+
+ X = DAG.getBitcast(BlendVT, X);
+ Y = DAG.getBitcast(BlendVT, Y);
+ Mask = DAG.getBitcast(BlendVT, Mask);
+ Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
+ return DAG.getBitcast(VT, Mask);
+ }
+ }
+
+ if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
+
+ // SHLD/SHRD instructions have lower register pressure, but on some
+ // platforms they have higher latency than the equivalent
+ // series of shifts/or that would otherwise be generated.
+ // Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
+ // have higher latencies and we are not optimizing for size.
+ if (!OptForSize && Subtarget->isSHLDSlow())
+ return SDValue();
+
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+ if (!N0.hasOneUse() || !N1.hasOneUse())
+ return SDValue();
+
+ SDValue ShAmt0 = N0.getOperand(1);
+ if (ShAmt0.getValueType() != MVT::i8)
+ return SDValue();
+ SDValue ShAmt1 = N1.getOperand(1);
+ if (ShAmt1.getValueType() != MVT::i8)
+ return SDValue();
+ if (ShAmt0.getOpcode() == ISD::TRUNCATE)
+ ShAmt0 = ShAmt0.getOperand(0);
+ if (ShAmt1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1 = ShAmt1.getOperand(0);
+
+ SDLoc DL(N);
+ unsigned Opc = X86ISD::SHLD;
+ SDValue Op0 = N0.getOperand(0);
+ SDValue Op1 = N1.getOperand(0);
+ if (ShAmt0.getOpcode() == ISD::SUB) {
+ Opc = X86ISD::SHRD;
+ std::swap(Op0, Op1);
+ std::swap(ShAmt0, ShAmt1);
+ }
+
+ unsigned Bits = VT.getSizeInBits();
+ if (ShAmt1.getOpcode() == ISD::SUB) {
+ SDValue Sum = ShAmt1.getOperand(0);
+ if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
+ SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
+ if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
+ ShAmt1Op1 = ShAmt1Op1.getOperand(0);
+ if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
+ return DAG.getNode(Opc, DL, VT,
+ Op0, Op1,
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+ } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
+ ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
+ if (ShAmt0C &&
+ ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
+ return DAG.getNode(Opc, DL, VT,
+ N0.getOperand(0), N1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+
+ return SDValue();
+}
+
+// Generate NEG and CMOV for integer abs.
+static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+
+ // Since X86 does not have CMOV for 8-bit integer, we don't convert
+ // 8-bit integer abs to NEG and CMOV.
+ if (VT.isInteger() && VT.getSizeInBits() == 8)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDLoc DL(N);
+
+ // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
+ // and change it to SUB and CMOV.
+ if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
+ N0.getOpcode() == ISD::ADD &&
+ N0.getOperand(1) == N1 &&
+ N1.getOpcode() == ISD::SRA &&
+ N1.getOperand(0) == N0.getOperand(0))
+ if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
+ if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
+ // Generate SUB & CMOV.
+ SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
+ DAG.getConstant(0, DL, VT), N0.getOperand(0));
+
+ SDValue Ops[] = { N0.getOperand(0), Neg,
+ DAG.getConstant(X86::COND_GE, DL, MVT::i8),
+ SDValue(Neg.getNode(), 1) };
+ return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
+ }
+ return SDValue();
+}
+
+// Try to turn tests against the signbit in the form of:
+// XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
+// into:
+// SETGT(X, -1)
+static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
+ // This is only worth doing if the output type is i8.
+ if (N->getValueType(0) != MVT::i8)
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // We should be performing an xor against a truncated shift.
+ if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
+ return SDValue();
+
+ // Make sure we are performing an xor against one.
+ if (!isOneConstant(N1))
+ return SDValue();
+
+ // SetCC on x86 zero extends so only act on this if it's a logical shift.
+ SDValue Shift = N0.getOperand(0);
+ if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
+ return SDValue();
+
+ // Make sure we are truncating from one of i16, i32 or i64.
+ EVT ShiftTy = Shift.getValueType();
+ if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
+ return SDValue();
+
+ // Make sure the shift amount extracts the sign bit.
+ if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
+ Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
+ return SDValue();
+
+ // Create a greater-than comparison against -1.
+ // N.B. Using SETGE against 0 works but we want a canonical looking
+ // comparison, using SETGT matches up with what TranslateX86CC.
+ SDLoc DL(N);
+ SDValue ShiftOp = Shift.getOperand(0);
+ EVT ShiftOpTy = ShiftOp.getValueType();
+ SDValue Cond = DAG.getSetCC(DL, MVT::i8, ShiftOp,
+ DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
+ return Cond;
+}
+
+static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
+ return RV;
+
+ if (Subtarget->hasCMov())
+ if (SDValue RV = performIntegerAbsCombine(N, DAG))
+ return RV;
+
+ if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
+ return FPLogic;
+
+ return SDValue();
+}
+
+/// This function detects the AVG pattern between vectors of unsigned i8/i16,
+/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
+/// X86ISD::AVG instruction.
+static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget, SDLoc DL) {
+ if (!VT.isVector() || !VT.isSimple())
+ return SDValue();
+ EVT InVT = In.getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+
+ EVT ScalarVT = VT.getVectorElementType();
+ if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
+ isPowerOf2_32(NumElems)))
+ return SDValue();
+
+ // InScalarVT is the intermediate type in AVG pattern and it should be greater
+ // than the original input type (i8/i16).
+ EVT InScalarVT = InVT.getVectorElementType();
+ if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
+ return SDValue();
+
+ if (Subtarget->hasAVX512()) {
+ if (VT.getSizeInBits() > 512)
+ return SDValue();
+ } else if (Subtarget->hasAVX2()) {
+ if (VT.getSizeInBits() > 256)
+ return SDValue();
+ } else {
+ if (VT.getSizeInBits() > 128)
+ return SDValue();
+ }
+
+ // Detect the following pattern:
+ //
+ // %1 = zext <N x i8> %a to <N x i32>
+ // %2 = zext <N x i8> %b to <N x i32>
+ // %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
+ // %4 = add nuw nsw <N x i32> %3, %2
+ // %5 = lshr <N x i32> %N, <i32 1 x N>
+ // %6 = trunc <N x i32> %5 to <N x i8>
+ //
+ // In AVX512, the last instruction can also be a trunc store.
+
+ if (In.getOpcode() != ISD::SRL)
+ return SDValue();
+
+ // A lambda checking the given SDValue is a constant vector and each element
+ // is in the range [Min, Max].
+ auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
+ BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
+ if (!BV || !BV->isConstant())
+ return false;
+ for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i));
+ if (!C)
+ return false;
+ uint64_t Val = C->getZExtValue();
+ if (Val < Min || Val > Max)
+ return false;
+ }
+ return true;
+ };
+
+ // Check if each element of the vector is left-shifted by one.
+ auto LHS = In.getOperand(0);
+ auto RHS = In.getOperand(1);
+ if (!IsConstVectorInRange(RHS, 1, 1))
+ return SDValue();
+ if (LHS.getOpcode() != ISD::ADD)
+ return SDValue();
+
+ // Detect a pattern of a + b + 1 where the order doesn't matter.
+ SDValue Operands[3];
+ Operands[0] = LHS.getOperand(0);
+ Operands[1] = LHS.getOperand(1);
+
+ // Take care of the case when one of the operands is a constant vector whose
+ // element is in the range [1, 256].
+ if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
+ Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
+ Operands[0].getOperand(0).getValueType() == VT) {
+ // The pattern is detected. Subtract one from the constant vector, then
+ // demote it and emit X86ISD::AVG instruction.
+ SDValue One = DAG.getConstant(1, DL, InScalarVT);
+ SDValue Ones = DAG.getNode(ISD::BUILD_VECTOR, DL, InVT,
+ SmallVector<SDValue, 8>(NumElems, One));
+ Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], Ones);
+ Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
+ return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
+ Operands[1]);
+ }
+
+ if (Operands[0].getOpcode() == ISD::ADD)
+ std::swap(Operands[0], Operands[1]);
+ else if (Operands[1].getOpcode() != ISD::ADD)
+ return SDValue();
+ Operands[2] = Operands[1].getOperand(0);
+ Operands[1] = Operands[1].getOperand(1);
+
+ // Now we have three operands of two additions. Check that one of them is a
+ // constant vector with ones, and the other two are promoted from i8/i16.
+ for (int i = 0; i < 3; ++i) {
+ if (!IsConstVectorInRange(Operands[i], 1, 1))
+ continue;
+ std::swap(Operands[i], Operands[2]);
+
+ // Check if Operands[0] and Operands[1] are results of type promotion.
+ for (int j = 0; j < 2; ++j)
+ if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
+ Operands[j].getOperand(0).getValueType() != VT)
+ return SDValue();
+
+ // The pattern is detected, emit X86ISD::AVG instruction.
+ return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
+ Operands[1].getOperand(0));
+ }
+
+ return SDValue();
+}
+
+/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
+static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ LoadSDNode *Ld = cast<LoadSDNode>(N);
+ EVT RegVT = Ld->getValueType(0);
+ EVT MemVT = Ld->getMemoryVT();
+ SDLoc dl(Ld);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // For chips with slow 32-byte unaligned loads, break the 32-byte operation
+ // into two 16-byte operations.
+ ISD::LoadExtType Ext = Ld->getExtensionType();
+ bool Fast;
+ unsigned AddressSpace = Ld->getAddressSpace();
+ unsigned Alignment = Ld->getAlignment();
+ if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
+ Ext == ISD::NON_EXTLOAD &&
+ TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
+ AddressSpace, Alignment, &Fast) && !Fast) {
+ unsigned NumElems = RegVT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Ptr = Ld->getBasePtr();
+ SDValue Increment =
+ DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout()));
+
+ EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
+ NumElems/2);
+ SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Alignment);
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ std::min(16U, Alignment));
+ SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ Load1.getValue(1),
+ Load2.getValue(1));
+
+ SDValue NewVec = DAG.getUNDEF(RegVT);
+ NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
+ NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
+ return DCI.CombineTo(N, NewVec, TF, true);
+ }
+
+ return SDValue();
+}
+
+/// PerformMLOADCombine - Resolve extending loads
+static SDValue PerformMLOADCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
+ if (Mld->getExtensionType() != ISD::SEXTLOAD)
+ return SDValue();
+
+ EVT VT = Mld->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+ EVT LdVT = Mld->getMemoryVT();
+ SDLoc dl(Mld);
+
+ assert(LdVT != VT && "Cannot extend to the same type");
+ unsigned ToSz = VT.getVectorElementType().getSizeInBits();
+ unsigned FromSz = LdVT.getVectorElementType().getSizeInBits();
+ // From, To sizes and ElemCount must be pow of two
+ assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
+ "Unexpected size for extending masked load");
+
+ unsigned SizeRatio = ToSz / FromSz;
+ assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ LdVT.getScalarType(), NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ // Convert Src0 value
+ SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
+ if (Mld->getSrc0().getOpcode() != ISD::UNDEF) {
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
+ "WideVecVT should be legal");
+ WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
+ DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
+ }
+ // Prepare the new mask
+ SDValue NewMask;
+ SDValue Mask = Mld->getMask();
+ if (Mask.getValueType() == VT) {
+ // Mask and original value have the same type
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+ for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
+ ShuffleVec[i] = NumElems * SizeRatio;
+ NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
+ DAG.getConstant(0, dl, WideVecVT),
+ &ShuffleVec[0]);
+ }
+ else {
+ assert(Mask.getValueType().getVectorElementType() == MVT::i1);
+ unsigned WidenNumElts = NumElems*SizeRatio;
+ unsigned MaskNumElts = VT.getVectorNumElements();
+ EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ WidenNumElts);
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
+ Ops[0] = Mask;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = ZeroVal;
+
+ NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
+ }
+
+ SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
+ Mld->getBasePtr(), NewMask, WideSrc0,
+ Mld->getMemoryVT(), Mld->getMemOperand(),
+ ISD::NON_EXTLOAD);
+ SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
+ return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
+}
+/// PerformMSTORECombine - Resolve truncating stores
+static SDValue PerformMSTORECombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
+ if (!Mst->isTruncatingStore())
+ return SDValue();
+
+ EVT VT = Mst->getValue().getValueType();
+ unsigned NumElems = VT.getVectorNumElements();
+ EVT StVT = Mst->getMemoryVT();
+ SDLoc dl(Mst);
+
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // The truncating store is legal in some cases. For example
+ // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+ // are designated for truncate store.
+ // In this case we don't need any further transformations.
+ if (TLI.isTruncStoreLegal(VT, StVT))
+ return SDValue();
+
+ // From, To sizes and ElemCount must be pow of two
+ assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
+ "Unexpected size for truncating masked store");
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ assert (((NumElems * FromSz) % ToSz) == 0 &&
+ "Unexpected ratio for truncating masked store");
+
+ unsigned SizeRatio = FromSz / ToSz;
+ assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT.getScalarType(), NumElems*SizeRatio);
+
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
+ SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
+ "WideVecVT should be legal");
+
+ SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
+ DAG.getUNDEF(WideVecVT),
+ &ShuffleVec[0]);
+
+ SDValue NewMask;
+ SDValue Mask = Mst->getMask();
+ if (Mask.getValueType() == VT) {
+ // Mask and original value have the same type
+ NewMask = DAG.getBitcast(WideVecVT, Mask);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+ for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
+ ShuffleVec[i] = NumElems*SizeRatio;
+ NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
+ DAG.getConstant(0, dl, WideVecVT),
+ &ShuffleVec[0]);
+ }
+ else {
+ assert(Mask.getValueType().getVectorElementType() == MVT::i1);
+ unsigned WidenNumElts = NumElems*SizeRatio;
+ unsigned MaskNumElts = VT.getVectorNumElements();
+ EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
+ WidenNumElts);
+
+ unsigned NumConcat = WidenNumElts / MaskNumElts;
+ SmallVector<SDValue, 16> Ops(NumConcat);
+ SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
+ Ops[0] = Mask;
+ for (unsigned i = 1; i != NumConcat; ++i)
+ Ops[i] = ZeroVal;
+
+ NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
+ }
+
+ return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
+ Mst->getBasePtr(), NewMask, StVT,
+ Mst->getMemOperand(), false);
+}
+/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
+static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ EVT VT = St->getValue().getValueType();
+ EVT StVT = St->getMemoryVT();
+ SDLoc dl(St);
+ SDValue StoredVal = St->getOperand(1);
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // If we are saving a concatenation of two XMM registers and 32-byte stores
+ // are slow, such as on Sandy Bridge, perform two 16-byte stores.
+ bool Fast;
+ unsigned AddressSpace = St->getAddressSpace();
+ unsigned Alignment = St->getAlignment();
+ if (VT.is256BitVector() && StVT == VT &&
+ TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
+ AddressSpace, Alignment, &Fast) && !Fast) {
+ unsigned NumElems = VT.getVectorNumElements();
+ if (NumElems < 2)
+ return SDValue();
+
+ SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
+ SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
+
+ SDValue Stride =
+ DAG.getConstant(16, dl, TLI.getPointerTy(DAG.getDataLayout()));
+ SDValue Ptr0 = St->getBasePtr();
+ SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
+
+ SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), Alignment);
+ SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(16U, Alignment));
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
+ }
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store.
+ // First, pack all of the elements in one place. Next, store to memory
+ // in fewer chunks.
+ if (St->isTruncatingStore() && VT.isVector()) {
+ // Check if we can detect an AVG pattern from the truncation. If yes,
+ // replace the trunc store by a normal store with the result of X86ISD::AVG
+ // instruction.
+ SDValue Avg =
+ detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG, Subtarget, dl);
+ if (Avg.getNode())
+ return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
+
+ // The truncating store is legal in some cases. For example
+ // vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
+ // are designated for truncate store.
+ // In this case we don't need any further transformations.
+ if (TLI.isTruncStoreLegal(VT, StVT))
+ return SDValue();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromSz) % ToSz) return SDValue();
+
+ unsigned SizeRatio = FromSz / ToSz;
+
+ assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StVT.getScalarType(), NumElems*SizeRatio);
+
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i != NumElems; ++i)
+ ShuffleVec[i] = i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT))
+ return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
+ DAG.getUNDEF(WideVecVT),
+ &ShuffleVec[0]);
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
+ StoreType = Tp;
+ }
+
+ // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
+ if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
+ (64 <= NumElems * ToSz))
+ StoreType = MVT::f64;
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, dl,
+ TLI.getPointerTy(DAG.getDataLayout()));
+ SDValue Ptr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(i, dl));
+ SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
+ Chains.push_back(Ch);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
+ }
+
+ // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
+ // the FP state in cases where an emms may be missing.
+ // A preferable solution to the general problem is to figure out the right
+ // places to insert EMMS. This qualifies as a quick hack.
+
+ // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
+ if (VT.getSizeInBits() != 64)
+ return SDValue();
+
+ const Function *F = DAG.getMachineFunction().getFunction();
+ bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
+ bool F64IsLegal =
+ !Subtarget->useSoftFloat() && !NoImplicitFloatOps && Subtarget->hasSSE2();
+ if ((VT.isVector() ||
+ (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
+ isa<LoadSDNode>(St->getValue()) &&
+ !cast<LoadSDNode>(St->getValue())->isVolatile() &&
+ St->getChain().hasOneUse() && !St->isVolatile()) {
+ SDNode* LdVal = St->getValue().getNode();
+ LoadSDNode *Ld = nullptr;
+ int TokenFactorIndex = -1;
+ SmallVector<SDValue, 8> Ops;
+ SDNode* ChainVal = St->getChain().getNode();
+ // Must be a store of a load. We currently handle two cases: the load
+ // is a direct child, and it's under an intervening TokenFactor. It is
+ // possible to dig deeper under nested TokenFactors.
+ if (ChainVal == LdVal)
+ Ld = cast<LoadSDNode>(St->getChain());
+ else if (St->getValue().hasOneUse() &&
+ ChainVal->getOpcode() == ISD::TokenFactor) {
+ for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
+ if (ChainVal->getOperand(i).getNode() == LdVal) {
+ TokenFactorIndex = i;
+ Ld = cast<LoadSDNode>(St->getValue());
+ } else
+ Ops.push_back(ChainVal->getOperand(i));
+ }
+ }
+
+ if (!Ld || !ISD::isNormalLoad(Ld))
+ return SDValue();
+
+ // If this is not the MMX case, i.e. we are just turning i64 load/store
+ // into f64 load/store, avoid the transformation if there are multiple
+ // uses of the loaded value.
+ if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
+ return SDValue();
+
+ SDLoc LdDL(Ld);
+ SDLoc StDL(N);
+ // If we are a 64-bit capable x86, lower to a single movq load/store pair.
+ // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
+ // pair instead.
+ if (Subtarget->is64Bit() || F64IsLegal) {
+ MVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
+ SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
+ Ld->getPointerInfo(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->isInvariant(),
+ Ld->getAlignment());
+ SDValue NewChain = NewLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(NewChain);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
+ }
+ return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
+ St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ }
+
+ // Otherwise, lower to two pairs of 32-bit loads / stores.
+ SDValue LoAddr = Ld->getBasePtr();
+ SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, LdDL, MVT::i32));
+
+ SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
+ Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+ SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
+ Ld->getPointerInfo().getWithOffset(4),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(),
+ MinAlign(Ld->getAlignment(), 4));
+
+ SDValue NewChain = LoLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(LoLd);
+ Ops.push_back(HiLd);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
+ }
+
+ LoAddr = St->getBasePtr();
+ HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, StDL, MVT::i32));
+
+ SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
+ St->getPointerInfo(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
+ St->getPointerInfo().getWithOffset(4),
+ St->isVolatile(),
+ St->isNonTemporal(),
+ MinAlign(St->getAlignment(), 4));
+ return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
+ }
+
+ // This is similar to the above case, but here we handle a scalar 64-bit
+ // integer store that is extracted from a vector on a 32-bit target.
+ // If we have SSE2, then we can treat it like a floating-point double
+ // to get past legalization. The execution dependencies fixup pass will
+ // choose the optimal machine instruction for the store if this really is
+ // an integer or v2f32 rather than an f64.
+ if (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit() &&
+ St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue OldExtract = St->getOperand(1);
+ SDValue ExtOp0 = OldExtract.getOperand(0);
+ unsigned VecSize = ExtOp0.getValueSizeInBits();
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
+ SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
+ SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ BitCast, OldExtract.getOperand(1));
+ return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ }
+
+ return SDValue();
+}
+
+/// Return 'true' if this vector operation is "horizontal"
+/// and return the operands for the horizontal operation in LHS and RHS. A
+/// horizontal operation performs the binary operation on successive elements
+/// of its first operand, then on successive elements of its second operand,
+/// returning the resulting values in a vector. For example, if
+/// A = < float a0, float a1, float a2, float a3 >
+/// and
+/// B = < float b0, float b1, float b2, float b3 >
+/// then the result of doing a horizontal operation on A and B is
+/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
+/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
+/// A horizontal-op B, for some already available A and B, and if so then LHS is
+/// set to A, RHS to B, and the routine returns 'true'.
+/// Note that the binary operation should have the property that if one of the
+/// operands is UNDEF then the result is UNDEF.
+static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
+ // Look for the following pattern: if
+ // A = < float a0, float a1, float a2, float a3 >
+ // B = < float b0, float b1, float b2, float b3 >
+ // and
+ // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
+ // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
+ // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
+ // which is A horizontal-op B.
+
+ // At least one of the operands should be a vector shuffle.
+ if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
+ RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
+ return false;
+
+ MVT VT = LHS.getSimpleValueType();
+
+ assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ "Unsupported vector type for horizontal add/sub");
+
+ // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
+ // operate independently on 128-bit lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+ assert((NumLaneElts % 2 == 0) &&
+ "Vector type should have an even number of elements in each lane");
+ unsigned HalfLaneElts = NumLaneElts/2;
+
+ // View LHS in the form
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // If LHS is not a shuffle then pretend it is the shuffle
+ // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
+ // NOTE: in what follows a default initialized SDValue represents an UNDEF of
+ // type VT.
+ SDValue A, B;
+ SmallVector<int, 16> LMask(NumElts);
+ if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
+ A = LHS.getOperand(0);
+ if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
+ B = LHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), LMask.begin());
+ } else {
+ if (LHS.getOpcode() != ISD::UNDEF)
+ A = LHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ LMask[i] = i;
+ }
+
+ // Likewise, view RHS in the form
+ // RHS = VECTOR_SHUFFLE C, D, RMask
+ SDValue C, D;
+ SmallVector<int, 16> RMask(NumElts);
+ if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
+ C = RHS.getOperand(0);
+ if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
+ D = RHS.getOperand(1);
+ ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
+ std::copy(Mask.begin(), Mask.end(), RMask.begin());
+ } else {
+ if (RHS.getOpcode() != ISD::UNDEF)
+ C = RHS;
+ for (unsigned i = 0; i != NumElts; ++i)
+ RMask[i] = i;
+ }
+
+ // Check that the shuffles are both shuffling the same vectors.
+ if (!(A == C && B == D) && !(A == D && B == C))
+ return false;
+
+ // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
+ if (!A.getNode() && !B.getNode())
+ return false;
+
+ // If A and B occur in reverse order in RHS, then "swap" them (which means
+ // rewriting the mask).
+ if (A != C)
+ ShuffleVectorSDNode::commuteMask(RMask);
+
+ // At this point LHS and RHS are equivalent to
+ // LHS = VECTOR_SHUFFLE A, B, LMask
+ // RHS = VECTOR_SHUFFLE A, B, RMask
+ // Check that the masks correspond to performing a horizontal operation.
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ int LIdx = LMask[i+l], RIdx = RMask[i+l];
+
+ // Ignore any UNDEF components.
+ if (LIdx < 0 || RIdx < 0 ||
+ (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
+ (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
+ continue;
+
+ // Check that successive elements are being operated on. If not, this is
+ // not a horizontal operation.
+ unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
+ int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
+ if (!(LIdx == Index && RIdx == Index + 1) &&
+ !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
+ return false;
+ }
+ }
+
+ LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
+ RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
+ return true;
+}
+
+/// Do target-specific dag combines on floating point adds.
+static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ isHorizontalBinOp(LHS, RHS, true))
+ return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
+ return SDValue();
+}
+
+/// Do target-specific dag combines on floating point subs.
+static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+
+ // Try to synthesize horizontal subs from subs of shuffles.
+ if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
+ (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
+ isHorizontalBinOp(LHS, RHS, false))
+ return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
+ return SDValue();
+}
+
+/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS.
+static SDValue
+combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG,
+ SmallVector<SDValue, 8> &Regs) {
+ assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 ||
+ Regs[0].getValueType() == MVT::v2i64));
+ EVT OutVT = N->getValueType(0);
+ EVT OutSVT = OutVT.getVectorElementType();
+ EVT InVT = Regs[0].getValueType();
+ EVT InSVT = InVT.getVectorElementType();
+ SDLoc DL(N);
+
+ // First, use mask to unset all bits that won't appear in the result.
+ assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) &&
+ "OutSVT can only be either i8 or i16.");
+ SDValue MaskVal =
+ DAG.getConstant(OutSVT == MVT::i8 ? 0xFF : 0xFFFF, DL, InSVT);
+ SDValue MaskVec = DAG.getNode(
+ ISD::BUILD_VECTOR, DL, InVT,
+ SmallVector<SDValue, 8>(InVT.getVectorNumElements(), MaskVal));
+ for (auto &Reg : Regs)
+ Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVec, Reg);
+
+ MVT UnpackedVT, PackedVT;
+ if (OutSVT == MVT::i8) {
+ UnpackedVT = MVT::v8i16;
+ PackedVT = MVT::v16i8;
+ } else {
+ UnpackedVT = MVT::v4i32;
+ PackedVT = MVT::v8i16;
+ }
+
+ // In each iteration, truncate the type by a half size.
+ auto RegNum = Regs.size();
+ for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits();
+ j < e; j *= 2, RegNum /= 2) {
+ for (unsigned i = 0; i < RegNum; i++)
+ Regs[i] = DAG.getNode(ISD::BITCAST, DL, UnpackedVT, Regs[i]);
+ for (unsigned i = 0; i < RegNum / 2; i++)
+ Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2],
+ Regs[i * 2 + 1]);
+ }
+
+ // If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and
+ // then extract a subvector as the result since v8i8 is not a legal type.
+ if (OutVT == MVT::v8i8) {
+ Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]);
+ Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0],
+ DAG.getIntPtrConstant(0, DL));
+ return Regs[0];
+ } else if (RegNum > 1) {
+ Regs.resize(RegNum);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
+ } else
+ return Regs[0];
+}
+
+/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
+static SDValue
+combineVectorTruncationWithPACKSS(SDNode *N, SelectionDAG &DAG,
+ SmallVector<SDValue, 8> &Regs) {
+ assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32);
+ EVT OutVT = N->getValueType(0);
+ SDLoc DL(N);
+
+ // Shift left by 16 bits, then arithmetic-shift right by 16 bits.
+ SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32);
+ for (auto &Reg : Regs) {
+ Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, DAG);
+ Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, DAG);
+ }
+
+ for (unsigned i = 0, e = Regs.size() / 2; i < e; i++)
+ Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2],
+ Regs[i * 2 + 1]);
+
+ if (Regs.size() > 2) {
+ Regs.resize(Regs.size() / 2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
+ } else
+ return Regs[0];
+}
+
+/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
+/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
+/// legalization the truncation will be translated into a BUILD_VECTOR with each
+/// element that is extracted from a vector and then truncated, and it is
+/// diffcult to do this optimization based on them.
+static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT OutVT = N->getValueType(0);
+ if (!OutVT.isVector())
+ return SDValue();
+
+ SDValue In = N->getOperand(0);
+ if (!In.getValueType().isSimple())
+ return SDValue();
+
+ EVT InVT = In.getValueType();
+ unsigned NumElems = OutVT.getVectorNumElements();
+
+ // TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
+ // SSE2, and we need to take care of it specially.
+ // AVX512 provides vpmovdb.
+ if (!Subtarget->hasSSE2() || Subtarget->hasAVX2())
+ return SDValue();
+
+ EVT OutSVT = OutVT.getVectorElementType();
+ EVT InSVT = InVT.getVectorElementType();
+ if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
+ (OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
+ NumElems >= 8))
+ return SDValue();
+
+ // SSSE3's pshufb results in less instructions in the cases below.
+ if (Subtarget->hasSSSE3() && NumElems == 8 &&
+ ((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
+ (InSVT == MVT::i32 && OutSVT == MVT::i16)))
+ return SDValue();
+
+ SDLoc DL(N);
+
+ // Split a long vector into vectors of legal type.
+ unsigned RegNum = InVT.getSizeInBits() / 128;
+ SmallVector<SDValue, 8> SubVec(RegNum);
+ if (InSVT == MVT::i32) {
+ for (unsigned i = 0; i < RegNum; i++)
+ SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
+ DAG.getIntPtrConstant(i * 4, DL));
+ } else {
+ for (unsigned i = 0; i < RegNum; i++)
+ SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
+ DAG.getIntPtrConstant(i * 2, DL));
+ }
+
+ // SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PAKCUS
+ // for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
+ // truncate 2 x v4i32 to v8i16.
+ if (Subtarget->hasSSE41() || OutSVT == MVT::i8)
+ return combineVectorTruncationWithPACKUS(N, DAG, SubVec);
+ else if (InSVT == MVT::i32)
+ return combineVectorTruncationWithPACKSS(N, DAG, SubVec);
+ else
+ return SDValue();
+}
+
+static SDValue PerformTRUNCATECombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // Try to detect AVG pattern first.
+ SDValue Avg = detectAVGPattern(N->getOperand(0), N->getValueType(0), DAG,
+ Subtarget, SDLoc(N));
+ if (Avg.getNode())
+ return Avg;
+
+ return combineVectorTruncation(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on floating point negations.
+static SDValue PerformFNEGCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ SDValue Arg = N->getOperand(0);
+ SDLoc DL(N);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ // If we're negating a FMUL node on a target with FMA, then we can avoid the
+ // use of a constant by performing (-0 - A*B) instead.
+ // FIXME: Check rounding control flags as well once it becomes available.
+ if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
+ Arg->getFlags()->hasNoSignedZeros() && Subtarget->hasAnyFMA()) {
+ SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
+ return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Zero);
+ }
+
+ // If we're negating a FMA node, then we can adjust the
+ // instruction to include the extra negation.
+ if (Arg.hasOneUse()) {
+ switch (Arg.getOpcode()) {
+ case X86ISD::FMADD:
+ return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Arg.getOperand(2));
+ case X86ISD::FMSUB:
+ return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Arg.getOperand(2));
+ case X86ISD::FNMADD:
+ return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Arg.getOperand(2));
+ case X86ISD::FNMSUB:
+ return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0),
+ Arg.getOperand(1), Arg.getOperand(2));
+ }
+ }
+ return SDValue();
+}
+
+static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (VT.is512BitVector() && !Subtarget->hasDQI()) {
+ // VXORPS, VORPS, VANDPS, VANDNPS are supported only under DQ extention.
+ // These logic operations may be executed in the integer domain.
+ SDLoc dl(N);
+ MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits());
+ MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements());
+
+ SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(0));
+ SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, IntVT, N->getOperand(1));
+ unsigned IntOpcode = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("Unexpected FP logic op");
+ case X86ISD::FOR: IntOpcode = ISD::OR; break;
+ case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
+ case X86ISD::FAND: IntOpcode = ISD::AND; break;
+ case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
+ }
+ SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
+ return DAG.getNode(ISD::BITCAST, dl, VT, IntOp);
+ }
+ return SDValue();
+}
+/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
+static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
+
+ // F[X]OR(0.0, x) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+
+ // F[X]OR(x, 0.0) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
+static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
+
+ // Only perform optimizations if UnsafeMath is used.
+ if (!DAG.getTarget().Options.UnsafeFPMath)
+ return SDValue();
+
+ // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
+ // into FMINC and FMAXC, which are Commutative operations.
+ unsigned NewOp = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unknown opcode");
+ case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
+ case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
+ }
+
+ return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), N->getOperand(1));
+}
+
+static SDValue performFMinNumFMaxNumCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ if (Subtarget->useSoftFloat())
+ return SDValue();
+
+ // TODO: Check for global or instruction-level "nnan". In that case, we
+ // should be able to lower to FMAX/FMIN alone.
+ // TODO: If an operand is already known to be a NaN or not a NaN, this
+ // should be an optional swap and FMAX/FMIN.
+
+ EVT VT = N->getValueType(0);
+ if (!((Subtarget->hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
+ (Subtarget->hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) ||
+ (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))))
+ return SDValue();
+
+ // This takes at least 3 instructions, so favor a library call when operating
+ // on a scalar and minimizing code size.
+ if (!VT.isVector() && DAG.getMachineFunction().getFunction()->optForMinSize())
+ return SDValue();
+
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ SDLoc DL(N);
+ EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
+ DAG.getDataLayout(), *DAG.getContext(), VT);
+
+ // There are 4 possibilities involving NaN inputs, and these are the required
+ // outputs:
+ // Op1
+ // Num NaN
+ // ----------------
+ // Num | Max | Op0 |
+ // Op0 ----------------
+ // NaN | Op1 | NaN |
+ // ----------------
+ //
+ // The SSE FP max/min instructions were not designed for this case, but rather
+ // to implement:
+ // Min = Op1 < Op0 ? Op1 : Op0
+ // Max = Op1 > Op0 ? Op1 : Op0
+ //
+ // So they always return Op0 if either input is a NaN. However, we can still
+ // use those instructions for fmaxnum by selecting away a NaN input.
+
+ // If either operand is NaN, the 2nd source operand (Op0) is passed through.
+ auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
+ SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
+ SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO);
+
+ // If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
+ // are NaN, the NaN value of Op1 is the result.
+ auto SelectOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
+ return DAG.getNode(SelectOpcode, DL, VT, IsOp0Nan, Op1, MinOrMax);
+}
+
+/// Do target-specific dag combines on X86ISD::FAND nodes.
+static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // FAND(0.0, x) -> 0.0
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+
+ // FAND(x, 0.0) -> 0.0
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+/// Do target-specific dag combines on X86ISD::FANDN nodes
+static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // FANDN(0.0, x) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+
+ // FANDN(x, 0.0) -> 0.0
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+
+ return lowerX86FPLogicOp(N, DAG, Subtarget);
+}
+
+static SDValue PerformBTCombine(SDNode *N,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // BT ignores high bits in the bit index operand.
+ SDValue Op1 = N->getOperand(1);
+ if (Op1.hasOneUse()) {
+ unsigned BitWidth = Op1.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return SDValue();
+}
+
+static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue Op = N->getOperand(0);
+ if (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ EVT VT = N->getValueType(0), OpVT = Op.getValueType();
+ if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
+ VT.getVectorElementType().getSizeInBits() ==
+ OpVT.getVectorElementType().getSizeInBits()) {
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
+ }
+ return SDValue();
+}
+
+static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
+ SDLoc dl(N);
+
+ // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
+ // both SSE and AVX2 since there is no sign-extended shift right
+ // operation on a vector with 64-bit elements.
+ //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
+ // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
+ if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
+ N0.getOpcode() == ISD::SIGN_EXTEND)) {
+ SDValue N00 = N0.getOperand(0);
+
+ // EXTLOAD has a better solution on AVX2,
+ // it may be replaced with X86ISD::VSEXT node.
+ if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
+ if (!ISD::isNormalLoad(N00.getNode()))
+ return SDValue();
+
+ if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
+ SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
+ N00, N1);
+ return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
+ }
+ }
+ return SDValue();
+}
+
+/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
+/// Promoting a sign extension ahead of an 'add nsw' exposes opportunities
+/// to combine math ops, use an LEA, or use a complex addressing mode. This can
+/// eliminate extend, add, and shift instructions.
+static SDValue promoteSextBeforeAddNSW(SDNode *Sext, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // TODO: This should be valid for other integer types.
+ EVT VT = Sext->getValueType(0);
+ if (VT != MVT::i64)
+ return SDValue();
+
+ // We need an 'add nsw' feeding into the 'sext'.
+ SDValue Add = Sext->getOperand(0);
+ if (Add.getOpcode() != ISD::ADD || !Add->getFlags()->hasNoSignedWrap())
+ return SDValue();
+
+ // Having a constant operand to the 'add' ensures that we are not increasing
+ // the instruction count because the constant is extended for free below.
+ // A constant operand can also become the displacement field of an LEA.
+ auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
+ if (!AddOp1)
+ return SDValue();
+
+ // Don't make the 'add' bigger if there's no hope of combining it with some
+ // other 'add' or 'shl' instruction.
+ // TODO: It may be profitable to generate simpler LEA instructions in place
+ // of single 'add' instructions, but the cost model for selecting an LEA
+ // currently has a high threshold.
+ bool HasLEAPotential = false;
+ for (auto *User : Sext->uses()) {
+ if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
+ HasLEAPotential = true;
+ break;
+ }
+ }
+ if (!HasLEAPotential)
+ return SDValue();
+
+ // Everything looks good, so pull the 'sext' ahead of the 'add'.
+ int64_t AddConstant = AddOp1->getSExtValue();
+ SDValue AddOp0 = Add.getOperand(0);
+ SDValue NewSext = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Sext), VT, AddOp0);
+ SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
+
+ // The wider add is guaranteed to not wrap because both operands are
+ // sign-extended.
+ SDNodeFlags Flags;
+ Flags.setNoSignedWrap(true);
+ return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewSext, NewConstant, &Flags);
+}
+
+static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT SVT = VT.getScalarType();
+ EVT InVT = N0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+ SDLoc DL(N);
+
+ // (i8,i32 sext (sdivrem (i8 x, i8 y)) ->
+ // (i8,i32 (sdivrem_sext_hreg (i8 x, i8 y)
+ // This exposes the sext to the sdivrem lowering, so that it directly extends
+ // from AH (which we otherwise need to do contortions to access).
+ if (N0.getOpcode() == ISD::SDIVREM && N0.getResNo() == 1 &&
+ InVT == MVT::i8 && VT == MVT::i32) {
+ SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
+ SDValue R = DAG.getNode(X86ISD::SDIVREM8_SEXT_HREG, DL, NodeTys,
+ N0.getOperand(0), N0.getOperand(1));
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
+ return R.getValue(1);
+ }
+
+ if (!DCI.isBeforeLegalizeOps()) {
+ if (InVT == MVT::i1) {
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue AllOnes =
+ DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
+ return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero);
+ }
+ return SDValue();
+ }
+
+ if (VT.isVector() && Subtarget->hasSSE2()) {
+ auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) {
+ EVT InVT = N.getValueType();
+ EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
+ Size / InVT.getScalarSizeInBits());
+ SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
+ DAG.getUNDEF(InVT));
+ Opnds[0] = N;
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
+ };
+
+ // If target-size is less than 128-bits, extend to a type that would extend
+ // to 128 bits, extend that and extract the original target vector.
+ if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits()) &&
+ (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
+ (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
+ unsigned Scale = 128 / VT.getSizeInBits();
+ EVT ExVT =
+ EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
+ SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
+ SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, ExVT, Ex);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
+ DAG.getIntPtrConstant(0, DL));
+ }
+
+ // If target-size is 128-bits, then convert to ISD::SIGN_EXTEND_VECTOR_INREG
+ // which ensures lowering to X86ISD::VSEXT (pmovsx*).
+ if (VT.getSizeInBits() == 128 &&
+ (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
+ (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
+ SDValue ExOp = ExtendVecSize(DL, N0, 128);
+ return DAG.getSignExtendVectorInReg(ExOp, DL, VT);
+ }
+
+ // On pre-AVX2 targets, split into 128-bit nodes of
+ // ISD::SIGN_EXTEND_VECTOR_INREG.
+ if (!Subtarget->hasInt256() && !(VT.getSizeInBits() % 128) &&
+ (SVT == MVT::i64 || SVT == MVT::i32 || SVT == MVT::i16) &&
+ (InSVT == MVT::i32 || InSVT == MVT::i16 || InSVT == MVT::i8)) {
+ unsigned NumVecs = VT.getSizeInBits() / 128;
+ unsigned NumSubElts = 128 / SVT.getSizeInBits();
+ EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
+ EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
+
+ SmallVector<SDValue, 8> Opnds;
+ for (unsigned i = 0, Offset = 0; i != NumVecs;
+ ++i, Offset += NumSubElts) {
+ SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
+ DAG.getIntPtrConstant(Offset, DL));
+ SrcVec = ExtendVecSize(DL, SrcVec, 128);
+ SrcVec = DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT);
+ Opnds.push_back(SrcVec);
+ }
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
+ }
+ }
+
+ if (Subtarget->hasAVX() && VT.is256BitVector())
+ if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
+ return R;
+
+ if (SDValue NewAdd = promoteSextBeforeAddNSW(N, DAG, Subtarget))
+ return NewAdd;
+
+ return SDValue();
+}
+
+static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ EVT ScalarVT = VT.getScalarType();
+ if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasAnyFMA())
+ return SDValue();
+
+ SDValue A = N->getOperand(0);
+ SDValue B = N->getOperand(1);
+ SDValue C = N->getOperand(2);
+
+ bool NegA = (A.getOpcode() == ISD::FNEG);
+ bool NegB = (B.getOpcode() == ISD::FNEG);
+ bool NegC = (C.getOpcode() == ISD::FNEG);
+
+ // Negative multiplication when NegA xor NegB
+ bool NegMul = (NegA != NegB);
+ if (NegA)
+ A = A.getOperand(0);
+ if (NegB)
+ B = B.getOperand(0);
+ if (NegC)
+ C = C.getOperand(0);
+
+ unsigned Opcode;
+ if (!NegMul)
+ Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
+ else
+ Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
+
+ return DAG.getNode(Opcode, dl, VT, A, B, C);
+}
+
+static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
+ // (and (i32 x86isd::setcc_carry), 1)
+ // This eliminates the zext. This transformation is necessary because
+ // ISD::SETCC is always legalized to i8.
+ SDLoc dl(N);
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+
+ if (N0.getOpcode() == ISD::AND &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ if (!isOneConstant(N0.getOperand(1)))
+ return SDValue();
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, dl, VT));
+ }
+ }
+
+ if (N0.getOpcode() == ISD::TRUNCATE &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, dl, VT));
+ }
+ }
+
+ if (VT.is256BitVector())
+ if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
+ return R;
+
+ // (i8,i32 zext (udivrem (i8 x, i8 y)) ->
+ // (i8,i32 (udivrem_zext_hreg (i8 x, i8 y)
+ // This exposes the zext to the udivrem lowering, so that it directly extends
+ // from AH (which we otherwise need to do contortions to access).
+ if (N0.getOpcode() == ISD::UDIVREM &&
+ N0.getResNo() == 1 && N0.getValueType() == MVT::i8 &&
+ (VT == MVT::i32 || VT == MVT::i64)) {
+ SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
+ SDValue R = DAG.getNode(X86ISD::UDIVREM8_ZEXT_HREG, dl, NodeTys,
+ N0.getOperand(0), N0.getOperand(1));
+ DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
+ return R.getValue(1);
+ }
+
+ return SDValue();
+}
+
+// Optimize x == -y --> x+y == 0
+// x != -y --> x+y != 0
+static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget* Subtarget) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
+ if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) {
+ SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS,
+ LHS.getOperand(1));
+ return DAG.getSetCC(DL, N->getValueType(0), addV,
+ DAG.getConstant(0, DL, addV.getValueType()), CC);
+ }
+ if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
+ if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) {
+ SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS,
+ RHS.getOperand(1));
+ return DAG.getSetCC(DL, N->getValueType(0), addV,
+ DAG.getConstant(0, DL, addV.getValueType()), CC);
+ }
+
+ if (VT.getScalarType() == MVT::i1 &&
+ (CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
+ bool IsSEXT0 =
+ (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+ (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
+ bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
+
+ if (!IsSEXT0 || !IsVZero1) {
+ // Swap the operands and update the condition code.
+ std::swap(LHS, RHS);
+ CC = ISD::getSetCCSwappedOperands(CC);
+
+ IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
+ (LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
+ IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
+ }
+
+ if (IsSEXT0 && IsVZero1) {
+ assert(VT == LHS.getOperand(0).getValueType() &&
+ "Uexpected operand type");
+ if (CC == ISD::SETGT)
+ return DAG.getConstant(0, DL, VT);
+ if (CC == ISD::SETLE)
+ return DAG.getConstant(1, DL, VT);
+ if (CC == ISD::SETEQ || CC == ISD::SETGE)
+ return DAG.getNOT(DL, LHS.getOperand(0), VT);
+
+ assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
+ "Unexpected condition code!");
+ return LHS.getOperand(0);
+ }
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformBLENDICombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue V0 = N->getOperand(0);
+ SDValue V1 = N->getOperand(1);
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+
+ // Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
+ // operands and changing the mask to 1. This saves us a bunch of
+ // pattern-matching possibilities related to scalar math ops in SSE/AVX.
+ // x86InstrInfo knows how to commute this back after instruction selection
+ // if it would help register allocation.
+
+ // TODO: If optimizing for size or a processor that doesn't suffer from
+ // partial register update stalls, this should be transformed into a MOVSD
+ // instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
+
+ if (VT == MVT::v2f64)
+ if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+ if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
+ SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
+ return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformGatherScatterCombine(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+ // Gather and Scatter instructions use k-registers for masks. The type of
+ // the masks is v*i1. So the mask will be truncated anyway.
+ // The SIGN_EXTEND_INREG my be dropped.
+ SDValue Mask = N->getOperand(2);
+ if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) {
+ SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
+ NewOps[2] = Mask.getOperand(0);
+ DAG.UpdateNodeOperands(N, NewOps);
+ }
+ return SDValue();
+}
+
+// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
+// as "sbb reg,reg", since it can be extended without zext and produces
+// an all-ones bit which is more useful than 0/1 in some cases.
+static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
+ MVT VT) {
+ if (VT == MVT::i8)
+ return DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ EFLAGS),
+ DAG.getConstant(1, DL, VT));
+ assert (VT == MVT::i1 && "Unexpected type for SECCC node");
+ return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
+ DAG.getConstant(X86::COND_B, DL, MVT::i8),
+ EFLAGS));
+}
+
+// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
+static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
+ SDValue EFLAGS = N->getOperand(1);
+
+ if (CC == X86::COND_A) {
+ // Try to convert COND_A into COND_B in an attempt to facilitate
+ // materializing "setb reg".
+ //
+ // Do not flip "e > c", where "c" is a constant, because Cmp instruction
+ // cannot take an immediate as its first operand.
+ //
+ if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
+ EFLAGS.getValueType().isInteger() &&
+ !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
+ SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
+ EFLAGS.getNode()->getVTList(),
+ EFLAGS.getOperand(1), EFLAGS.getOperand(0));
+ SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
+ return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
+ }
+ }
+
+ // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
+ // a zext and produces an all-ones bit which is more useful than 0/1 in some
+ // cases.
+ if (CC == X86::COND_B)
+ return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
+
+ if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
+ SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
+ return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
+ }
+
+ return SDValue();
+}
+
+// Optimize branch condition evaluation.
+//
+static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Dest = N->getOperand(1);
+ SDValue EFLAGS = N->getOperand(3);
+ X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
+
+ if (SDValue Flags = checkBoolTestSetCCCombine(EFLAGS, CC)) {
+ SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
+ return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
+ Flags);
+ }
+
+ return SDValue();
+}
+
+static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N,
+ SelectionDAG &DAG) {
+ // Take advantage of vector comparisons producing 0 or -1 in each lane to
+ // optimize away operation when it's from a constant.
+ //
+ // The general transformation is:
+ // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
+ // AND(VECTOR_CMP(x,y), constant2)
+ // constant2 = UNARYOP(constant)
+
+ // Early exit if this isn't a vector operation, the operand of the
+ // unary operation isn't a bitwise AND, or if the sizes of the operations
+ // aren't the same.
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
+ N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
+ VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
+ return SDValue();
+
+ // Now check that the other operand of the AND is a constant. We could
+ // make the transformation for non-constant splats as well, but it's unclear
+ // that would be a benefit as it would not eliminate any operations, just
+ // perform one more step in scalar code before moving to the vector unit.
+ if (BuildVectorSDNode *BV =
+ dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
+ // Bail out if the vector isn't a constant.
+ if (!BV->isConstant())
+ return SDValue();
+
+ // Everything checks out. Build up the new and improved node.
+ SDLoc DL(N);
+ EVT IntVT = BV->getValueType(0);
+ // Create a new constant of the appropriate type for the transformed
+ // DAG.
+ SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
+ // The AND node needs bitcasts to/from an integer vector type around it.
+ SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
+ SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
+ N->getOperand(0)->getOperand(0), MaskConst);
+ SDValue Res = DAG.getBitcast(VT, NewAnd);
+ return Res;
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT InVT = Op0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
+ // UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
+ if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
+ SDLoc dl(N);
+ EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ InVT.getVectorNumElements());
+ SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
+
+ if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT))
+ return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P);
+
+ return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // First try to optimize away the conversion entirely when it's
+ // conditionally from a constant. Vectors only.
+ if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG))
+ return Res;
+
+ // Now move on to more general possibilities.
+ SDValue Op0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ EVT InVT = Op0.getValueType();
+ EVT InSVT = InVT.getScalarType();
+
+ // SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
+ // SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
+ if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
+ SDLoc dl(N);
+ EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
+ InVT.getVectorNumElements());
+ SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
+ return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
+ }
+
+ // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
+ // a 32-bit target where SSE doesn't support i64->FP operations.
+ if (!Subtarget->useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
+ EVT LdVT = Ld->getValueType(0);
+
+ // This transformation is not supported if the result type is f16
+ if (VT == MVT::f16)
+ return SDValue();
+
+ if (!Ld->isVolatile() && !VT.isVector() &&
+ ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
+ !Subtarget->is64Bit() && LdVT == MVT::i64) {
+ SDValue FILDChain = Subtarget->getTargetLowering()->BuildFILD(
+ SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
+ DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
+ return FILDChain;
+ }
+ }
+ return SDValue();
+}
+
+// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
+static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
+ X86TargetLowering::DAGCombinerInfo &DCI) {
+ // If the LHS and RHS of the ADC node are zero, then it can't overflow and
+ // the result is either zero or one (depending on the input carry bit).
+ // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
+ if (X86::isZeroNode(N->getOperand(0)) &&
+ X86::isZeroNode(N->getOperand(1)) &&
+ // We don't have a good way to replace an EFLAGS use, so only do this when
+ // dead right now.
+ SDValue(N, 1).use_empty()) {
+ SDLoc DL(N);
+ EVT VT = N->getValueType(0);
+ SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
+ SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
+ DAG.getConstant(X86::COND_B, DL,
+ MVT::i8),
+ N->getOperand(2)),
+ DAG.getConstant(1, DL, VT));
+ return DCI.CombineTo(N, Res1, CarryOut);
+ }
+
+ return SDValue();
+}
+
+// fold (add Y, (sete X, 0)) -> adc 0, Y
+// (add Y, (setne X, 0)) -> sbb -1, Y
+// (sub (sete X, 0), Y) -> sbb 0, Y
+// (sub (setne X, 0), Y) -> adc -1, Y
+static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
+ SDLoc DL(N);
+
+ // Look through ZExts.
+ SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
+ if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
+ return SDValue();
+
+ SDValue SetCC = Ext.getOperand(0);
+ if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
+ return SDValue();
+
+ X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
+ if (CC != X86::COND_E && CC != X86::COND_NE)
+ return SDValue();
+
+ SDValue Cmp = SetCC.getOperand(1);
+ if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
+ !X86::isZeroNode(Cmp.getOperand(1)) ||
+ !Cmp.getOperand(0).getValueType().isInteger())
+ return SDValue();
+
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
+ DAG.getConstant(1, DL, CmpOp0.getValueType()));
+
+ SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
+ if (CC == X86::COND_NE)
+ return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
+ DL, OtherVal.getValueType(), OtherVal,
+ DAG.getConstant(-1ULL, DL, OtherVal.getValueType()),
+ NewCmp);
+ return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
+ DL, OtherVal.getValueType(), OtherVal,
+ DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp);
+}
+
+/// PerformADDCombine - Do target-specific dag combines on integer adds.
+static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
+ return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
+
+ return OptimizeConditionalInDecrement(N, DAG);
+}
+
+static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+
+ // X86 can't encode an immediate LHS of a sub. See if we can push the
+ // negation into a preceding instruction.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
+ // If the RHS of the sub is a XOR with one use and a constant, invert the
+ // immediate. Then add one to the LHS of the sub so we can turn
+ // X-Y -> X+~Y+1, saving one register.
+ if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
+ isa<ConstantSDNode>(Op1.getOperand(1))) {
+ APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
+ EVT VT = Op0.getValueType();
+ SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
+ Op1.getOperand(0),
+ DAG.getConstant(~XorC, SDLoc(Op1), VT));
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
+ DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
+ }
+ }
+
+ // Try to synthesize horizontal adds from adds of shuffles.
+ EVT VT = N->getValueType(0);
+ if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
+ (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
+ isHorizontalBinOp(Op0, Op1, true))
+ return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
+
+ return OptimizeConditionalInDecrement(N, DAG);
+}
+
+/// performVZEXTCombine - Performs build vector combines
+static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ SDLoc DL(N);
+ MVT VT = N->getSimpleValueType(0);
+ SDValue Op = N->getOperand(0);
+ MVT OpVT = Op.getSimpleValueType();
+ MVT OpEltVT = OpVT.getVectorElementType();
+ unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
+
+ // (vzext (bitcast (vzext (x)) -> (vzext x)
+ SDValue V = Op;
+ while (V.getOpcode() == ISD::BITCAST)
+ V = V.getOperand(0);
+
+ if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
+ MVT InnerVT = V.getSimpleValueType();
+ MVT InnerEltVT = InnerVT.getVectorElementType();
+
+ // If the element sizes match exactly, we can just do one larger vzext. This
+ // is always an exact type match as vzext operates on integer types.
+ if (OpEltVT == InnerEltVT) {
+ assert(OpVT == InnerVT && "Types must match for vzext!");
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
+ }
+
+ // The only other way we can combine them is if only a single element of the
+ // inner vzext is used in the input to the outer vzext.
+ if (InnerEltVT.getSizeInBits() < InputBits)
+ return SDValue();
+
+ // In this case, the inner vzext is completely dead because we're going to
+ // only look at bits inside of the low element. Just do the outer vzext on
+ // a bitcast of the input to the inner.
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
+ }
+
+ // Check if we can bypass extracting and re-inserting an element of an input
+ // vector. Essentially:
+ // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
+ if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
+ SDValue ExtractedV = V.getOperand(0);
+ SDValue OrigV = ExtractedV.getOperand(0);
+ if (isNullConstant(ExtractedV.getOperand(1))) {
+ MVT OrigVT = OrigV.getSimpleValueType();
+ // Extract a subvector if necessary...
+ if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
+ int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
+ OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
+ OrigVT.getVectorNumElements() / Ratio);
+ OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
+ DAG.getIntPtrConstant(0, DL));
+ }
+ Op = DAG.getBitcast(OpVT, OrigV);
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
+ }
+ }
+
+ return SDValue();
+}
+
+SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::EXTRACT_VECTOR_ELT:
+ return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
+ case ISD::VSELECT:
+ case ISD::SELECT:
+ case X86ISD::SHRUNKBLEND:
+ return PerformSELECTCombine(N, DAG, DCI, Subtarget);
+ case ISD::BITCAST: return PerformBITCASTCombine(N, DAG, Subtarget);
+ case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI, Subtarget);
+ case ISD::ADD: return PerformAddCombine(N, DAG, Subtarget);
+ case ISD::SUB: return PerformSubCombine(N, DAG, Subtarget);
+ case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
+ case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DAG, DCI, Subtarget);
+ case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
+ case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
+ case ISD::XOR: return PerformXorCombine(N, DAG, DCI, Subtarget);
+ case ISD::LOAD: return PerformLOADCombine(N, DAG, DCI, Subtarget);
+ case ISD::MLOAD: return PerformMLOADCombine(N, DAG, DCI, Subtarget);
+ case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
+ case ISD::MSTORE: return PerformMSTORECombine(N, DAG, Subtarget);
+ case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, Subtarget);
+ case ISD::UINT_TO_FP: return PerformUINT_TO_FPCombine(N, DAG, Subtarget);
+ case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
+ case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
+ case ISD::FNEG: return PerformFNEGCombine(N, DAG, Subtarget);
+ case ISD::TRUNCATE: return PerformTRUNCATECombine(N, DAG, Subtarget);
+ case X86ISD::FXOR:
+ case X86ISD::FOR: return PerformFORCombine(N, DAG, Subtarget);
+ case X86ISD::FMIN:
+ case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG);
+ case ISD::FMINNUM:
+ case ISD::FMAXNUM: return performFMinNumFMaxNumCombine(N, DAG,
+ Subtarget);
+ case X86ISD::FAND: return PerformFANDCombine(N, DAG, Subtarget);
+ case X86ISD::FANDN: return PerformFANDNCombine(N, DAG, Subtarget);
+ case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
+ case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
+ case ISD::ANY_EXTEND:
+ case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND: return PerformSExtCombine(N, DAG, DCI, Subtarget);
+ case ISD::SIGN_EXTEND_INREG:
+ return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
+ case ISD::SETCC: return PerformISDSETCCCombine(N, DAG, Subtarget);
+ case X86ISD::SETCC: return PerformSETCCCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::BRCOND: return PerformBrCondCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::VZEXT: return performVZEXTCombine(N, DAG, DCI, Subtarget);
+ case X86ISD::SHUFP: // Handle all target specific shuffles
+ case X86ISD::PALIGNR:
+ case X86ISD::UNPCKH:
+ case X86ISD::UNPCKL:
+ case X86ISD::MOVHLPS:
+ case X86ISD::MOVLHPS:
+ case X86ISD::PSHUFB:
+ case X86ISD::PSHUFD:
+ case X86ISD::PSHUFHW:
+ case X86ISD::PSHUFLW:
+ case X86ISD::MOVSS:
+ case X86ISD::MOVSD:
+ case X86ISD::VPERMILPI:
+ case X86ISD::VPERM2X128:
+ case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
+ case ISD::FMA: return PerformFMACombine(N, DAG, Subtarget);
+ case X86ISD::BLENDI: return PerformBLENDICombine(N, DAG);
+ case ISD::MGATHER:
+ case ISD::MSCATTER: return PerformGatherScatterCombine(N, DAG);
+ }
+
+ return SDValue();
+}
+
+/// isTypeDesirableForOp - Return true if the target has native support for
+/// the specified value type and it is 'desirable' to use the type for the
+/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
+/// instruction encodings are longer and some i16 instructions are slow.
+bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
+ if (!isTypeLegal(VT))
+ return false;
+ if (VT != MVT::i16)
+ return true;
+
+ switch (Opc) {
+ default:
+ return true;
+ case ISD::LOAD:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SUB:
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ return false;
+ }
+}
+
+/// IsDesirableToPromoteOp - This method query the target whether it is
+/// beneficial for dag combiner to promote the specified node. If true, it
+/// should return the desired promotion type by reference.
+bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
+ EVT VT = Op.getValueType();
+ if (VT != MVT::i16)
+ return false;
+
+ bool Promote = false;
+ bool Commute = false;
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ // If the non-extending load has a single use and it's not live out, then it
+ // might be folded.
+ if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
+ Op.hasOneUse()*/) {
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI) {
+ // The only case where we'd want to promote LOAD (rather then it being
+ // promoted as an operand is when it's only use is liveout.
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ }
+ }
+ Promote = true;
+ break;
+ }
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Promote = true;
+ break;
+ case ISD::SHL:
+ case ISD::SRL: {
+ SDValue N0 = Op.getOperand(0);
+ // Look out for (store (shl (load), x)).
+ if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
+ return false;
+ Promote = true;
+ break;
+ }
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ Commute = true;
+ // fallthrough
+ case ISD::SUB: {
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ if (!Commute && MayFoldLoad(N1))
+ return false;
+ // Avoid disabling potential load folding opportunities.
+ if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
+ return false;
+ if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
+ return false;
+ Promote = true;
+ }
+ }
+
+ PVT = MVT::i32;
+ return Promote;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+// Helper to match a string separated by whitespace.
+static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
+ S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
+
+ for (StringRef Piece : Pieces) {
+ if (!S.startswith(Piece)) // Check if the piece matches.
+ return false;
+
+ S = S.substr(Piece.size());
+ StringRef::size_type Pos = S.find_first_not_of(" \t");
+ if (Pos == 0) // We matched a prefix.
+ return false;
+
+ S = S.substr(Pos);
+ }
+
+ return S.empty();
+}
+
+static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
+
+ if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
+ if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
+
+ if (AsmPieces.size() == 3)
+ return true;
+ else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+
+ std::string AsmStr = IA->getAsmString();
+
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (!Ty || Ty->getBitWidth() % 16 != 0)
+ return false;
+
+ // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ // FIXME: this should verify that we are targeting a 486 or better. If not,
+ // we will turn this bswap into something that will be lowered to logical
+ // ops instead of emitting the bswap asm. For now, we don't support 486 or
+ // lower so don't worry about this.
+ // bswap $0
+ if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
+ matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
+ matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
+ matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
+ // No need to check constraints, nothing other than the equivalent of
+ // "=r,0" would be valid here.
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ // rorw $$8, ${0:w} --> llvm.bswap.i16
+ if (CI->getType()->isIntegerTy(16) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ (matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
+ matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
+ AsmPieces.clear();
+ StringRef ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ case 3:
+ if (CI->getType()->isIntegerTy(32) &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
+ matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
+ matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
+ matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
+ AsmPieces.clear();
+ StringRef ConstraintsStr = IA->getConstraintString();
+ SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
+ array_pod_sort(AsmPieces.begin(), AsmPieces.end());
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+
+ if (CI->getType()->isIntegerTy(64)) {
+ InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
+ if (Constraints.size() >= 2 &&
+ Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
+ Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
+ // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
+ if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
+ matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
+ matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ }
+ break;
+ }
+ return false;
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+X86TargetLowering::ConstraintType
+X86TargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'f':
+ case 't':
+ case 'u':
+ case 'y':
+ case 'x':
+ case 'Y':
+ case 'l':
+ return C_RegisterClass;
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ return C_Register;
+ case 'I':
+ case 'J':
+ case 'K':
+ case 'L':
+ case 'M':
+ case 'N':
+ case 'G':
+ case 'C':
+ case 'e':
+ case 'Z':
+ return C_Other;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ X86TargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ case 'R':
+ case 'q':
+ case 'Q':
+ case 'a':
+ case 'b':
+ case 'c':
+ case 'd':
+ case 'S':
+ case 'D':
+ case 'A':
+ if (CallOperandVal->getType()->isIntegerTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'f':
+ case 't':
+ case 'u':
+ if (type->isFloatingPointTy())
+ weight = CW_SpecificReg;
+ break;
+ case 'y':
+ if (type->isX86_MMXTy() && Subtarget->hasMMX())
+ weight = CW_SpecificReg;
+ break;
+ case 'x':
+ case 'Y':
+ if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
+ ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
+ weight = CW_Register;
+ break;
+ case 'I':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
+ if (C->getZExtValue() <= 31)
+ weight = CW_Constant;
+ }
+ break;
+ case 'J':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 63)
+ weight = CW_Constant;
+ }
+ break;
+ case 'K':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
+ weight = CW_Constant;
+ }
+ break;
+ case 'L':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
+ weight = CW_Constant;
+ }
+ break;
+ case 'M':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 3)
+ weight = CW_Constant;
+ }
+ break;
+ case 'N':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xff)
+ weight = CW_Constant;
+ }
+ break;
+ case 'G':
+ case 'C':
+ if (isa<ConstantFP>(CallOperandVal)) {
+ weight = CW_Constant;
+ }
+ break;
+ case 'e':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if ((C->getSExtValue() >= -0x80000000LL) &&
+ (C->getSExtValue() <= 0x7fffffffLL))
+ weight = CW_Constant;
+ }
+ break;
+ case 'Z':
+ if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
+ if (C->getZExtValue() <= 0xffffffff)
+ weight = CW_Constant;
+ }
+ break;
+ }
+ return weight;
+}
+
+/// LowerXConstraint - try to replace an X constraint, which matches anything,
+/// with another that has more specific requirements based on the type of the
+/// corresponding operand.
+const char *X86TargetLowering::
+LowerXConstraint(EVT ConstraintVT) const {
+ // FP X constraints get lowered to SSE1/2 registers if available, otherwise
+ // 'f' like normal targets.
+ if (ConstraintVT.isFloatingPoint()) {
+ if (Subtarget->hasSSE2())
+ return "Y";
+ if (Subtarget->hasSSE1())
+ return "x";
+ }
+
+ return TargetLowering::LowerXConstraint(ConstraintVT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Only support length 1 constraints for now.
+ if (Constraint.length() > 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 31) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'J':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 63) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'K':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (isInt<8>(C->getSExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'L':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
+ (Subtarget->is64Bit() && C->getZExtValue() == 0xffffffff)) {
+ Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'M':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 3) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'N':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 255) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'O':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 127) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'e': {
+ // 32-bit signed value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getSExtValue())) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
+ break;
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ }
+ return;
+ }
+ case 'Z': {
+ // 32-bit unsigned value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getZExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
+ Op.getValueType());
+ break;
+ }
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ return;
+ }
+ case 'i': {
+ // Literal immediates are always ok.
+ if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
+ break;
+ }
+
+ // In any sort of PIC mode addresses need to be computed at runtime by
+ // adding in a register or some sort of table lookup. These can't
+ // be used as immediates.
+ if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
+ return;
+
+ // If we are in non-pic codegen mode, we allow the address of a global (with
+ // an optional displacement) to be used with 'i'.
+ GlobalAddressSDNode *GA = nullptr;
+ int64_t Offset = 0;
+
+ // Match either (GA), (GA+C), (GA+C1+C2), etc.
+ while (1) {
+ if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
+ Offset += GA->getOffset();
+ break;
+ } else if (Op.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ } else if (Op.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += -C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ }
+
+ // Otherwise, this isn't something we can handle, reject it.
+ return;
+ }
+
+ const GlobalValue *GV = GA->getGlobal();
+ // If we require an extra load to get this address, as in PIC mode, we
+ // can't accept it.
+ if (isGlobalStubReference(
+ Subtarget->ClassifyGlobalReference(GV, DAG.getTarget())))
+ return;
+
+ Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
+ GA->getValueType(0), Offset);
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+std::pair<unsigned, const TargetRegisterClass *>
+X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
+ StringRef Constraint,
+ MVT VT) const {
+ // First, see if this is a constraint that directly corresponds to an LLVM
+ // register class.
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ // TODO: Slight differences here in allocation order and leaving
+ // RIP in the class. Do they matter any more here than they do
+ // in the normal allocation?
+ case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
+ if (Subtarget->is64Bit()) {
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i64 || VT == MVT::f64)
+ return std::make_pair(0U, &X86::GR64RegClass);
+ break;
+ }
+ // 32-bit fallthrough
+ case 'Q': // Q_REGS
+ if (VT == MVT::i32 || VT == MVT::f32)
+ return std::make_pair(0U, &X86::GR32_ABCDRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_ABCDRegClass);
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
+ if (VT == MVT::i64)
+ return std::make_pair(0U, &X86::GR64_ABCDRegClass);
+ break;
+ case 'r': // GENERAL_REGS
+ case 'l': // INDEX_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8RegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16RegClass);
+ if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, &X86::GR32RegClass);
+ return std::make_pair(0U, &X86::GR64RegClass);
+ case 'R': // LEGACY_REGS
+ if (VT == MVT::i8 || VT == MVT::i1)
+ return std::make_pair(0U, &X86::GR8_NOREXRegClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, &X86::GR16_NOREXRegClass);
+ if (VT == MVT::i32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, &X86::GR32_NOREXRegClass);
+ return std::make_pair(0U, &X86::GR64_NOREXRegClass);
+ case 'f': // FP Stack registers.
+ // If SSE is enabled for this VT, use f80 to ensure the isel moves the
+ // value to the correct fpstack register class.
+ if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP32RegClass);
+ if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, &X86::RFP64RegClass);
+ return std::make_pair(0U, &X86::RFP80RegClass);
+ case 'y': // MMX_REGS if MMX allowed.
+ if (!Subtarget->hasMMX()) break;
+ return std::make_pair(0U, &X86::VR64RegClass);
+ case 'Y': // SSE_REGS if SSE2 allowed
+ if (!Subtarget->hasSSE2()) break;
+ // FALL THROUGH.
+ case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
+ if (!Subtarget->hasSSE1()) break;
+
+ switch (VT.SimpleTy) {
+ default: break;
+ // Scalar SSE types.
+ case MVT::f32:
+ case MVT::i32:
+ return std::make_pair(0U, &X86::FR32RegClass);
+ case MVT::f64:
+ case MVT::i64:
+ return std::make_pair(0U, &X86::FR64RegClass);
+ // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
+ // Vector types.
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v4f32:
+ case MVT::v2f64:
+ return std::make_pair(0U, &X86::VR128RegClass);
+ // AVX types.
+ case MVT::v32i8:
+ case MVT::v16i16:
+ case MVT::v8i32:
+ case MVT::v4i64:
+ case MVT::v8f32:
+ case MVT::v4f64:
+ return std::make_pair(0U, &X86::VR256RegClass);
+ case MVT::v8f64:
+ case MVT::v16f32:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return std::make_pair(0U, &X86::VR512RegClass);
+ }
+ break;
+ }
+ }
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass*> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+
+ // Not found as a standard register?
+ if (!Res.second) {
+ // Map st(0) -> st(7) -> ST0
+ if (Constraint.size() == 7 && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 's' &&
+ tolower(Constraint[2]) == 't' &&
+ Constraint[3] == '(' &&
+ (Constraint[4] >= '0' && Constraint[4] <= '7') &&
+ Constraint[5] == ')' &&
+ Constraint[6] == '}') {
+
+ Res.first = X86::FP0+Constraint[4]-'0';
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // GCC allows "st(0)" to be called just plain "st".
+ if (StringRef("{st}").equals_lower(Constraint)) {
+ Res.first = X86::FP0;
+ Res.second = &X86::RFP80RegClass;
+ return Res;
+ }
+
+ // flags -> EFLAGS
+ if (StringRef("{flags}").equals_lower(Constraint)) {
+ Res.first = X86::EFLAGS;
+ Res.second = &X86::CCRRegClass;
+ return Res;
+ }
+
+ // 'A' means EAX + EDX.
+ if (Constraint == "A") {
+ Res.first = X86::EAX;
+ Res.second = &X86::GR32_ADRegClass;
+ return Res;
+ }
+ return Res;
+ }
+
+ // Otherwise, check to see if this is a register class of the wrong value
+ // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
+ // turn into {ax},{dx}.
+ // MVT::Other is used to specify clobber names.
+ if (Res.second->hasType(VT) || VT == MVT::Other)
+ return Res; // Correct type already, nothing to do.
+
+ // Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
+ // return "eax". This should even work for things like getting 64bit integer
+ // registers when given an f64 type.
+ const TargetRegisterClass *Class = Res.second;
+ if (Class == &X86::GR8RegClass || Class == &X86::GR16RegClass ||
+ Class == &X86::GR32RegClass || Class == &X86::GR64RegClass) {
+ unsigned Size = VT.getSizeInBits();
+ if (Size == 1) Size = 8;
+ unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
+ if (DestReg > 0) {
+ Res.first = DestReg;
+ Res.second = Size == 8 ? &X86::GR8RegClass
+ : Size == 16 ? &X86::GR16RegClass
+ : Size == 32 ? &X86::GR32RegClass
+ : &X86::GR64RegClass;
+ assert(Res.second->contains(Res.first) && "Register in register class");
+ } else {
+ // No register found/type mismatch.
+ Res.first = 0;
+ Res.second = nullptr;
+ }
+ } else if (Class == &X86::FR32RegClass || Class == &X86::FR64RegClass ||
+ Class == &X86::VR128RegClass || Class == &X86::VR256RegClass ||
+ Class == &X86::FR32XRegClass || Class == &X86::FR64XRegClass ||
+ Class == &X86::VR128XRegClass || Class == &X86::VR256XRegClass ||
+ Class == &X86::VR512RegClass) {
+ // Handle references to XMM physical registers that got mapped into the
+ // wrong class. This can happen with constraints like {xmm0} where the
+ // target independent register mapper will just pick the first match it can
+ // find, ignoring the required type.
+
+ // TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
+ if (VT == MVT::f32 || VT == MVT::i32)
+ Res.second = &X86::FR32RegClass;
+ else if (VT == MVT::f64 || VT == MVT::i64)
+ Res.second = &X86::FR64RegClass;
+ else if (X86::VR128RegClass.hasType(VT))
+ Res.second = &X86::VR128RegClass;
+ else if (X86::VR256RegClass.hasType(VT))
+ Res.second = &X86::VR256RegClass;
+ else if (X86::VR512RegClass.hasType(VT))
+ Res.second = &X86::VR512RegClass;
+ else {
+ // Type mismatch and not a clobber: Return an error;
+ Res.first = 0;
+ Res.second = nullptr;
+ }
+ }
+
+ return Res;
+}
+
+int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ // Scaling factors are not free at all.
+ // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
+ // will take 2 allocations in the out of order engine instead of 1
+ // for plain addressing mode, i.e. inst (reg1).
+ // E.g.,
+ // vaddps (%rsi,%drx), %ymm0, %ymm1
+ // Requires two allocations (one for the load, one for the computation)
+ // whereas:
+ // vaddps (%rsi), %ymm0, %ymm1
+ // Requires just 1 allocation, i.e., freeing allocations for other operations
+ // and having less micro operations to execute.
+ //
+ // For some X86 architectures, this is even worse because for instance for
+ // stores, the complex addressing mode forces the instruction to use the
+ // "load" ports instead of the dedicated "store" port.
+ // E.g., on Haswell:
+ // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
+ // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
+ if (isLegalAddressingMode(DL, AM, Ty, AS))
+ // Scale represents reg2 * scale, thus account for 1
+ // as soon as we use a second register.
+ return AM.Scale != 0;
+ return -1;
+}
+
+bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
+ // Integer division on x86 is expensive. However, when aggressively optimizing
+ // for code size, we prefer to use a div instruction, as it is usually smaller
+ // than the alternative sequence.
+ // The exception to this is vector division. Since x86 doesn't have vector
+ // integer division, leaving the division as-is is a loss even in terms of
+ // size, because it will have to be scalarized, while the alternative code
+ // sequence can be performed in vector form.
+ bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::MinSize);
+ return OptSize && !VT.isVector();
+}
OpenPOWER on IntegriCloud