summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp3106
1 files changed, 2218 insertions, 888 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
index d5adb89..76eeb64 100644
--- a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -16,6 +16,7 @@
#include "X86ISelLowering.h"
#include "Utils/X86ShuffleDecode.h"
#include "X86.h"
+#include "X86CallingConv.h"
#include "X86InstrBuilder.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
@@ -55,20 +56,17 @@ using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
// Forward declarations.
-static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
SDValue V2);
-/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
-/// sets things up to match to an AVX VEXTRACTF128 instruction or a
-/// simple subregister reference. Idx is an index in the 128 bits we
-/// want. It need not be aligned to a 128-bit bounday. That makes
-/// lowering EXTRACT_VECTOR_ELT operations easier.
-static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
- SelectionDAG &DAG, DebugLoc dl) {
+static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl,
+ unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
EVT VT = Vec.getValueType();
- assert(VT.is256BitVector() && "Unexpected vector size!");
EVT ElVT = VT.getVectorElementType();
- unsigned Factor = VT.getSizeInBits()/128;
+ unsigned Factor = VT.getSizeInBits()/vectorWidth;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements()/Factor);
@@ -76,13 +74,12 @@ static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
if (Vec.getOpcode() == ISD::UNDEF)
return DAG.getUNDEF(ResultVT);
- // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
- // we can match to VEXTRACTF128.
- unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
+ // Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
+ unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
- // This is the index of the first element of the 128-bit chunk
+ // This is the index of the first element of the vectorWidth-bit chunk
// we want.
- unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
+ unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
* ElemsPerChunk);
// If the input is a buildvector just emit a smaller one.
@@ -95,38 +92,71 @@ static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
VecIdx);
return Result;
+
+}
+/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
+/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
+/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
+/// instructions or a simple subregister reference. Idx is an index in the
+/// 128 bits we want. It need not be aligned to a 128-bit bounday. That makes
+/// lowering EXTRACT_VECTOR_ELT operations easier.
+static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert((Vec.getValueType().is256BitVector() ||
+ Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
}
-/// Generate a DAG to put 128-bits into a vector > 128 bits. This
-/// sets things up to match to an AVX VINSERTF128 instruction or a
-/// simple superregister reference. Idx is an index in the 128 bits
-/// we want. It need not be aligned to a 128-bit bounday. That makes
-/// lowering INSERT_VECTOR_ELT operations easier.
-static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
- unsigned IdxVal, SelectionDAG &DAG,
- DebugLoc dl) {
+/// Generate a DAG to grab 256-bits from a 512-bit vector.
+static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
+ SelectionDAG &DAG, SDLoc dl) {
+ assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
+ return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
+}
+
+static SDValue InsertSubVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl, unsigned vectorWidth) {
+ assert((vectorWidth == 128 || vectorWidth == 256) &&
+ "Unsupported vector width");
// Inserting UNDEF is Result
if (Vec.getOpcode() == ISD::UNDEF)
return Result;
-
EVT VT = Vec.getValueType();
- assert(VT.is128BitVector() && "Unexpected vector size!");
-
EVT ElVT = VT.getVectorElementType();
EVT ResultVT = Result.getValueType();
- // Insert the relevant 128 bits.
- unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
+ // Insert the relevant vectorWidth bits.
+ unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
- // This is the index of the first element of the 128-bit chunk
+ // This is the index of the first element of the vectorWidth-bit chunk
// we want.
- unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
+ unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
* ElemsPerChunk);
SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
VecIdx);
}
+/// Generate a DAG to put 128-bits into a vector > 128 bits. This
+/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
+/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
+/// simple superregister reference. Idx is an index in the 128 bits
+/// we want. It need not be aligned to a 128-bit bounday. That makes
+/// lowering INSERT_VECTOR_ELT operations easier.
+static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl) {
+ assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
+}
+
+static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
+ unsigned IdxVal, SelectionDAG &DAG,
+ SDLoc dl) {
+ assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
+ return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
+}
/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
/// instructions. This is used because creating CONCAT_VECTOR nodes of
@@ -134,11 +164,18 @@ static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
/// large BUILD_VECTORS.
static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
unsigned NumElems, SelectionDAG &DAG,
- DebugLoc dl) {
+ SDLoc dl) {
SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
}
+static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
+ unsigned NumElems, SelectionDAG &DAG,
+ SDLoc dl) {
+ SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
+ return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
+}
+
static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
bool is64Bit = Subtarget->is64Bit();
@@ -163,7 +200,6 @@ X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
Subtarget = &TM.getSubtarget<X86Subtarget>();
X86ScalarSSEf64 = Subtarget->hasSSE2();
X86ScalarSSEf32 = Subtarget->hasSSE1();
- RegInfo = TM.getRegisterInfo();
TD = getDataLayout();
resetOperationActions();
@@ -202,6 +238,8 @@ void X86TargetLowering::resetOperationActions() {
setSchedulingPreference(Sched::ILP);
else
setSchedulingPreference(Sched::RegPressure);
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
// Bypass expensive divides on Atom when compiling with O2
@@ -562,10 +600,6 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
- setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
- setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
- setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
- setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
if (Subtarget->is64Bit()) {
setExceptionPointerRegister(X86::RAX);
setExceptionSelectorRegister(X86::RDX);
@@ -585,10 +619,12 @@ void X86TargetLowering::resetOperationActions() {
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
- if (Subtarget->is64Bit()) {
+ if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
+ // TargetInfo::X86_64ABIBuiltinVaList
setOperationAction(ISD::VAARG , MVT::Other, Custom);
setOperationAction(ISD::VACOPY , MVT::Other, Custom);
} else {
+ // TargetInfo::CharPtrBuiltinVaList
setOperationAction(ISD::VAARG , MVT::Other, Expand);
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
}
@@ -596,7 +632,7 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
- if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
+ if (Subtarget->isOSWindows() && !Subtarget->isTargetEnvMacho())
setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
MVT::i64 : MVT::i32, Custom);
else if (TM.Options.EnableSegmentedStacks)
@@ -999,7 +1035,7 @@ void X86TargetLowering::resetOperationActions() {
setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, Legal);
}
- if (Subtarget->hasSSE41()) {
+ if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
@@ -1115,9 +1151,6 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
setOperationAction(ISD::FABS, MVT::v4f64, Custom);
- setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
- setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
-
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
@@ -1125,7 +1158,6 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
- setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
@@ -1158,10 +1190,16 @@ void X86TargetLowering::resetOperationActions() {
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
+ setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
setOperationAction(ISD::FMA, MVT::v8f32, Legal);
@@ -1262,6 +1300,152 @@ void X86TargetLowering::resetOperationActions() {
}
}
+ if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
+ addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
+ addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
+
+ addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
+ addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8i64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v16i1, Legal);
+
+ setOperationAction(ISD::FADD, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v16f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v16f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v16f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v16f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v16f32, Custom);
+
+ setOperationAction(ISD::FADD, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f64, Custom);
+ setOperationAction(ISD::FMA, MVT::v8f64, Legal);
+ setOperationAction(ISD::FMA, MVT::v16f32, Legal);
+ setOperationAction(ISD::SDIV, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
+ }
+ setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
+ setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
+ setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
+
+ setOperationAction(ISD::TRUNCATE, MVT::i1, Legal);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
+ setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
+ setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
+
+ setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
+ setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
+
+ setOperationAction(ISD::MUL, MVT::v8i64, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
+
+ setOperationAction(ISD::ADD, MVT::v8i64, Legal);
+ setOperationAction(ISD::ADD, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v8i64, Legal);
+ setOperationAction(ISD::SUB, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::MUL, MVT::v16i32, Legal);
+
+ setOperationAction(ISD::SRL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SHL, MVT::v8i64, Custom);
+ setOperationAction(ISD::SHL, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::SRA, MVT::v8i64, Custom);
+ setOperationAction(ISD::SRA, MVT::v16i32, Custom);
+
+ setOperationAction(ISD::AND, MVT::v8i64, Legal);
+ setOperationAction(ISD::OR, MVT::v8i64, Legal);
+ setOperationAction(ISD::XOR, MVT::v8i64, Legal);
+ setOperationAction(ISD::AND, MVT::v16i32, Legal);
+ setOperationAction(ISD::OR, MVT::v16i32, Legal);
+ setOperationAction(ISD::XOR, MVT::v16i32, Legal);
+
+ // Custom lower several nodes.
+ for (int i = MVT::FIRST_VECTOR_VALUETYPE;
+ i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ // Extract subvector is special because the value type
+ // (result) is 256/128-bit but the source is 512-bit wide.
+ if (VT.is128BitVector() || VT.is256BitVector())
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
+
+ if (VT.getVectorElementType() == MVT::i1)
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+
+ // Do not attempt to custom lower other non-512-bit vectors
+ if (!VT.is512BitVector())
+ continue;
+
+ if ( EltSize >= 32) {
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VSELECT, VT, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
+ }
+ }
+ for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
+ MVT VT = (MVT::SimpleValueType)i;
+
+ // Do not attempt to promote non-256-bit vectors
+ if (!VT.is512BitVector())
+ continue;
+
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
+ }
+ }// has AVX-512
+
// SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
// of this type with custom code.
for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
@@ -1273,6 +1457,7 @@ void X86TargetLowering::resetOperationActions() {
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
@@ -1361,8 +1546,17 @@ void X86TargetLowering::resetOperationActions() {
setPrefFunctionAlignment(4); // 2^4 bytes.
}
-EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
- if (!VT.isVector()) return MVT::i8;
+EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
+ if (!VT.isVector())
+ return MVT::i8;
+
+ const TargetMachine &TM = getTargetMachine();
+ if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512())
+ switch(VT.getVectorNumElements()) {
+ case 8: return MVT::v8i1;
+ case 16: return MVT::v16i1;
+ }
+
return VT.changeVectorElementTypeToInteger();
}
@@ -1504,9 +1698,9 @@ X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget->is64Bit())
- // This doesn't have DebugLoc associated with it, but is not really the
+ // This doesn't have SDLoc associated with it, but is not really the
// same as a Register.
- return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
+ return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
return Table;
}
@@ -1571,6 +1765,13 @@ bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
return true;
}
+bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
+ unsigned DestAS) const {
+ assert(SrcAS != DestAS && "Expected different address spaces!");
+
+ return SrcAS < 256 && DestAS < 256;
+}
+
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
@@ -1588,12 +1789,17 @@ X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
+const uint16_t *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
+ static const uint16_t ScratchRegs[] = { X86::R11, 0 };
+ return ScratchRegs;
+}
+
SDValue
X86TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
- DebugLoc dl, SelectionDAG &DAG) const {
+ SDLoc dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
@@ -1761,7 +1967,7 @@ SDValue
X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
@@ -1868,7 +2074,7 @@ argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
- DebugLoc dl) {
+ SDLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
@@ -1912,7 +2118,7 @@ SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain,
CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo *MFI,
unsigned i) const {
@@ -1954,7 +2160,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
- DebugLoc dl,
+ SDLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
@@ -2008,12 +2214,18 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
RC = &X86::FR32RegClass;
else if (RegVT == MVT::f64)
RC = &X86::FR64RegClass;
+ else if (RegVT.is512BitVector())
+ RC = &X86::VR512RegClass;
else if (RegVT.is256BitVector())
RC = &X86::VR256RegClass;
else if (RegVT.is128BitVector())
RC = &X86::VR128RegClass;
else if (RegVT == MVT::x86mmx)
RC = &X86::VR64RegClass;
+ else if (RegVT == MVT::v8i1)
+ RC = &X86::VK8RegClass;
+ else if (RegVT == MVT::v16i1)
+ RC = &X86::VK16RegClass;
else
llvm_unreachable("Unknown argument type!");
@@ -2230,7 +2442,7 @@ X86TargetLowering::LowerFormalArguments(SDValue Chain,
SDValue
X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
SDValue StackPtr, SDValue Arg,
- DebugLoc dl, SelectionDAG &DAG,
+ SDLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
@@ -2250,7 +2462,7 @@ SDValue
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
SDValue &OutRetAddr, SDValue Chain,
bool IsTailCall, bool Is64Bit,
- int FPDiff, DebugLoc dl) const {
+ int FPDiff, SDLoc dl) const {
// Adjust the Return address stack slot.
EVT VT = getPointerTy();
OutRetAddr = getReturnAddressFrameIndex(DAG);
@@ -2266,12 +2478,13 @@ X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
static SDValue
EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
- unsigned SlotSize, int FPDiff, DebugLoc dl) {
+ unsigned SlotSize, int FPDiff, SDLoc dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int NewReturnAddrFI =
- MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
+ MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
+ false);
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(NewReturnAddrFI),
@@ -2283,10 +2496,10 @@ SDValue
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
- DebugLoc &dl = CLI.DL;
- SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
- SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
- SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
@@ -2358,7 +2571,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
}
if (!IsSibcall)
- Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ dl);
SDValue RetAddrFrIdx;
// Load return address for tail calls.
@@ -2372,6 +2586,8 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
@@ -2447,7 +2663,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
// GOT pointer.
if (!isTailCall) {
RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
- DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
} else {
// If we are tail calling and generating PIC/GOT style code load the
// address of the callee into ECX. The value in ecx is used as target of
@@ -2644,7 +2860,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
if (!IsSibcall && isTailCall) {
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
- DAG.getIntPtrConstant(0, true), InFlag);
+ DAG.getIntPtrConstant(0, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
@@ -2703,7 +2919,7 @@ X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
DAG.getIntPtrConstant(NumBytes, true),
DAG.getIntPtrConstant(NumBytesForCalleeToPush,
true),
- InFlag);
+ InFlag, dl);
InFlag = Chain.getValue(1);
}
@@ -2751,6 +2967,8 @@ X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const TargetMachine &TM = MF.getTarget();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
const TargetFrameLowering &TFI = *TM.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
@@ -2864,6 +3082,8 @@ X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
if (RegInfo->needsStackRealignment(MF))
return false;
@@ -3066,7 +3286,7 @@ static bool isTargetShuffle(unsigned Opcode) {
}
}
-static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue V1, SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
@@ -3077,7 +3297,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
}
}
-static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue V1, unsigned TargetMask,
SelectionDAG &DAG) {
switch(Opc) {
@@ -3091,7 +3311,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
}
}
-static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue V1, SDValue V2, unsigned TargetMask,
SelectionDAG &DAG) {
switch(Opc) {
@@ -3104,7 +3324,7 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
}
}
-static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
+static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue V1, SDValue V2, SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
@@ -3123,13 +3343,16 @@ static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
- ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
+ ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
+ -(int64_t)SlotSize,
false);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
@@ -3336,7 +3559,7 @@ static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
/// the second operand.
-static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
+static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
if (VT == MVT::v4f32 || VT == MVT::v4i32 )
return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
if (VT == MVT::v2f64 || VT == MVT::v2i64)
@@ -3346,7 +3569,7 @@ static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFHW.
-static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
+static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
return false;
@@ -3375,7 +3598,7 @@ static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PSHUFLW.
-static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
+static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
return false;
@@ -3404,14 +3627,14 @@ static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
/// is suitable for input to PALIGNR.
-static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
+static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
const X86Subtarget *Subtarget) {
if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
(VT.is256BitVector() && !Subtarget->hasInt256()))
return false;
unsigned NumElts = VT.getVectorNumElements();
- unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
// Do not handle 64-bit element shuffles with palignr.
@@ -3494,10 +3717,7 @@ static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
/// specifies a shuffle of elements that is suitable for input to 128/256-bit
/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
/// reverse of what x86 shuffles want.
-static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
- bool Commuted = false) {
- if (!HasFp256 && VT.is256BitVector())
- return false;
+static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
unsigned NumElems = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
@@ -3506,6 +3726,10 @@ static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
if (NumLaneElems != 2 && NumLaneElems != 4)
return false;
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ bool symetricMaskRequired =
+ (VT.getSizeInBits() >= 256) && (EltSize == 32);
+
// VSHUFPSY divides the resulting vector into 4 chunks.
// The sources are also splitted into 4 chunks, and each destination
// chunk must come from a different source chunk.
@@ -3525,6 +3749,7 @@ static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
//
// DST => Y3..Y2, X3..X2, Y1..Y0, X1..X0
//
+ SmallVector<int, 4> MaskVal(NumLaneElems, -1);
unsigned HalfLaneElems = NumLaneElems/2;
for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
for (unsigned i = 0; i != NumLaneElems; ++i) {
@@ -3535,9 +3760,13 @@ static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
// For VSHUFPSY, the mask of the second half must be the same as the
// first but with the appropriate offsets. This works in the same way as
// VPERMILPS works with masks.
- if (NumElems != 8 || l == 0 || Mask[i] < 0)
+ if (!symetricMaskRequired || Idx < 0)
+ continue;
+ if (MaskVal[i] < 0) {
+ MaskVal[i] = Idx - l;
continue;
- if (!isUndefOrEqual(Idx, Mask[i]+l))
+ }
+ if ((signed)(Idx - l) != MaskVal[i])
return false;
}
}
@@ -3547,7 +3776,7 @@ static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256,
/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
-static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
+static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -3566,7 +3795,7 @@ static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
/// <2, 3, 2, 3>
-static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
+static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -3583,7 +3812,7 @@ static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
-static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
+static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -3605,7 +3834,7 @@ static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
-static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
+static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -3631,8 +3860,8 @@ static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
static
SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
- DebugLoc dl = SVOp->getDebugLoc();
+ MVT VT = SVOp->getSimpleValueType(0);
+ SDLoc dl(SVOp);
if (VT != MVT::v8i32 && VT != MVT::v8f32)
return SDValue();
@@ -3674,73 +3903,92 @@ SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKL.
-static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
+static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
bool HasInt256, bool V2IsSplat = false) {
- unsigned NumElts = VT.getVectorNumElements();
- assert((VT.is128BitVector() || VT.is256BitVector()) &&
- "Unsupported vector type for unpckh");
+ assert(VT.getSizeInBits() >= 128 &&
+ "Unsupported vector type for unpckl");
- if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
- (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes;
+ unsigned NumOf256BitLanes;
+ unsigned NumElts = VT.getVectorNumElements();
+ if (VT.is256BitVector()) {
+ if (NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
return false;
+ NumLanes = 2;
+ NumOf256BitLanes = 1;
+ } else if (VT.is512BitVector()) {
+ assert(VT.getScalarType().getSizeInBits() >= 32 &&
+ "Unsupported vector type for unpckh");
+ NumLanes = 2;
+ NumOf256BitLanes = 2;
+ } else {
+ NumLanes = 1;
+ NumOf256BitLanes = 1;
+ }
- // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
- // independently on 128-bit lanes.
- unsigned NumLanes = VT.getSizeInBits()/128;
- unsigned NumLaneElts = NumElts/NumLanes;
+ unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
+ unsigned NumLaneElts = NumEltsInStride/NumLanes;
- for (unsigned l = 0; l != NumLanes; ++l) {
- for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
- i != (l+1)*NumLaneElts;
- i += 2, ++j) {
- int BitI = Mask[i];
- int BitI1 = Mask[i+1];
- if (!isUndefOrEqual(BitI, j))
- return false;
- if (V2IsSplat) {
- if (!isUndefOrEqual(BitI1, NumElts))
+ for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
+ for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
+ for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l256*NumEltsInStride+l+i];
+ int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
+ if (!isUndefOrEqual(BitI, j+l256*NumElts))
return false;
- } else {
- if (!isUndefOrEqual(BitI1, j + NumElts))
+ if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ return false;
+ if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
return false;
}
}
}
-
return true;
}
/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to UNPCKH.
-static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
+static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
bool HasInt256, bool V2IsSplat = false) {
- unsigned NumElts = VT.getVectorNumElements();
-
- assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ assert(VT.getSizeInBits() >= 128 &&
"Unsupported vector type for unpckh");
- if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
- (!HasInt256 || (NumElts != 16 && NumElts != 32)))
+ // AVX defines UNPCK* to operate independently on 128-bit lanes.
+ unsigned NumLanes;
+ unsigned NumOf256BitLanes;
+ unsigned NumElts = VT.getVectorNumElements();
+ if (VT.is256BitVector()) {
+ if (NumElts != 4 && NumElts != 8 &&
+ (!HasInt256 || (NumElts != 16 && NumElts != 32)))
return false;
+ NumLanes = 2;
+ NumOf256BitLanes = 1;
+ } else if (VT.is512BitVector()) {
+ assert(VT.getScalarType().getSizeInBits() >= 32 &&
+ "Unsupported vector type for unpckh");
+ NumLanes = 2;
+ NumOf256BitLanes = 2;
+ } else {
+ NumLanes = 1;
+ NumOf256BitLanes = 1;
+ }
- // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
- // independently on 128-bit lanes.
- unsigned NumLanes = VT.getSizeInBits()/128;
- unsigned NumLaneElts = NumElts/NumLanes;
+ unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
+ unsigned NumLaneElts = NumEltsInStride/NumLanes;
- for (unsigned l = 0; l != NumLanes; ++l) {
- for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
- i != (l+1)*NumLaneElts; i += 2, ++j) {
- int BitI = Mask[i];
- int BitI1 = Mask[i+1];
- if (!isUndefOrEqual(BitI, j))
- return false;
- if (V2IsSplat) {
- if (isUndefOrEqual(BitI1, NumElts))
+ for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
+ for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
+ for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l256*NumEltsInStride+l+i];
+ int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
+ if (!isUndefOrEqual(BitI, j+l256*NumElts))
return false;
- } else {
- if (!isUndefOrEqual(BitI1, j+NumElts))
+ if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
+ return false;
+ if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
return false;
}
}
@@ -3751,10 +3999,12 @@ static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
/// <0, 0, 1, 1>
-static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
+static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
unsigned NumElts = VT.getVectorNumElements();
bool Is256BitVec = VT.is256BitVector();
+ if (VT.is512BitVector())
+ return false;
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
@@ -3774,12 +4024,10 @@ static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
- for (unsigned l = 0; l != NumLanes; ++l) {
- for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
- i != (l+1)*NumLaneElts;
- i += 2, ++j) {
- int BitI = Mask[i];
- int BitI1 = Mask[i+1];
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
if (!isUndefOrEqual(BitI, j))
return false;
@@ -3794,9 +4042,12 @@ static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
/// <2, 2, 3, 3>
-static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
+static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
unsigned NumElts = VT.getVectorNumElements();
+ if (VT.is512BitVector())
+ return false;
+
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for unpckh");
@@ -3809,11 +4060,10 @@ static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasInt256) {
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
- for (unsigned l = 0; l != NumLanes; ++l) {
- for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
- i != (l+1)*NumLaneElts; i += 2, ++j) {
- int BitI = Mask[i];
- int BitI1 = Mask[i+1];
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
+ int BitI = Mask[l+i];
+ int BitI1 = Mask[l+i+1];
if (!isUndefOrEqual(BitI, j))
return false;
if (!isUndefOrEqual(BitI1, j))
@@ -3850,7 +4100,7 @@ static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
/// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
/// The first half comes from the second half of V1 and the second half from the
/// the second half of V2.
-static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
+static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
if (!HasFp256 || !VT.is256BitVector())
return false;
@@ -3882,7 +4132,7 @@ static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ MVT VT = SVOp->getSimpleValueType(0);
unsigned HalfSize = VT.getVectorNumElements()/2;
@@ -3903,6 +4153,44 @@ static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
return (FstHalf | (SndHalf << 4));
}
+// Symetric in-lane mask. Each lane has 4 elements (for imm8)
+static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize < 32)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ Imm8 = 0;
+ if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
+ for (unsigned i = 0; i != NumElts; ++i) {
+ if (Mask[i] < 0)
+ continue;
+ Imm8 |= Mask[i] << (i*2);
+ }
+ return true;
+ }
+
+ unsigned LaneSize = 4;
+ SmallVector<int, 4> MaskVal(LaneSize, -1);
+
+ for (unsigned l = 0; l != NumElts; l += LaneSize) {
+ for (unsigned i = 0; i != LaneSize; ++i) {
+ if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
+ return false;
+ if (Mask[i+l] < 0)
+ continue;
+ if (MaskVal[i] < 0) {
+ MaskVal[i] = Mask[i+l] - l;
+ Imm8 |= MaskVal[i] << (i*2);
+ continue;
+ }
+ if (Mask[i+l] != (signed)(MaskVal[i]+l))
+ return false;
+ }
+ }
+ return true;
+}
+
/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
/// Note that VPERMIL mask matching is different depending whether theunderlying
@@ -3910,38 +4198,39 @@ static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
/// to the same elements of the low, but to the higher half of the source.
/// In VPERMILPD the two lanes could be shuffled independently of each other
/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
-static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
- if (!HasFp256)
+static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (VT.getSizeInBits() < 256 || EltSize < 32)
return false;
-
+ bool symetricMaskRequired = (EltSize == 32);
unsigned NumElts = VT.getVectorNumElements();
- // Only match 256-bit with 32/64-bit types
- if (!VT.is256BitVector() || (NumElts != 4 && NumElts != 8))
- return false;
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned LaneSize = NumElts/NumLanes;
+ // 2 or 4 elements in one lane
+
+ SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
for (unsigned l = 0; l != NumElts; l += LaneSize) {
for (unsigned i = 0; i != LaneSize; ++i) {
if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
return false;
- if (NumElts != 8 || l == 0)
- continue;
- // VPERMILPS handling
- if (Mask[i] < 0)
- continue;
- if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
- return false;
+ if (symetricMaskRequired) {
+ if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
+ ExpectedMaskVal[i] = Mask[i+l] - l;
+ continue;
+ }
+ if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
+ return false;
+ }
}
}
-
return true;
}
/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
/// of what x86 movss want. X86 movs requires the lowest element to be lowest
/// element of vector 2 and the other elements to come from vector 1 in order.
-static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
+static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
bool V2IsSplat = false, bool V2IsUndef = false) {
if (!VT.is128BitVector())
return false;
@@ -3965,7 +4254,7 @@ static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
-static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
+static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
const X86Subtarget *Subtarget) {
if (!Subtarget->hasSSE3())
return false;
@@ -3973,7 +4262,8 @@ static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
unsigned NumElems = VT.getVectorNumElements();
if ((VT.is128BitVector() && NumElems != 4) ||
- (VT.is256BitVector() && NumElems != 8))
+ (VT.is256BitVector() && NumElems != 8) ||
+ (VT.is512BitVector() && NumElems != 16))
return false;
// "i+1" is the value the indexed mask element must have
@@ -3988,7 +4278,7 @@ static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
-static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
+static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
const X86Subtarget *Subtarget) {
if (!Subtarget->hasSSE3())
return false;
@@ -3996,7 +4286,8 @@ static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
unsigned NumElems = VT.getVectorNumElements();
if ((VT.is128BitVector() && NumElems != 4) ||
- (VT.is256BitVector() && NumElems != 8))
+ (VT.is256BitVector() && NumElems != 8) ||
+ (VT.is512BitVector() && NumElems != 16))
return false;
// "i" is the value the indexed mask element must have
@@ -4011,7 +4302,7 @@ static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 256-bit
/// version of MOVDDUP.
-static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
+static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
if (!HasFp256 || !VT.is256BitVector())
return false;
@@ -4031,7 +4322,7 @@ static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasFp256) {
/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a shuffle of elements that is suitable for input to 128-bit
/// version of MOVDDUP.
-static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
+static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -4045,49 +4336,66 @@ static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
return true;
}
-/// isVEXTRACTF128Index - Return true if the specified
+/// isVEXTRACTIndex - Return true if the specified
/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
-/// suitable for input to VEXTRACTF128.
-bool X86::isVEXTRACTF128Index(SDNode *N) {
+/// suitable for instruction that extract 128 or 256 bit vectors
+static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
return false;
- // The index should be aligned on a 128-bit boundary.
+ // The index should be aligned on a vecWidth-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
- MVT VT = N->getValueType(0).getSimpleVT();
+ MVT VT = N->getSimpleValueType(0);
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
- bool Result = (Index * ElSize) % 128 == 0;
+ bool Result = (Index * ElSize) % vecWidth == 0;
return Result;
}
-/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
+/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
/// operand specifies a subvector insert that is suitable for input to
-/// VINSERTF128.
-bool X86::isVINSERTF128Index(SDNode *N) {
+/// insertion of 128 or 256-bit subvectors
+static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
return false;
-
- // The index should be aligned on a 128-bit boundary.
+ // The index should be aligned on a vecWidth-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
- MVT VT = N->getValueType(0).getSimpleVT();
+ MVT VT = N->getSimpleValueType(0);
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
- bool Result = (Index * ElSize) % 128 == 0;
+ bool Result = (Index * ElSize) % vecWidth == 0;
return Result;
}
+bool X86::isVINSERT128Index(SDNode *N) {
+ return isVINSERTIndex(N, 128);
+}
+
+bool X86::isVINSERT256Index(SDNode *N) {
+ return isVINSERTIndex(N, 256);
+}
+
+bool X86::isVEXTRACT128Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 128);
+}
+
+bool X86::isVEXTRACT256Index(SDNode *N) {
+ return isVEXTRACTIndex(N, 256);
+}
+
/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
/// Handles 128-bit and 256-bit.
static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
- MVT VT = N->getValueType(0).getSimpleVT();
+ MVT VT = N->getSimpleValueType(0);
- assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ assert((VT.getSizeInBits() >= 128) &&
"Unsupported vector type for PSHUF/SHUFP");
// Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
@@ -4096,10 +4404,10 @@ static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
- assert((NumLaneElts == 2 || NumLaneElts == 4) &&
- "Only supports 2 or 4 elements per lane");
+ assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
+ "Only supports 2, 4 or 8 elements per lane");
- unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
+ unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
unsigned Mask = 0;
for (unsigned i = 0; i != NumElts; ++i) {
int Elt = N->getMaskElt(i);
@@ -4115,7 +4423,7 @@ static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
- MVT VT = N->getValueType(0).getSimpleVT();
+ MVT VT = N->getSimpleValueType(0);
assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
"Unsupported vector type for PSHUFHW");
@@ -4139,7 +4447,7 @@ static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
- MVT VT = N->getValueType(0).getSimpleVT();
+ MVT VT = N->getSimpleValueType(0);
assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
"Unsupported vector type for PSHUFHW");
@@ -4163,11 +4471,12 @@ static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
- unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
+ MVT VT = SVOp->getSimpleValueType(0);
+ unsigned EltSize = VT.is512BitVector() ? 1 :
+ VT.getVectorElementType().getSizeInBits() >> 3;
unsigned NumElts = VT.getVectorNumElements();
- unsigned NumLanes = VT.getSizeInBits()/128;
+ unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts/NumLanes;
int Val = 0;
@@ -4184,61 +4493,64 @@ static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
return (Val - i) * EltSize;
}
-/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
-/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
-/// instructions.
-unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
+static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
- llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
+ llvm_unreachable("Illegal extract subvector for VEXTRACT");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
- MVT VecVT = N->getOperand(0).getValueType().getSimpleVT();
+ MVT VecVT = N->getOperand(0).getSimpleValueType();
MVT ElVT = VecVT.getVectorElementType();
- unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
-/// getInsertVINSERTF128Immediate - Return the appropriate immediate
-/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
-/// instructions.
-unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
+static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
+ assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
- llvm_unreachable("Illegal insert subvector for VINSERTF128");
+ llvm_unreachable("Illegal insert subvector for VINSERT");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
- MVT VecVT = N->getValueType(0).getSimpleVT();
+ MVT VecVT = N->getSimpleValueType(0);
MVT ElVT = VecVT.getVectorElementType();
- unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
+ unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
-/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
-/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
-/// Handles 256-bit.
-static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
- MVT VT = N->getValueType(0).getSimpleVT();
-
- unsigned NumElts = VT.getVectorNumElements();
+/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
+/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
+/// and VINSERTI128 instructions.
+unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 128);
+}
- assert((VT.is256BitVector() && NumElts == 4) &&
- "Unsupported vector type for VPERMQ/VPERMPD");
+/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
+/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
+/// and VINSERTI64x4 instructions.
+unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
+ return getExtractVEXTRACTImmediate(N, 256);
+}
- unsigned Mask = 0;
- for (unsigned i = 0; i != NumElts; ++i) {
- int Elt = N->getMaskElt(i);
- if (Elt < 0)
- continue;
- Mask |= Elt << (i*2);
- }
+/// getInsertVINSERT128Immediate - Return the appropriate immediate
+/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
+/// and VINSERTI128 instructions.
+unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 128);
+}
- return Mask;
+/// getInsertVINSERT256Immediate - Return the appropriate immediate
+/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
+/// and VINSERTI64x4 instructions.
+unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
+ return getInsertVINSERTImmediate(N, 256);
}
+
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
/// constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
@@ -4253,7 +4565,7 @@ bool X86::isZeroNode(SDValue Elt) {
/// their permute mask.
static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ MVT VT = SVOp->getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
@@ -4267,7 +4579,7 @@ static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
}
MaskVec.push_back(Idx);
}
- return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
+ return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
SVOp->getOperand(0), &MaskVec[0]);
}
@@ -4275,7 +4587,7 @@ static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
/// match movhlps. The lower half elements should come from upper half of
/// V1 (and in order), and the upper half elements should come from the upper
/// half of V2 (and in order).
-static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
+static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
if (VT.getVectorNumElements() != 4)
@@ -4332,7 +4644,7 @@ static bool WillBeConstantPoolLoad(SDNode *N) {
/// half of V2 (and in order). And since V1 will become the source of the
/// MOVLP, it must be either a vector load or a scalar load to vector.
static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
- ArrayRef<int> Mask, EVT VT) {
+ ArrayRef<int> Mask, MVT VT) {
if (!VT.is128BitVector())
return false;
@@ -4400,7 +4712,7 @@ static bool isZeroShuffle(ShuffleVectorSDNode *N) {
/// getZeroVector - Returns a vector of specified type with all zero elements.
///
static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
- SelectionDAG &DAG, DebugLoc dl) {
+ SelectionDAG &DAG, SDLoc dl) {
assert(VT.isVector() && "Expected a vector type");
// Always build SSE zero vectors as <4 x i32> bitcasted
@@ -4428,6 +4740,11 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
array_lengthof(Ops));
}
+ } else if (VT.is512BitVector()) { // AVX-512
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
} else
llvm_unreachable("Unexpected vector type");
@@ -4439,7 +4756,7 @@ static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
/// Then bitcast to their original type, ensuring they get CSE'd.
static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
- DebugLoc dl) {
+ SDLoc dl) {
assert(VT.isVector() && "Expected a vector type");
SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
@@ -4473,7 +4790,7 @@ static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
-static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
@@ -4484,7 +4801,7 @@ static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
}
/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
-static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
@@ -4496,7 +4813,7 @@ static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
}
/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
-static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
@@ -4512,9 +4829,9 @@ static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
// Generate shuffles which repeat i16 and i8 several times until they can be
// represented by v4f32 and then be manipulated by target suported shuffles.
static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
- EVT VT = V.getValueType();
+ MVT VT = V.getSimpleValueType();
int NumElems = VT.getVectorNumElements();
- DebugLoc dl = V.getDebugLoc();
+ SDLoc dl(V);
while (NumElems > 4) {
if (EltNo < NumElems/2) {
@@ -4530,8 +4847,8 @@ static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
/// getLegalSplat - Generate a legal splat with supported x86 shuffles
static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
- EVT VT = V.getValueType();
- DebugLoc dl = V.getDebugLoc();
+ MVT VT = V.getSimpleValueType();
+ SDLoc dl(V);
if (VT.is128BitVector()) {
V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
@@ -4556,9 +4873,9 @@ static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
/// PromoteSplat - Splat is promoted to target supported vector shuffles.
static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
- EVT SrcVT = SV->getValueType(0);
+ MVT SrcVT = SV->getSimpleValueType(0);
SDValue V1 = SV->getOperand(0);
- DebugLoc dl = SV->getDebugLoc();
+ SDLoc dl(SV);
int EltNo = SV->getSplatIndex();
int NumElems = SrcVT.getVectorNumElements();
@@ -4579,7 +4896,7 @@ static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
// instruction because the target has no such instruction. Generate shuffles
// which repeat i16 and i8 several times until they fit in i32, and then can
// be manipulated by target suported shuffles.
- EVT EltVT = SrcVT.getVectorElementType();
+ MVT EltVT = SrcVT.getVectorElementType();
if (EltVT == MVT::i8 || EltVT == MVT::i16)
V1 = PromoteSplati8i16(V1, DAG, EltNo);
@@ -4601,15 +4918,15 @@ static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
bool IsZero,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- EVT VT = V2.getValueType();
+ MVT VT = V2.getSimpleValueType();
SDValue V1 = IsZero
- ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
+ ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec;
for (unsigned i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec.push_back(i == Idx ? NumElems : i);
- return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
+ return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
}
/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
@@ -4719,7 +5036,7 @@ static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
// Recurse into target specific vector shuffles to find scalars.
if (isTargetShuffle(Opcode)) {
- MVT ShufVT = V.getValueType().getSimpleVT();
+ MVT ShufVT = V.getSimpleValueType();
unsigned NumElems = ShufVT.getVectorNumElements();
SmallVector<int, 16> ShuffleMask;
bool IsUnary;
@@ -4760,19 +5077,27 @@ static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
/// getNumOfConsecutiveZeros - Return the number of elements of a vector
/// shuffle operation which come from a consecutively from a zero. The
/// search can start in two different directions, from left or right.
-static
-unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
- bool ZerosFromLeft, SelectionDAG &DAG) {
- unsigned i;
- for (i = 0; i != NumElems; ++i) {
- unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
+/// We count undefs as zeros until PreferredNum is reached.
+static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
+ unsigned NumElems, bool ZerosFromLeft,
+ SelectionDAG &DAG,
+ unsigned PreferredNum = -1U) {
+ unsigned NumZeros = 0;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
- if (!(Elt.getNode() &&
- (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
+ if (!Elt.getNode())
+ break;
+
+ if (X86::isZeroNode(Elt))
+ ++NumZeros;
+ else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
+ NumZeros = std::min(NumZeros + 1, PreferredNum);
+ else
break;
}
- return i;
+ return NumZeros;
}
/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
@@ -4809,9 +5134,11 @@ bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
/// logical left shift of a vector.
static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
- unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
- unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
- false /* check zeros from right */, DAG);
+ unsigned NumElems =
+ SVOp->getSimpleValueType(0).getVectorNumElements();
+ unsigned NumZeros = getNumOfConsecutiveZeros(
+ SVOp, NumElems, false /* check zeros from right */, DAG,
+ SVOp->getMaskElt(0));
unsigned OpSrc;
if (!NumZeros)
@@ -4842,9 +5169,11 @@ static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
/// logical left shift of a vector.
static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
- unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
- unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
- true /* check zeros from left */, DAG);
+ unsigned NumElems =
+ SVOp->getSimpleValueType(0).getVectorNumElements();
+ unsigned NumZeros = getNumOfConsecutiveZeros(
+ SVOp, NumElems, true /* check zeros from left */, DAG,
+ NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
unsigned OpSrc;
if (!NumZeros)
@@ -4877,7 +5206,7 @@ static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
// Although the logic below support any bitwidth size, there are no
// shift instructions which handle more than 128-bit vectors.
- if (!SVOp->getValueType(0).is128BitVector())
+ if (!SVOp->getSimpleValueType(0).is128BitVector())
return false;
if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
@@ -4897,7 +5226,7 @@ static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
if (NumNonZero > 8)
return SDValue();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 16; ++i) {
@@ -4945,7 +5274,7 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
if (NumNonZero > 4)
return SDValue();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue V(0, 0);
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
@@ -4971,7 +5300,7 @@ static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
///
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
- const TargetLowering &TLI, DebugLoc dl) {
+ const TargetLowering &TLI, SDLoc dl) {
assert(VT.is128BitVector() && "Unknown type for VShift");
EVT ShVT = MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
@@ -4982,9 +5311,8 @@ static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
}
-SDValue
-X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
- SelectionDAG &DAG) const {
+static SDValue
+LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
@@ -5036,7 +5364,7 @@ X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
return SDValue();
int64_t StartOffset = Offset & ~(RequiredAlign-1);
if (StartOffset)
- Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
+ Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
int EltNo = (Offset - StartOffset) >> 2;
@@ -5067,7 +5395,8 @@ X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
/// There's even a handy isZeroNode for that purpose.
static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
- DebugLoc &DL, SelectionDAG &DAG) {
+ SDLoc &DL, SelectionDAG &DAG,
+ bool isAfterLegalize) {
EVT EltVT = VT.getVectorElementType();
unsigned NumElems = Elts.size();
@@ -5103,15 +5432,33 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
// load of the entire vector width starting at the base pointer. If we found
// consecutive loads for the low half, generate a vzext_load node.
if (LastLoadedElt == NumElems - 1) {
+
+ if (isAfterLegalize &&
+ !DAG.getTargetLoweringInfo().isOperationLegal(ISD::LOAD, VT))
+ return SDValue();
+
+ SDValue NewLd = SDValue();
+
if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
- return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
- LDBase->getPointerInfo(),
- LDBase->isVolatile(), LDBase->isNonTemporal(),
- LDBase->isInvariant(), 0);
- return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
- LDBase->getPointerInfo(),
- LDBase->isVolatile(), LDBase->isNonTemporal(),
- LDBase->isInvariant(), LDBase->getAlignment());
+ NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(),
+ LDBase->isInvariant(), 0);
+ NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getPointerInfo(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(),
+ LDBase->isInvariant(), LDBase->getAlignment());
+
+ if (LDBase->hasAnyUseOfValue(1)) {
+ SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
+ DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
+ SDValue(NewLd.getNode(), 1));
+ }
+
+ return NewLd;
}
if (NumElems == 4 && LastLoadedElt == 1 &&
DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
@@ -5148,15 +5495,15 @@ static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
/// a scalar load, or a constant.
/// The VBROADCAST node is returned when a pattern is found,
/// or SDValue() otherwise.
-SDValue
-X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
+static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
if (!Subtarget->hasFp256())
return SDValue();
- MVT VT = Op.getValueType().getSimpleVT();
- DebugLoc dl = Op.getDebugLoc();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
- assert((VT.is128BitVector() || VT.is256BitVector()) &&
+ assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Unsupported vector type for broadcast.");
SDValue Ld;
@@ -5200,7 +5547,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
// Use the register form of the broadcast instruction available on AVX2.
- if (VT.is256BitVector())
+ if (VT.getSizeInBits() >= 256)
Sc = Extract128BitVector(Sc, 0, DAG, dl);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
}
@@ -5212,13 +5559,18 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
// The scalar_to_vector node and the suspected
// load node must have exactly one user.
// Constants may have multiple users.
- if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
+
+ // AVX-512 has register version of the broadcast
+ bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
+ Ld.getValueType().getSizeInBits() >= 32;
+ if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
+ !hasRegVer))
return SDValue();
break;
}
}
- bool Is256 = VT.is256BitVector();
+ bool IsGE256 = (VT.getSizeInBits() >= 256);
// Handle the broadcasting a single constant scalar from the constant pool
// into a vector. On Sandybridge it is still better to load a constant vector
@@ -5228,7 +5580,7 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
assert(!CVT.isVector() && "Must not broadcast a vector type");
unsigned ScalarSize = CVT.getSizeInBits();
- if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
const Constant *C = 0;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
@@ -5237,7 +5589,8 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
assert(C && "Invalid constant type");
- SDValue CP = DAG.getConstantPool(C, getPointerTy());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(),
@@ -5252,14 +5605,14 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
// Handle AVX2 in-register broadcasts.
if (!IsLoad && Subtarget->hasInt256() &&
- (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
+ (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The scalar source must be a normal load.
if (!IsLoad)
return SDValue();
- if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
+ if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
@@ -5273,15 +5626,15 @@ X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
}
-SDValue
-X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
- EVT VT = Op.getValueType();
+static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
// Skip if insert_vec_elt is not supported.
- if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
return SDValue();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
unsigned NumElems = Op.getNumOperands();
SDValue VecIn1;
@@ -5347,19 +5700,128 @@ X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
return NV;
}
+// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
+SDValue
+X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
+
+ MVT VT = Op.getSimpleValueType();
+ assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
+ "Unexpected type in LowerBUILD_VECTORvXi1!");
+
+ SDLoc dl(Op);
+ if (ISD::isBuildVectorAllZeros(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ Ops, VT.getVectorNumElements());
+ }
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode())) {
+ SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
+ SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
+ Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
+ return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
+ Ops, VT.getVectorNumElements());
+ }
+
+ bool AllContants = true;
+ uint64_t Immediate = 0;
+ for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
+ SDValue In = Op.getOperand(idx);
+ if (In.getOpcode() == ISD::UNDEF)
+ continue;
+ if (!isa<ConstantSDNode>(In)) {
+ AllContants = false;
+ break;
+ }
+ if (cast<ConstantSDNode>(In)->getZExtValue())
+ Immediate |= (1ULL << idx);
+ }
+
+ if (AllContants) {
+ SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
+ DAG.getConstant(Immediate, MVT::i16));
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
+ DAG.getIntPtrConstant(0));
+ }
+
+ // Splat vector (with undefs)
+ SDValue In = Op.getOperand(0);
+ for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
+ if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
+ llvm_unreachable("Unsupported predicate operation");
+ }
+
+ SDValue EFLAGS, X86CC;
+ if (In.getOpcode() == ISD::SETCC) {
+ SDValue Op0 = In.getOperand(0);
+ SDValue Op1 = In.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
+ bool isFP = Op1.getValueType().isFloatingPoint();
+ unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
+
+ assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
+
+ X86CC = DAG.getConstant(X86CCVal, MVT::i8);
+ EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
+ EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
+ } else if (In.getOpcode() == X86ISD::SETCC) {
+ X86CC = In.getOperand(0);
+ EFLAGS = In.getOperand(1);
+ } else {
+ // The algorithm:
+ // Bit1 = In & 0x1
+ // if (Bit1 != 0)
+ // ZF = 0
+ // else
+ // ZF = 1
+ // if (ZF == 0)
+ // res = allOnes ### CMOVNE -1, %res
+ // else
+ // res = allZero
+ MVT InVT = In.getSimpleValueType();
+ SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
+ EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
+ X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ }
+
+ if (VT == MVT::v16i1) {
+ SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
+ SDValue Cst0 = DAG.getConstant(0, MVT::i16);
+ SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
+ Cst0, Cst1, X86CC, EFLAGS);
+ return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
+ }
+
+ if (VT == MVT::v8i1) {
+ SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
+ SDValue Cst0 = DAG.getConstant(0, MVT::i32);
+ SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
+ Cst0, Cst1, X86CC, EFLAGS);
+ CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
+ return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
+ }
+ llvm_unreachable("Unsupported predicate operation");
+}
+
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
MVT ExtVT = VT.getVectorElementType();
unsigned NumElems = Op.getNumOperands();
+ // Generate vectors for predicate vectors.
+ if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
+ return LowerBUILD_VECTORvXi1(Op, DAG);
+
// Vectors containing all zeros can be matched by pxor and xorps later
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
// Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
// and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
- if (VT == MVT::v4i32 || VT == MVT::v8i32)
+ if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
return Op;
return getZeroVector(VT, Subtarget, DAG, dl);
@@ -5372,10 +5834,11 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
return Op;
- return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
+ if (!VT.is512BitVector())
+ return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
}
- SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
+ SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
if (Broadcast.getNode())
return Broadcast;
@@ -5408,7 +5871,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
- unsigned Idx = CountTrailingZeros_32(NonZeros);
+ unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If this is an insertion of an i64 value on x86-32, and if the top bits of
@@ -5454,7 +5917,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
(ExtVT == MVT::i64 && Subtarget->is64Bit())) {
- if (VT.is256BitVector()) {
+ if (VT.is256BitVector() || VT.is512BitVector()) {
SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
Item, DAG.getIntPtrConstant(0));
@@ -5517,7 +5980,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
- unsigned Idx = CountTrailingZeros_32(NonZeros);
+ unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
@@ -5552,7 +6015,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
- unsigned Idx = CountTrailingZeros_32(NonZeros);
+ unsigned Idx = countTrailingZeros(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
@@ -5619,7 +6082,7 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
V[i] = Op.getOperand(i);
// Check for elements which are consecutive loads.
- SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
+ SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG, false);
if (LD.getNode())
return LD;
@@ -5682,22 +6145,25 @@ X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
// to create 256-bit vectors from two other 128-bit ones.
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
- MVT ResVT = Op.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT ResVT = Op.getSimpleValueType();
- assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
+ assert((ResVT.is256BitVector() ||
+ ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
unsigned NumElems = ResVT.getVectorNumElements();
+ if(ResVT.is256BitVector())
+ return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
- return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
+ return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
}
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 2);
- // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
+ // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
// from two other 128-bit ones.
return LowerAVXCONCAT_VECTORS(Op, DAG);
}
@@ -5708,11 +6174,15 @@ LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
const X86Subtarget *Subtarget, SelectionDAG &DAG) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
- DebugLoc dl = SVOp->getDebugLoc();
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ SDLoc dl(SVOp);
+ MVT VT = SVOp->getSimpleValueType(0);
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = VT.getVectorNumElements();
+ // There is no blend with immediate in AVX-512.
+ if (VT.is512BitVector())
+ return SDValue();
+
if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
return SDValue();
if (!Subtarget->hasInt256() && VT == MVT::v16i16)
@@ -5769,7 +6239,7 @@ LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
- DebugLoc dl = SVOp->getDebugLoc();
+ SDLoc dl(SVOp);
SmallVector<int, 8> MaskVals;
// Determine if more than 1 of the words in each of the low and high quadwords
@@ -6018,13 +6488,13 @@ LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
// 1. [ssse3] 1 x pshufb
// 2. [ssse3] 2 x pshufb + 1 x por
// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
-static
-SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
- SelectionDAG &DAG,
- const X86TargetLowering &TLI) {
+static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
+ const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
- DebugLoc dl = SVOp->getDebugLoc();
+ SDLoc dl(SVOp);
ArrayRef<int> MaskVals = SVOp->getMask();
// Promote splats to a larger type which usually leads to more efficient code.
@@ -6037,7 +6507,7 @@ SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
// present, fall back to case 3.
// If SSSE3, use 1 pshufb instruction per vector with elements in the result.
- if (TLI.getSubtarget()->hasSSSE3()) {
+ if (Subtarget->hasSSSE3()) {
SmallVector<SDValue,16> pshufbMask;
// If all result elements are from one input vector, then only translate
@@ -6150,10 +6620,10 @@ static
SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ MVT VT = SVOp->getSimpleValueType(0);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
- DebugLoc dl = SVOp->getDebugLoc();
+ SDLoc dl(SVOp);
SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
@@ -6198,8 +6668,8 @@ SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
static
SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
SelectionDAG &DAG) {
- MVT VT = SVOp->getValueType(0).getSimpleVT();
- DebugLoc dl = SVOp->getDebugLoc();
+ MVT VT = SVOp->getSimpleValueType(0);
+ SDLoc dl(SVOp);
unsigned NumElems = VT.getVectorNumElements();
MVT NewVT;
unsigned Scale;
@@ -6235,9 +6705,9 @@ SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
/// getVZextMovL - Return a zero-extending vector move low node.
///
-static SDValue getVZextMovL(MVT VT, EVT OpVT,
+static SDValue getVZextMovL(MVT VT, MVT OpVT,
SDValue SrcOp, SelectionDAG &DAG,
- const X86Subtarget *Subtarget, DebugLoc dl) {
+ const X86Subtarget *Subtarget, SDLoc dl) {
if (VT == MVT::v2f64 || VT == MVT::v4f32) {
LoadSDNode *LD = NULL;
if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
@@ -6277,12 +6747,12 @@ LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
if (NewOp.getNode())
return NewOp;
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ MVT VT = SVOp->getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
unsigned NumLaneElems = NumElems / 2;
- DebugLoc dl = SVOp->getDebugLoc();
+ SDLoc dl(SVOp);
MVT EltVT = VT.getVectorElementType();
MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
SDValue Output[2];
@@ -6388,8 +6858,8 @@ static SDValue
LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
- DebugLoc dl = SVOp->getDebugLoc();
- MVT VT = SVOp->getValueType(0).getSimpleVT();
+ SDLoc dl(SVOp);
+ MVT VT = SVOp->getSimpleValueType(0);
assert(VT.is128BitVector() && "Unsupported vector size");
@@ -6539,8 +7009,8 @@ static bool MayFoldVectorLoad(SDValue V) {
}
static
-SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
- EVT VT = Op.getValueType();
+SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
+ MVT VT = Op.getSimpleValueType();
// Canonizalize to v2f64.
V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
@@ -6550,11 +7020,11 @@ SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
}
static
-SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
+SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
bool HasSSE2) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
- EVT VT = Op.getValueType();
+ MVT VT = Op.getSimpleValueType();
assert(VT != MVT::v2i64 && "unsupported shuffle type");
@@ -6569,10 +7039,10 @@ SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
}
static
-SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
+SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
- EVT VT = Op.getValueType();
+ MVT VT = Op.getSimpleValueType();
assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
"unsupported shuffle type");
@@ -6585,10 +7055,10 @@ SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
}
static
-SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
+SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
- EVT VT = Op.getValueType();
+ MVT VT = Op.getSimpleValueType();
unsigned NumElems = VT.getVectorNumElements();
// Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
@@ -6642,20 +7112,20 @@ SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
}
// Reduce a vector shuffle to zext.
-SDValue
-X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
+static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
// PMOVZX is only available from SSE41.
if (!Subtarget->hasSSE41())
return SDValue();
- EVT VT = Op.getValueType();
+ MVT VT = Op.getSimpleValueType();
// Only AVX2 support 256-bit vector integer extending.
if (!Subtarget->hasInt256() && VT.is256BitVector())
return SDValue();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
unsigned NumElems = VT.getVectorNumElements();
@@ -6687,12 +7157,11 @@ X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
}
- LLVMContext *Context = DAG.getContext();
unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
- EVT NeVT = EVT::getIntegerVT(*Context, NBits);
- EVT NVT = EVT::getVectorVT(*Context, NeVT, NumElems >> Shift);
+ MVT NeVT = MVT::getIntegerVT(NBits);
+ MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
- if (!isTypeLegal(NVT))
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
return SDValue();
// Simplify the operand as it's prepared to be fed into shuffle.
@@ -6700,8 +7169,8 @@ X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
if (V1.getOpcode() == ISD::BITCAST &&
V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
- V1.getOperand(0)
- .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
+ V1.getOperand(0).getOperand(0)
+ .getSimpleValueType().getSizeInBits() == SignificantBits) {
// (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
ConstantSDNode *CIdx =
@@ -6710,19 +7179,19 @@ X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
// selection to fold it. Otherwise, we will short the conversion sequence.
if (CIdx && CIdx->getZExtValue() == 0 &&
(!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
- if (V.getValueSizeInBits() > V1.getValueSizeInBits()) {
+ MVT FullVT = V.getSimpleValueType();
+ MVT V1VT = V1.getSimpleValueType();
+ if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
// The "ext_vec_elt" node is wider than the result node.
// In this case we should extract subvector from V.
// (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
- unsigned Ratio = V.getValueSizeInBits() / V1.getValueSizeInBits();
- EVT FullVT = V.getValueType();
- EVT SubVecVT = EVT::getVectorVT(*Context,
- FullVT.getVectorElementType(),
+ unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
+ MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
FullVT.getVectorNumElements()/Ratio);
- V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
+ V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
DAG.getIntPtrConstant(0));
}
- V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
+ V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
}
}
@@ -6730,11 +7199,12 @@ X86TargetLowering::LowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
}
-SDValue
-X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
+static SDValue
+NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
- MVT VT = Op.getValueType().getSimpleVT();
- DebugLoc dl = Op.getDebugLoc();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
@@ -6744,13 +7214,13 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
// Handle splat operations
if (SVOp->isSplat()) {
// Use vbroadcast whenever the splat comes from a foldable load
- SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
+ SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
if (Broadcast.getNode())
return Broadcast;
}
// Check integer expanding shuffles.
- SDValue NewOp = LowerVectorIntExtend(Op, DAG);
+ SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
if (NewOp.getNode())
return NewOp;
@@ -6768,7 +7238,7 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
if (ISD::isBuildVectorAllZeros(V2.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
if (NewOp.getNode()) {
- MVT NewVT = NewOp.getValueType().getSimpleVT();
+ MVT NewVT = NewOp.getSimpleValueType();
if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
NewVT, true, false))
return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
@@ -6777,7 +7247,7 @@ X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
} else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
if (NewOp.getNode()) {
- MVT NewVT = NewOp.getValueType().getSimpleVT();
+ MVT NewVT = NewOp.getSimpleValueType();
if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
DAG, Subtarget, dl);
@@ -6792,8 +7262,8 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
- MVT VT = Op.getValueType().getSimpleVT();
- DebugLoc dl = Op.getDebugLoc();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
unsigned NumElems = VT.getVectorNumElements();
bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
@@ -6830,7 +7300,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
// Normalize the input vectors. Here splats, zeroed vectors, profitable
// narrowing and commutation of operands should be handled. The actual code
// doesn't include all of those, work in progress...
- SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
+ SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
if (NewOp.getNode())
return NewOp;
@@ -6875,6 +7345,11 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
TargetMask, DAG);
}
+ if (isPALIGNRMask(M, VT, Subtarget))
+ return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
+ getShufflePALIGNRImmediate(SVOp),
+ DAG);
+
// Check if this can be converted into a logical shift.
bool isLeft = false;
unsigned ShAmt = 0;
@@ -6985,18 +7460,13 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
}
// Normalize the node to match x86 shuffle ops if needed
- if (!V2IsUndef && (isSHUFPMask(M, VT, HasFp256, /* Commuted */ true)))
+ if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
return CommuteVectorShuffle(SVOp, DAG);
// The checks below are all present in isShuffleMaskLegal, but they are
// inlined here right now to enable us to directly emit target specific
// nodes, and remove one by one until they don't return Op anymore.
- if (isPALIGNRMask(M, VT, Subtarget))
- return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
- getShufflePALIGNRImmediate(SVOp),
- DAG);
-
if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
SVOp->getSplatIndex() == 0 && V2IsUndef) {
if (VT == MVT::v2f64 || VT == MVT::v2i64)
@@ -7013,7 +7483,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
getShufflePSHUFLWImmediate(SVOp),
DAG);
- if (isSHUFPMask(M, VT, HasFp256))
+ if (isSHUFPMask(M, VT))
return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
getShuffleSHUFImmediate(SVOp), DAG);
@@ -7032,8 +7502,8 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
// Handle VPERMILPS/D* permutations
- if (isVPERMILPMask(M, VT, HasFp256)) {
- if (HasInt256 && VT == MVT::v8i32)
+ if (isVPERMILPMask(M, VT)) {
+ if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
getShuffleSHUFImmediate(SVOp), DAG);
return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
@@ -7049,21 +7519,28 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
if (BlendOp.getNode())
return BlendOp;
- if (V2IsUndef && HasInt256 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
- SmallVector<SDValue, 8> permclMask;
- for (unsigned i = 0; i != 8; ++i) {
- permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
+ unsigned Imm8;
+ if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
+ return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
+
+ if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
+ VT.is512BitVector()) {
+ MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
+ MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
+ SmallVector<SDValue, 16> permclMask;
+ for (unsigned i = 0; i != NumElems; ++i) {
+ permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
}
- SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
- &permclMask[0], 8);
- // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
- return DAG.getNode(X86ISD::VPERMV, dl, VT,
- DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
- }
- if (V2IsUndef && HasInt256 && (VT == MVT::v4i64 || VT == MVT::v4f64))
- return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
- getShuffleCLImmediate(SVOp), DAG);
+ SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
+ &permclMask[0], NumElems);
+ if (V2IsUndef)
+ // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
+ return DAG.getNode(X86ISD::VPERMV, dl, VT,
+ DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
+ return DAG.getNode(X86ISD::VPERMV3, dl, VT,
+ DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
+ }
//===--------------------------------------------------------------------===//
// Since no target specific shuffle was selected for this generic one,
@@ -7079,7 +7556,7 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
}
if (VT == MVT::v16i8) {
- SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
+ SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
if (NewOp.getNode())
return NewOp;
}
@@ -7103,10 +7580,10 @@ X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
}
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType().getSimpleVT();
- DebugLoc dl = Op.getDebugLoc();
+ MVT VT = Op.getSimpleValueType();
+ SDLoc dl(Op);
- if (!Op.getOperand(0).getValueType().getSimpleVT().is128BitVector())
+ if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
return SDValue();
if (VT.getSizeInBits() == 8) {
@@ -7167,25 +7644,45 @@ static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
- if (!isa<ConstantSDNode>(Op.getOperand(1)))
- return SDValue();
-
+ SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
- MVT VecVT = Vec.getValueType().getSimpleVT();
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = Op.getOperand(1);
+ if (!isa<ConstantSDNode>(Idx)) {
+ if (VecVT.is512BitVector() ||
+ (VecVT.is256BitVector() && Subtarget->hasInt256() &&
+ VecVT.getVectorElementType().getSizeInBits() == 32)) {
+
+ MVT MaskEltVT =
+ MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
+ MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
+ MaskEltVT.getSizeInBits());
+
+ Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
+ SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
+ getZeroVector(MaskVT, Subtarget, DAG, dl),
+ Idx, DAG.getConstant(0, getPointerTy()));
+ SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
+ Perm, DAG.getConstant(0, getPointerTy()));
+ }
+ return SDValue();
+ }
// If this is a 256-bit vector result, first extract the 128-bit vector and
// then extract the element from the 128-bit vector.
- if (VecVT.is256BitVector()) {
- DebugLoc dl = Op.getNode()->getDebugLoc();
- unsigned NumElems = VecVT.getVectorNumElements();
- SDValue Idx = Op.getOperand(1);
- unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// Get the 128-bit vector.
Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
+ MVT EltVT = VecVT.getVectorElementType();
- if (IdxVal >= NumElems/2)
- IdxVal -= NumElems/2;
+ unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
+
+ //if (IdxVal >= NumElems/2)
+ // IdxVal -= NumElems/2;
+ IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
DAG.getConstant(IdxVal, MVT::i32));
}
@@ -7198,8 +7695,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
return Res;
}
- MVT VT = Op.getValueType().getSimpleVT();
- DebugLoc dl = Op.getDebugLoc();
+ MVT VT = Op.getSimpleValueType();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
SDValue Vec = Op.getOperand(0);
@@ -7226,7 +7722,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
- MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
@@ -7245,7 +7741,7 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
- MVT VVT = Op.getOperand(0).getValueType().getSimpleVT();
+ MVT VVT = Op.getOperand(0).getSimpleValueType();
SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
DAG.getUNDEF(VVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
@@ -7256,9 +7752,9 @@ X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
}
static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
@@ -7310,29 +7806,30 @@ static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
SDValue
X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
// If this is a 256-bit vector result, first extract the 128-bit vector,
// insert the element into the extracted half and then place it back.
- if (VT.is256BitVector()) {
+ if (VT.is256BitVector() || VT.is512BitVector()) {
if (!isa<ConstantSDNode>(N2))
return SDValue();
// Get the desired 128-bit vector half.
- unsigned NumElems = VT.getVectorNumElements();
unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
// Insert the element into the desired half.
- bool Upper = IdxVal >= NumElems/2;
+ unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
+ unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
+
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
- DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
+ DAG.getConstant(IdxIn128, MVT::i32));
// Insert the changed part back to the 256-bit vector
return Insert128BitVector(N0, V, IdxVal, DAG, dl);
@@ -7357,17 +7854,16 @@ X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
}
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
- LLVMContext *Context = DAG.getContext();
- DebugLoc dl = Op.getDebugLoc();
- MVT OpVT = Op.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT OpVT = Op.getSimpleValueType();
// If this is a 256-bit vector result, first insert into a 128-bit
// vector and then insert into the 256-bit vector.
if (!OpVT.is128BitVector()) {
// Insert into a 128-bit vector.
- EVT VT128 = EVT::getVectorVT(*Context,
- OpVT.getVectorElementType(),
- OpVT.getVectorNumElements() / 2);
+ unsigned SizeFactor = OpVT.getSizeInBits()/128;
+ MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
+ OpVT.getVectorNumElements() / SizeFactor);
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
@@ -7390,16 +7886,22 @@ static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
// upper bits of a vector.
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- if (Subtarget->hasFp256()) {
- DebugLoc dl = Op.getNode()->getDebugLoc();
- SDValue Vec = Op.getNode()->getOperand(0);
- SDValue Idx = Op.getNode()->getOperand(1);
+ SDLoc dl(Op);
+ SDValue In = Op.getOperand(0);
+ SDValue Idx = Op.getOperand(1);
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ MVT ResVT = Op.getSimpleValueType();
+ MVT InVT = In.getSimpleValueType();
- if (Op.getNode()->getValueType(0).is128BitVector() &&
- Vec.getNode()->getValueType(0).is256BitVector() &&
+ if (Subtarget->hasFp256()) {
+ if (ResVT.is128BitVector() &&
+ (InVT.is256BitVector() || InVT.is512BitVector()) &&
isa<ConstantSDNode>(Idx)) {
- unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
- return Extract128BitVector(Vec, IdxVal, DAG, dl);
+ return Extract128BitVector(In, IdxVal, DAG, dl);
+ }
+ if (ResVT.is256BitVector() && InVT.is512BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ return Extract256BitVector(In, IdxVal, DAG, dl);
}
}
return SDValue();
@@ -7411,17 +7913,25 @@ static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
if (Subtarget->hasFp256()) {
- DebugLoc dl = Op.getNode()->getDebugLoc();
+ SDLoc dl(Op.getNode());
SDValue Vec = Op.getNode()->getOperand(0);
SDValue SubVec = Op.getNode()->getOperand(1);
SDValue Idx = Op.getNode()->getOperand(2);
- if (Op.getNode()->getValueType(0).is256BitVector() &&
- SubVec.getNode()->getValueType(0).is128BitVector() &&
+ if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
+ Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
+ SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
isa<ConstantSDNode>(Idx)) {
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
}
+
+ if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
+ SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
+ isa<ConstantSDNode>(Idx)) {
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+ return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
+ }
}
return SDValue();
}
@@ -7453,13 +7963,13 @@ X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset(), OpFlag);
- DebugLoc DL = CP->getDebugLoc();
+ SDLoc DL(CP);
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc(), getPointerTy()),
+ SDLoc(), getPointerTy()),
Result);
}
@@ -7485,14 +7995,14 @@ SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
OpFlag);
- DebugLoc DL = JT->getDebugLoc();
+ SDLoc DL(JT);
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag)
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc(), getPointerTy()),
+ SDLoc(), getPointerTy()),
Result);
return Result;
@@ -7523,7 +8033,7 @@ X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
// With PIC, the address is actually $g + Offset.
@@ -7531,7 +8041,7 @@ X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
!Subtarget->is64Bit()) {
Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc(), getPointerTy()),
+ SDLoc(), getPointerTy()),
Result);
}
@@ -7552,7 +8062,7 @@ X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
CodeModel::Model M = getTargetMachine().getCodeModel();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
OpFlags);
@@ -7573,7 +8083,7 @@ X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
}
SDValue
-X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
+X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
int64_t Offset, SelectionDAG &DAG) const {
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
@@ -7622,7 +8132,7 @@ SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
- return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
+ return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
}
static SDValue
@@ -7631,7 +8141,7 @@ GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
unsigned char OperandFlags, bool LocalDynamic = false) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
- DebugLoc dl = GA->getDebugLoc();
+ SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
@@ -7660,10 +8170,10 @@ static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
SDValue InFlag;
- DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
+ SDLoc dl(GA); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc(), PtrVT), InFlag);
+ SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
@@ -7681,7 +8191,7 @@ static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
const EVT PtrVT,
bool is64Bit) {
- DebugLoc dl = GA->getDebugLoc();
+ SDLoc dl(GA);
// Get the start address of the TLS block for this module.
X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
@@ -7695,7 +8205,7 @@ static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
} else {
SDValue InFlag;
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
- DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
X86II::MO_TLSLDM, /*LocalDynamic=*/true);
@@ -7720,16 +8230,15 @@ static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT, TLSModel::Model model,
bool is64Bit, bool isPIC) {
- DebugLoc dl = GA->getDebugLoc();
+ SDLoc dl(GA);
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
is64Bit ? 257 : 256));
- SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
- DAG.getIntPtrConstant(0),
- MachinePointerInfo(Ptr),
- false, false, false, 0);
+ SDValue ThreadPointer =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0),
+ MachinePointerInfo(Ptr), false, false, false, 0);
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
@@ -7751,21 +8260,20 @@ static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
// emit "addl x@ntpoff,%eax" (local exec)
// or "addl x@indntpoff,%eax" (initial exec)
// or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
- SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
- GA->getValueType(0),
- GA->getOffset(), OperandFlags);
+ SDValue TGA =
+ DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
if (model == TLSModel::InitialExec) {
if (isPIC && !is64Bit) {
Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
- DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
+ DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
}
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
- MachinePointerInfo::getGOT(), false, false, false,
- 0);
+ MachinePointerInfo::getGOT(), false, false, false, 0);
}
// The address of the thread local variable is the add of the thread
@@ -7813,7 +8321,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
OpFlag = X86II::MO_TLVP_PIC_BASE;
else
OpFlag = X86II::MO_TLVP;
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
GA->getValueType(0),
GA->getOffset(), OpFlag);
@@ -7823,7 +8331,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
if (PIC32)
Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
DAG.getNode(X86ISD::GlobalBaseReg,
- DebugLoc(), getPointerTy()),
+ SDLoc(), getPointerTy()),
Offset);
// Lowering the machine isd will make sure everything is in the right
@@ -7860,7 +8368,7 @@ X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
// thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GV = GA->resolveAliasedGlobal(false);
- DebugLoc dl = GA->getDebugLoc();
+ SDLoc dl(GA);
SDValue Chain = DAG.getEntryNode();
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
@@ -7918,11 +8426,16 @@ SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
EVT VT = Op.getValueType();
unsigned VTBits = VT.getSizeInBits();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
+ // X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
+ // generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
+ // during isel.
+ SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits - 1, MVT::i8));
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, MVT::i8))
: DAG.getConstant(0, VT);
@@ -7930,12 +8443,15 @@ SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
- Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
- Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
+ Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
}
+ // If the shift amount is larger or equal than the width of a part we can't
+ // rely on the results of shld/shrd. Insert a test and select the appropriate
+ // values for large shift amounts.
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
@@ -7977,7 +8493,7 @@ SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
return Op;
}
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
@@ -7993,7 +8509,7 @@ SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) const {
// Build the FILD
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
@@ -8068,11 +8584,11 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
#endif
*/
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
- const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
+ static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
Constant *C0 = ConstantDataVector::get(*Context, CV0);
SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
@@ -8122,7 +8638,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
MVT::f64);
@@ -8170,7 +8686,7 @@ SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
EVT SVT = N0.getValueType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
@@ -8185,7 +8701,7 @@ SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
if (Op.getValueType().isVector())
return lowerUINT_TO_FP_vec(Op, DAG);
@@ -8244,7 +8760,8 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
APInt FF(32, 0x5F800000ULL);
// Check whether the sign bit is set.
- SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
+ SDValue SignSet = DAG.getSetCC(dl,
+ getSetCCResultType(*DAG.getContext(), MVT::i64),
Op.getOperand(0), DAG.getConstant(0, MVT::i64),
ISD::SETLT);
@@ -8273,7 +8790,7 @@ SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
std::pair<SDValue,SDValue>
X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
bool IsSigned, bool IsReplace) const {
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
EVT DstTy = Op.getValueType();
@@ -8367,10 +8884,10 @@ X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
- MVT VT = Op->getValueType(0).getSimpleVT();
+ MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
- MVT InVT = In.getValueType().getSimpleVT();
- DebugLoc dl = Op->getDebugLoc();
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
// Optimize vectors in AVX mode:
//
@@ -8385,7 +8902,8 @@ static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
// Concat upper and lower parts.
//
- if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
+ if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
+ ((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
return SDValue();
@@ -8407,8 +8925,39 @@ static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
-SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
- SelectionDAG &DAG) const {
+static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getValueType(0).getSimpleVT();
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getValueType().getSimpleVT();
+ SDLoc DL(Op);
+ unsigned int NumElts = VT.getVectorNumElements();
+ if (NumElts != 8 && NumElts != 16)
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
+
+ EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ // Now we have only mask extension
+ assert(InVT.getVectorElementType() == MVT::i1);
+ SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
+ const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+
+ SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
+ if (VT.is512BitVector())
+ return Brcst;
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
+}
+
+static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
if (Subtarget->hasFp256()) {
SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
if (Res.getNode())
@@ -8417,12 +8966,16 @@ SDValue X86TargetLowering::LowerANY_EXTEND(SDValue Op,
return SDValue();
}
-SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
- SelectionDAG &DAG) const {
- DebugLoc DL = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+
+static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
- MVT SVT = In.getValueType().getSimpleVT();
+ MVT SVT = In.getSimpleValueType();
+
+ if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
+ return LowerZERO_EXTEND_AVX512(Op, DAG);
if (Subtarget->hasFp256()) {
SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
@@ -8430,33 +8983,44 @@ SDValue X86TargetLowering::LowerZERO_EXTEND(SDValue Op,
return Res;
}
- if (!VT.is256BitVector() || !SVT.is128BitVector() ||
- VT.getVectorNumElements() != SVT.getVectorNumElements())
- return SDValue();
-
- assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
-
- // AVX2 has better support of integer extending.
- if (Subtarget->hasInt256())
- return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
-
- SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
- static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
- SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
- DAG.getVectorShuffle(MVT::v8i16, DL, In,
- DAG.getUNDEF(MVT::v8i16),
- &Mask[0]));
-
- return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
+ assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
+ VT.getVectorNumElements() != SVT.getVectorNumElements());
+ return SDValue();
}
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
- DebugLoc DL = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
- MVT SVT = In.getValueType().getSimpleVT();
-
- if ((VT == MVT::v4i32) && (SVT == MVT::v4i64)) {
+ MVT InVT = In.getSimpleValueType();
+ assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
+ "Invalid TRUNCATE operation");
+
+ if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
+ if (VT.getVectorElementType().getSizeInBits() >=8)
+ return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
+
+ assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+ unsigned NumElts = InVT.getVectorNumElements();
+ assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
+ if (InVT.getSizeInBits() < 512) {
+ MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
+ In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
+ InVT = ExtVT;
+ }
+ SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
+ const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
+ SDValue CP = DAG.getConstantPool(C, getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
+ SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
+ return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
+ }
+
+ if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
if (Subtarget->hasInt256()) {
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
@@ -8487,7 +9051,7 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
}
- if ((VT == MVT::v8i16) && (SVT == MVT::v8i32)) {
+ if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
// On AVX2, v8i32 -> v8i16 becomed PSHUFB.
if (Subtarget->hasInt256()) {
In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
@@ -8545,11 +9109,9 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
}
// Handle truncation of V256 to V128 using shuffles.
- if (!VT.is128BitVector() || !SVT.is256BitVector())
+ if (!VT.is128BitVector() || !InVT.is256BitVector())
return SDValue();
- assert(VT.getVectorNumElements() != SVT.getVectorNumElements() &&
- "Invalid op");
assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
unsigned NumElems = VT.getVectorNumElements();
@@ -8569,11 +9131,11 @@ SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
if (VT.isVector()) {
if (VT == MVT::v8i16)
- return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), VT,
- DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
+ return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
+ DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
MVT::v8i32, Op.getOperand(0)));
return SDValue();
}
@@ -8586,7 +9148,7 @@ SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
if (StackSlot.getNode())
// Load the result.
- return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
@@ -8603,7 +9165,7 @@ SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
if (StackSlot.getNode())
// Load the result.
- return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
+ return DAG.getLoad(Op.getValueType(), SDLoc(Op),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
@@ -8612,10 +9174,10 @@ SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
}
static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
- DebugLoc DL = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+ SDLoc DL(Op);
+ MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
- MVT SVT = In.getValueType().getSimpleVT();
+ MVT SVT = In.getSimpleValueType();
assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
@@ -8626,8 +9188,8 @@ static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
- DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
MVT EltVT = VT;
unsigned NumElts = VT == MVT::f64 ? 2 : 4;
if (VT.isVector()) {
@@ -8660,8 +9222,8 @@ SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
- DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
MVT EltVT = VT;
unsigned NumElts = VT == MVT::f64 ? 2 : 4;
if (VT.isVector()) {
@@ -8682,7 +9244,7 @@ SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
MachinePointerInfo::getConstantPool(),
false, false, false, Alignment);
if (VT.isVector()) {
- MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
+ MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getNode(ISD::XOR, dl, XORVT,
DAG.getNode(ISD::BITCAST, dl, XORVT,
@@ -8697,9 +9259,9 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
LLVMContext *Context = DAG.getContext();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
- DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
- MVT SrcVT = Op1.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
+ MVT SrcVT = Op1.getSimpleValueType();
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
@@ -8774,8 +9336,8 @@ SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
- MVT VT = Op.getValueType().getSimpleVT();
+ SDLoc dl(Op);
+ MVT VT = Op.getSimpleValueType();
// Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
@@ -8785,8 +9347,8 @@ static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
//
-SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
- SelectionDAG &DAG) const {
+static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
if (!Subtarget->hasSSE41())
@@ -8796,7 +9358,7 @@ SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
return SDValue();
SDNode *N = Op.getNode();
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
SmallVector<SDValue, 8> Opnds;
DenseMap<SDValue, unsigned> VecInMap;
@@ -8808,7 +9370,7 @@ SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
Opnds.push_back(N->getOperand(1));
for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
- SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
+ SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
// BFS traverse all OR'd operands.
if (I->getOpcode() == ISD::OR) {
Opnds.push_back(I->getOperand(0));
@@ -8880,7 +9442,7 @@ SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op,
/// equivalent.
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
// CF and OF aren't always set the way we want. Determine which
// of these we need.
@@ -8911,7 +9473,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
unsigned NumOperands = 0;
// Truncate operations may prevent the merge of the SETCC instruction
- // and the arithmetic intruction before it. Attempt to truncate the operands
+ // and the arithmetic instruction before it. Attempt to truncate the operands
// of the arithmetic instruction and use a reduced bit-width instruction.
bool NeedTruncation = false;
SDValue ArithOp = Op;
@@ -9019,7 +9581,7 @@ SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
case ISD::AND: Opcode = X86ISD::AND; break;
case ISD::OR: {
if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
- SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
+ SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
if (EFLAGS.getNode())
return EFLAGS;
}
@@ -9095,7 +9657,7 @@ SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
if (C->getAPIntValue() == 0)
return EmitTest(Op0, X86CC, DAG);
- DebugLoc dl = Op0.getDebugLoc();
+ SDLoc dl(Op0);
if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
// Use SUB instead of CMP to enable CSE between SUB and CMP.
@@ -9122,7 +9684,7 @@ SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
// FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
// build an SDNode sequence that transfers the result from FPSW into EFLAGS:
// (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
- DebugLoc dl = Cmp.getDebugLoc();
+ SDLoc dl(Cmp);
SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
@@ -9139,7 +9701,7 @@ static bool isAllOnes(SDValue V) {
/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
/// if it's possible.
SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
- DebugLoc dl, SelectionDAG &DAG) const {
+ SDLoc dl, SelectionDAG &DAG) const {
SDValue Op0 = And.getOperand(0);
SDValue Op1 = And.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
@@ -9207,16 +9769,61 @@ SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
return SDValue();
}
+/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
+/// mask CMPs.
+static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
+ SDValue &Op1) {
+ unsigned SSECC;
+ bool Swap = false;
+
+ // SSE Condition code mapping:
+ // 0 - EQ
+ // 1 - LT
+ // 2 - LE
+ // 3 - UNORD
+ // 4 - NEQ
+ // 5 - NLT
+ // 6 - NLE
+ // 7 - ORD
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETOGT:
+ case ISD::SETGT: Swap = true; // Fallthrough
+ case ISD::SETLT:
+ case ISD::SETOLT: SSECC = 1; break;
+ case ISD::SETOGE:
+ case ISD::SETGE: Swap = true; // Fallthrough
+ case ISD::SETLE:
+ case ISD::SETOLE: SSECC = 2; break;
+ case ISD::SETUO: SSECC = 3; break;
+ case ISD::SETUNE:
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETULE: Swap = true; // Fallthrough
+ case ISD::SETUGE: SSECC = 5; break;
+ case ISD::SETULT: Swap = true; // Fallthrough
+ case ISD::SETUGT: SSECC = 6; break;
+ case ISD::SETO: SSECC = 7; break;
+ case ISD::SETUEQ:
+ case ISD::SETONE: SSECC = 8; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ return SSECC;
+}
+
// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
// ones, and then concatenate the result back.
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue CC = Op.getOperand(2);
// Extract the LHS vectors
@@ -9237,61 +9844,62 @@ static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
+static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ MVT VT = Op.getSimpleValueType();
+
+ assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
+ Op.getValueType().getScalarType() == MVT::i1 &&
+ "Cannot set masked compare for this operation");
+
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ SDLoc dl(Op);
+
+ bool Unsigned = false;
+ unsigned SSECC;
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Unexpected SETCC condition");
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETUGT: Unsigned = true;
+ case ISD::SETGT: SSECC = 6; break; // NLE
+ case ISD::SETULT: Unsigned = true;
+ case ISD::SETLT: SSECC = 1; break;
+ case ISD::SETUGE: Unsigned = true;
+ case ISD::SETGE: SSECC = 5; break; // NLT
+ case ISD::SETULE: Unsigned = true;
+ case ISD::SETLE: SSECC = 2; break;
+ }
+ unsigned Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
+ DAG.getConstant(SSECC, MVT::i8));
+
+}
+
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- SDValue Cond;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
- bool isFP = Op.getOperand(1).getValueType().getSimpleVT().isFloatingPoint();
- DebugLoc dl = Op.getDebugLoc();
+ bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
+ SDLoc dl(Op);
if (isFP) {
#ifndef NDEBUG
- MVT EltVT = Op0.getValueType().getVectorElementType().getSimpleVT();
+ MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
assert(EltVT == MVT::f32 || EltVT == MVT::f64);
#endif
- unsigned SSECC;
- bool Swap = false;
-
- // SSE Condition code mapping:
- // 0 - EQ
- // 1 - LT
- // 2 - LE
- // 3 - UNORD
- // 4 - NEQ
- // 5 - NLT
- // 6 - NLE
- // 7 - ORD
- switch (SetCCOpcode) {
- default: llvm_unreachable("Unexpected SETCC condition");
- case ISD::SETOEQ:
- case ISD::SETEQ: SSECC = 0; break;
- case ISD::SETOGT:
- case ISD::SETGT: Swap = true; // Fallthrough
- case ISD::SETLT:
- case ISD::SETOLT: SSECC = 1; break;
- case ISD::SETOGE:
- case ISD::SETGE: Swap = true; // Fallthrough
- case ISD::SETLE:
- case ISD::SETOLE: SSECC = 2; break;
- case ISD::SETUO: SSECC = 3; break;
- case ISD::SETUNE:
- case ISD::SETNE: SSECC = 4; break;
- case ISD::SETULE: Swap = true; // Fallthrough
- case ISD::SETUGE: SSECC = 5; break;
- case ISD::SETULT: Swap = true; // Fallthrough
- case ISD::SETUGT: SSECC = 6; break;
- case ISD::SETO: SSECC = 7; break;
- case ISD::SETUEQ:
- case ISD::SETONE: SSECC = 8; break;
- }
- if (Swap)
- std::swap(Op0, Op1);
-
+ unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
+ unsigned Opc = X86ISD::CMPP;
+ if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
+ assert(VT.getVectorNumElements() <= 16);
+ Opc = X86ISD::CMPM;
+ }
// In the two special cases we can't handle, emit two comparisons.
if (SSECC == 8) {
unsigned CC0, CC1;
@@ -9303,14 +9911,14 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
}
- SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
+ SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC0, MVT::i8));
- SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
+ SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC1, MVT::i8));
return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
}
// Handle all other FP comparisons here.
- return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
+ return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, MVT::i8));
}
@@ -9318,25 +9926,63 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
if (VT.is256BitVector() && !Subtarget->hasInt256())
return Lower256IntVSETCC(Op, DAG);
+ bool MaskResult = (VT.getVectorElementType() == MVT::i1);
+ EVT OpVT = Op1.getValueType();
+ if (Subtarget->hasAVX512()) {
+ if (Op1.getValueType().is512BitVector() ||
+ (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
+ return LowerIntVSETCC_AVX512(Op, DAG);
+
+ // In AVX-512 architecture setcc returns mask with i1 elements,
+ // But there is no compare instruction for i8 and i16 elements.
+ // We are not talking about 512-bit operands in this case, these
+ // types are illegal.
+ if (MaskResult &&
+ (OpVT.getVectorElementType().getSizeInBits() < 32 &&
+ OpVT.getVectorElementType().getSizeInBits() >= 8))
+ return DAG.getNode(ISD::TRUNCATE, dl, VT,
+ DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
+ }
+
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc;
- bool Swap = false, Invert = false, FlipSigns = false;
-
+ bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
+
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETNE: Invert = true;
- case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
+ case ISD::SETEQ: Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
case ISD::SETLT: Swap = true;
- case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
+ case ISD::SETGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
case ISD::SETGE: Swap = true;
- case ISD::SETLE: Opc = X86ISD::PCMPGT; Invert = true; break;
+ case ISD::SETLE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
+ Invert = true; break;
case ISD::SETULT: Swap = true;
- case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
+ case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
+ FlipSigns = true; break;
case ISD::SETUGE: Swap = true;
- case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
+ case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
+ FlipSigns = true; Invert = true; break;
+ }
+
+ // Special case: Use min/max operations for SETULE/SETUGE
+ MVT VET = VT.getVectorElementType();
+ bool hasMinMax =
+ (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
+ || (Subtarget->hasSSE2() && (VET == MVT::i8));
+
+ if (hasMinMax) {
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
+ case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
+ }
+
+ if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
}
+
if (Swap)
std::swap(Op0, Op1);
@@ -9370,8 +10016,8 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
// Create masks for only the low parts/high parts of the 64 bit integers.
- const int MaskHi[] = { 1, 1, 3, 3 };
- const int MaskLo[] = { 0, 0, 2, 2 };
+ static const int MaskHi[] = { 1, 1, 3, 3 };
+ static const int MaskLo[] = { 0, 0, 2, 2 };
SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
@@ -9398,7 +10044,7 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
// Make sure the lower and upper halves are both all-ones.
- const int Mask[] = { 1, 0, 3, 2 };
+ static const int Mask[] = { 1, 0, 3, 2 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
@@ -9423,20 +10069,23 @@ static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
+
+ if (MinMax)
+ Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
return Result;
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// Optimize to BT if possible.
@@ -9473,7 +10122,7 @@ SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
}
}
- bool isFP = Op1.getValueType().getSimpleVT().isFloatingPoint();
+ bool isFP = Op1.getSimpleValueType().isFloatingPoint();
unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
if (X86CC == X86::COND_INVALID)
return SDValue();
@@ -9530,9 +10179,31 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
+ EVT VT = Op1.getValueType();
SDValue CC;
+ // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
+ // are available. Otherwise fp cmovs get lowered into a less efficient branch
+ // sequence later on.
+ if (Cond.getOpcode() == ISD::SETCC &&
+ ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
+ (Subtarget->hasSSE1() && VT == MVT::f32)) &&
+ VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
+ SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
+ int SSECC = translateX86FSETCC(
+ cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
+
+ if (SSECC != 8) {
+ unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
+ SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
+ DAG.getConstant(SSECC, MVT::i8));
+ SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
+ SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
+ return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
+ }
+ }
+
if (Cond.getOpcode() == ISD::SETCC) {
SDValue NewCond = LowerSETCC(Cond, DAG);
if (NewCond.getNode())
@@ -9606,7 +10277,7 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
- MVT VT = Op.getValueType().getSimpleVT();
+ MVT VT = Op.getSimpleValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
@@ -9715,15 +10386,50 @@ SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
}
-SDValue X86TargetLowering::LowerSIGN_EXTEND(SDValue Op,
- SelectionDAG &DAG) const {
- MVT VT = Op->getValueType(0).getSimpleVT();
+static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
- MVT InVT = In.getValueType().getSimpleVT();
- DebugLoc dl = Op->getDebugLoc();
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ unsigned int NumElts = VT.getVectorNumElements();
+ if (NumElts != 8 && NumElts != 16)
+ return SDValue();
+
+ if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
+
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
+
+ MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
+ Constant *C = ConstantInt::get(*DAG.getContext(),
+ APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
+
+ SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
+ unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
+ SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
+ MachinePointerInfo::getConstantPool(),
+ false, false, false, Alignment);
+ SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
+ if (VT.is512BitVector())
+ return Brcst;
+ return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
+}
+
+static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT VT = Op->getSimpleValueType(0);
+ SDValue In = Op->getOperand(0);
+ MVT InVT = In.getSimpleValueType();
+ SDLoc dl(Op);
+
+ if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
+ return LowerSIGN_EXTEND_AVX512(Op, DAG);
if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
- (VT != MVT::v8i32 || InVT != MVT::v8i16))
+ (VT != MVT::v8i32 || InVT != MVT::v8i16) &&
+ (VT != MVT::v16i16 || InVT != MVT::v16i8))
return SDValue();
if (Subtarget->hasInt256())
@@ -9793,7 +10499,7 @@ SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue CC;
bool Inverted = false;
@@ -10063,12 +10769,13 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
"This should be used only on Windows targets or when segmented stacks "
"are being used");
assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
// Get the inputs.
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
- // FIXME: Ensure alignment here
+ unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
+ EVT VT = Op.getNode()->getValueType(0);
bool Is64Bit = Subtarget->is64Bit();
EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
@@ -10106,12 +10813,20 @@ X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
- Flag = Chain.getValue(1);
- Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
- SPTy).getValue(1);
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
+ unsigned SPReg = RegInfo->getStackRegister();
+ SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
+ Chain = SP.getValue(1);
+
+ if (Align) {
+ SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
+ DAG.getConstant(-(uint64_t)Align, VT));
+ Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
+ }
- SDValue Ops1[2] = { Chain.getValue(0), Chain };
+ SDValue Ops1[2] = { SP, Chain };
return DAG.getMergeValues(Ops1, 2, dl);
}
}
@@ -10121,7 +10836,7 @@ SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
@@ -10188,7 +10903,7 @@ SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDValue SrcPtr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
unsigned Align = Op.getConstantOperandVal(3);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
EVT ArgVT = Op.getNode()->getValueType(0);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
@@ -10254,7 +10969,7 @@ static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
@@ -10262,25 +10977,37 @@ static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
+// getTargetVShiftByConstNode - Handle vector element shifts where the shift
+// amount is a constant. Takes immediate version of shift as input.
+static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, EVT VT,
+ SDValue SrcOp, uint64_t ShiftAmt,
+ SelectionDAG &DAG) {
+
+ // Check for ShiftAmt >= element width
+ if (ShiftAmt >= VT.getVectorElementType().getSizeInBits()) {
+ if (Opc == X86ISD::VSRAI)
+ ShiftAmt = VT.getVectorElementType().getSizeInBits() - 1;
+ else
+ return DAG.getConstant(0, VT);
+ }
+
+ assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
+ && "Unknown target vector shift-by-constant node");
+
+ return DAG.getNode(Opc, dl, VT, SrcOp, DAG.getConstant(ShiftAmt, MVT::i8));
+}
+
// getTargetVShiftNode - Handle vector element shifts where the shift amount
// may or may not be a constant. Takes immediate version of shift as input.
-static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
+static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
SDValue SrcOp, SDValue ShAmt,
SelectionDAG &DAG) {
assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
- if (isa<ConstantSDNode>(ShAmt)) {
- // Constant may be a TargetConstant. Use a regular constant.
- uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
- switch (Opc) {
- default: llvm_unreachable("Unknown target vector shift node");
- case X86ISD::VSHLI:
- case X86ISD::VSRLI:
- case X86ISD::VSRAI:
- return DAG.getNode(Opc, dl, VT, SrcOp,
- DAG.getConstant(ShiftAmt, MVT::i32));
- }
- }
+ // Catch shift-by-constant.
+ if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
+ return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
+ CShAmt->getZExtValue(), DAG);
// Change opcode to non-immediate version
switch (Opc) {
@@ -10308,7 +11035,7 @@ static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
}
static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
@@ -10483,24 +11210,32 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_pmaxu_b:
case Intrinsic::x86_avx2_pmaxu_w:
case Intrinsic::x86_avx2_pmaxu_d:
+ case Intrinsic::x86_avx512_pmaxu_d:
+ case Intrinsic::x86_avx512_pmaxu_q:
case Intrinsic::x86_sse2_pminu_b:
case Intrinsic::x86_sse41_pminuw:
case Intrinsic::x86_sse41_pminud:
case Intrinsic::x86_avx2_pminu_b:
case Intrinsic::x86_avx2_pminu_w:
case Intrinsic::x86_avx2_pminu_d:
+ case Intrinsic::x86_avx512_pminu_d:
+ case Intrinsic::x86_avx512_pminu_q:
case Intrinsic::x86_sse41_pmaxsb:
case Intrinsic::x86_sse2_pmaxs_w:
case Intrinsic::x86_sse41_pmaxsd:
case Intrinsic::x86_avx2_pmaxs_b:
case Intrinsic::x86_avx2_pmaxs_w:
case Intrinsic::x86_avx2_pmaxs_d:
+ case Intrinsic::x86_avx512_pmaxs_d:
+ case Intrinsic::x86_avx512_pmaxs_q:
case Intrinsic::x86_sse41_pminsb:
case Intrinsic::x86_sse2_pmins_w:
case Intrinsic::x86_sse41_pminsd:
case Intrinsic::x86_avx2_pmins_b:
case Intrinsic::x86_avx2_pmins_w:
- case Intrinsic::x86_avx2_pmins_d: {
+ case Intrinsic::x86_avx2_pmins_d:
+ case Intrinsic::x86_avx512_pmins_d:
+ case Intrinsic::x86_avx512_pmins_q: {
unsigned Opcode;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
@@ -10510,6 +11245,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_pmaxu_b:
case Intrinsic::x86_avx2_pmaxu_w:
case Intrinsic::x86_avx2_pmaxu_d:
+ case Intrinsic::x86_avx512_pmaxu_d:
+ case Intrinsic::x86_avx512_pmaxu_q:
Opcode = X86ISD::UMAX;
break;
case Intrinsic::x86_sse2_pminu_b:
@@ -10518,6 +11255,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_pminu_b:
case Intrinsic::x86_avx2_pminu_w:
case Intrinsic::x86_avx2_pminu_d:
+ case Intrinsic::x86_avx512_pminu_d:
+ case Intrinsic::x86_avx512_pminu_q:
Opcode = X86ISD::UMIN;
break;
case Intrinsic::x86_sse41_pmaxsb:
@@ -10526,6 +11265,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_pmaxs_b:
case Intrinsic::x86_avx2_pmaxs_w:
case Intrinsic::x86_avx2_pmaxs_d:
+ case Intrinsic::x86_avx512_pmaxs_d:
+ case Intrinsic::x86_avx512_pmaxs_q:
Opcode = X86ISD::SMAX;
break;
case Intrinsic::x86_sse41_pminsb:
@@ -10534,6 +11275,8 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_pmins_b:
case Intrinsic::x86_avx2_pmins_w:
case Intrinsic::x86_avx2_pmins_d:
+ case Intrinsic::x86_avx512_pmins_d:
+ case Intrinsic::x86_avx512_pmins_q:
Opcode = X86ISD::SMIN;
break;
}
@@ -10546,10 +11289,14 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_sse2_max_pd:
case Intrinsic::x86_avx_max_ps_256:
case Intrinsic::x86_avx_max_pd_256:
+ case Intrinsic::x86_avx512_max_ps_512:
+ case Intrinsic::x86_avx512_max_pd_512:
case Intrinsic::x86_sse_min_ps:
case Intrinsic::x86_sse2_min_pd:
case Intrinsic::x86_avx_min_ps_256:
- case Intrinsic::x86_avx_min_pd_256: {
+ case Intrinsic::x86_avx_min_pd_256:
+ case Intrinsic::x86_avx512_min_ps_512:
+ case Intrinsic::x86_avx512_min_pd_512: {
unsigned Opcode;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
@@ -10557,12 +11304,16 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_sse2_max_pd:
case Intrinsic::x86_avx_max_ps_256:
case Intrinsic::x86_avx_max_pd_256:
+ case Intrinsic::x86_avx512_max_ps_512:
+ case Intrinsic::x86_avx512_max_pd_512:
Opcode = X86ISD::FMAX;
break;
case Intrinsic::x86_sse_min_ps:
case Intrinsic::x86_sse2_min_pd:
case Intrinsic::x86_avx_min_ps_256:
case Intrinsic::x86_avx_min_pd_256:
+ case Intrinsic::x86_avx512_min_ps_512:
+ case Intrinsic::x86_avx512_min_pd_512:
Opcode = X86ISD::FMIN;
break;
}
@@ -10633,7 +11384,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_avx2_permd:
case Intrinsic::x86_avx2_permps:
// Operands intentionally swapped. Mask is last operand to intrinsic,
- // but second operand for node/intruction.
+ // but second operand for node/instruction.
return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(1));
@@ -10708,6 +11459,16 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
+ case Intrinsic::x86_avx512_kortestz:
+ case Intrinsic::x86_avx512_kortestc: {
+ unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
+ SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
+ SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
+ SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+ SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
// SSE/AVX shift intrinsics
case Intrinsic::x86_sse2_psll_w:
@@ -10858,8 +11619,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
X86CC = X86::COND_E;
break;
}
- SmallVector<SDValue, 5> NewOps;
- NewOps.append(Op->op_begin()+1, Op->op_end());
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
@@ -10876,8 +11636,7 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
else
Opcode = X86ISD::PCMPESTRI;
- SmallVector<SDValue, 5> NewOps;
- NewOps.append(Op->op_begin()+1, Op->op_end());
+ SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
}
@@ -10904,7 +11663,19 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_fma_vfmaddsub_ps_256:
case Intrinsic::x86_fma_vfmaddsub_pd_256:
case Intrinsic::x86_fma_vfmsubadd_ps_256:
- case Intrinsic::x86_fma_vfmsubadd_pd_256: {
+ case Intrinsic::x86_fma_vfmsubadd_pd_256:
+ case Intrinsic::x86_fma_vfmadd_ps_512:
+ case Intrinsic::x86_fma_vfmadd_pd_512:
+ case Intrinsic::x86_fma_vfmsub_ps_512:
+ case Intrinsic::x86_fma_vfmsub_pd_512:
+ case Intrinsic::x86_fma_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_vfnmadd_pd_512:
+ case Intrinsic::x86_fma_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_vfnmsub_pd_512:
+ case Intrinsic::x86_fma_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_vfmaddsub_pd_512:
+ case Intrinsic::x86_fma_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_vfmsubadd_pd_512: {
unsigned Opc;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
@@ -10912,36 +11683,48 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
case Intrinsic::x86_fma_vfmadd_pd:
case Intrinsic::x86_fma_vfmadd_ps_256:
case Intrinsic::x86_fma_vfmadd_pd_256:
+ case Intrinsic::x86_fma_vfmadd_ps_512:
+ case Intrinsic::x86_fma_vfmadd_pd_512:
Opc = X86ISD::FMADD;
break;
case Intrinsic::x86_fma_vfmsub_ps:
case Intrinsic::x86_fma_vfmsub_pd:
case Intrinsic::x86_fma_vfmsub_ps_256:
case Intrinsic::x86_fma_vfmsub_pd_256:
+ case Intrinsic::x86_fma_vfmsub_ps_512:
+ case Intrinsic::x86_fma_vfmsub_pd_512:
Opc = X86ISD::FMSUB;
break;
case Intrinsic::x86_fma_vfnmadd_ps:
case Intrinsic::x86_fma_vfnmadd_pd:
case Intrinsic::x86_fma_vfnmadd_ps_256:
case Intrinsic::x86_fma_vfnmadd_pd_256:
+ case Intrinsic::x86_fma_vfnmadd_ps_512:
+ case Intrinsic::x86_fma_vfnmadd_pd_512:
Opc = X86ISD::FNMADD;
break;
case Intrinsic::x86_fma_vfnmsub_ps:
case Intrinsic::x86_fma_vfnmsub_pd:
case Intrinsic::x86_fma_vfnmsub_ps_256:
case Intrinsic::x86_fma_vfnmsub_pd_256:
+ case Intrinsic::x86_fma_vfnmsub_ps_512:
+ case Intrinsic::x86_fma_vfnmsub_pd_512:
Opc = X86ISD::FNMSUB;
break;
case Intrinsic::x86_fma_vfmaddsub_ps:
case Intrinsic::x86_fma_vfmaddsub_pd:
case Intrinsic::x86_fma_vfmaddsub_ps_256:
case Intrinsic::x86_fma_vfmaddsub_pd_256:
+ case Intrinsic::x86_fma_vfmaddsub_ps_512:
+ case Intrinsic::x86_fma_vfmaddsub_pd_512:
Opc = X86ISD::FMADDSUB;
break;
case Intrinsic::x86_fma_vfmsubadd_ps:
case Intrinsic::x86_fma_vfmsubadd_pd:
case Intrinsic::x86_fma_vfmsubadd_ps_256:
case Intrinsic::x86_fma_vfmsubadd_pd_256:
+ case Intrinsic::x86_fma_vfmsubadd_ps_512:
+ case Intrinsic::x86_fma_vfmsubadd_pd_512:
Opc = X86ISD::FMSUBADD;
break;
}
@@ -10952,8 +11735,88 @@ static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
}
}
-static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
+static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Base, SDValue Index,
+ SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget * Subtarget) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getValueType().getVectorNumElements());
+ SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
+}
+
+static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain,
+ const X86Subtarget * Subtarget) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getValueType().getVectorNumElements());
+ SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ if (Src.getOpcode() == ISD::UNDEF)
+ Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
+ SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
+ return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
+}
+
+static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Base, SDValue Index,
+ SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getValueType().getVectorNumElements());
+ SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
+ SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
+ SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ return SDValue(Res, 1);
+}
+
+static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
+ SDValue Src, SDValue Mask, SDValue Base,
+ SDValue Index, SDValue ScaleOp, SDValue Chain) {
+ SDLoc dl(Op);
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
+ assert(C && "Invalid scale type");
+ SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
+ SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
+ SDValue Segment = DAG.getRegister(0, MVT::i32);
+ EVT MaskVT = MVT::getVectorVT(MVT::i1,
+ Index.getValueType().getVectorNumElements());
+ SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
+ SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
+ SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
+ SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
+ return SDValue(Res, 1);
+}
+
+static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ SDLoc dl(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
@@ -10987,7 +11850,144 @@ static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
SDValue(Result.getNode(), 2));
}
-
+ //int_gather(index, base, scale);
+ case Intrinsic::x86_avx512_gather_qpd_512:
+ case Intrinsic::x86_avx512_gather_qps_512:
+ case Intrinsic::x86_avx512_gather_dpd_512:
+ case Intrinsic::x86_avx512_gather_qpi_512:
+ case Intrinsic::x86_avx512_gather_qpq_512:
+ case Intrinsic::x86_avx512_gather_dpq_512:
+ case Intrinsic::x86_avx512_gather_dps_512:
+ case Intrinsic::x86_avx512_gather_dpi_512: {
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break;
+ case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break;
+ case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break;
+ case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break;
+ case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break;
+ case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break;
+ case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break;
+ case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break;
+ }
+ SDValue Chain = Op.getOperand(0);
+ SDValue Index = Op.getOperand(2);
+ SDValue Base = Op.getOperand(3);
+ SDValue Scale = Op.getOperand(4);
+ return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget);
+ }
+ //int_gather_mask(v1, mask, index, base, scale);
+ case Intrinsic::x86_avx512_gather_qps_mask_512:
+ case Intrinsic::x86_avx512_gather_qpd_mask_512:
+ case Intrinsic::x86_avx512_gather_dpd_mask_512:
+ case Intrinsic::x86_avx512_gather_dps_mask_512:
+ case Intrinsic::x86_avx512_gather_qpi_mask_512:
+ case Intrinsic::x86_avx512_gather_qpq_mask_512:
+ case Intrinsic::x86_avx512_gather_dpi_mask_512:
+ case Intrinsic::x86_avx512_gather_dpq_mask_512: {
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx512_gather_qps_mask_512:
+ Opc = X86::VGATHERQPSZrm; break;
+ case Intrinsic::x86_avx512_gather_qpd_mask_512:
+ Opc = X86::VGATHERQPDZrm; break;
+ case Intrinsic::x86_avx512_gather_dpd_mask_512:
+ Opc = X86::VGATHERDPDZrm; break;
+ case Intrinsic::x86_avx512_gather_dps_mask_512:
+ Opc = X86::VGATHERDPSZrm; break;
+ case Intrinsic::x86_avx512_gather_qpi_mask_512:
+ Opc = X86::VPGATHERQDZrm; break;
+ case Intrinsic::x86_avx512_gather_qpq_mask_512:
+ Opc = X86::VPGATHERQQZrm; break;
+ case Intrinsic::x86_avx512_gather_dpi_mask_512:
+ Opc = X86::VPGATHERDDZrm; break;
+ case Intrinsic::x86_avx512_gather_dpq_mask_512:
+ Opc = X86::VPGATHERDQZrm; break;
+ }
+ SDValue Chain = Op.getOperand(0);
+ SDValue Src = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Base = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
+ Subtarget);
+ }
+ //int_scatter(base, index, v1, scale);
+ case Intrinsic::x86_avx512_scatter_qpd_512:
+ case Intrinsic::x86_avx512_scatter_qps_512:
+ case Intrinsic::x86_avx512_scatter_dpd_512:
+ case Intrinsic::x86_avx512_scatter_qpi_512:
+ case Intrinsic::x86_avx512_scatter_qpq_512:
+ case Intrinsic::x86_avx512_scatter_dpq_512:
+ case Intrinsic::x86_avx512_scatter_dps_512:
+ case Intrinsic::x86_avx512_scatter_dpi_512: {
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx512_scatter_qpd_512:
+ Opc = X86::VSCATTERQPDZmr; break;
+ case Intrinsic::x86_avx512_scatter_qps_512:
+ Opc = X86::VSCATTERQPSZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpd_512:
+ Opc = X86::VSCATTERDPDZmr; break;
+ case Intrinsic::x86_avx512_scatter_dps_512:
+ Opc = X86::VSCATTERDPSZmr; break;
+ case Intrinsic::x86_avx512_scatter_qpi_512:
+ Opc = X86::VPSCATTERQDZmr; break;
+ case Intrinsic::x86_avx512_scatter_qpq_512:
+ Opc = X86::VPSCATTERQQZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpq_512:
+ Opc = X86::VPSCATTERDQZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpi_512:
+ Opc = X86::VPSCATTERDDZmr; break;
+ }
+ SDValue Chain = Op.getOperand(0);
+ SDValue Base = Op.getOperand(2);
+ SDValue Index = Op.getOperand(3);
+ SDValue Src = Op.getOperand(4);
+ SDValue Scale = Op.getOperand(5);
+ return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain);
+ }
+ //int_scatter_mask(base, mask, index, v1, scale);
+ case Intrinsic::x86_avx512_scatter_qps_mask_512:
+ case Intrinsic::x86_avx512_scatter_qpd_mask_512:
+ case Intrinsic::x86_avx512_scatter_dpd_mask_512:
+ case Intrinsic::x86_avx512_scatter_dps_mask_512:
+ case Intrinsic::x86_avx512_scatter_qpi_mask_512:
+ case Intrinsic::x86_avx512_scatter_qpq_mask_512:
+ case Intrinsic::x86_avx512_scatter_dpi_mask_512:
+ case Intrinsic::x86_avx512_scatter_dpq_mask_512: {
+ unsigned Opc;
+ switch (IntNo) {
+ default: llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx512_scatter_qpd_mask_512:
+ Opc = X86::VSCATTERQPDZmr; break;
+ case Intrinsic::x86_avx512_scatter_qps_mask_512:
+ Opc = X86::VSCATTERQPSZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpd_mask_512:
+ Opc = X86::VSCATTERDPDZmr; break;
+ case Intrinsic::x86_avx512_scatter_dps_mask_512:
+ Opc = X86::VSCATTERDPSZmr; break;
+ case Intrinsic::x86_avx512_scatter_qpi_mask_512:
+ Opc = X86::VPSCATTERQDZmr; break;
+ case Intrinsic::x86_avx512_scatter_qpq_mask_512:
+ Opc = X86::VPSCATTERQQZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpq_mask_512:
+ Opc = X86::VPSCATTERDQZmr; break;
+ case Intrinsic::x86_avx512_scatter_dpi_mask_512:
+ Opc = X86::VPSCATTERDDZmr; break;
+ }
+ SDValue Chain = Op.getOperand(0);
+ SDValue Base = Op.getOperand(2);
+ SDValue Mask = Op.getOperand(3);
+ SDValue Index = Op.getOperand(4);
+ SDValue Src = Op.getOperand(5);
+ SDValue Scale = Op.getOperand(6);
+ return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
+ }
// XTEST intrinsics.
case Intrinsic::x86_xtest: {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
@@ -11008,13 +12008,14 @@ SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
MFI->setReturnAddressIsTaken(true);
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
EVT PtrVT = getPointerTy();
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
- SDValue Offset =
- DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
+ SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT,
FrameAddr, Offset),
@@ -11032,8 +12033,10 @@ SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
- DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
+ SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
@@ -11048,6 +12051,8 @@ SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
}
@@ -11055,9 +12060,11 @@ SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl (Op);
EVT PtrVT = getPointerTy();
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
@@ -11078,7 +12085,7 @@ SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
@@ -11086,7 +12093,7 @@ SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
@@ -11101,7 +12108,7 @@ SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl (Op);
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
@@ -11271,7 +12278,7 @@ SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
const TargetFrameLowering &TFI = *TM.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
EVT VT = Op.getValueType();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
// Save FP Control Word to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
@@ -11318,7 +12325,7 @@ static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
Op = Op.getOperand(0);
if (VT == MVT::i8) {
@@ -11352,7 +12359,7 @@ static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
EVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
Op = Op.getOperand(0);
if (VT == MVT::i8) {
@@ -11376,7 +12383,7 @@ static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
unsigned NumBits = VT.getSizeInBits();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
Op = Op.getOperand(0);
// Issue a bsf (scan bits forward) which also sets EFLAGS.
@@ -11402,7 +12409,7 @@ static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
@@ -11438,7 +12445,7 @@ static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
EVT VT = Op.getValueType();
// Decompose 256-bit ops into smaller 128-bit ops.
@@ -11454,7 +12461,7 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
"Should not custom lower when pmuldq is available!");
// Extract the odd parts.
- const int UnpackMask[] = { 1, -1, 3, -1 };
+ static const int UnpackMask[] = { 1, -1, 3, -1 };
SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
@@ -11468,12 +12475,12 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
// Merge the two vectors back together with a shuffle. This expands into 2
// shuffles.
- const int ShufMask[] = { 0, 4, 2, 6 };
+ static const int ShufMask[] = { 0, 4, 2, 6 };
return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
}
- assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
- "Only know how to lower V2I64/V4I64 multiply");
+ assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
+ "Only know how to lower V2I64/V4I64/V8I64 multiply");
// Ahi = psrlqi(a, 32);
// Bhi = psrlqi(b, 32);
@@ -11486,13 +12493,12 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
// AhiBlo = psllqi(AhiBlo, 32);
// return AloBlo + AloBhi + AhiBlo;
- SDValue ShAmt = DAG.getConstant(32, MVT::i32);
-
- SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
- SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
+ SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
+ SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
// Bit cast to 32-bit vectors for MULUDQ
- EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
+ EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
+ (VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
@@ -11502,19 +12508,19 @@ static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
- AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
- AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
+ AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
+ AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
}
-SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
+static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
EVT EltTy = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
SDValue N0 = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
// Lower sdiv X, pow2-const.
BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
@@ -11522,23 +12528,35 @@ SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
APInt SplatValue, SplatUndef;
- unsigned MinSplatBits;
+ unsigned SplatBitSize;
bool HasAnyUndefs;
- if (!C->isConstantSplat(SplatValue, SplatUndef, MinSplatBits, HasAnyUndefs))
+ if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
+ HasAnyUndefs) ||
+ EltTy.getSizeInBits() < SplatBitSize)
return SDValue();
if ((SplatValue != 0) &&
(SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
- unsigned lg2 = SplatValue.countTrailingZeros();
+ unsigned Lg2 = SplatValue.countTrailingZeros();
// Splat the sign bit.
- SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
- SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
+ SmallVector<SDValue, 16> Sz(NumElts,
+ DAG.getConstant(EltTy.getSizeInBits() - 1,
+ EltTy));
+ SDValue SGN = DAG.getNode(ISD::SRA, dl, VT, N0,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Sz[0],
+ NumElts));
// Add (N0 < 0) ? abs2 - 1 : 0;
- SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
- SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
+ SmallVector<SDValue, 16> Amt(NumElts,
+ DAG.getConstant(EltTy.getSizeInBits() - Lg2,
+ EltTy));
+ SDValue SRL = DAG.getNode(ISD::SRL, dl, VT, SGN,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Amt[0],
+ NumElts));
SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
- SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
- SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
+ SmallVector<SDValue, 16> Lg2Amt(NumElts, DAG.getConstant(Lg2, EltTy));
+ SDValue SRA = DAG.getNode(ISD::SRA, dl, VT, ADD,
+ DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Lg2Amt[0],
+ NumElts));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
@@ -11555,7 +12573,7 @@ SDValue X86TargetLowering::LowerSDIV(SDValue Op, SelectionDAG &DAG) const {
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = Op.getValueType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
@@ -11567,23 +12585,26 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
(Subtarget->hasInt256() &&
- (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
+ (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
+ (Subtarget->hasAVX512() &&
+ (VT == MVT::v8i64 || VT == MVT::v16i32))) {
if (Op.getOpcode() == ISD::SHL)
- return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
+ DAG);
if (Op.getOpcode() == ISD::SRL)
- return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
+ DAG);
if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
- return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
+ DAG);
}
if (VT == MVT::v16i8) {
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
- SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
+ MVT::v8i16, R, ShiftAmt,
+ DAG);
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
// Zero out the rightmost bits.
SmallVector<SDValue, 16> V(16,
@@ -11594,8 +12615,9 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
- SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
+ MVT::v8i16, R, ShiftAmt,
+ DAG);
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
// Zero out the leftmost bits.
SmallVector<SDValue, 16> V(16,
@@ -11626,8 +12648,9 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
if (Subtarget->hasInt256() && VT == MVT::v32i8) {
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
- SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl,
+ MVT::v16i16, R, ShiftAmt,
+ DAG);
SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
// Zero out the rightmost bits.
SmallVector<SDValue, 32> V(32,
@@ -11638,8 +12661,9 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
- SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl,
+ MVT::v16i16, R, ShiftAmt,
+ DAG);
SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
// Zero out the leftmost bits.
SmallVector<SDValue, 32> V(32,
@@ -11704,14 +12728,14 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
default:
llvm_unreachable("Unknown shift opcode!");
case ISD::SHL:
- return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, R, ShiftAmt,
+ DAG);
case ISD::SRL:
- return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt,
+ DAG);
case ISD::SRA:
- return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
- DAG.getConstant(ShiftAmt, MVT::i32));
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, ShiftAmt,
+ DAG);
}
}
@@ -11721,7 +12745,7 @@ static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget* Subtarget) {
EVT VT = Op.getValueType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
@@ -11729,7 +12753,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
VT == MVT::v4i32 || VT == MVT::v8i16 ||
(Subtarget->hasInt256() &&
((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
- VT == MVT::v8i32 || VT == MVT::v16i16))) {
+ VT == MVT::v8i32 || VT == MVT::v16i16)) ||
+ (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
SDValue BaseShAmt;
EVT EltVT = VT.getVectorElementType();
@@ -11797,6 +12822,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
case MVT::v4i64:
case MVT::v8i32:
case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
}
case ISD::SRA:
@@ -11806,6 +12833,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
case MVT::v8i16:
case MVT::v8i32:
case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
}
case ISD::SRL:
@@ -11817,6 +12846,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
case MVT::v4i64:
case MVT::v8i32:
case MVT::v16i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
}
}
@@ -11825,7 +12856,8 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
// Special case in 32-bit mode, where i64 is expanded into high and low parts.
if (!Subtarget->is64Bit() &&
- (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
+ (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
+ (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
Amt.getOpcode() == ISD::BITCAST &&
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
Amt = Amt.getOperand(0);
@@ -11854,10 +12886,11 @@ static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
return SDValue();
}
-SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
+static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
+ SelectionDAG &DAG) {
EVT VT = Op.getValueType();
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
SDValue V;
@@ -11873,6 +12906,8 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
if (V.getNode())
return V;
+ if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
+ return Op;
// AVX2 has VPSLLV/VPSRAV/VPSRLV.
if (Subtarget->hasInt256()) {
if (Op.getOpcode() == ISD::SRL &&
@@ -11913,8 +12948,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
// r = VSELECT(r, psllw(r & (char16)15, 4), a);
SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
- M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
- DAG.getConstant(4, MVT::i32), DAG);
+ M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 4, DAG);
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
@@ -11925,8 +12959,7 @@ SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
// r = VSELECT(r, psllw(r & (char16)63, 2), a);
M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
- M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
- DAG.getConstant(2, MVT::i32), DAG);
+ M = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, MVT::v8i16, M, 2, DAG);
M = DAG.getNode(ISD::BITCAST, dl, VT, M);
R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
@@ -11993,7 +13026,7 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
SDValue RHS = N->getOperand(1);
unsigned BaseOp = 0;
unsigned Cond = 0;
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
@@ -12060,7 +13093,7 @@ static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
EVT VT = Op.getValueType();
@@ -12069,7 +13102,6 @@ SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
ExtraVT.getScalarType().getSizeInBits();
- SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
@@ -12103,31 +13135,41 @@ SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
// fall through
case MVT::v4i32:
case MVT::v8i16: {
- // (sext (vzext x)) -> (vsext x)
SDValue Op0 = Op.getOperand(0);
SDValue Op00 = Op0.getOperand(0);
SDValue Tmp1;
// Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
if (Op0.getOpcode() == ISD::BITCAST &&
- Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
- Tmp1 = LowerVectorIntExtend(Op00, DAG);
- if (Tmp1.getNode()) {
- SDValue Tmp1Op0 = Tmp1.getOperand(0);
- assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
- "This optimization is invalid without a VZEXT.");
- return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
+ Op00.getOpcode() == ISD::VECTOR_SHUFFLE) {
+ // (sext (vzext x)) -> (vsext x)
+ Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
+ if (Tmp1.getNode()) {
+ EVT ExtraEltVT = ExtraVT.getVectorElementType();
+ // This folding is only valid when the in-reg type is a vector of i8,
+ // i16, or i32.
+ if (ExtraEltVT == MVT::i8 || ExtraEltVT == MVT::i16 ||
+ ExtraEltVT == MVT::i32) {
+ SDValue Tmp1Op0 = Tmp1.getOperand(0);
+ assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
+ "This optimization is invalid without a VZEXT.");
+ return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
+ }
+ Op0 = Tmp1;
+ }
}
// If the above didn't work, then just use Shift-Left + Shift-Right.
- Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
- return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
+ Tmp1 = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Op0, BitsDiff,
+ DAG);
+ return getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Tmp1, BitsDiff,
+ DAG);
}
}
}
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
@@ -12164,7 +13206,7 @@ static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
SelectionDAG &DAG) {
EVT T = Op.getValueType();
- DebugLoc DL = Op.getDebugLoc();
+ SDLoc DL(Op);
unsigned Reg = 0;
unsigned size = 0;
switch(T.getSimpleVT().SimpleTy) {
@@ -12198,7 +13240,7 @@ static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
assert(Subtarget->is64Bit() && "Result not type legalized?");
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue TheChain = Op.getOperand(0);
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
@@ -12212,9 +13254,10 @@ static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
}
-SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
- EVT SrcVT = Op.getOperand(0).getValueType();
- EVT DstVT = Op.getValueType();
+static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
+ MVT SrcVT = Op.getOperand(0).getSimpleValueType();
+ MVT DstVT = Op.getSimpleValueType();
assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
Subtarget->hasMMX() && "Unexpected custom BITCAST");
assert((DstVT == MVT::i64 ||
@@ -12234,7 +13277,7 @@ SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
- DebugLoc dl = Node->getDebugLoc();
+ SDLoc dl(Node);
EVT T = Node->getValueType(0);
SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
DAG.getConstant(0, T), Node->getOperand(2));
@@ -12250,7 +13293,7 @@ static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
- DebugLoc dl = Node->getDebugLoc();
+ SDLoc dl(Node);
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert seq_cst store -> xchg
@@ -12293,25 +13336,26 @@ static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
}
if (!ExtraOp)
- return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1));
- return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1), Op.getOperand(2));
}
-SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
+static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
+ SelectionDAG &DAG) {
assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
// For MacOSX, we want to call an alternative entry point: __sincos_stret,
// which returns the values as { float, float } (in XMM0) or
// { double, double } (which is returned in XMM0, XMM1).
- DebugLoc dl = Op.getDebugLoc();
+ SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
- ArgListTy Args;
- ArgListEntry Entry;
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
@@ -12324,7 +13368,8 @@ SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
// the small struct {f32, f32} is returned in (eax, edx). For f64,
// the results are returned via SRet in memory.
const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
- SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
Type *RetTy = isF64
? (Type*)StructType::get(ArgTy, ArgTy, NULL)
@@ -12335,7 +13380,7 @@ SDValue X86TargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
CallingConv::C, /*isTaillCall=*/false,
/*doesNotRet=*/false, /*isReturnValueUsed*/true,
Callee, Args, DAG, dl);
- std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
if (isF64)
// Returned in xmm0 and xmm1.
@@ -12379,9 +13424,9 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
- case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, DAG);
- case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
- case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, DAG);
+ case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
+ case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
+ case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
@@ -12397,7 +13442,8 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
- case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
@@ -12415,7 +13461,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
case ISD::SRA:
case ISD::SRL:
- case ISD::SHL: return LowerShift(Op, DAG);
+ case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
@@ -12423,7 +13469,7 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
- case ISD::BITCAST: return LowerBITCAST(Op, DAG);
+ case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
@@ -12431,14 +13477,14 @@ SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
case ISD::ADD: return LowerADD(Op, DAG);
case ISD::SUB: return LowerSUB(Op, DAG);
case ISD::SDIV: return LowerSDIV(Op, DAG);
- case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
}
}
static void ReplaceATOMIC_LOAD(SDNode *Node,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) {
- DebugLoc dl = Node->getDebugLoc();
+ SDLoc dl(Node);
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert wide load -> cmpxchg8b/cmpxchg16b
@@ -12459,7 +13505,7 @@ static void ReplaceATOMIC_LOAD(SDNode *Node,
static void
ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG, unsigned NewOp) {
- DebugLoc dl = Node->getDebugLoc();
+ SDLoc dl(Node);
assert (Node->getValueType(0) == MVT::i64 &&
"Only know how to expand i64 atomics");
@@ -12484,7 +13530,7 @@ ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
switch (N->getOpcode()) {
default:
@@ -12668,6 +13714,7 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
+ case X86ISD::FANDN: return "X86ISD::FANDN";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FSRL: return "X86ISD::FSRL";
@@ -12684,6 +13731,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
+ case X86ISD::CMPM: return "X86ISD::CMPM";
+ case X86ISD::CMPMU: return "X86ISD::CMPMU";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
@@ -12743,6 +13792,9 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VZEXT: return "X86ISD::VZEXT";
case X86ISD::VSEXT: return "X86ISD::VSEXT";
+ case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
+ case X86ISD::VTRUNCM: return "X86ISD::VTRUNCM";
+ case X86ISD::VINSERT: return "X86ISD::VINSERT";
case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
@@ -12756,6 +13808,8 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::CMPP: return "X86ISD::CMPP";
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
+ case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
+ case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
case X86ISD::ADD: return "X86ISD::ADD";
case X86ISD::SUB: return "X86ISD::SUB";
case X86ISD::ADC: return "X86ISD::ADC";
@@ -12770,9 +13824,14 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::BLSI: return "X86ISD::BLSI";
case X86ISD::BLSMSK: return "X86ISD::BLSMSK";
case X86ISD::BLSR: return "X86ISD::BLSR";
+ case X86ISD::BZHI: return "X86ISD::BZHI";
+ case X86ISD::BEXTR: return "X86ISD::BEXTR";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::TESTP: return "X86ISD::TESTP";
+ case X86ISD::TESTM: return "X86ISD::TESTM";
+ case X86ISD::KORTEST: return "X86ISD::KORTEST";
+ case X86ISD::KTEST: return "X86ISD::KTEST";
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
@@ -12791,9 +13850,11 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
+ case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
case X86ISD::VPERMILP: return "X86ISD::VPERMILP";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
+ case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
@@ -12879,6 +13940,20 @@ bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
return NumBits1 > NumBits2;
}
+bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<32>(Imm);
}
@@ -12930,6 +14005,27 @@ bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return false;
}
+bool
+X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
+ if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
+ return false;
+
+ VT = VT.getScalarType();
+
+ if (!VT.isSimple())
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f32:
+ case MVT::f64:
+ return true;
+ default:
+ break;
+ }
+
+ return false;
+}
+
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
@@ -12942,37 +14038,46 @@ bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
bool
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
+ if (!VT.isSimple())
+ return false;
+
+ MVT SVT = VT.getSimpleVT();
+
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSizeInBits() == 64)
return false;
// FIXME: pshufb, blends, shifts.
- return (VT.getVectorNumElements() == 2 ||
+ return (SVT.getVectorNumElements() == 2 ||
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
- isMOVLMask(M, VT) ||
- isSHUFPMask(M, VT, Subtarget->hasFp256()) ||
- isPSHUFDMask(M, VT) ||
- isPSHUFHWMask(M, VT, Subtarget->hasInt256()) ||
- isPSHUFLWMask(M, VT, Subtarget->hasInt256()) ||
- isPALIGNRMask(M, VT, Subtarget) ||
- isUNPCKLMask(M, VT, Subtarget->hasInt256()) ||
- isUNPCKHMask(M, VT, Subtarget->hasInt256()) ||
- isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasInt256()) ||
- isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasInt256()));
+ isMOVLMask(M, SVT) ||
+ isSHUFPMask(M, SVT) ||
+ isPSHUFDMask(M, SVT) ||
+ isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
+ isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
+ isPALIGNRMask(M, SVT, Subtarget) ||
+ isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
+ isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
}
bool
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const {
- unsigned NumElts = VT.getVectorNumElements();
+ if (!VT.isSimple())
+ return false;
+
+ MVT SVT = VT.getSimpleVT();
+ unsigned NumElts = SVT.getVectorNumElements();
// FIXME: This collection of masks seems suspect.
if (NumElts == 2)
return true;
- if (NumElts == 4 && VT.is128BitVector()) {
- return (isMOVLMask(Mask, VT) ||
- isCommutedMOVLMask(Mask, VT, true) ||
- isSHUFPMask(Mask, VT, Subtarget->hasFp256()) ||
- isSHUFPMask(Mask, VT, Subtarget->hasFp256(), /* Commuted */ true));
+ if (NumElts == 4 && SVT.is128BitVector()) {
+ return (isMOVLMask(Mask, SVT) ||
+ isCommutedMOVLMask(Mask, SVT, true) ||
+ isSHUFPMask(Mask, SVT) ||
+ isSHUFPMask(Mask, SVT, /* Commuted */ true));
}
return false;
}
@@ -14396,12 +15501,11 @@ X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
} else {
// __chkstk(MSVCRT): does not update stack pointer.
// Clobbers R10, R11 and EFLAGS.
- // FIXME: RAX(allocated size) might be reused and not killed.
BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
.addExternalSymbol("__chkstk")
.addReg(X86::RAX, RegState::Implicit)
.addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
- // RAX has the offset to subtracted from RSP.
+ // RAX has the offset to be subtracted from RSP.
BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
.addReg(X86::RSP)
.addReg(X86::RAX);
@@ -14593,6 +15697,9 @@ X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
.addMBB(restoreMBB);
+
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
MIB.addRegMask(RegInfo->getNoPreservedMask());
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(restoreMBB);
@@ -14638,6 +15745,8 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
+ const X86RegisterInfo *RegInfo =
+ static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
unsigned SP = RegInfo->getStackRegister();
@@ -14710,6 +15819,9 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::CMOV_V8F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
+ case X86::CMOV_V16F32:
+ case X86::CMOV_V8F64:
+ case X86::CMOV_V8I64:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
@@ -15038,7 +16150,7 @@ static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget* Subtarget) {
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
@@ -15134,7 +16246,7 @@ static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
EVT VT = N->getValueType(0);
// Don't create instructions with illegal types after legalize types has run.
@@ -15158,7 +16270,7 @@ static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
- return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
+ return EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true);
}
/// PerformTruncateCombine - Converts truncate operation to
@@ -15253,7 +16365,7 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
// All checks match so transform back to vector_shuffle so that DAG combiner
// can finish the job
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
// Create shuffle node taking into account the case that its a unary shuffle
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
@@ -15265,6 +16377,44 @@ static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
EltNo);
}
+/// Extract one bit from mask vector, like v16i1 or v8i1.
+/// AVX-512 feature.
+static SDValue ExtractBitFromMaskVector(SDNode *N, SelectionDAG &DAG) {
+ SDValue Vec = N->getOperand(0);
+ SDLoc dl(Vec);
+ MVT VecVT = Vec.getSimpleValueType();
+ SDValue Idx = N->getOperand(1);
+ MVT EltVT = N->getSimpleValueType(0);
+
+ assert((VecVT.getVectorElementType() == MVT::i1 && EltVT == MVT::i8) ||
+ "Unexpected operands in ExtractBitFromMaskVector");
+
+ // variable index
+ if (!isa<ConstantSDNode>(Idx)) {
+ MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
+ SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
+ ExtVT.getVectorElementType(), Ext);
+ return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
+ }
+
+ unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
+
+ MVT ScalarVT = MVT::getIntegerVT(VecVT.getSizeInBits());
+ unsigned MaxShift = VecVT.getSizeInBits() - 1;
+ Vec = DAG.getNode(ISD::BITCAST, dl, ScalarVT, Vec);
+ Vec = DAG.getNode(ISD::SHL, dl, ScalarVT, Vec,
+ DAG.getConstant(MaxShift - IdxVal, ScalarVT));
+ Vec = DAG.getNode(ISD::SRL, dl, ScalarVT, Vec,
+ DAG.getConstant(MaxShift, ScalarVT));
+
+ if (VecVT == MVT::v16i1) {
+ Vec = DAG.getNode(ISD::BITCAST, dl, MVT::i16, Vec);
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Vec);
+ }
+ return DAG.getNode(ISD::BITCAST, dl, MVT::i8, Vec);
+}
+
/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
/// generation and convert it from being a bunch of shuffles and extracts
/// to a simple store and scalar loads to extract the elements.
@@ -15275,12 +16425,17 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
return NewOp;
SDValue InputVector = N->getOperand(0);
+
+ if (InputVector.getValueType().getVectorElementType() == MVT::i1 &&
+ !DCI.isBeforeLegalize())
+ return ExtractBitFromMaskVector(N, DAG);
+
// Detect whether we are trying to convert from mmx to i32 and the bitcast
// from mmx to v2i32 has a single usage.
if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
- return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
+ return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
N->getValueType(0),
InputVector.getNode()->getOperand(0));
@@ -15325,7 +16480,7 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
return SDValue();
// Ok, we've now decided to do the transformation.
- DebugLoc dl = InputVector.getDebugLoc();
+ SDLoc dl(InputVector);
// Store the value to a temporary stack slot.
SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
@@ -15362,24 +16517,28 @@ static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
}
/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
-static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
- SDValue RHS, SelectionDAG &DAG,
- const X86Subtarget *Subtarget) {
+static std::pair<unsigned, bool>
+matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
+ SelectionDAG &DAG, const X86Subtarget *Subtarget) {
if (!VT.isVector())
- return 0;
+ return std::make_pair(0, false);
+ bool NeedSplit = false;
switch (VT.getSimpleVT().SimpleTy) {
- default: return 0;
+ default: return std::make_pair(0, false);
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
if (!Subtarget->hasAVX2())
- return 0;
+ NeedSplit = true;
+ if (!Subtarget->hasAVX())
+ return std::make_pair(0, false);
+ break;
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
if (!Subtarget->hasSSE2())
- return 0;
+ return std::make_pair(0, false);
}
// SSE2 has only a small subset of the operations.
@@ -15390,6 +16549,7 @@ static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+ unsigned Opc = 0;
// Check for x CC y ? x : y.
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
@@ -15397,16 +16557,16 @@ static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
default: break;
case ISD::SETULT:
case ISD::SETULE:
- return hasUnsigned ? X86ISD::UMIN : 0;
+ Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
case ISD::SETUGT:
case ISD::SETUGE:
- return hasUnsigned ? X86ISD::UMAX : 0;
+ Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
case ISD::SETLT:
case ISD::SETLE:
- return hasSigned ? X86ISD::SMIN : 0;
+ Opc = hasSigned ? X86ISD::SMIN : 0; break;
case ISD::SETGT:
case ISD::SETGE:
- return hasSigned ? X86ISD::SMAX : 0;
+ Opc = hasSigned ? X86ISD::SMAX : 0; break;
}
// Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
@@ -15415,20 +16575,20 @@ static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
default: break;
case ISD::SETULT:
case ISD::SETULE:
- return hasUnsigned ? X86ISD::UMAX : 0;
+ Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
case ISD::SETUGT:
case ISD::SETUGE:
- return hasUnsigned ? X86ISD::UMIN : 0;
+ Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
case ISD::SETLT:
case ISD::SETLE:
- return hasSigned ? X86ISD::SMAX : 0;
+ Opc = hasSigned ? X86ISD::SMAX : 0; break;
case ISD::SETGT:
case ISD::SETGE:
- return hasSigned ? X86ISD::SMIN : 0;
+ Opc = hasSigned ? X86ISD::SMIN : 0; break;
}
}
- return 0;
+ return std::make_pair(Opc, NeedSplit);
}
/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
@@ -15436,19 +16596,20 @@ static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
SDValue Cond = N->getOperand(0);
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
- VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
+ VT != MVT::f80 && TLI.isTypeLegal(VT) &&
(Subtarget->hasSSE2() ||
(Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
@@ -15587,6 +16748,22 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
+ EVT CondVT = Cond.getValueType();
+ if (Subtarget->hasAVX512() && VT.isVector() && CondVT.isVector() &&
+ CondVT.getVectorElementType() == MVT::i1) {
+ // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
+ // lowering on AVX-512. In this case we convert it to
+ // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
+ // The same situation for all 128 and 256-bit vectors of i8 and i16
+ EVT OpVT = LHS.getValueType();
+ if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
+ (OpVT.getVectorElementType() == MVT::i8 ||
+ OpVT.getVectorElementType() == MVT::i16)) {
+ Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
+ DCI.AddToWorklist(Cond.getNode());
+ return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
+ }
+ }
// If this is a select between two integer constants, try to do some
// optimizations.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
@@ -15704,16 +16881,19 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
case ISD::SETLT:
case ISD::SETGT: {
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
- Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
+ Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
Cond.getOperand(0), Cond.getOperand(1), NewCC);
return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
}
}
}
+ // Early exit check
+ if (!TLI.isTypeLegal(VT))
+ return SDValue();
+
// Match VSELECTs into subs with unsigned saturation.
- if (!DCI.isBeforeLegalize() &&
- N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
// psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
(Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
@@ -15767,14 +16947,35 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
}
// Try to match a min/max vector operation.
- if (!DCI.isBeforeLegalize() &&
- N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
- if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
- return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
+ std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
+ unsigned Opc = ret.first;
+ bool NeedSplit = ret.second;
+
+ if (Opc && NeedSplit) {
+ unsigned NumElems = VT.getVectorNumElements();
+ // Extract the LHS vectors
+ SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
+ SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
+
+ // Extract the RHS vectors
+ SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
+ SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
+
+ // Create min/max for each subvector
+ LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
+ RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
+
+ // Merge the result
+ return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
+ } else if (Opc)
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
// Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
- if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
- Cond.getOpcode() == ISD::SETCC) {
+ if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
+ // Check if SETCC has already been promoted
+ TLI.getSetCCResultType(*DAG.getContext(), VT) == Cond.getValueType()) {
assert(Cond.getValueType().isVector() &&
"vector select expects a vector selector!");
@@ -15821,7 +17022,6 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
// matched by one of the SSE/AVX BLEND instructions. These instructions only
// depend on the highest bit in each word. Try to use SimplifyDemandedBits
// to simplify previous instructions.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
!DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
@@ -15830,6 +17030,15 @@ static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
if (BitWidth == 1)
return SDValue();
+ // Check all uses of that condition operand to check whether it will be
+ // consumed by non-BLEND instructions, which may depend on all bits are set
+ // properly.
+ for (SDNode::use_iterator I = Cond->use_begin(),
+ E = Cond->use_end(); I != E; ++I)
+ if (I->getOpcode() != ISD::VSELECT)
+ // TODO: Add other opcodes eventually lowered into BLEND.
+ return SDValue();
+
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
@@ -15980,7 +17189,7 @@ static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// If the flag operand isn't dead, don't touch this CMOV.
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
@@ -16183,7 +17392,7 @@ static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
}
if (MulAmt2 &&
(isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
if (isPowerOf2_64(MulAmt2) &&
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
@@ -16233,7 +17442,7 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
APInt ShAmt = N1C->getAPIntValue();
Mask = Mask.shl(ShAmt);
if (Mask != 0)
- return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+ return DAG.getNode(ISD::AND, SDLoc(N), VT,
N00, DAG.getConstant(Mask, VT));
}
}
@@ -16249,7 +17458,39 @@ static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
// hardware support for this operation. This is better expressed as an ADD
// of two values.
if (N1C && (1 == N1C->getZExtValue())) {
- return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
+ }
+ }
+
+ return SDValue();
+}
+
+/// \brief Returns a vector of 0s if the node in input is a vector logical
+/// shift by a constant amount which is known to be bigger than or equal
+/// to the vector element size in bits.
+static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
+ (!Subtarget->hasInt256() ||
+ (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
+ return SDValue();
+
+ SDValue Amt = N->getOperand(1);
+ SDLoc DL(N);
+ if (isSplatVector(Amt.getNode())) {
+ SDValue SclrAmt = Amt->getOperand(0);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
+ APInt ShiftAmt = C->getAPIntValue();
+ unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
+
+ // SSE2/AVX2 logical shifts always return a vector of 0s
+ // if the shift amount is bigger than or equal to
+ // the element size. The constant shift amount will be
+ // encoded as a 8-bit immediate.
+ if (ShiftAmt.trunc(8).uge(MaxAmount))
+ return getZeroVector(VT, Subtarget, DAG, DL);
}
}
@@ -16265,6 +17506,12 @@ static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
if (V.getNode()) return V;
}
+ if (N->getOpcode() != ISD::SRA) {
+ // Try to fold this logical shift into a zero vector.
+ SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
+ if (V.getNode()) return V;
+ }
+
return SDValue();
}
@@ -16283,7 +17530,7 @@ static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
SDValue N1 = N->getOperand(1);
SDValue CMP0 = N0->getOperand(1);
SDValue CMP1 = N1->getOperand(1);
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// The SETCCs should both refer to the same CMP.
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
@@ -16402,7 +17649,7 @@ static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
SDValue N0 = Narrow->getOperand(0);
SDValue N1 = Narrow->getOperand(1);
- DebugLoc DL = Narrow->getDebugLoc();
+ SDLoc DL(Narrow);
// The Left side has to be a trunc.
if (N0.getOpcode() != ISD::TRUNCATE)
@@ -16468,33 +17715,80 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
if (R.getNode())
return R;
- // Create BLSI, and BLSR instructions
+ // Create BLSI, BLSR, and BZHI instructions
// BLSI is X & (-X)
// BLSR is X & (X-1)
- if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
+ // BZHI is X & ((1 << Y) - 1)
+ // BEXTR is ((X >> imm) & (2**size-1))
+ if (VT == MVT::i32 || VT == MVT::i64) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- DebugLoc DL = N->getDebugLoc();
-
- // Check LHS for neg
- if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
- isZero(N0.getOperand(0)))
- return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
-
- // Check RHS for neg
- if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
- isZero(N1.getOperand(0)))
- return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
+ SDLoc DL(N);
+
+ if (Subtarget->hasBMI()) {
+ // Check LHS for neg
+ if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
+ isZero(N0.getOperand(0)))
+ return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
+
+ // Check RHS for neg
+ if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
+ isZero(N1.getOperand(0)))
+ return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
+
+ // Check LHS for X-1
+ if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
+ isAllOnes(N0.getOperand(1)))
+ return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
+
+ // Check RHS for X-1
+ if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
+ isAllOnes(N1.getOperand(1)))
+ return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
+ }
+
+ if (Subtarget->hasBMI2()) {
+ // Check for (and (add (shl 1, Y), -1), X)
+ if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == ISD::SHL) {
+ SDValue N001 = N00.getOperand(1);
+ assert(N001.getValueType() == MVT::i8 && "unexpected type");
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
+ if (C && C->getZExtValue() == 1)
+ return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001);
+ }
+ }
- // Check LHS for X-1
- if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
- isAllOnes(N0.getOperand(1)))
- return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
+ // Check for (and X, (add (shl 1, Y), -1))
+ if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
+ SDValue N10 = N1.getOperand(0);
+ if (N10.getOpcode() == ISD::SHL) {
+ SDValue N101 = N10.getOperand(1);
+ assert(N101.getValueType() == MVT::i8 && "unexpected type");
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
+ if (C && C->getZExtValue() == 1)
+ return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101);
+ }
+ }
+ }
- // Check RHS for X-1
- if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
- isAllOnes(N1.getOperand(1)))
- return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
+ // Check for BEXTR.
+ if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
+ (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
+ ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
+ ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (MaskNode && ShiftNode) {
+ uint64_t Mask = MaskNode->getZExtValue();
+ uint64_t Shift = ShiftNode->getZExtValue();
+ if (isMask_64(Mask)) {
+ uint64_t MaskSize = CountPopulation_64(Mask);
+ if (Shift + MaskSize <= VT.getSizeInBits())
+ return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
+ DAG.getConstant(Shift | (MaskSize << 8), VT));
+ }
+ }
+ } // BEXTR
return SDValue();
}
@@ -16508,7 +17802,7 @@ static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// Check LHS for vnot
if (N0.getOpcode() == ISD::XOR &&
@@ -16592,7 +17886,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
if ((SraAmt + 1) != EltBits)
return SDValue();
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// Now we know we at least have a plendvb with the mask val. See if
// we can form a psignb/w/d.
@@ -16641,7 +17935,7 @@ static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
ShAmt1 = ShAmt1.getOperand(0);
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
unsigned Opc = X86ISD::SHLD;
SDValue Op0 = N0.getOperand(0);
SDValue Op1 = N1.getOperand(0);
@@ -16688,7 +17982,7 @@ static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
// and change it to SUB and CMOV.
@@ -16738,7 +18032,7 @@ static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
// Create BLSMSK instructions by finding X ^ (X-1)
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
isAllOnes(N0.getOperand(1)))
@@ -16758,7 +18052,7 @@ static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
- DebugLoc dl = Ld->getDebugLoc();
+ SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned RegSz = RegVT.getSizeInBits();
@@ -16953,7 +18247,7 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
StoreSDNode *St = cast<StoreSDNode>(N);
EVT VT = St->getValue().getValueType();
EVT StVT = St->getMemoryVT();
- DebugLoc dl = St->getDebugLoc();
+ SDLoc dl(St);
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
@@ -17116,8 +18410,8 @@ static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
return SDValue();
- DebugLoc LdDL = Ld->getDebugLoc();
- DebugLoc StDL = N->getDebugLoc();
+ SDLoc LdDL(Ld);
+ SDLoc StDL(N);
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
// pair instead.
@@ -17210,7 +18504,7 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
- EVT VT = LHS.getValueType();
+ MVT VT = LHS.getSimpleValueType();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for horizontal add/sub");
@@ -17281,23 +18575,24 @@ static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
// LHS = VECTOR_SHUFFLE A, B, LMask
// RHS = VECTOR_SHUFFLE A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
- for (unsigned i = 0; i != NumElts; ++i) {
- int LIdx = LMask[i], RIdx = RMask[i];
-
- // Ignore any UNDEF components.
- if (LIdx < 0 || RIdx < 0 ||
- (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
- (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
- continue;
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ int LIdx = LMask[i+l], RIdx = RMask[i+l];
+
+ // Ignore any UNDEF components.
+ if (LIdx < 0 || RIdx < 0 ||
+ (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
+ (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
+ continue;
- // Check that successive elements are being operated on. If not, this is
- // not a horizontal operation.
- unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
- unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
- int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
- if (!(LIdx == Index && RIdx == Index + 1) &&
- !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
- return false;
+ // Check that successive elements are being operated on. If not, this is
+ // not a horizontal operation.
+ unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
+ int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
+ if (!(LIdx == Index && RIdx == Index + 1) &&
+ !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
+ return false;
+ }
}
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
@@ -17316,7 +18611,7 @@ static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, true))
- return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
+ return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
return SDValue();
}
@@ -17331,7 +18626,7 @@ static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, false))
- return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
+ return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
return SDValue();
}
@@ -17368,7 +18663,7 @@ static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
}
- return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
+ return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
}
@@ -17385,6 +18680,19 @@ static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
return SDValue();
}
+/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
+static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
+ // FANDN(x, 0.0) -> 0.0
+ // FANDN(0.0, x) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ return SDValue();
+}
+
static SDValue PerformBTCombine(SDNode *N,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
@@ -17412,12 +18720,12 @@ static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
VT.getVectorElementType().getSizeInBits() ==
OpVT.getVectorElementType().getSizeInBits()) {
- return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
+ return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
}
return SDValue();
}
-static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
+static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget *Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.isVector())
@@ -17426,7 +18734,7 @@ static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
// The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
// both SSE and AVX2 since there is no sign-extended shift right
@@ -17437,14 +18745,14 @@ static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
N0.getOpcode() == ISD::SIGN_EXTEND)) {
SDValue N00 = N0.getOperand(0);
- // EXTLOAD has a better solution on AVX2,
+ // EXTLOAD has a better solution on AVX2,
// it may be replaced with X86ISD::VSEXT node.
if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
if (!ISD::isNormalLoad(N00.getNode()))
return SDValue();
if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
- SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
+ SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
N00, N1);
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
}
@@ -17473,7 +18781,7 @@ static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
const X86Subtarget* Subtarget) {
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
EVT VT = N->getValueType(0);
// Let legalize expand this if it isn't a legal type yet.
@@ -17518,7 +18826,7 @@ static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
// (and (i32 x86isd::setcc_carry), 1)
// This eliminates the zext. This transformation is necessary because
// ISD::SETCC is always legalized to i8.
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
@@ -17556,17 +18864,17 @@ static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
- SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
+ SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
LHS.getValueType(), RHS, LHS.getOperand(1));
- return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
+ return DAG.getSetCC(SDLoc(N), N->getValueType(0),
addV, DAG.getConstant(0, addV.getValueType()), CC);
}
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
- SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
+ SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
RHS.getValueType(), LHS, RHS.getOperand(1));
- return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
+ return DAG.getSetCC(SDLoc(N), N->getValueType(0),
addV, DAG.getConstant(0, addV.getValueType()), CC);
}
return SDValue();
@@ -17575,7 +18883,7 @@ static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
// as "sbb reg,reg", since it can be extended without zext and produces
// an all-ones bit which is more useful than 0/1 in some cases.
-static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
+static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
return DAG.getNode(ISD::AND, DL, MVT::i8,
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
@@ -17586,7 +18894,7 @@ static SDValue MaterializeSETB(DebugLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
SDValue EFLAGS = N->getOperand(1);
@@ -17600,7 +18908,7 @@ static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
- SDValue NewSub = DAG.getNode(X86ISD::SUB, EFLAGS.getDebugLoc(),
+ SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
@@ -17630,7 +18938,7 @@ static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
SDValue Chain = N->getOperand(0);
SDValue Dest = N->getOperand(1);
SDValue EFLAGS = N->getOperand(3);
@@ -17655,7 +18963,7 @@ static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
// SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
- DebugLoc dl = N->getDebugLoc();
+ SDLoc dl(N);
MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
@@ -17690,7 +18998,7 @@ static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
// We don't have a good way to replace an EFLAGS use, so only do this when
// dead right now.
SDValue(N, 1).use_empty()) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
@@ -17709,7 +19017,7 @@ static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
// (sub (sete X, 0), Y) -> sbb 0, Y
// (sub (setne X, 0), Y) -> adc -1, Y
static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
- DebugLoc DL = N->getDebugLoc();
+ SDLoc DL(N);
// Look through ZExts.
SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
@@ -17755,7 +19063,7 @@ static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
- return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
+ return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
@@ -17775,10 +19083,10 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
isa<ConstantSDNode>(Op1.getOperand(1))) {
APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
EVT VT = Op0.getValueType();
- SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
+ SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
Op1.getOperand(0),
DAG.getConstant(~XorC, VT));
- return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
+ return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
DAG.getConstant(C->getAPIntValue()+1, VT));
}
}
@@ -17788,7 +19096,7 @@ static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
- return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
+ return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
@@ -17805,7 +19113,7 @@ static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
if (In.getOpcode() != X86ISD::VZEXT)
return SDValue();
- return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0),
+ return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
In.getOperand(0));
}
@@ -17839,6 +19147,7 @@ SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
case X86ISD::FMIN:
case X86ISD::FMAX: return PerformFMinFMaxCombine(N, DAG);
case X86ISD::FAND: return PerformFANDCombine(N, DAG);
+ case X86ISD::FANDN: return PerformFANDNCombine(N, DAG);
case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
case ISD::ANY_EXTEND:
@@ -17994,6 +19303,22 @@ namespace {
const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
}
+static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
+
+ if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
+ if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
+ std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
+
+ if (AsmPieces.size() == 3)
+ return true;
+ else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
+ return true;
+ }
+ }
+ return false;
+}
+
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
@@ -18035,12 +19360,8 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
const std::string &ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
- if (AsmPieces.size() == 4 &&
- AsmPieces[0] == "~{cc}" &&
- AsmPieces[1] == "~{dirflag}" &&
- AsmPieces[2] == "~{flags}" &&
- AsmPieces[3] == "~{fpsr}")
- return IntrinsicLowering::LowerToByteSwap(CI);
+ if (clobbersFlagRegisters(AsmPieces))
+ return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
case 3:
@@ -18053,11 +19374,7 @@ bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
const std::string &ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
- if (AsmPieces.size() == 4 &&
- AsmPieces[0] == "~{cc}" &&
- AsmPieces[1] == "~{dirflag}" &&
- AsmPieces[2] == "~{flags}" &&
- AsmPieces[3] == "~{fpsr}")
+ if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
@@ -18365,7 +19682,7 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
getTargetMachine())))
return;
- Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
+ Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
GA->getValueType(0), Offset);
break;
}
@@ -18380,7 +19697,7 @@ void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::pair<unsigned, const TargetRegisterClass*>
X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
- EVT VT) const {
+ MVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
@@ -18447,7 +19764,7 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
if (!Subtarget->hasSSE1()) break;
- switch (VT.getSimpleVT().SimpleTy) {
+ switch (VT.SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
@@ -18472,6 +19789,11 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
case MVT::v8f32:
case MVT::v4f64:
return std::make_pair(0U, &X86::VR256RegClass);
+ case MVT::v8f64:
+ case MVT::v16f32:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ return std::make_pair(0U, &X86::VR512RegClass);
}
break;
}
@@ -18582,7 +19904,13 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
}
} else if (Res.second == &X86::FR32RegClass ||
Res.second == &X86::FR64RegClass ||
- Res.second == &X86::VR128RegClass) {
+ Res.second == &X86::VR128RegClass ||
+ Res.second == &X86::VR256RegClass ||
+ Res.second == &X86::FR32XRegClass ||
+ Res.second == &X86::FR64XRegClass ||
+ Res.second == &X86::VR128XRegClass ||
+ Res.second == &X86::VR256XRegClass ||
+ Res.second == &X86::VR512RegClass) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
@@ -18596,6 +19924,8 @@ X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
Res.second = &X86::VR128RegClass;
else if (X86::VR256RegClass.hasType(VT))
Res.second = &X86::VR256RegClass;
+ else if (X86::VR512RegClass.hasType(VT))
+ Res.second = &X86::VR512RegClass;
}
return Res;
OpenPOWER on IntegriCloud